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APPROXIMATING BACKSTOP VIABILITY KERNELS1

GUILLAUME DEFFUANT , ISABELLE ALVAREZ , SOPHIE MARTIN , AND PATRICK2

SAINT-PIERRE3

Abstract. This paper de�nes a speci�c viability domain called backstop viability kernel and4
proposes a new algorithm that approximates such sets in a compact constraint set of d dimensions.5
The algorithm uses a set approximation technique based on a sample chosen in a regular grid of6
nd vertices covering the considered constraint set. We show that, in some conditions, the result7
of the algorithm is the direct approximation of the backstop viability kernel by this approximation8
technique. This theoretical result is illustrated on examples for which the viability kernel is equal to9
the backstop viability kernel and can be derived analytically, using two set approximation methods:10
the nearest neighbour, ensuring a convergence rate in O(n−1), and a recently developed technique,11
the recursive simplex stars (resistars), ensuring a convergence rate in O(n−2).12

Key words. viability kernel, viability domain, resistar.13

1. Introduction. Viability theory [2, 4] addresses the problem of maintaining a14

controlled dynamical system inside a given set of states, generally called the constraint15

set. This framework is particularly relevant for modelling sustainability problems in16

which the constraint set is interpreted as an acceptable or desirable property of the17

system that should be sustained [14, 9, 27, 22, 24]. It appeared also relevant in a18

variety of engineering problems [30, 18, 23] and in �nance and economics [15, 29]. In19

[21, 8, 13, 26] viability theory is at the core of a mathematical de�nition of resilience,20

viewed as the capacity of the system to viably restore the property if it has been lost.21

Recently, [17] extended this view to a general theory of sustainable management.22

One of the main concepts of viability theory is the viability kernel, the set of23

states from which the system can remain inde�nitely in the constraint set. From a24

state located outside the viability kernel, it is certain that the dynamical system will25

cross the limits of the constraint set after a �nite time, whatever the chosen controls26

over time. The viability kernel is also important because it is easy to derive from it27

a variety of control policies keeping the system inde�nitely inside the constraint set28

(and actually also inside the viability kernel itself).29

Generally, it is not possible to determine a viability kernel analytically and sev-30

eral methods provide numerical approximations [5, 6, 10, 12, 9, 14, 19, 20, 1]. In the31

frequent case of dynamics de�ned with ordinary di�erential equations in a continuous32

state space, most algorithms start from a regularly distributed sample of points (ver-33

tices of a regular grid) covering the constraint set and another one covering the control34

space. The �rst algorithm proposed by Saint-Pierre [28] uses a discrete approximation35

of the dynamical system on the vertices of a regular mesh. The algorithm computes36

a sequence of mesh subsets, until reaching a �xed point. The �nal set provides a37

discrete approximation of the viability kernel, which converges to the viability kernel38

when the time step tends to 0 and n, the number of points by grid axis, tends to39

in�nity.40

In the particular case of viability kernels de�ned as epigraphs of a function, [7]41

showed that the approximation error of the Saint-Pierre algorithm is in O(n−1), when42

choosing a time step in O(n−1). In the general case, [25] showed that the approxima-43

tion error (de�ned with the Hausdor� distance) of the Saint-Pierre algorithm is linear44

in n−1 and in the time step, if the problem satis�es some speci�c conditions (the45

shadowing property in particular). As far as we know, there is no other algorithm for46

which the convergence rate has been established, even in restrictive conditions.47

1

This manuscript is for review purposes only.



In this paper, we focus on approximating the backstop viability kernel, a subset48

of the viability kernel, with the aim to get a better convergence rate.49

The �rst contribution of this paper is theoretical. It de�nes the backstop viability50

kernel as the union of all viability domains satisfying a speci�c property. It introduces51

the extended discrete time in which the control can change at each time step (as52

in usual discrete time dynamics) and also when the system is about to leave the53

constraint set K, and extends the de�nition of the backstop viability kernel to the54

extended discrete time. It establishes that, in some conditions, the backstop viability55

kernels in extended discrete time and in continuous time are equal.56

The second contribution is an algorithm approximating backstop viability kernels.57

Approximating backstop viability kernels is easier than approximating viability ker-58

nels in general, because it boils down to testing long trajectories that change control59

at most once, starting from points located in a limited subset of the state space. The60

algorithm uses a set approximation technique which is assumed based on a sample61

derived from a regular grid of nd points covering K. In some conditions, the �nal re-62

sult is equal to the direct approximation of the exact backstop viability kernel by the63

set approximation technique. Therefore, the Hausdor� distance between the backstop64

viability kernel and its approximation by our algorithm when n grows is the same as if65

the set approximation technique was directly applied to the backstop viability kernel66

itself.67

The third contribution is a report on tests of the algorithm on viability problems68

for which the backstop viability kernel is equal to the viability kernel and can be de-69

rived analytically. The tests use two approximation techniques: the nearest neighbour70

and a recently developed method, the resistar surfaces [11]. These methods guaran-71

tee (if the backstop viability kernel holds some smoothness properties) a Hausdor�72

approximation error respectively in O(n−1) and O(n−2). The results of the tests are73

in line with the theory.74

The remaining of the paper is organised as follows: Section 2 de�nes the backstop75

viability kernel in continuous time and extended discrete time control and determines76

some conditions in which these sets are equal. Section 3 presents the approximation77

algorithm and the theoretical study of its convergence. Section 4 reports tests of the78

algorithm convergence on examples. The �nal section discusses the contributions of79

the paper.80

2. Backstop viability kernels.81

2.1. Continuous time.82

2.1.1. Viability problem and viability kernel. We consider a controlled83

dynamical system de�ned by its state x(t) ∈ Rd which can be in�uenced by a control84

u(t), chosen in a compact set U ⊂ Rm, de�ned by an ordinary di�erential equation85

where ϕ is a continuous function from Rd × Rm to Rd:86

(2.1)

{
ẋ(t) = ϕ(x(t), u(t))
u(t) ∈ U.87

A viability problem from point x0 is to determine a measurable function u(t) :88

R+ → U , such that the trajectory from x0 when applying u(.) remains for all t in89

compact set K ⊂ Rn.90

Integrating equation 2.1, from initial state x0 and for a chosen control function91

u(.), determines the successor of x0 at time t as follows:92
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(2.2) xx0,u(.)(t) := x0 +

∫ t

0

ϕ(xx0,u(.)(t
′), u(t′))dt′.93

We also denote all the successors (or the trajectory) of x0 during time interval94

[0, t] when applying control function u(.) as follows:95

(2.3) Xx0,u(.)(t) :=
⋃

t′∈[0,t]

xx0,u(.)(t
′).96

Definition 2.1. The viability kernel V iab(K) of set K under the dynamics de-97

�ned by function ϕ and control set U is the set of states x0, for which there exists a98

control function u(.) such that all successors of x0 when applying u(.) are in K:99

(2.4) V iab(K) =
{
x0 ∈ K, ∃u(.) : R+ → U,∀t ∈ R+, xx0,u(.)(t) ∈ K

}
,100

where R+ denotes the set of positive real numbers.101

Determining the viability kernel is important because a variety of control func-102

tions u(.) keeping the trajectory inde�nitely within K can easily be derived from it.103

