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Abstract 28 

Digital Soil Mapping (DSM) is increasingly needed to improve existing soil information and 29 

derive soil property maps at the suitable spatial resolution for sustainable soil landscape 30 

management. However, predicting several soil properties while preserving specific pedological 31 

process is a great challenge, particularly when only coarse soil information is available over large 32 

areas. Spatial disaggregation seems to be an effective technique to extract pedological information 33 

by downscaling the original information to produce soil maps at finer resolutions. In a previous 34 

study, legacy soil maps of Brittany (France) were disaggregated at a 50 m spatial resolution using 35 

the DSMART (Disaggregation and Harmonisation of Soil Map Units Through Resampled 36 

Classification Trees) algorithm and pedological knowledge. The present study had two main 37 

objectives: (i) assess the preservation of the relationships between soil properties when soil 38 

properties are estimated at standard depths by applying the equal-area spline method on soil data 39 

at pedon scale, and (ii) combine disaggregated soil maps and spline-function results to estimate 40 

spatial patterns of nine soil properties for six regular soil-depth intervals down to 200 cm across 41 

Brittany, an area of 27 040 km². To this end, soil properties were first generated for standard soil-42 

depth intervals using spline functions. Then, for mapping soil properties at the six standard 43 

depths, weighted mean of each soil attribute was calculated for each grid cell from reference soil-44 

property values of the three most probable predicted soil types. Their associated probabilities of 45 

occurrence were used as weights. To assess the ability of spline functions to preserve soil-property 46 

relationships, multiple statistical analyses were performed using original and splined soil datasets. 47 

Bivariate and multivariate analysis highlighted that spline functions preserved soil-property 48 

relationships. Derived digital soil maps showed strong spatial patterns: SOC and silt contents 49 

generally decreased with depth, while sand content and coarse fragment percentage consistently 50 

increased with depth. In addition, experimental semivariogram analysis of SOC content showed 51 

high spatial variability over short distances for all soil-depth intervals except the deepest (100-52 

200 cm), while silt content showed high semivariance for the deepest soil layers. This study can 53 

be considered an example of harmonisation to common output specifications, which generates a 54 

geo-database of quantitative soil properties that describe lateral and vertical soil variation for 55 



regular depth intervals. These predictions can be incorporated into environmental models to help 56 

decision makers manage landscapes. 57 

 58 
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1. Introduction 66 

Addressing environmental issues requires accurate information about spatial patterns of soil types 67 

and properties. Consequently, providing quantitative soil information of known accuracy 68 

is a great challenge to satisfy the needs of end-users, especially landscape managers and 69 

stakeholders (Ellili et al., 2019, Chaney et al., 2016). In most environmental and 70 

agricultural research, accurate and continuous soil data are increasingly incorporated in 71 

soil-landscape modelling to monitor natural resources and ecosystems (Odgers et al., 72 

2012). However, soil data are usually not available at the adequate spatial resolution, 73 

particularly over large areas, where only legacy soil maps at coarse spatial resolution are 74 

available.  75 

From a pedological viewpoint, soil attributes vary either continuously or sharply down a 76 

soil profile (Ponce-Hernandez et al., 1986) as well as across the landscape. As soils are 77 

often described in terms of morphological horizons, it is often difficult to derive 78 

meaningful comparisons of soil phenomena when dealing with a collection of soil profile 79 

information because soil horizonation varies from one profile to the next. Soil depth 80 

functions are useful here because they facilitate the harmonization of depths within a 81 

profile, allowing easier comparisons of soil properties from site to site because they now 82 

have the same depth support. There are a number of different types of soil depth functions 83 

that could or have been used for certain applications. For instance, Jenny (1941) made the 84 

earliest known soil depth function by drawing freehand curves between data points that 85 

represented the mid-point depth of a given horizon. More sophisticated approaches have 86 

been used, such as fitting exponential decay functions (Russell and Moore, 1968). 87 

However, the main disadvantage of these methods is that each local variation in the soil 88 

profile affects the shape of the fitted function at all depths. Consequently, the low 89 

flexibility of these functions results in variable quality of fit over soil depth (Malone et 90 



al., 2009; Odgers et al., 2012). Moreover, exponential decay function is specifically 91 

applicable for soil variables like soil carbon, as done by Minasny et al. (2006) who fitted 92 

these functions to soil organic carbon (SOC) data in the soil profile to map carbon storage 93 

in the Lower Namoi Valley, Australia, and achieved an acceptable quality of fit.  94 

To compensate for the lack of flexibility in depth functions, the use of spline functions 95 

seems to be a good alternative. In fact, certain spline functions, such as smoothing splines 96 

(Erh, 1972) and equal-area splines (Ponce-Hernandez et al., 1986), allowed a series of 97 

independent local functions to be fit over small intervals of a soil profile. Bishop et al. 98 

(1999) improved the approach of Ponce-Hernandez et al. (1986) by fitting quadratic 99 

polynomial splines to soil horizons. Their modified equal-area quadratic splines 100 

effectively predicted depth functions for soil pH, electrical conductivity, clay content, 101 

