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1. Preliminaries 1.1. Lagrange and Markov numbers. The Lagrange numbers L = {L n } ∞ n=1 = { √ 5, √ 8, . . .} are a sequence of real numbers that naturally arise in Diophantine approximation. Hurwitz's theorem states that for any irrational number x, there exists a sequence of rationals p n /q n converging to x with x -pn qn < 1 √ 5q 2 n . In this expression, √ 5 is optimal, as can be shown by taking x = ϕ (the golden ratio).

It turns out that when x = ϕ and related numbers are excluded, √ 8 is the new best constant. By definition, L 1 = √ 5 is the first Lagrange number, L 2 = √ 8 is the second Lagrange number, etc. The Markov numbers M = {m n } ∞ n=1 = {1, 2, 5, 13, . . .} are the positive integers that appear in a Markov triple, i.e. a solution (x, y, z) ∈ Z 3 to the cubic (1)

x 2 + y 2 + z 2 = 3xyz .

In 1880, Markov [START_REF] Markoff | Sur les formes quadratiques binaires indéfinies[END_REF][START_REF] Markoff | Sur les formes quadratiques binaires indéfinies II[END_REF] discovered a remarkable connection between this cubic and the theory of binary quadratic forms, and proved the unexpected relation between Markov and Lagrange numbers:

(2)

L n = 9 - 4 m 2 n .
Using the Vieta involution (x, y, z) → (x, y, 3xy -z), it is easy to see that for any Markov number m, one can always find a Markov triple (x, y, z = m) with 0 < x y z. The Markov Uniqueness Conjecture (MUC) asserts that such a triple is always unique. MUC was initially offered by Frobenius in 1913 [START_REF] Ferdinand | Über die Markoffschen Zahlen[END_REF] and is notoriously difficult [START_REF] Richard | Don't try to solve these problems![END_REF]. For more context and detail, we refer to [START_REF] Aigner | Markov's theorem and 100 years of the uniqueness conjecture[END_REF][START_REF] Thomas | The Markoff and Lagrange spectra[END_REF].

1.2. The sum of Lagrange numbers. It is clear from ( 2 ) that L n is an increasing sequence of positive numbers that converges to 3 when n → +∞. Moreover, we have 3 -L n ∼ 2 3m 2 n , and since m n n (actually m n is much greater, see § 3 ), the series ∞ n=1 (3 -L n ) is convergent. In this paper, we prove:

Theorem 1.1. The Markov Uniqueness Conjecture holds if and only if

(3) ∞ n=1 (3 -L n ) = 4 -ϕ - √ 2 .
The proof is easily derived from the McShane identity on a hyperbolic punctured torus and a result of Schmutz regarding the well-known relationship between hyperbolic geometry and Markov numbers. It is nonetheless a striking identity, and could optimistically open a new path towards probing MUC.
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Remark 1.2. Several authors have explored similar ideas, for instance [START_REF] Bowditch | A proof of McShane's identity via Markoff triples[END_REF], [START_REF] Lung | A simple proof of the Markoff conjecture for prime powers[END_REF]§4.3].

Remark 1.3. Numerical computation confirms the identity ( 3 ) convincingly, as we shall see in § 3 . This is not surprising since MUC has also directly been checked by computers for high values of n.

1.3. Markov numbers and the modular torus. The beautiful relationship between Markov numbers and hyperbolic geometry was discovered by Gorshkov [START_REF] Gorshkov | Geometry of Lobachevskii in connection with certain questions of arithmetic[END_REF] and Cohn [START_REF] Cohn | Approach to Markoff's minimal forms through modular functions[END_REF]. Let T * denote the once-punctured torus, i.e. the topological surface obtained by removing a point from the torus T 2 . For a certain hyperbolic metric on T * , the lengths of simple closed geodesics on T * are given by the Markov numbers. We briefly explain this connection and refer to e.g. [START_REF] Series | The geometry of Markoff numbers[END_REF] for more discussion.