However, the analytical determination of this set is generally impossible and it should104

therefore be approximated numerically. In this paper, we de�ne the backstop viability105

kernel, a subset of the viability kernel which is easier to approximate.106

2.1.2. Backstop viability domain and backstop viability kernel. We need107

a few preliminary notations and de�nitions:108

• For (x, y) ∈ K2, D(x, y) denotes the distance between x and y in K, which109

is the length of the shortest continuous path connecting x to y in K (K is110

supposed to be path-connected). Of course, ifK is convex, D(x, y) = ‖x− y‖,111

the usual Euclidean distance.112

• For a set A ⊂ K, the distance from x ∈ K to A in K is: D(x,A) =113

infy∈AD(x, y). By convention: D(x, ∅) =∞.114

• For any two sets (A,B) included in K, the distance from A to B in K is:115

D(A,B) = infx∈AD(x,B).116

• R∗+ denotes the set of strictly positive real numbers.117

• For a couple of sets A and B, such that B ⊂ A, A − B denotes the comple-118

mentary set of B in A.119

• If u(t′) = u for all t′ ∈ [0, t], then xx0,u(.)(t) and Xx0,u(.)(t) are respectively120

denoted xx0,u(t) and Xx0,u(t).121

Definition 2.2. The exit time from a set A for an evolution starting from x0122

when applying the control function u(.) is:123

τ ]A(x0, u(.)) = inf{t ∈ R+, xx0,u(.)(t) /∈ A}.(2.5)124125

The exit time from set A and point x0 obtained when applying a constant control126

u is denoted: τ ]A(x0, u).127

Definition 2.3. For any couple (u, v) ∈ U2, the constant control from x0 ∈ K128

with one possible bounce on the boundary of K, denoted (u, v)x0,K(.), is the function129
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from R+ to U de�ned as follows:130

(u, v)x0,K(t) =

{
u for 0 ≤ t ≤ τ ]K(x0, u)

v for t > τ ]K(x0, u).
(2.6)131

132

The point reached at time t when applying this control function from x0 is denoted133

xx0,(u,v)K (t) and the corresponding trajectory is denoted Xx0,(u,v)K (t).134

We can now de�ne a backstop viability domain.135

Definition 2.4. The set V ⊂ K is a backstop viability domain of K under dy-136

namics 2.1 for time threshold θ ∈ R∗+ i� there exists a set B ⊂ V such that:137

• D(B,K − V ) > 0;138

• For all x0 ∈ B, there exist (u, v) ∈ U2 such that Xx0,(u,v)(θ) ⊂ V ;139

• For all x0 ∈ V −B, there exists (u, v) ∈ U2, such that:140

� either for all t ∈ R+, xx0,(u,v)K (t) ∈ V ,141

� or there exists t ∈ R∗+, t ≥ θ | Xx0,(u,v)K (t) ⊂ V and xx0,(u,v)K (t) ∈ B.142

B is called a backstop in V for time threshold θ, V − B is called the catch of B in143

V , D(B,K − V ) the width of the catch of B in V . By convention, the empty set is a144

backstop viability domain for any catch width and any time threshold.145

Proposition 2.5. Let V be a backstop viability domain of K and B a backstop146

in V of catch width δ ∈ R∗+ for time threshold θ ∈ R∗+. Let B′ ⊂ V be such that147

B ⊂ B′ and D(B′,K −V ) = δ′ with δ′ ≤ δ. For any θ ∈ R∗+ such that 0 < θ′ ≤ θ, B′148

is a backstop in V for time threshold θ′ of catch width δ′.149

Proof. Consider x0 ∈ V − B′. Because B ⊂ B′, x0 ∈ V − B. Therefore, there150

exist (u, v) ∈ U2 such that:151

• either ∀t ∈ R+, xx0,(u,v)K (t) ∈ V ,152

• or ∃t ∈ R∗+, t ≥ θ such that Xx0,(u,v)K (t) ⊂ V and xx0,(u,v)K (t) ∈ B. There-153

fore t ≥ θ′ and since B ⊂ B′, xx0,(u,v)K (t) ∈ B′.154

Now consider x0 ∈ B′. If x0 ∈ B, there exists (u, v) ∈ U2 such that Xx0,u(θ) ⊂ V155

thus Xx0,u(θ′) ⊂ V . If x0 ∈ B′ − B, then x0 ∈ V − B and there exists t ∈ R∗+, t ≥ θ156

such that Xx0,(u,v)K (t) ⊂ V , and t ≥ θ implies t ≥ θ′.157

Therefore, B′ satis�es the conditions for being a backstop in V for time threshold158

θ′ and its catch width is δ′ by de�nition.159

Proposition 2.6. For any (δ, θ) ∈ (R∗+)2, the union of all backstop viability do-160

mains of K under dynamics 2.1 including a backstop of catch width greater or equal161

to δ for time threshold θ is a backstop viability domain of K including a backstop of162

catch width greater or equal to δ for time threshold θ. It is called the backstop viability163

kernel of catch width δ for time threshold θ and denoted BSV iab(δ, θ,K).164

Proof. Let DBstop(δ, θ,K) be the set of all backstop viability domains in K in-165

cluding a backstop of catch width at least δ for time threshold θ. Let:166

(2.7) V =
⋃

V ′∈DBstop(δ,θ,K)

V ′ and B =
⋃

V ′∈DBstop(δ,θ,K)

BV ′ ,167

where BV ′ is a backstop of V ′ of catch width δ for time threshold θ, for each168

V ′ ∈ DBstop(δ, θ,K).169

Consider x0 ∈ B. There exists V ′ ∈ DBstop(δ, θ,K) such that x0 ∈ BV ′ , and170

D(x0,K − V ′) ≥ δ. Because (K − V ) ⊂ (K − V ′), D(x0,K − V ) ≥ δ.171
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Consider x0 ∈ V − B. There exists V ′ ∈ DBstop(δ, θ,K) such that x0 ∈ V ′, and172

for all V ′′ ∈ DBstop(δ, θ,K), x0 /∈ BV ′′ , which implies x0 ∈ V ′−BV ′ . Therefore, there173

exist (u, v) ∈ U2 such that:174

• either ∀t ∈ R+, xx0,(u,v)K (t) ∈ V ′, then ∀t ∈ R+, xx0,(u,v)K (t) ∈ V ,175

• or ∃t ∈ R∗+, t ≥ θ such that Xx0,(u,v)K (t) ⊂ V ′ then Xx0,(u,v)K (t) ⊂ V176

because V ′ ⊂ V and xx0,(u,v)K (t) ∈ BV ′ , then xx0,(u,v)K (t) ∈ B, because177

BV ′ ⊂ B.178

Consider x0 ∈ B. There exists V ′ ∈ DBstop(δ, θ,K) such that x0 ∈ BV ′ . Therefore,179

there exists (u, v) ∈ U2 such that Xx0,(u,v)K (θ) ⊂ V ′, hence Xx0,(u,v)K (θ) ⊂ V .180

Definition 2.7. If there exists (δ0, θ0) ∈ (R∗+)2 such that:181

(2.8) BSV iab(δ0, θ0,K) =
⋃

(δ,θ)∈(R∗+)2

BSV iab(δ, θ,K),182

then this set is called the backstop viability kernel of K under dynamics 2.1 and denoted183

BSV iab(K).184

Section 4.1 describes examples of viability problems for which the backstop via-185

bility kernel exists.186

2.2. Extended discrete time.187

2.2.1. Viability kernel in extended discrete time. We now de�ne the con-188

trol functions in extended discrete time (abbreviated as EDT), namely the control189

function for which it is possible to change the control at each clock tick (as usual190

in discrete time) and also just before the system leaves the constraint set K. This191

extended discrete time will be used in the algorithm approximating backstop viability192

kernels.193

Definition 2.8. The EDT control function set of time step θ ∈ R∗+, for con-194

straint set K, dynamics 2.1 and starting from x0 ∈ K is denoted Eθ(x0,K, U) and195

is the set of piece-wise constant functions u(.) : R+ → U , de�ned by the sequence196

(uj , vj)j∈N of pairs of elements of U such that, for j ∈ N:197

(2.9) ∀t ∈ [jθ, (j + 1)θ[, u(t) = (uj , vj)xj ,K(t− jθ),198

where xj = xx0,u(.)(jθ) and (uj , vj)xj ,K(t− jθ) refers to de�nition 2.3.199

Definition 2.9. The viability kernel of K in EDT of time step θ under dynamics200