SOC content, and gravimetric water content at -33 kPa. However, their method required 102 

input data from contiguous soil horizons. One decade later, Malone et al. (2009) solved 103 

this issue by generalizing Bishop et al. (1999)’s approach to be able to use soil input data 104 

from non-contiguous soil horizons.  105 

Using soil-depth functions allows soil attributes to be predicted at specific soil depths. 106 

Spline functions are applied to individual soil observations and predict attributes only for 107 

a single geographic point. To characterize three-dimensional (3D) variation in soil 108 

properties, intensive soil sampling is needed. The quadratic smoothing spline is amply 109 

capable of addressing the vertical variation challenges of soil profile harmonization but 110 

to characterize the lateral variability, sufficient spatial sampling is required. Therefore, 111 

combining digital soil mapping (DSM) techniques and soil-depth functions appears to be 112 

a good option to capture both lateral and vertical variations in soil properties. DSM 113 

predicts soil properties based on their relationships with environmental variables 114 

(Minasny et al., 2008) to address soil variability, even in areas with limited soil data 115 



(McBratney. 2003). Malone et al. (2009) combined equal-area smoothing splines and 116 

neural network models to map SOC storage and available water capacity based on limited 117 

soil data in the lower valley of the Namoi River, Australia. Lacoste et al. (2014) also 118 

combined DSM techniques and equal-area splines to derive 3D maps of SOC stock at high 119 

spatial resolution across an agricultural landscape in Brittany, France. Other researchers 120 

(Bishop et al., 2015; Vaysse et al., 2015) adopted the same strategy to map soil properties 121 

at specific soil depths across a defined study area by using existing soil databases.  122 

Overall, spline functions are generally coupled with DSM methods to characterize the 123 

spatial distribution of soil properties while respecting the consortium GlobalSoilMap 124 

specifications (Arrouays et al., 2014). Over large areas, disaggregation approaches are 125 

strongly recommended to confront the scarcity of both accurate and site soil data. These 126 

approaches attempt to downscale the Soil Map Unit (SMU) information to delineate 127 

unmapped Soil Type Unit (STU) (Bui and Moran, 2001; Odgers et al., 2014; Holmes et 128 

al., 2015) and then derive soil property maps. Several techniques have been demonstrated 129 

through soil science literature and tested in different case studies around the world. For 130 

instance, Odgers et al. (2014) have developed the Disaggregation and harmonization of 131 

Soil Map Units Through Resampled Classification Trees (DSMART) algorithm to 132 

spatially delineated the STU within each SMU in Australia. The DSMART algorithm 133 

generates a set of rasters depicting the spatial distribution of STU and their associated 134 

probability of occurrence at each pixel. Then Odgers et al. (2015) designed the PROPR 135 

algorithm which convert the probability information into thematic soil property maps, 136 

particularly pH and Cation Exchange Capacity (CEC), using soil profile information for 137 

each STU (Odgers et al., 2015a; Odgers et al., 2015b). The DSMART algorithm was also 138 

implemented by Chaney et al. (2016) to disaggregate the soil map of the contiguous United 139 

States at a 30m spatial resolution.  140 



More importantly, integrating local pedological knowledge has been recognized as an 141 

effective way to enhance the performance of DSM approaches (Cook et al., 1996; Walter 142 

et al., 2006; Stoorvogel et al., 2017; Møller et al., 2019, Jamshidi et al., 2019; Ellili-143 

Bargaoui., 2020; Pallegedara Dewage et al., 2020), Vincent et al. (2018) have 144 

implemented the DSMART algorithm with soil landscape rules describing soil 145 

distribution in the local context of the Brittany region (France).  146 

The aims of this study were i) to develop a method to map nine soil properties at multiple 147 

soil depths ii) to assess the ability of spline functions to preserve relationships among soil 148 

properties and iii) to assess the stability of a pedotransfer function, which predict the 149 

Effective Cation Exchange Capacity (ECEC) from some soil attributes. We did this by i) 150 

fitting spline functions to STU soil information to express soil attributes for six regular 151 

depth intervals respecting the GlobalSoilMap specifications and ii) performing bivariate 152 

and multivariate statistical analysis of soil attributes before and after fitting splines to 153 

assess the goodness of fit and degree of preservation of soil-property relationships. 154 

Overall, maps of nine soil properties of major interest for agronomic and environmental 155 

purposes were generated at the regional scale by combining DSM techniques with equal-156 

area splines. STU soil attributes were first standardized for regular depth intervals down 157 

to 200 cm and then mapped using disaggregated STU maps obtained from a previous study 158 

at a spatial resolution of 50 m (Ellili-Bargaoui et al. 2020; Vincent et al., 2018).  159 

2. Materials and methods  160 

The overall workflow followed in this study is as follows:  161 

i) Extract soil-property information for all strata of each STU and identify the 162 

nature of the bottom STU strata (i.e. lithic or paralithic contact). In our context, 163 

the strata refers to a set of spatial soil layers describing the vertical structuration of 164 