The character variety of the once-punctured torus is the cubic surface X defined by the equation (4)

x 2 + y 2 + z 2 = xyz .
Hyperbolic metrics on T * with finite volume correspond to real points of X . Indeed, let π 1 (T * ) = a, b where a and b are the standard generators of π 1 (T 2 ) ≈ Z 2 . Hyperbolic structures on T * are parametrized by x = tr(A), y = tr(B), z = tr(AB) where A, B ∈ SL 2 (R) are (lifts of) the holonomies of a, b ∈ π 1 (T * ).

The condition that the metric has finite volume amounts to the peripheral curve aba -1 b -1 having parabolic holonomy, i.e. tr(ABA -1 B -1 ) = -2. Using the classical trace relations in SL 2 (R), this equation is rewritten x 2 +y 2 +z 2 = xyz. We refer to e.g. [START_REF] William M Goldman | The modular group action on real SL(2)-characters of a one-holed torus[END_REF] for more details on this correspondence. The integer solutions (x, y, z) ∈ Z 3 of ( 4 ) are clearly in bijection with Markov triples: x, y, z must all be divisible by 3, and the reduced triple (x/3, y/3, z/3) verifies ( 1 ). Thus Markov triples are the integral points of X (up to 1/3). In fact, the mapping class group Mod(T * ) acts transitively on such triples, i.e. all corresponding hyperbolic tori are isometric. This hyperbolic torus is called the modular torus X, a 6-fold cover of the modular orbifold. Markov numbers can alternatively be described as one third of traces of simple closed geodesics on X:

3 M = {3 m n , n ∈ N} = {τ (γ), γ ∈ S}
where we denote S the set of simple closed geodesics on X and τ (γ) the trace of the holonomy of γ ∈ S.

It is natural to ask whether for any m ∈ M, the geodesic γ such that τ (γ) = 3m is unique up to an isometry of X. It was proved by Schmutz [ Sch96 ] that this statement is equivalent to MUC. 1.4. Acknowledgments. We thank Ser Peow Tan and David Dumas for valuable feedback.

Proof of the theorem

Greg McShane showed that, for any finite-volume hyperbolic metric on the punctured torus T * ,

γ∈S 1 1 + e (γ) = 1 2
where S is the set of simple closed geodesics and (γ) indicates the length of γ [START_REF] Mcshane | Simple geodesics and a series constant over Teichmüller space[END_REF]. Recalling that the trace and length of γ are related by τ (γ) = 2 cosh( (γ)/2), McShane's identity can be rewritten

1 = γ 2 1 + e (γ) = γ e -(γ)/2 sech( (γ)/2) (5) = γ 2 τ (γ) + τ (γ) 2 -4 • 2 τ (γ) = γ 1 -1 - 4 τ (γ) 2 .
When T * with its hyperbolic metric is chosen to be the modular torus X, let us denote m(γ) := τ (γ)/3 the associated Markov number (see § 1.3 ) and L(γ) := 9 -4 m(γ) 2 the associated Lagrange number. Reworking ( 5 ), McShane's identity on the modular torus is simply rewritten:

(6) γ∈S (3 -L(γ)) = 3 .
It remains to investigate the fibers of the map γ → L(γ) from simple closed geodesics on X to Lagrange numbers. It is not hard to show that all fibers are nonempty: this is because Vieta involutions act transitively on the Markov tree, and act as mapping classes on S. By Schmutz's theorem [START_REF] Schmutz | Systoles of arithmetic surfaces and the Markoff spectrum[END_REF], MUC is equivalent to each fiber of γ → L(γ) being the Aut(X)-orbit of a single simple closed geodesic on X. To finish the proof of Theorem 1.1 , we just need to count the number of elements of each orbit.

Lemma 2.1. Let S 0 ⊂ S indicate the six shortest geodesics on X, and let S 1 = S -S 0 . Each orbit Aut(X) S 0 has three elements, and each orbit of Aut(X) S 1 has six elements.