2.1, denoted V iabEDT (θ,K), is the set of states x0 ∈ K for which there exists a control201

function u(.) in Eθ(x0, U,K) such that the trajectory from x0 applying control function202

u(.) remains inde�nitely in K:203

(2.10) V iabEDT (θ,K) = {x0 ∈ K,∃u(.) ∈ Eθ(x0, U,K) | ∀t ∈ R+, xx0,u(.)(t) ∈ K}.204

We now de�ne a viability domain sewed in K with time step θ under dynamics205

2.1. The image of sewing is suggested by considering the trajectory Xx0,(u,v)K (θ) as206

a thread that should be included in K while the stitch xx0,(u,v)K (θ) should belong to207

the viability domain.208

Definition 2.10. A set E ⊂ K is a viability domain sewed in K with time step209

θ under dynamics 2.1, i�:210

(2.11) ∀x0 ∈ E,∃(u, v) ∈ U2 |Xx0,(u,v)K (θ) ⊂ K and xx0,(u,v)K (θ) ∈ E.211
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Proposition 2.11. The viability kernel of K in EDT of time step θ is the largest212

viability domain sewed in K with time step θ.213

Proof. For all x0 ∈ V iabEDT (θ,K) there exists u(.) ∈ Eθ(x0, U,K) such that for214

all t ∈ R+, Xx0,u(.)(t) ⊂ K. Let u(.) be de�ned by the in�nite series {(u0, v0), ...215

, (uj , vj), ...} with, for j ∈ N, (uj , vj) ∈ U2. We have thus Xx0,(u0,v0)K (θ) ⊂ K. Let216

x1 = xx0,(u0,v0)K (θ). The function u′(.) de�ned by {(u1, v1), ..., (uj , vj), ...} is such217

that for all t ∈ R+, Xx1,u′(.)(t) ⊂ K. Therefore, x1 ∈ V iabEDT (θ,K). Therefore218

V iabEDT (θ,K) is a viability domain sewed in K with time step θ.219

Let E ⊂ K be a viability domain sewed in K with time step θ. Consider220

x0 ∈ E. By de�nition, there exist (u0, v0) ∈ U2 such that Xx0,(u0,v0)K (θ) ⊂ K221

and xx0,(u0,v0)K (θ) ∈ E.222

Consider now, for j ∈ N, {(u0, v0), ..., (uj−1, vj−1)} ∈ (U2)j , such that, denoting223

xp+1 = xxp,(up,vp)K (θ), for p ∈ {0, ..., j − 1}, we have: Xxp,(up,vp)K (θ) ⊂ K and224

xxp,(up,vp)K (θ) ∈ E. In particular, xj = xxj−1,(uj−1,vj−1)K (θ) ∈ E. Therefore there225

exist (uj , vj) ∈ U2 such that xj+1 = xxj ,(uj ,vj)K (θ) ∈ E and Xxj ,(uj ,vj)K (θ) ⊂ K226

because E is a viability domain sewed in K.227

Therefore, there exists u(.) ∈ E(x0, U,K) such that for all t ∈ R+, Xx0,u(.)(t) ⊂ K,228

hence x0 ∈ V iabEDT (θ,K). Therefore E ⊂ V iabEDT (θ,K).229

2.2.2. Backstop viability kernel sewed in K.230

Definition 2.12. V ⊂ K is a backstop viability domain sewed in K with time231

step θ under dynamics 2.1 i� there exists a set B ⊂ V such that:232

• D(B,K − V ) > 0;233

• for all x0 ∈ B, there exists (u, v) ∈ U2 such that Xx0,(u,v)K (θ) ∈ K and234

xx0,(u,v)K (θ) ∈ V ;235

• For all x0 ∈ V −B, there exist (u, v) ∈ U2, such that:236

� either ∀j ∈ N, Xx0,(u,v)K (jθ) ∈ K and xx0,(u,v)K (jθ) ∈ V ,237

� or ∃j ∈ N∗, Xx0,(u,v)K (jθ) ⊂ K and xx0,(u,v)K (jθ) ∈ B and ∀p < j,238

xx0,(u,v)K (pθ) ∈ V .239

B is called a backstop of V in EDT time step θ and D(B,K − V ) is called the catch240

width of the backstop V .241

It can immediately be seen that a backstop viability domain sewed in K with242

time step θ is a viability domain sewed in K with time step θ.243

Proposition 2.13. For (δ, θ) ∈ (R∗+)2, the union of all backstop viability domains244

sewed in K with time step θ including a backstop of catch width greater or equal to δ245

is itself a backstop viability domain sewed in K with time step θ including a backstop246

of catch width greater or equal to δ. It is called the backstop viability kernel sewed in247

K with time step θ of catch width δ and denoted BSV iabEDT (δ, θ,K).248

Proof. The proof is similar to the one of proposition 2.6.249

2.3. Connection between backstop viability kernels in continuous and250

in extended discrete time.251

Proposition 2.14. Let Vθ be a backstop viability domain sewed in K with time252

step θ under dynamics 2.1, holding set B as a backstop of catch width δ ∈ R∗+. There253

exists a backstop viability domain V of K holding B as a backstop for time threshold254

θ such that:255

(2.12) Vθ ⊂ V.256

257
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Proof. Let B be a backstop of Vθ of catch width δ and let C(B) be the set of258

points x0 ∈ K for which there exists (u, v) ∈ U2 such that:259

• either for all t ∈ R+, Xx0,(u,v)K (t) ⊂ K;260

• or there exists t ∈ R∗+, t ≥ θ such that Xx0,(u,v)K (t) ⊂ K and xx0,(u,v)K (t) ∈261

B;262

Let V = B ∪ C(B). For all x0 ∈ Vθ − B, x0 ∈ C(B), therefore, Vθ ⊂ V . Therefore263

infx0∈B D(x0,K − V ) ≥ δ. V is thus a backstop viability domain holding B as a264

backstop of catch width greater or equal to δ, for time threshold θ.265

Corollary 2.15. For any (δ, θ) ∈ (R∗+)2, we have:

BSV iabEDT (δ, θ,K) ⊂ BSV iab(δ, θ,K).

Proof. The proof comes directly from proposition 2.14 and from the de�nitions266

of BSV iab(δ, θ,K) and BSV iabEDT (δ, θ,K).267

Proposition 2.16. Let V be a backstop viability domain of K under dynamics268

2.1, holding a backstop B of catch width δ for time threshold θ and let:269

(2.13) M = max{‖ϕ(x, u)‖ , x ∈ K,u ∈ U}.270

For all θ′ ≤ min(θ, δ
2M ), V is a backstop viability domain sewed in K with time step271

θ′ holding a backstop of catch width δ
2 .272

Proof. Consider θ′ ∈ R∗+ such that θ′ ≤ min(θ, δ
2M ). Let B′ = {x ∈ V,D(x,K −273

V ) ≥ δ
2}. For all x ∈ B, D(x,K − B′) ≥ δ

2 . For x0 ∈ B′, because θ′ ≤ θ, there274

exists (u, v) ∈ U2 such that Xx0,(u,v)K (θ′) ⊂ K and xx0,(u,v)K (θ′) ∈ V . Consider275

x0 ∈ V −B′. Because B ⊂ B′, x0 ∈ V −B. Therefore, because B is a backstop in V ,276

there exists (u, v) ∈ U2 such that:277

• Either for all t ∈ R+, xx0,(u,v)K (t) ∈ V , then ∀j ∈ N, xx0,(u,v)K (jθ′) ∈ V , and278

Xx0,(u,v)K (jθ′) ⊂ V , thus Xx0,(u,v)K (jθ′) ⊂ K,279

• Or there exists t > 0, t ≥ θ | Xx0,(u,v)K (t) ⊂ V and y = xx0,(u,v)K (t) ∈ B.280

Then y ∈ B′ because B ⊂ B′. We know that D(y, V −B′) ≥ δ
2 which implies281

that t > θ′ and for all t′ ∈ [t − θ′, t], xx0,(u,v)K (t′) ∈ B′. Therefore, taking j282

as the integer part of t
θ′ ensures jθ

′ ∈ [t− θ′, t] thus xx0,(u,v)K (jθ′) ∈ B′.283

Therefore, V is a backstop viability domain in EDT of time step θ′ holding B′ as a284

backstop of catch width δ
2 .285

Corollary 2.17. Let M be de�ned by equation 2.13. For any (δ, θ) ∈ (R∗+)2, for

any (δ′, θ′) ∈ (R∗+)2 such that δ′ ≤ δ
2 and θ′ ≤ min(θ, δ

2M ), we have:

BSV iab(δ, θ,K) ⊂ BSV iabEDT (δ′, θ′,K).