STU. 165 



ii) Fit equal-area spline functions to soil properties using STU features to obtain 166 

estimates for standard depth intervals. 167 

iii) Assess preservation of soil-property relationships after fitting equal-area spline 168 

functions 169 

iv) Assess the ability of splined data to correctly predict a composite variable that 170 

depends on additional soil properties (ECEC). The main idea was to check the 171 

stability of the ECEC pedotransfer function by fitting spline functions. 172 

v) Map soil properties over the study area by combining disaggregated STU maps, 173 

their associated probability of occurrence maps and fitted equal-area soil-174 

property values. 175 

2.1. The study area 176 

The study area was the Brittany region, in north-western France. Its covers approximately 177 

27 040 km², with a variety of physical and geographic features. Its climate is oceanic, with 178 

mean annual precipitation ranging from 650 mm in the east to 1300 mm in the west, and 179 

mean annual temperature ranging from 11-13°C (CLIMATIK database: INRA, 2019). 180 

Agriculture, especially annual crops interspersed with temporary and permanent 181 

grasslands, represents the major land use. Brittany has a dense hydrographic network and 182 

natural wetlands. 183 

The relief is relatively gentle and strongly correlated with geological formations, with 184 

elevations of 0-382 m (Figure 1). Brittany is part of the Armorican Massif, which has 185 

complex geology: sedimentary rocks, rocks metamorphosed to differing degrees 186 

(sandstone, schist), metamorphic rocks (gneiss), igneous rocks (granite), and loess 187 

deposits. This high geological diversity generates a wide range of soils. According to the 188 

World Reference Base of Soil Resources (IUSS Working Group WRB, 2014), the main 189 

soils include Cambisols, Stagnic Fluvisols, Hisotsols Podzols, Luvisols, and Leptosols. 190 



Soils are organized along toposequences: relatively well-drained deep soils in upslope and 191 

plateau locations, shallower well-drained soils on mid-slopes, and soils with marked 192 

redoximorphic features in valleys. (Insert Figure 1) 193 

2.2. Regional soil database at 1:250 000 scale 194 

Soil mapping in Brittany is represented in a regional geographic database called the 195 

“Référentiel Régional Pédologique” (RRP) available at 1:250 0000 scale (INRA Infosol, 196 

2014). It contains a set of polygons with crisp boundaries, commonly called soil map units 197 

(SMUs), which are defined as areas with homogeneous soil-forming factors, such as 198 

morphology, geology, and climate. Each SMU contains known proportions of several 199 

STUs, each of which is described in the RRP by a set of strata that describe the vertical 200 

variation in the soil. The strata are spatial horizons describing the vertical organisation of 201 

STUs. Pedological features of SMU, STU, and strata, including depth, thickness, SOC 202 

content, ECEC, pH, and five particle-size fractions, are contained in a relational database 203 

called DoneSol (INRA Infosol, 2014). Furthermore, each STU has a representative soil 204 

profile with a full pedological description. These profiles, which cover a wide pedological 205 

diversity in Brittany, are contained in a separate database. In Brittany, 341 SMUs, 320 206 

STUs, and 1020 strata are currently defined in 1984 polygons. 207 

2.3. Assessing and mapping soil properties at the regional scale  208 

2.3.1. Disaggregation of complex mapping units  209 

The first step of the workflow (Figure 2) was performed in previous studies. Using the 210 

DSMART algorithm (Odgers et al., 2014) and soil-landscape relationships, Vincent et al. 211 

(2018) disaggregated the existing legacy 1:250 000 soil map of Brittany at a resolution of 212 

50 m. Disaggregation yielded estimates of the probability of occurrence of the 320 STUs 213 

in each pixel. Finally, Vincent et al. (2018) retained only the three STUs with the highest 214 



probabilities of occurrence for each pixel and produced soil-type grids for the region 215 

indicating the first, second, and third most probable STU. (Insert Figure 2) 216 

2.3.2. Modelling depth variation using spline functions 217 

Because STU strata were described according to morphological features, they have 218 

variable upper and lower depths. Strata were vertically interpolated to express vertical 219 

variation in soil properties of each STU for GlobalSoilMap standard depth intervals by 220 

applying equal-area spline functions (Bishop et al., 1999; Malone et al., 2009) using the 221 

GSIF package (Hengl et al., 2013) of R software (R Core Team, 2019). The equal-area 222 

spline function respects the mean of the target soil property and ensures continuous 223 

variation with soil depth (Malone et al., 2009). Its result is a set of interpolated values that 224 

reflect the target property’s mean for regular depth intervals down to 200 cm. 225 

To avoid spline-function drawbacks, which consist of overestimating error at the extremes 226 

of a given STU, we followed previous recommendations (Odgers et al., 2012; Vaysse et 227 

al., 2015) and added two pseudo-strata to each STU. The first was created by subdividing 228 

the first strata into two elementary strata, which created a thin topsoil layer from 0-3 cm. 229 

The second was added from the bottom strata down to 200 cm, but only for STUs that had 230 

no strata down to 200 cm but whose depth could reach 200 cm. When present, the bottom 231 

pseudo- strata had the same characteristics as the strata just above it. More importantly, 232 

STU depth can be defined as the distance from the soil surface to the contact with bedrock 233 