Proof. There is an Aut(X)-equivariant correspondence of S with lines in H := H 1 (X, Z). The standard generators a, b of π 1 (X) ≈ π 1 (T * ) (as in § 1.3 ) provide a basis of H ≈ Z 2 . The image of the homomorphism Aut(X) → PGL(2, Z) is the dihedral group with six elements, generated by

r = 0 1 -1 -1 and σ = 0 1 1 0 .
The actions of r and σ on P 1 H have fixed points Fix(r) = ∅ and Fix(σ

) = {[1 : 1], [1 : -1]}.
This implies that all simple closed geodesics on X have six images under the action of Aut(X), except for the two geodesics corresponding to ab and ab -1 , which have three such images apiece. These six geodesics are precisely the six shortest geodesics on X.

Let us now prove Theorem 1.1 , in fact the slightly more precise version:

Theorem 2.2. We have

∞ n=1 (3 -L n ) 4 -ϕ - √ 2,
with equality if and only if MUC holds.

Proof. Recall that X denotes the modular torus and S the set of simple closed geodesics on X. Let S/Aut(X) indicate the set of Aut(X)-orbits in S. By ( 6 ), the McShane identity on X is rewritten:

γ∈S (3 -L(γ)) = A∈S/Aut(X) γ∈A 3 -L(γ) = 3 .
By Lemma 2.1 , the map γ → L(γ) is 6-to-1 for γ ∈ S 1 and 3-to-1 for γ ∈ S 0 . Therefore, we get   6

[γ]∈S 1 /Aut(X)

+ 3

[γ]∈S 0 /Aut(X)   (3 -L(γ)) = 3 .
The six curves in S 0 are the shortest geodesics in S, so the two Lagrange numbers they determine are the two smallest Lagrange numbers L 1 = √ 5 and L 2 = √ 8. The previous equality can be written   6

[γ]∈S/Aut(X)

(3 -L(γ))   -3 (3 -L 1 ) + (3 -L 2 ) = 3 ,
which we rewrite:

[γ]∈S/Aut(X) (3 -L(γ)) = 4 -ϕ - √ 2 .
The map [γ] → L(γ) from S/Aut(X) to the set of Lagrange numbers L = {L n , n ∈ N} is onto, and one-to-one if and only if MUC holds (see discussion above Lemma 2.1 ). The conclusion follows. . On Figure 1 it appears that the graph of R n in Log scale is indeed asymptotic to the expected curve.

Numerical evidence

Numerical computation suggests that the series

∞ n=1 (3 -L n ) indeed converges to L = 4 -ϕ - √ 2. Denoting R n := L -n k=1 (3 -L k ) the
Remark 3.2 (Computer code). We wrote a simple recursive algorithm in Python to generate the list of Markov numbers. We then used Mathematica to compute the remainders R n up to n = 50 000 and plot the graphs. Our code is freely available on GitHub [ js20 ]. 

  n = 1 . . . 50 000.

Figure 1 .

 1 Figure 1. Numerical computation of the remainder R n = (4 -ϕ -√ 2) -n k=1 (3 -L k ). The dashed curve shows the expected asymptotic profile 6 √ n C e -2C √ n .

  presumed remainder, we find for instance R n ≈ 7.34169 × 10 -455 for n = 50 000.Remark 3.1. Of course, one can also check MUC directly with an algorithm (see e.g.[START_REF] John | A Comparison of Recent Results on the Unicity Conjecture of the Markoff Equation[END_REF]). A short Python script took us less than a minute on a personal computer to check MUC for all Markov numbers m n up to 10 1000 , i.e. up to n = 959 047. Nevertheless, it is nice to get a different confirmation.Pushing the analysis further, we obtain new numerical evidence of Zagier's estimatem n ∼ 1 3 e C √ nwhere C = 2.3523414972... . Let us recall that this estimate is still open but was proved in weaker forms in[START_REF] Zagier | On the number of Markoff numbers below a given bound[END_REF] and[START_REF] Mcshane | Simple curves on hyperbolic tori[END_REF]. Elementary calculus involving the comparison of the remainder R n with the integral 6

	+∞ n	e -2C	√	t dt translates Zagier's estimate to R n ∼ 6 √ C e -2C n	√	n
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