Proof. The proof comes directly from proposition 2.16 and from the de�nitions286

of BSV iab(δ, θ,K) and BSV iabEDT (δ′, θ′,K).287

Proposition 2.18. Let M be de�ned by equation 2.13. If BSV iab(K), the back-288

stop viability kernel of K exists and BSV iab(K) = BSV iab(δ0, θ0,K), for (δ0, θ0) ∈289

(R∗+)2, then:290

∀δ ≤ δ0
2
,∀θ ≤ min(θ0,

δ0
2M

), BSV iabEDT (δ, θ,K) = BSV iab(K).(2.14)291
292

293

Proof. The proposition is a direct consequence of corollaries 2.15 and 2.17.294
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Proposition 2.18 provides a connection between the backstop viability kernel and295

backstop viability kernels sewed in K (in EDT) which is important for the approxi-296

mation algorithm described in the next section.297

3. Approximating backstop viability kernels.298

3.1. Algorithm and its basic properties. Algorithm 3.1 takes as input: n ∈299

N the number of points by axis of the grid, δ ∈ R∗+ a catch width value, θ ∈ R∗+ a300

time step value and jA ∈ N a maximum number of tested steps. It uses algorithm A301

approximating sets (or classi�cation functions, this is equivalent) from a �nite sample302

Γ(n) of points in K. This sample is based on a regular grid of nd points (n points by303

axis) covering K for the nearest vertex approximation and a more elaborated sample304

drawn on edges of the cubes de�ned by the grid for resistars (which are used in our305

tests of the algorithm reported in section 4). Other set approximation algorithms306

such as decision trees or support vector machines could be chosen. Considering a set307

E ⊂ K, A(Γ(n) ∩ E) denotes the approximation of E derived from sample Γ(n) by308

algorithm A.309

Algorithm 3.1 builds setsHi∩Γ(n) from which are derived Ĥi = A(Hi∩Γ(n)), the310

iterative approximations of the backstop viability kernel, with sets Biin as the approxi-311

mation of their backstops. At each iteration, some points of the sample are eliminated312

from the de�nition of the next approximation if they do not pass testInBstop (for313

points in Biin) or testInCatch (for points in Hi − Biin). Under some assumptions314

(see further), the sets Biout contain the sets Ĥi, thus the sets Biout − Biin are wide315

approximations of the catches. Actually, a point passes testInCatch if there exists a316

constant control with one possible bounce that de�nes a trajectory sewed in K with317

stitches in Biout during jA time steps, or reaching Bin in less than jA time steps, with-318

out getting out from Biout. As will be shown further, in some conditions, at the last319

iteration of the algorithm, this test determines with full accuracy if a point belongs to320

the backstop viability kernel, independently from the precision of the approximation321

Ĥi. The last iteration is reached when no point of the sample is eliminated. The322

algorithm also stops if H1 ∩ Γ(n) = K ∩ Γ(n).323

The algorithm uses the following de�nitions:324

• For any set H ⊂ K and any δ ∈ R+, the sets (H)δ and (H)−δ are respectively325

the erosion and the dilatation of size δ in K:326

(H)δ := {x ∈ H |D(x,K −H) ≥ δ},327

(H)−δ := {x ∈ K |D(x,H) ≤ δ}.328329

• The sets Biin and Biout approximate respectively (Ĥi)δ and (Ĥi)−δ:330

Biin := A((Ĥi)δ ∩ Γ(n)),331

Biout := A((Ĥi)−δ ∩ Γ(n)).332333

• The sets Hi are recursively de�ned by:334

H1 ←{x0 ∈ K | ∃(u, v) ∈ U2, Xx0,(u,v)K (θ) ⊂ K},335

Hi+1 ←{x0 ∈ Biin | testInBstop(x0, B
i
in, B

i
out)}∪336

{x0 ∈ Hi |x0 /∈ Biin and testInCatch(x0, B
i
in, B

i
out)}.337338
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Algorithm 3.1 BSVApp(n, δ, θ, jA). Backstop viability kernel approximation.

Input: n ∈ N number of points by grid axis, δ ∈ R∗+ width of backstop catch, θ ∈ R∗+
time step, jA ∈ N number of tested steps.

H1 ∩ Γ(n)← {ξ ∈ Γ(n),∃(u, v) ∈ U2, Xξ,(u,v)K (θ) ⊂ K};
if H1 ∩ Γ(n) = K ∩ Γ(n) then
return K;

end

Ĥ1 ← A(H1 ∩ Γ(n));
i← 0;
repeat
i← i+ 1;
Biin ← A((Ĥi)δ ∩ Γ(n)); Biout ← A((Ĥi)−δ ∩ Γ(n));
Hi+1 ∩ Γ(n)←{ξ ∈ Biin ∩ Γ(n) | testInBstop(ξ,Biin, B

i
out)}∪

{ξ ∈ Hi ∩ Γ(n) | ξ /∈ Biin and testInCatch(ξ,Biin, B
i
out)}

Ĥi+1 ← A(Hi+1 ∩ Γ(n));
until Hi ∩ Γ(n) = Hi+1 ∩ Γ(n);

return (Ĥi);

Algorithm 3.2 testInCatch(x0, B
i
in, B

i
out). Test selecting points in Biout −Biin.

Input: x0 ∈ Biout −Biin, Biin , Biout.
b← ∃(u, v) ∈ U2 | either ∀j ≤ jA, Xx0,(u,v)K (jθ) ⊂ K and xx0,(u,v)K (jθ) ∈ Biout

or ∃j < jA

{
Xx0,(u,v)K (jθ) ⊂ K and xx0,(u,v)K (jθ) ∈ Biin
and ∀p < j, xx0,(u,v)K (pθ) ∈ Biout.

return (b);

Algorithm 3.3 testInBstop(x0, B
i
in, B

i
out). Test selecting points in Biin.

Input: x0 ∈ Biin, Biin, Biout.
b← ∃(u, v) ∈ U2 |Xx0,(u,v)K (θ) ⊂ K and y ← xx0,(u,v)K (θ) |{

y ∈ Biin or

y ∈ Biout −Biin and testInCatch(y,Biin, B
i
out)

return (b);

The basic properties of algorithm 3.1 require the following assumption.339

Assumption 1. For any ε ∈ R∗+, there exists n1(ε) ∈ N∗, such that for all n >340

n1(ε), at any iteration i of the algorithm, for any set H ∈ {Hi, (Ĥi)δ, (Ĥ
i)−δ}, we341

have:342

(H)ε ⊂ Ĥ ⊂ (H)−ε and (Ĥ)ε ⊂ H ⊂ (Ĥ)−ε,343344

where Ĥ := A(H ∩ Γ(n)).345

Proposition 3.1. Under assumption 1, for all n > n1( δ4 ), at each iteration of346

algorithm 3.1, we have:347

(Hi) 3δ
2
⊂ Biin ⊂ (Hi) δ

2
and (Hi)− δ2

⊂ Biout ⊂ (Hi)−3δ
2
.348

349
9

This manuscript is for review purposes only.