(lithic) or weathered rock (paralithic), which contains fissures that make it easier for roots 234 

to penetrate the bedrock (Soil Survey Staff, 1993).  235 

2.3.3     Treatment of censored soil dataset 236 

In the present study, STU depth was determined using a previously developed 237 

classification tree (Styc and Lagacherie, 2019, Vaysse et al., 2015) applied to the bottom 238 

horizon of the representative soil profile of each STU. In the classification tree, each 239 



horizon is classified as “censored”, “may be censored”, or “not censored” (Figure 3), the 240 

first two of which mean that the bottom horizon could be duplicated down to 200 cm. In 241 

general, the bottom horizon was classified as “not censored” when it had lithic or 242 

paralithic contact (R, M, F, C/R, C/M, C/D horizons) and “censored” when was identified 243 

as a pedogenetic horizon (A, B, E horizons). Since ambiguities in the C horizon mean that 244 

it cannot be directly classified as “may be censored” or “not censored”, the tree applies 245 

pedological rules that assess additional soil properties such as weathering, internal 246 

structure, classification, and compactness. The tree thus uses a binary approach to assess 247 

the C horizon and classifies it as “may be censored” when at least one of three rules is 248 

satisfied. (Insert Figure 3) 249 

2.3.3. Correlation analysis among soil properties 250 

Statistical analyses were performed to assess the degree to which fitting spline functions 251 

preserved soil-property relationships. As far as we are aware, this is the first time that 252 

preservation of soil attribute relationships using spline functions has been investigated for 253 

legacy soil maps. First, a Pearson correlation matrix was calculated to demonstrate the 254 

degree of interaction between soil properties before and after fitting spline functions. The 255 

matrix was calculated for two soil datasets: (i) all STU strata identified in the DoneSol 256 

database (1020 strata) and (ii) soil properties estimated for the six regular depth intervals 257 

down to 200 cm (1710 horizons). A two-tailed parametric t-test was also performed to 258 

assess the significance of correlation coefficients. Next, a normalized principal component 259 

analysis (PCA) was performed on both original and splined soil-property values to 260 

visualize organization of soil data and correlations among target soil properties 261 

simultaneously. The main advantage of this statistical method was that the relative 262 

relationships among soil attributes was preserved and all variables were projected onto a 263 

factorial plan.  264 



2.3.4. Prediction of a composite soil variable (ECEC) 265 

Two pedotransfer functions were calibrated using soil property values before and after 266 

fitting spline functions to predict a composite soil variable, the ECEC, as a function of 267 

soil attributes. The main idea was to check the stability of pedotransfer functions, 268 

determined using stepwise multiple linear regression (Hocking, 1976). Both models were 269 

selected using the Akaike information criterion, which allowed selecting the best set of 270 

soil variables to predict the ECEC. This approach assessed the ability of the splined soil 271 

data to accurately predict a composite soil attribute that depends strongly on explanatory 272 

soil variables. Overall, the method achieved three objectives simultaneously by comparing 273 

(i) the performance of models that best predict a target variable (ECEC) as a function of 274 

additional soil properties for both soil datasets, (ii) selected explanatory soil properties 275 

before and after fitting spline functions, and (iii) the partial coefficient of each soil 276 

property for both models based on their associated confidence intervals. 277 

2.3.5. Digital soil mapping of soil properties 278 

The first step of the workflow in this study standardized the depth of the STU 279 

characteristics to be expressed for six regular depth intervals down to 200 cm. By using 280 

the three most probable STU maps, with their associated probabilities of occurrence at a 281 

50 m spatial resolution (Ellili et al., submitted; Vincent et al., 2018), and STU soil-282 

property estimates for six regular depth intervals, several soil-property maps were 283 

generated to estimate the spatial pattern of each soil property in Brittany. To this end, the 284 

weighted mean of each soil attribute was calculated for each grid cell based on reference 285 

soil-property values of the three most probable STU, and their associated probabilities of 286 

occurrence were used as weights, as follows (Eq 1): 287 

y� (���) =  ∑ ������ , �����
��� ∗ �(�����,  ���) ∑ (����� , ���)�

����                                (Eq 1) 288 



where y� (���) is the predicted soil property for grid cell (xij) and soil depth j=1, 2, 3, 4, 5, 289 

6; �(����, ��) is the reference soil property estimated at soil depth j associated with STU 290 

k=1, 2, 3 predicted at all (xij); and (����� , ���) is the probability of occurrence of STUk in 291 

the given grid cell (xij).  292 

The workflow produced maps of nine soil properties − SOC; particle-size distribution of 293 

fine sand, coarse sand, fine silt, coarse silt, and clay; coarse fragments; pH; and ECEC − 294 

at a fine spatial resolution of 50 m over the entire area from legacy soil maps. 295 

2.3.6. Spatial correlation of soil properties 296 

To analyze the spatial correlation of disaggregated soil properties, we calculated 297 

experimental semivariograms of each predicted variable for the six standard depth 298 

intervals. To this end, we first generated a grid with a resolution of 50 m covering the 299 

entire area and randomly selected 30 000 cells from it using the Spatially Balanced 300 

sampling tool of ArcGis 10.6 GIS software (ESRI, 2012). Next, soil-property estimates 301 

were extracted for each cell of the selected dataset using the multiple extraction tool of 302 