Proof. For ε ∈ R∗+, ε < δ
2 , for n > n1(ε), at any iteration i, we have:350

(Hi)ε ⊂ Ĥi351352

This implies:353

((Hi)ε)δ ⊂ (Ĥi)δ hence: (Hi)δ+ε ⊂ (Ĥi)δ.(3.1)354355

and assumption 1 ensures also:356

(Ĥi)ε ⊂ Hi,357358

which implies:359

((Ĥi)ε)δ−ε ⊂ (Hi)δ−ε hence: (Ĥi)δ ⊂ (Hi)δ−ε.(3.2)360361

Therefore:362

(Hi)δ+ε ⊂ (Ĥi)δ ⊂ (Hi)δ−ε.(3.3)363364

Applying assumption 1 to set (Ĥi)δ, and setting Bin = A((Ĥi)δ ∩ Γ(n)) we get:365

((Ĥi)δ)ε ⊂ Biin ⊂ ((Ĥi)δ)−ε hence (eq: 3.3):366

((Hi)δ+ε)ε ⊂ Biin ⊂ ((Hi)δ−ε)−ε hence:367

(Hi)δ+2ε ⊂ Biin ⊂ (Hi)δ−2ε.368369

Applying the same reasoning to Biout (mutatis mutandis) and taking ε = δ
4 completes370

the proof.371

Proposition 3.2. Under assumption 1, for n > n1( δ4 ), algorithm 3.1 stops after372

a �nite number of iterations.373

Proof. Proposition 3.1 guarantees that, for n > n1( δ4 ), at each iteration i of374

algorithm 3.1, we have: Biin ⊂ Hi and thus Hi+1 ∩ Γ(n) ⊂ Hi ∩ Γ(n). Since Γ(n)375

is �nite, the procedure reaches Hi+1 ∩ Γ(n) = Hi ∩ Γ(n) after a �nite number of376

iterations.377

Proposition 3.3. Under assumption 1, for n > n1( δ4 ), at any step i of algorithm378

3.1 we have:379

(3.4) BSV iabEDT (
3δ

2
, θ,K) ⊂ Hi.380

381

Proof. Let V = BSV iabEDT ( 3δ
2 , θ,K). Obviously V ⊂ H1.382

Assume now V ⊂ Hi and consider x0 ∈ V . Two cases occur:383

• x0 ∈ V − (V ) 3δ
2
, then there exists (u, v) ∈ U2 such that:384

� either for all j ∈ N, Xx0,(u,v)K (jθ) ⊂ K and xx0,(u,v)K (jθ) ∈ V , then385

for all j ∈ N, xx0,(u,v)K (jθ) ∈ Biout, because V ⊂ Hi and because of386

proposition 3.1, Hi ⊂ Biout;387

� or there exists j ∈ N∗ | Xx0,(u,v)K (jθ) ⊂ K and xx0,(u,v)K (jθ) ∈ (V ) 3δ
2

388

and for all p < j, xx0,(u,v)K (pθ) ∈ V , then xx0,(u,v)K (jθ) ∈ Biin, (because389

V ⊂ Hi, (V ) 3δ
2
⊂ (Hi) 3δ

2
and because of proposition 3.1, Hi

3δ
2

⊂ Biin)390

and for all p < j, xx0,(u,v)K (pθ) ∈ Biout.391
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Therefore testInCatch(x0, B
i
in, B

i
out) = true. If x0 /∈ Biin, then x0 ∈ Hi+1.392

If x0 ∈ Biin, this implies testInBstop(x0, B
i
in, B

i
out) = true, thus x0 ∈ Hi+1.393

• x0 ∈ (V ) 3δ
2
, then x0 ∈ Biin (because of 3.1) and there exists (u, v) ∈ U2 such394

that Xx0,(u,v)K (θ) ⊂ K and y = xx0,(u,v)K (θ) ∈ V . Therefore y ∈ Biout. If395

y ∈ V − (V ) 3δ
2
, and as shown in the previous case, testInCatch(y,Biin, B

i
out)396

= true. Else y ∈ (V ) 3δ
2
hence y ∈ Biin therefore testInBstop(x0, B

i
in, B

i
out)397

= true.398

Finally, in all cases, x0 ∈ Hi+1, therefore V ⊂ Hi+1.399

3.2. Inclusion of the algorithm output in viability kernel in EDT. The400

next propositions require assumption 2 and a new de�nition.401

Assumption 2. For any ε ∈ R∗+, there exists n2(ε) ∈ N, such that for all n >402

n2(ε), at any iteration i of the algorithm, for any set Hi, we have:403

∀x ∈ K −Hi,∃ξ ∈ (K −Hi) ∩ Γ(n), D(x, ξ) < ε,404405

Definition 3.4. For j ∈ N, let Hj be the set of points of K for which the exit406

time when applying the EDT control of time step θ is greater than jθ:407

Hj := {x0 ∈ K,∃u(.) ∈ Eθ(x0, U,K), τ ]K(x0, u(.)) ≥ jθ}.(3.5)408409

We start by showing that the �nal set Hq de�ned by the algorithm is included410

in HjA . Then we distinguish the case where there exists jA ∈ N such that HjA =411

V iabEDT (θ,K) from the case where there is none.412

Proposition 3.5. Under assumptions 1 and 2, for n > max(n1( δ4 ), n2( δ2 )), at
the last iteration q of algorithm 3.1, we have:

Hq ⊂ HjA .

413

Proof. At iteration i of algorithm 3.1, let F i = Biin ∩ (K −HjA). Assume F i 6= ∅414

and, for all x0 ∈ F i, testInBstop(x0, B
i
in, B

i
out) = true. For each point x0 ∈ F i, we415

de�ne U(x0) ⊂ U4 and j(x0) ∈ N as follows:416

• If there exists (u, v) ∈ U2 such that Xx0,(u,v)K (θ) ⊂ K and xx0,(u,v)K (θ) ∈417

Biin. Then U(x0) := ∅ and j(x0) := 0;418

• Else there exists (u, v) ∈ K2 | Xx0,(u,v)K (θ) ⊂ K and y := xx0,(u,v)K (θ) ∈419

Biout − Biin, and, because x0 /∈ HjA , there exists (u′, v′) ∈ U2 and j ∈ N,420

j < jA such that Xy,(u′,v′)K (jθ) ⊂ K, xy,(u′,v′)K (jθ) ∈ Biin and for p ∈ N,421

0 < p < j, xy,(u′,v′)K (pθ) ∈ Biout. Then U(x0) := (u, v, u′, v′) and j(x0) := j.422

We de�ne set E as follows:423

E :=F i∪424

{xxx0,(u,v)K (θ),(u′,v′)K (pθ), x0 ∈ F i, (u, v, u′, v′) = U(x0) 6= ∅, 0 ≤ p ≤ j(x0)}.425
426

It can easily be veri�ed that E is a viability domain sewed in K with time step θ.427

Therefore E ⊂ HjA . This is impossible because F i ⊂ E and F i ⊂ (K − HjA), by428

de�nition.429

Therefore, there exists x0 ∈ F i, such that testInBstop(x0, B
i
in , B

i
out) =false,430

thus x0 ∈ K −Hi+1. Because of assumption 2, there exists ξ ∈ (K −Hi+1) ∩ Γ(n)431

such that D(x0, ξ) <
δ
2 therefore, ξ ∈ Hi because x0 ∈ Biin and assumption 1 ensures432

Biin ⊂ (Hi) δ
2
, hence D(x0,K −Hi) ≥ δ

2 .433
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Consider now the case when F i = ∅, hence Biin ⊂ HjA , and consider a point434

x0 ∈ Hi such that x0 /∈ HjA . For (u, v) ∈ U2, let y = xx0,(u,v)K (θ). y /∈ HjA435

(otherwise we would have x0 ∈ HjA), therefore y /∈ Biin. Assume y ∈ Biout − Biin.436

Then, for any (u′, v′) ∈ U2, Xy,(u′,v′)K (jAθ) ⊂ K is impossible because x0 /∈ HjA .437

Suppose that there exist (u′, v′) ∈ U2 and j ≤ jA, such that Xy,(u′,v′)K (jθ) ⊂ K and438

xy,(u′,v′)K (jθ) ∈ Biin. B
i
in ⊂ HjA implies xy,(u′,v′)K (jθ) ∈ HjA which is impossible439

because x0 /∈ HjA . Therefore, testInBstop(x0, B
i
in, B

i
out)= false and, for all x0 ∈440

Hi such that x0 /∈ HjA , x0 /∈ Hi+1. Therefore Hi+1 ⊂ HjA .441

To summarize, while Biin is not included in HjA , Hi+1 ∩ Γ(n) 6= Hi ∩ Γ(n) hence442

the algorithm does not stop and at the �rst iteration i such that Biin ⊂ HjA , we have443

Hi+1 ⊂ HjA . Assumption 1 ensures that the algorithm stops after a �nite number of444

iterations q and that Hq ⊂ Hi+1 ⊂ HjA .445

Definition 3.6. The supremum of steps that the system's trajectory remains in446

K when applying the EDT control of time step θ from points of K which are not viable447

for the EDT control of time step θ, is:448

j]EDT (θ,K) := sup
x0∈K−V iabEDT (θ,K)

{j ∈ N,∃u(.) ∈ Eθ(x0, U,K), Xx0,u(.)(jθ) ⊂ K}.449

450

For n ∈ N, the same supremum restricted to (K − V iabEDT (θ,K)) ∩ Γ(n) is:451

j]EDT (n, θ,K) := sup
ξ∈(K−V iabEDT (θ,K))∩Γ(n)

{j ∈ N,∃u(.) ∈ Eθ(ξ, U,K),452

Xξ,u(.)(jθ) ⊂ K}.453454

Proposition 3.7. Under assumptions 1 and 2, for n > max(n1( δ4 ), n2( δ2 )), and455

if j]EDT (θ,K) <∞ and jA > j]EDT (θ,K), at the last step q of algorithm 3.1 we have:456

Hq ⊂ V iabEDT (θ,K).(3.6)457458

459

Proof. The proof comes directly from proposition 3.5 and from the fact that460

HjA = V iabEDT (θ,K) because jA > j]EDT (θ,K).461

Proposition 3.8. Assume j]EDT (n, θ,K) < ∞. Under assumptions 1 and 2,462

for n > max(n1( δ4 ), n2( δ2 )), and if jA > j]EDT (n, θ,K), the last iteration q ∈ N of463

algorithm 3.1 de�nes set Hq such that:464

(3.7) (Hq ∩ Γ(n)) ⊂ (V iabEDT (θ,K) ∩ Γ(n)).465

466

Proof. Proposition 3.5 ensures that for all ξ ∈ Γ(n), if ξ ∈ Hq then ξ ∈ HjA .467

Because jA > j]EDT (n, θ,K), ξ ∈ HjA implies ξ ∈ V iabEDT (θ,K).468

3.3. Convergence to the backstop viability kernel. The following proposi-469

tion requires a new assumption and a new de�nition.470

Assumption 3. There exists (θ0, δ0) ∈ (R∗+)2 such that BSV iab(δ0, θ0,K) =471

BSV iab(K) is the backstop viability kernel of K.472

Definition 3.9. Under assumption 3, the maximum number of time steps in K473

for constant control with one possible bounce starting from points in K−BSV iab(K),474

denoted j]C(θ,K) is:475

j]C(θ,K) = sup
x0∈K−BSV iab(K)

{j ∈ N,∃(u, v) ∈ U2, Xx0,(u,v)K (jθ) ⊂ K}.(3.8)476

477
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Proposition 3.10. Let M be de�ned by equation 2.13. If:478

• Assumptions 1, 2 and 3 are satis�ed and n > max(n1( δ4 ), n2( δ4 )),479

• j]C(θ,K) <∞ and jA > j]C(θ,K),480

then for all δ ∈ R∗+ such that 3δ
2 ≤

δ0
2 , for all θ ≤ min(θ0,

δ0
2M ), at the last step q of

algorithm 3.1 we have:

Hq = BSV iab(K).

481

Proof. The structure of the proof is similar to the one of proposition 3.5. Let482

V = BSV iab(K). Because of proposition 2.18, the choice of δ and θ ensures V =483

BSV iabEDT ( δ4 , θ,K). Suppose (Hi) δ
4
∩ (K − V ) 6= ∅ and that:484

• for all points x0 ∈ (Hi) δ
4
−Biin, testInCatch(x0, B

i
in, B

i
out) = true and485

• for all points x0 ∈ Biin, testInBstop(x0, B
i
in, B

i
out) = true.486

For x0 ∈ (Hi) δ
4
we de�ne V (x0) ∈ U2 or U(x0) ∈ U4 and j(x0) ∈ N as follows:487

• If x0 ∈ (Hi) δ
4
− Biin, there exists (u, v) ∈ U2, and j ∈ N, j ≤ j]C(θ,K) <488

jA, such that Xx0,(u,v)K (jθ) ⊂ K, xx0,(u,v)K (jθ) ∈ Biin and for all p < j,489

xx0,(u,v)K (pθ) ∈ Biout. Then, V (x0) := (u, v) and j(x0) := j,490

• If x0 ∈ Biin, because j
]
C(θ,K) < jA, we can de�ne U(x0) and j(x0) like we491

did in the proof of proposition 3.5.492

Let E be de�ned as follows:493

E := (Hi) δ
4
∪494

{xx0,(u,v)K (pθ), x0 ∈ (Hi) δ
4
−Biin, (u, v) = V (x0), 0 < p ≤ j(x0)}∪495

{xxx0,(u,v)K (θ),(u′,v′)K (pθ), x0 ∈ Biin, (u, v, u′, v′) = U(x0) 6= ∅, 0 ≤ p ≤ j(x0)}.496
497

By construction, E is a backstop viability domain sewed in K with time step θ holding498

Biin as a backstop of catch width greater or equal to
δ
4 . E is not included in V because499

E ⊂ (Hi) δ
4
and by hypothesis, (Hi) δ

4
∩ (K − V ) 6= ∅. This is impossible because the500

choice of θ ensures that V = BSV iabEDT ( δ4 , θ,K) and thus includes all backstop501

viability domains sewed in K of catch width greater or equal to δ
4 with time step θ,502

by de�nition.503

Therefore, there exists x0 ∈ (Hi) δ
4
−Biin, such that testInCatch(x0, B

i
in, B

i
out)504

= false, or there exists x0 ∈ Biin, such that testInBstop(x0, B
i
in, B

i
out) = false.505

In both cases, there exists a point x0 ∈ (Hi) δ
4
thus such that D(x0,K −Hi) ≥ δ

4 and506

x0 /∈ Hi+1. Because of assumption 2, there exists ξ ∈ Γ(n) such that ξ /∈ Hi+1 and507

D(x0, ξ) <
δ
4 , therefore ξ ∈ H

i. Therefore Hi ∩ Γ(n) 6= Hi+1 ∩ Γ(n).508

Suppose now (Hi) δ
4
⊂ V . Consider x0 ∈ Hi − V . x0 ∈ Hi − Biin because Biin ⊂509

(Hi) δ
4
. Suppose testInCatch(x0, B

i
in, B

i
out) = true. Then there exist (u, v) ∈ U2510

and j ∈ N, j ≤ j]C(θ,K) < jA | Xx0,(u,v)K (jθ) ⊂ K and xx0,(u,v)K (jθ) ∈ Biin and for511

all p < j, xx0,(u,v)K (pθ) ∈ Biout. Then the set V ∪ {xx0,(u,v)K (pθ), p ∈ {0, .., j}} is a512

backstop viability domain of time threshold θ admitting Biin as a backstop of catch513

width at least δ
4 and this backstop viability domain is not included in V . This is im-514

possible. Therefore, testInCatch(x0, B
i
in, B

i
out) = false. This implies: Hi+1 ⊂ V .515

Because of proposition 2.18, the choice of δ and θ ensures V = BSV iabEDT ( 3δ
2 , θ,K).516