ArcGIS. Before semivariogram analysis, SOC content was log-transformed, and ECEC 303 

was square-root-transformed. By applying the variogram function in the R package “gstat” 304 

(Pebesma, 2004), several experimental semivariograms were generated for all soil 305 

properties and all standard depth intervals to characterise the spatial pattern of the soil-306 

property maps produced.  307 

3. Results 308 

3.1. Spline-function outputs 309 

As an example of spline-function outputs, the equal-area splines fit to strata silt content 310 

for four STUs depended strongly on the initial silt content of each strata (Figure 4). Abrupt 311 

changes in content between adjacent strata influenced the shape of the spline curve 312 



considerably. However, the spline curves were constrained at the top and bottom strata 313 

because adding the two thin pseudo-strata minimized overfitting. (Insert Figure 4) 314 

3.2. Correlation between soil properties before and after fitting smoothing spline 315 

functions 316 

For both Pearson correlation matrices, well-known correlations between soil properties 317 

were significant (Table 1). For instance, SOC content correlated positively with clay 318 

content and ECEC but negatively with pH and sand content (P < 0.001). The correlation 319 

between ECEC and clay content was also positive (P < 0.001). In contrast, pH was weakly 320 

but not significantly correlated with ECEC and clay content. The correlation matrices 321 

showed similar correlation coefficients between soil properties in both the original and 322 

splined datasets, indicating that applying spline depth functions to pedological strata 323 

preserved soil attribute correlations. 324 

3.3. Multicollinearity among soil properties 325 

The first two dimensions of the PCA performed on 1020 strata features explained 57% of 326 

the total variance (Figure 5a). The main contributing variables were sand content (30%) 327 

and total silt content (25%) on the first dimension and clay content (26%), CEC (22%), 328 

and SOC content (15%) on the second. Similarly, the first two dimensions of the PCA 329 

performed on 1710 standard horizon features explained 58% of the total variance (Figure 330 

5b). The main contributing variables were sand content (30%) and total silt content (23%) 331 

on the first dimension and SOC content (15%), total silt content (17%), and ECEC (17%) 332 

on the second. Thus, the first PCA dimension for the two datasets (34.3% and 34.2%, 333 

respectively) depended on soil-texture fractions, contrasting coarse texture and relatively 334 

fine texture. The second PCA dimension for the two datasets (22.7% and 23.3%, 335 

respectively) depended on physico-chemical properties and fine texture, particularly clay 336 

content. (Insert Figure 5) 337 



Table 1 : Pearson’s correlation matrices between soil properties before (1020 strata) and 338 

after fitting spline functions (1710 standard horizons). SOC = soil organic carbon, CEC 339 

= cation exchange capacity. * P < 0.05; ** P < 0.01; *** P < 0.001. 340 

Dataset Property SOC Sand  Clay Silt 

Coarse 

fragments Fine silt 

Coarse 

silt pH  

Before Soil organic carbon 1        

 Sand -0.17*** 1       

 Clay 0.26*** -0.53*** 1      

 Silt 0.03 -0.83*** -0.04 1     

 Coarse fragments -0.11** 0.33*** -0.12** -0.30*** 1    

 Fine silt 0.10* -0.71*** 0.33*** 0.62*** -0.08 1   

 Coarse silt -0.04 -0.51*** -0.30*** 0.80*** -0.32*** 0.02 1  

 pH -0.14** -0.07 0.01 0.07 -0.25*** -0.21*** 0.25*** 1 

 CEC 0.48*** -0.26*** 0.48*** -0.01 -0.17*** 0.12** -0.11** 0.04 

After Soil organic carbon 1        

 Sand -0.19*** 1       

 Clay 0.30*** -0.55*** 1      

 Silt 0.03 -0.82*** -0.02 1     

 Coarse fragments -0.13*** 0.31*** -0.10*** -0.30*** 1    

 Fine silt 0.13*** -0.71*** 0.39*** 0.59*** -0.11*** 1   

 Coarse silt -0.05 -0.49*** -0.31*** 0.80*** -0.29*** -0.02 1  

 pH -0.15*** 0.01 -0.05 0.02 -0.21*** -0.26*** 0.22*** 1 

 CEC 0.40*** -0.28*** 0.50*** 0.00 -0.21*** 0.18*** -0.14*** 0.01 

 341 

3.4. Stepwise multiple linear regression 342 

The best regression model for the 1020 strata features (before fitting spline functions) 343 

contained SOC content (P < 0.001), clay content (P < 0.001), and pH (P < 0.01) and 344 

explained 37% (multiple R2) of variation in ECEC (Adj. R2 = 0.36, F = 193, P < 0.005). 345 

The best regression model for the 1710 standard horizons (after fitting spline functions) 346 

also contained SOC content, clay content, and pH (all (P < 0.001) and explained 33% of 347 

variation in ECEC (Adj. R2 = 0.32, F = 213, P < 0.001). The 90% confidence intervals of 348 



both models appeared similar, which confirms that fitting spline functions to pedological 349 

strata information preserved the relationships among soil attributes (Table 2). For 350 

instance, for SOC content, the 90% confidence interval before and after fitting spline 351 

functions was 0.42-0.52 and 0.21-0.34 g kg-1, respectively. 352 

Table 2 : Regression coefficients of effective cation exchange capacity (ECEC) regression models 353 

before and after fitting spline functions. SOC = soil organic carbon. * P < 0.05; ** P < 0.01; *** P < 354 

0.001 355 

Model Variable Estimate  

Standard 

error t-value Significance 5% limit 95% limit 

Before 

splines 

Constant -3.33 1.34 -2.48 0.01* -4.55 -1.11 

SOC (g kg-1) 0.47 0.03 14.80 <0.05*** 0.42 0.52 

Clay (%) 0.33 0.02 14.38 <0.05*** 0.30 0.37 

pH 0.71 0.22 3.15 0.001** 0.34 1.08 

After 

splines 

Constant -2.3 0.67 -1.02 0.30 -2.61 0.62 

SOC (g kg-1) 0.27 0.02 13.74 <0.05*** 0.21 0.34 

Clay (%) 0.33 0.01 17.56 <0.05*** 0.30 0.37 

pH 0.55 0.15 3.47 <0.005*** 0.29 0.82 

 356 

3.5. Soil-property mapping at multiple depths 357 

Depth functions successfully preserved relationships among physico-chemical soil 358 

properties. This implies the reliability of soil-property estimates and their spatial patterns 359 

over the study area; the estimates remained highly informative and reflected information 360 

in the legacy soil maps.  361 

In soil-property maps, SOC content tended to decrease down the soil profile across most 362 

of Brittany, being higher in surface layers (0-5 and 5-15 cm) than in subsurface layers 363 

(60-100 and 100-200 cm) (Figure 6). Furthermore, the spatial pattern of SOC content 364 

showed a strong increase from east to west and north to south. Overall, soils not used for 365 

annual crops − located in permanent grasslands, wooded areas, and along watercourses − 366 



tended to have higher SOC content than those used for annual crops. In surface layers (0-367 

5 and 5-15 cm), cropping areas (northern, western, and central Brittany) had the lowest 368 

SOC content (usually 10-40 g kg-1), while grasslands and wooded areas had SOC content 369 

in excess of 150 g kg-1. 370 

Likewise, silt content always decreased as depth increased, except for soils developed 371 

from Aeolian loam deposits in northern Brittany (Figure 7). This trend was also related to 372 

the depth of these soils, which did not exceed 100 cm. For surface layers (0-30 cm), silt 373 

content usually ranged from 30-60% but exceeded 70% for soils developed from Aeolian 374 

loam, which coincide with areas of annual crops. For subsurface layers, particularly 30-375 

60 cm and 60-100 cm, the lowest silt contents (< 30%) were located in areas of natural 376 

vegetation in south-western and north-central Brittany. (Insert Figure 6), (Insert Figure 377 

7) 378 

Overall, the disaggregated data covered a wide range of soil property values (Table 3). 379 

For instance, median SOC content decreased from 30 g kg-1 at 0-5 cm to 4 g kg-1 at 100-380 

200 cm. Most soil properties followed the same trend, except for sand content, and coarse 381 

fragments, which increased down soil profiles. 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 



Table 3 : Descriptive statistics of the disaggregated soil maps of the soil properties 392 

studied. 393 

Soil property Depth 

interval (cm) 

Min 1st 

quantile 

Median Mean 3rd 

quantile 

Max 

Soil organic carbon 

(g kg-1) 

0-5 3 20 30 32 37 761 

5-15 4 19 28 30 34 663 

15-30 2 19 25 28 32 789 

30-60 0 7 10 13 14 807 

60-100 0 3 4 6 5 583 

100-200 0 2 4 5 7 686 

Clay (%) 0-5 2 15 17 18 21 65 

5-15 1 16 17 18 21 66 

15-30 1 15 17 18 20 68 

30-60 1 14 16 16 19 69 

60-100 2 15 17 18 21 65 

100-200 1 12 16 16 19 59 

Sand (%) 0-5 1 23 28 32 43 88 

5-15 0 23 29 32 41 88 

15-30 0 23 29 32 42 90 

30-60 2 23 31 33 42 99 

60-100 0 23 29 32 41 88 

100-200 2 22 34 33 42 94 

Silt (%) 0-5 5 41 50 50 57 73 

5-15 4 42 50 50 57 74 

15-30 4 42 51 50 57 74 

30-60 2 43 50 50 58 77 

60-100 1 33 44 44 55 79 

100-200 1 34 43 42 49 75 

Fine silt (%) 0-5 1 21 25 26 30 45 

5-15 1 21 25 25 29 45 

15-30 1 21 25 26 30 44 

30-60 1 21 24 25 30 40 

60-100 1 17 21 22 25 41 

100-200 1 17 21 20 23 42 

Coarse silt (%) 0-5 3 20 22 25 26 64 

5-15 3 20 22 24 26 65 

15-30 2 20 22 25 26 65 

30-60 0 20 23 25 26 63 

60-100 1 16 20 22 25 63 

100-200 1 16 21 22 24 58 

Coarse fragments 

(%) 