Proposition 3.3 can be applied because assumption 1 is satis�ed thus V ⊂ Hi+1 and517

V ⊂ Hi+2 therefore Hi+1 = Hi+2 = V .518
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Overall, while (Hi) δ
4
is not included in V , Hi ∩ Γ(n) 6= Hi+1 ∩ Γ(n) therefore519

the algorithm does not stop. Once (Hi) δ
4
⊂ V , the algorithm stops after at most one520

iteration and Hi+1 = BSV iab(K).521

3.4. Convergence rate. We now derive the implications of the previous propo-522

sitions on the convergence rate of the algorithm output to the backstop viability523

kernel when n, the number of points by axis of the grid, increases. This requires a524

new assumption which uses the Hausdor� distance Dh(A,B) between two sets A and525

B:526

Dh(A,B) = max(D(A,B), D(B,A)).(3.9)527528

Assumption 4. There exists a function ε(n) : N→ R+, ε(n)→ 0 when n→∞,529

such that, for any set H satisfying some smoothness properties (see examples in section530

4), there exists n4 ∈ N such that for n > n4:531

Dh(A(H ∩ Γ(n)), H) < ε(n).(3.10)532533

Proposition 3.11. Assume the conditions of proposition 3.10. Under assump-534

tion 4 and if BSV iab(K) satis�es the required smoothness conditions and n is large535

enough, at the �nal iteration q of algorithm 3.1, we have:536

Dh(Ĥq, BSV iab(K)) < ε(n).(3.11)537538

539

Proof. Let V = BSV iab(K). Proposition 3.10 ensures Hq = V and because of540

assumption 4, Dh(A(V ∩ Γ(n), V ) < ε(n).541

Proposition 3.12. Assume that BSV iab(K) = BSV iab(δ0, θ0) is the backstop542

viability kernel and is equal to the viability kernel: BSV iab(K) = V iab(K). Assume543

that the conditions of proposition 3.8 are satis�ed and jA > j]EDT (n, θ,K). Under544

assumption 4 and if V iab(K) satis�es the required smoothness conditions and n is545

large enough, then for all δ ∈ R∗+ such that 3δ
2 ≤

δ0
2 , for all θ ≤ min(θ0,

δ0
2M ), at the546

�nal iteration q of algorithm 3.1, we have:547

Dh(Ĥq, V iab(K)) < ε(n).(3.12)548549

550

Proof. Let V = V iab(K). In the considered conditions, V = V iabEDT (θ,K)551

because BSV iab(K) ⊂ V iabEDT (θ,K) and V iabEDT (θ,K) ⊂ V . Proposition 3.8552

ensuresHq∩Γ(n) = V ∩Γ(n) and because of assumption 4,Dh(A(V ∩Γ(n), V ) < ε(n).553

Note that the case V iab(K) = BSV iab(K) is particularly interesting, because the554

convergence rate ε(n) can be ensured even for j]EDT (θ,K) = ∞ and j]C(θ,K) = ∞,555

whereas if V iab(K) 6= BSV iab(K), it requires j]C(θ,K) < ∞. The next section556

reports tests performed in this case.557

4. Tests of the convergence rate when viability kernel and backstop558

viability kernel are equal. In the tests, the trajectories Xx0,(u,v)K (jθ) are approx-559

imated by the Runge and Kutta method with a time step smaller than θ ensuring560

that several trajectory points are computed in each grid cube. Hence the approxima-561

tion error on the trajectory (of the order of n−4) is negligible with respect to the set562

approximation error (at best of the order of n−2).563
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4.1. Tested viability problems. The tests are performed on three viability564

problems in d dimensions.565

4.1.1. Population problem. In the original 2D version [3], x1(t) represents566

the size of a population, which grows or diminishes with the evolution rate x2(t) that567

can be modi�ed by the control. The populations should be kept within some bounds.568

The system is written as follows, m1,M1,m2,M2,mu,Mu being positive parameters:569

(4.1)

{
x′1(t) = x1(t)x2(t)

x′2(t) = u(t),
with

{
−mu ≤ u(t) ≤ +Mu,

(x1(t), x2(t)) ∈ K = [m1,M1]× [−m2,M2].
570

In the extension to d dimensions, the model includes d − 1 ≥ 2 populations571

x1, x2, .., xd−1 and it uses variable x̃(t):572

x̃(t) =
d−1∑
i=2

(M1 −m1)2

4
−
(
xi(t)−

M1 +m1

2

)2

.(4.2)573

574

The extended viability problem is:575

(4.3)


x′1(t) = y(t) (x1(t) + αx̃(t))

x′i(t) = 0, i ∈ {2, .., d− 1}
x′d(t) = u(t),

with


−mu ≤ u(t) ≤Mu

m1 ≤ xi(t) ≤M1, i ∈ {1, .., d− 1},
−m2 ≤ xd(t) ≤M2.

576

Where α is a parameter. In this system, the dynamics of population x1 non-577

linearly depends on the abundance of the other populations which are constant.578

The analytical de�nition of the viability kernel of the d-dimensional problem can579

be directly derived from the one of the 2D case (provided in [3]):580

V iab(K) = {x ∈ K, ∂V−(x) ≤ xd ≤ ∂V+(x)}, with:(4.4)581 
∂V+(x) =

√
2mu log

(
Mx+αx̄
x1+αx̄

)
,

∂V−(x) = −
√

2Mu log
(
x1+αx̄
mx+αx̄

)
.

(4.5)582

583

The backstop viability kernel of this problem exists and is equal to the viability584

kernel.585

4.1.2. Consumption problem. In the original 2D problem [3], x1(t) represents586

the consumption of a primary good and x2(t) a critical level of consumption above587

which the prices can decrease and accelerate consumption and below which, on the588

contrary the prices increase and decrease the consumption. The critical level x2 can589

be modi�ed by a control within some bounds in order to maintain the consumption590

within some bounds. The system is written as follows (mu,Mu,m1,M1 and M2 are591

positive):592

(4.6)

{
x′1(t) = x1(t)− x2(t)

x′2(t) = u(t),
with

{
−mu ≤ u(t) ≤Mu,

(x1(t), x2(t)) ∈ K = [−m1,M1]× [0,M2].
593
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Like the population model, we extend the consumption model to d dimensions by594

considering d − 1 ≥ 2 consumption variables x1, x2, .., xd−1. We also de�ne variable595

x̃(t) with equation 4.2. The extended system is:596

(4.7)
x′1(t) = (x1(t) + αx̃(t))− xd(t)
x′i(t) = 0, i = 2, .., d− 1

x′d(t) = u(t),

with


−Mu ≤ u(t) ≤Mu,

−m1 ≤ xi(t) ≤M1, i ∈ {1, .., d− 1},
0 ≤ xd(t) ≤M2.

597

The analytical de�nition of the viability kernel can easily be derived from its598

expression in the 2D problem (provided in [3]):599

V iab(K) = {x ∈ K, ∂V−(x) ≤ x1 ≤ ∂V+(x)} with:(4.8)600 ∂V−(x) = xd −mu +mu exp
(
−xd
mu

)
− αx̃,

∂V+(x) = xd +Mu −Mu exp
(
xd−M1

Mu

)
− αx̃.