0-5 0 3 6 7 9 55 

5-15 0 3 5 6 8 55 

15-30 0 3 6 7 10 58 

30-60 0 4 8 11 15 83 

60-100 0 6 10 13 15 92 

100-200 0 5 9 11 14 98 

Cation exchange 

capacity (cmol+kg-1) 

0-5 2 10 12 12 14 69 

5-15 2 10 13 13 15 39 

15-30 2 10 11 11 13 40 

30-60 1 4 5 6 7 32 

60-100 1 3 4 4 5 95 

100-200 1 3 5 5 5 58 

pH 0-5 4 6 6 6 6 9 

5-15 4 6 6 6 6 9 

15-30 4 6 6 6 6 9 

30-60 4 5 6 6 6 9 

60-100 4 5 5 5 6 9 

100-200 4 5 5 5 6 9 



Overall, the experimental semivariograms highlighted significant differences among soil 394 

properties and soil-depth intervals. For all soil properties, subsurface layers, particularly 395 

60-100 and 100-200 cm, varied more than surface layers (0-5, 5-15 and 15-30 cm), which 396 

had nearly the same semivariogram shape (Figure 8). Furthermore, subsurface layers had 397 

a “nugget effect” (i.e. value of the semivariogram at zero lag size) twice as large as those 398 

of surface layers. For instance, the nugget effect for sand content was nearly 50 (g kg-1)² 399 

at 0-5, 5-15, and 30-60 cm and reached 100 (g kg-1)² in the bottom layer (100-200 cm). In 400 

contrast, the range of the semivariogram varied by soil property and depth interval and 401 

was a mean of 30 000 m. The sill:nugget ratio also varied greatly by soil property and 402 

depth interval (e.g. for SOC content, from 2.0 for surface layers (0-60 cm) to 2.5 for the 403 

bottom layer). (Insert Figure 8) 404 

4. Discussion 405 

4.1. Equal-area spline method: advantages and limitations  406 

Reconstructing STU information as a function of depth by fitting spline functions to soil-407 

property values was a convenient way to estimate soil attributes for regular depth 408 

intervals. Several studies (Malone et al., 2009; Lacoste et al., 2014; Odgers et al., 2012; 409 

Stycs and Lagacherie 2019; Vaysse et al., 2014) have used this method to standardize 410 

many soil properties by depth. In the present study, it effectively preserved existing 411 

relationships between all soil properties, as well as the pedological information. Due to 412 

their flexibility, the quadratic polynomial spline functions captured local variation in each 413 

soil interval (Bishop et al., 1999; Ponce-Hernandez et al., 1986). More importantly, equal-414 

area splines predict several soil properties simultaneously for a set of common depth 415 

intervals. These predictions are similar for a given soil depth and reflect specific 416 

pedological process. Soil-property estimates can be used in environmental models and 417 



decision-making tools to derive consistent proxies of ecosystem functions and help guide 418 

stakeholders’ choices. 419 

The equal-area spline method estimated variation in a given soil property with depth 420 

satisfactorily for many kinds of soil profiles, but it also had some limitations. For instance, 421 

soil properties (e.g. SOC content, clay content) of some soil profiles changed abruptly 422 

with depth, which sometimes generated negative values at points close to the abrupt 423 

boundary. The simplest solution was to insert two thin pseudo-strata at the top and bottom 424 

strata to restrict the abrupt transition in the spline function. Despite its potential 425 

effectiveness, most studies do not follow this approach because it requires additional time 426 

and effort to harmonize the input data.  427 

4.2. Spatial structure of disaggregated soil-property maps  428 

The disaggregated digital soil maps depicting soil properties for all depth intervals were 429 

generally consistent with landscape features, including land use. For instance, SOC 430 

content peaked in wooded areas and permanent grasslands but was lowest in cropping 431 

areas. More importantly, Histosols, especially in north-western Brittany, showed high 432 

SOC content in deeper soil layers. Thus, SOC content was influenced mainly by structural 433 

factors, such as parent material, topography, hydromorphic soil conditions, and some 434 

management practices (e.g., soil tillage, crop cover, and land use (Ellili et al., 2019)).  435 

As expected, the spatial pattern of silt content highlighted well the geological and 436 

pedological knowledge about soils in Brittany (Lacoste et al., 2011). Silt content increased 437 

with depth for soils developed in deep Aeolian loam deposits, especially in north-central 438 

Brittany, and was lowest in soils in the north and south, where soils are derived from 439 

granite. Predictions of sand content and coarse fragments by soil-depth interval also 440 

appeared to be consistent with existing knowledge about the study area, particularly the 441 

map of predicted soil parent material created in a previous study (Lacoste et al., 2011).  442 



We found high variability in the spatial pattern of each soil attribute studied, all of which 443 

had a high nugget effect. According to the geostatistical literature (Journel and Huijbregts, 444 

1978), the nugget effect is related to measurement errors or spatial variation at distances 445 

smaller than the sampling interval, or both. However, the experimental semivariograms 446 

showed higher variability for deeper layers than surface layers, which can be explained 447 

mainly by the degree of weathering of soil parent material, which varies greatly among 448 

the contrasting parent materials in Brittany.   449 

4.3. Uncertainties of disaggregated soil maps: legacy soil data and disaggregation 450 

procedure limitations 451 

In a previous study (Ellii-Bargaoui., 2019), the accuracy of generated soil property maps 452 

was assessed using an independent validation soil dataset. The validation procedure was 453 

performed at two soil depth intervals (5-15 and 30-60 cm) using 260 soil samples. In 454 

general, soil property predictions were unbiased except for coarse fragments and CEC in 455 

the 5-15 cm layer. Validation statistics (R², RMSE, RRMSE and ME) were better for the 456 

30-60 cm layer except for soil particle-size distribution. 457 

Overall, the major part of uncertainties was related to the performance of the 458 

disaggregation procedure (DSMART with soil landscape relationships). Splines functions 459 

also explains some of these uncertainties, but it remains marginal compared to the 460 

uncertainties generated by the disaggregation procedure. Moreover, the legacy soil data 461 

presents some limitations which amplify these uncertainties, Indeed, STUs were not 462 

sampled equally across the landscape, which leads to unequal representation of soil 463 

samples among STUs in the model calibration soil dataset, especially when some STUs 464 

are more abundant than others. In addition, differences in sampling designs followed to 465 

sample legacy soil profiles may have influenced the determination of SMU proportions. 466 

For instance, some projects sampled soil profiles to study redoximorphic soil conditions, 467 



while other projects did so to study agricultural soils. Finally, the decrease in data 468 

availability with depth could also have biased our predictions, especially those for deeper 469 

soil intervals. 470 

5. Conclusion and perspectives 471 

We developed a method to produce soil-property maps from legacy soil data for the 472 

regular intervals defined by GlobalSoilMap specifications. By combining spline functions 473 

and the DSMART algorithm, it achieved continuity in both lateral and vertical variation 474 

in soil properties. Moreover, our predictions for each depth interval were consistent with 475 

the geological and pedological heterogeneity across the landscape. However, some 476 

challenges remain beyond creation of the soil-property maps themselves, particularly the 477 

assessment of uncertainties in soil-property estimates. Therefore, estimating prediction 478 

intervals of target soil properties and their potential distributions worthwhile to be 479 

investigated in the future as earlier done by Odgers et al., (2015a). This could allow to 480 

distinguish different sources of uncertainties generated by the implemented 481 

disaggregation approach, fitting spline functions procedure and inherent uncertainties of 482 

the legacy soil dataset.   483 
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Figure captions  

Figure 1 : Location of the Brittany study area, showing boundaries of soil map units 

(SMU) and elevation. 

Figure 2 : The workflow used to derive disaggregated soil-property maps at the regional 

scale. STU = soil typology unit. 

Figure 3 : The classification tree used to characterise lithic and paralithic horizons. STU 

= soil typological unit (adapted from Vaysse, 2015). 

Figure 4 : Strata silt content (open black rectangles), equal-area spline curves (red), and 

estimated mean silt content for GlobalSoilMap regular soil-depth intervals (solid grey 

rectangles) for four soil typological units 

Figure 5 : Principal component analysis based on physico-chemical and texture 

characteristics of soil typological unit strata (a) before and (b) after fitting spline 

functions. SOC: soil organic carbon content, ECEC: effective cation exchange capacity, 

sand: sand content, CF: coarse fragments, F-silt: fine silt, C: silt: coarse silt, and silt: silt 

content. 

Figure 6 : Disaggregated maps of soil organic carbon (SOC) content in Brittany at the six 

soil-depth intervals. 

Figure 7: Disaggregated maps of silt content in Brittany for the six soil-depth increments. 

Figure 8 : Experimental semivariograms derived from disaggregated soil maps for seven 

soil properties for six regular soil-depth intervals. 
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Figure 1 : Location of the Brittany study area, showing boundaries of soil map units 

(SMU) and elevation. 

 



 

Figure 1 : The workflow used to derive disaggregated soil-property maps at the regional 

scale. STU = soil typology unit. 

 



 
Figure 1 : The classification tree used to characterise lithic and paralithic horizons. STU 

= soil typological unit (adapted from Vaysse, 2015). 

 



 

Figure 1 : Strata silt content (open black rectangles), equal-area spline curves (red), and 

estimated mean silt content for GlobalSoilMap regular soil-depth intervals (solid grey 

rectangles) for four soil typological units. 

 



 

Figure 1 : Principal component analysis based on physico-chemical and texture 

characteristics of soil typological unit strata (a) before and (b) after fitting spline 

functions. SOC: soil organic carbon content, ECEC: effective cation exchange capacity, 

sand: sand content, CF: coarse fragments, F-silt: fine silt, C: silt: coarse silt, and silt: silt 

content. 

 



 
Figure 1 : Disaggregated maps of soil organic carbon (SOC) content in Brittany at the 

six soil-depth intervals. 

 



 

Figure 1: Disaggregated maps of silt content in Brittany for the six soil-depth 

increments. 

 



 

Figure 1 : Experimental semivariograms derived from disaggregated soil maps for 

seven soil properties for six regular soil-depth intervals. 

 