(4.9)601

602

For this problem also, it can be veri�ed that the backstop viability kernel exists603

and equals the viability kernel.604

4.1.3. Variants of the models with oblique trajectories. In both popu-605

lation and consumption problems, the fact that x′i(t) = 0 for i ∈ {2, .., d − 1} can606

be seen as an easy particular case for the resistar approximation because in each 2-607

dimensional grid de�ned by axes x1 and xd, the problem to solve is the same as in608

2 dimensions. Increasing the dimensionality requires only the interpolation by the609

resistars between these 2-dimensional classi�cations.610

In order to test how the approach performs on a more di�cult problem, instead611

of keeping all trajectories in the 2 D spaces parallel to (b1, bd), (bi, i ∈ {1, .., d} being612

the canonical basis vectors), for point x = (x1, ..., xd) the trajectory is set in the 2D613

space generated by vectors (z(x), bd), with:614

z(x) = b1 +

d−1∑
i=2

zi(x)bi with, setting m(x1) =
1− β

2
+ βx1,(4.10)615

for i ∈ {2, ..., d− 1}, zi(x) =

{
β xi
m(x1) , if xi ≤ m(x1),

β 1−xi
1−m(x1) , otherwise,

(4.11)616

617

where β is a parameter (0 ≤ β < 1) and the problem is rescaled so that K = [0, 1]d.618

When x is located on the right line of direction b1 + β
∑d−1
i=2 bi which includes point619

( 1−β
2 , ..., 1−β

2 ), it makes the maximum angle with b1. The components zi(x) equal 0620

for xi = 0 or xi = 1.621

This leads to population or consumption problems in the spaces (z(x), bd) with622

a constraint set equal to [0, ‖z(x)‖] × [0, 1] instead of [0, 1] × [0, 1]. Their viability623

kernel in the plane (z(x), bd) can be derived directly from the viability kernels of the624

2D problems.625

4.1.4. Spirals problem. Equation 4.12 de�nes the spirals problem in d dimen-626

sions, with 0 < r0 < 1 and ω > 0..627
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(4.12)


r =

√
x1(t)2 + x2(t)2,

x′1(t) = −x2(t) + ω(r − r0)x1(t),

x′2(t) = x1(t) + ω(r − r0)x2(t),

x′i(t) = −σxi(t), i ∈ {3, .., d},

with − 1 ≤ xi(t) ≤ 1, i ∈ {1, .., d}.628

Qualitatively, in the plane P generated by canonical basis vectors b1 = (1, 0, ..., 0)629

and b2 = (0, 1, 0, ..., 0) and which includes point c = (0, .., 0), the dynamics turns630

around c in P and if the distance to c is higher than r0, then the trajectory is a spiral631

which increases its distance to c while the spiral goes towards c when the distance to632

c is smaller than r0. When the point is exactly at the distance r0 from c, the radius633

is kept constant. The parameter ω rules the increase or decrease of the distance to634

c. When x does not belong to P , the dynamics is the combination of the spiral in635

the plane generated by (b1, b2) which includes x and a translation towards P with636

a speed proportional to the distance from x to P (ruled by parameter σ). For sake637

of simplicity, there is no control in this problem (in our framework, the control set638

includes a single value).639

In the spirals problem, j]EDT (θ,K), the supremum of number of steps in K for640

the non-viable points of K, is in�nite, while it is �nite for the two �rst problems.641

Indeed, consider x ∈ K such that ‖x− c‖ = r0 + ε (ε > 0); when ε tends to 0, the642

trajectory starting from x makes an inde�nitely increasing number of turns around c643

before exiting from the constraint set. In the 2D example, we set ω = 0.01 and the644

system makes a large number of rounds before exiting K even when it is moderately645

close to the circle of centre c and radius r0.646

It can be veri�ed that the backstop viability kernel exists and is equal to the647

viability kernel. The viability kernel can easily be de�ned analytically:648

V iab(K) = {x ∈ K |x2
1 + x2

2 ≤ r2
0}.(4.13)649650

4.1.5. Parameter values. Table 1 breaks down the parameter values used in651

the tests of the population and consumption models and Table 2 provides the values652

used in the tests of the spirals model.653

Table 1

Parameters of population and consumption models.

Model m1 M1 m2 M2 mu Mu α β δ θ jA
Popul.2D 0.2 3 2 2 0.5 0.5 0 n.a. 0.1 0.6 50
Popul.dD 0.2 3 2 2 2 0.5 0.15 0.6 0.1 0.3 50
Cons.2D 0 2 0 2.5 0.9 0.9 0 n.a. 0.1 0.4 50
Cons.dD 0 2 0 2.2 0.9 0.9 -0.15 0.6 0.1 0.4 50

Table 2

Parameters of spirals model.

r0 ω σ δ θ jA
2D 0.75 0.01 n.a. 0.1 0.6 10000
dD 0.75 0.1 0.2 0.1 0.6 100

In both tables the values are given for problems with modi�ed axis scales so654

that K = [0, 1]d. We checked experimentally that these parameters are such that655
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V iab(K) = BSV iab(K) = BSV iabEDT (θ, δ,K). Note that mu = 2 in the Population656

model in d dimensions in order to get a smoother boundary ∂V+(x), ensuring that657

the conditions of the convergence for resistars are satis�ed in the considered range of658

values of n.659

4.2. Set approximation algorithms and their convergence rates. In this660

subsection, we assume K = [0, 1]d. The tests use two set approximation algorithms.661

4.2.1. Nearest vertex. The nearest vertex approximation Nn(H) of setH ⊂ K662

is de�ned from Gn, the set of vertices of the regular grid covering K, as follows:663

x ∈ Nn(H)⇐⇒ ∃ξ ∈ Gn ∩H | ‖x− ξ‖ = min
ξ′∈Gn

‖x− ξ′‖ .(4.14)664
665

Proposition 4.1. For any H ⊂ K such that, for all x ∈ H there exists ξ ∈666

Gn ∩H such that D(x, ξ) ≤
√
d
n , we have:667

Dh(H,Nn(H)) = O(n−1).(4.15)668669

670

Proof. By de�nition, for all point x ∈ K such that x ∈ Nn(H) there exists ξ ∈671

(Gn ∩H) such that ξ is the point of Gn which is the nearest to x, thus D(x, ξ) ≤
√
d

2n .672

Therefore, D(x,H) ≤
√
d

2n . Moreover, by hypothesis, for all x ∈ H there exists ξ ∈ Gn673

such that D(x, ξ) <
√
d
n . Therefore, D(x,Nn(H)) ≤

√
d
n . We get: Dh(H,Nn(H)) ≤674

√
d
n .675

4.2.2. Recursive simplex stars (resistars). We assume that set H ⊂ K is a676

d-dimensional manifold, ∂H, the boundary of H and ∂KH = ∂H − (∂H ∩ ∂K) are677

(d− 1)-dimensional manifolds. The resistars are designed for approximating ∂KH by678

hypersurfaces made of (d−1)-dimensional simplices. The �rst step for deriving resistar679

surfaces is determining the boundary points BH(Gn) which are approximations of the680

intersections between ∂KH and the edges of the grid. These points are computed on681

the edges [v, v′] of the grid such that one of the vertices is inside H and the other is682

outside. The estimation of a boundary point is done by successive dichotomies. The683

simplices de�ned in a cube share the barycentre of the boundary points located in the684

cube as a vertex, and their other vertices are de�ned similarly in the facets and faces685

of the cube. The complete description is available in [11].686

Theorem 4.2 ([11]). If ∂KH is a (d− 1)-dimensional manifold in K of reach1 r687

such that r >
√

2dn−1, if for all j-dimensional faces F of K, setting HF = H ∩ F ,688

∂FHF is a (j−1)-dimensional manifold of reach rF >
√

2jn−1, and if all the boundary689

points are determined with at least log2(n) dichotomies, then the Hausdor� distance690

between H and its resistar approximation decreases like O(dn−2).691

4.3. Evaluating the Hausdor� distance between the viability kernel and692

its approximations. The procedure evaluates tho distance from Ĥq (result of the693

approximation algorithm) to V iab(K) (known analytically). It assumes that it is close694

to the distance from V iab(K) to Ĥq. It focuses on the points of the boundary ∂KĤ
q695

that are likely to be the furthest to ∂V iab(K) in order to limit the computation time.696

1The reach of ∂KH is the supremum of ρ such that for any point x ofK for whichD(x, ∂KH) = ρ,
there is only one point y ∈ ∂KH such that ‖x− y‖ = ρ [16].
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4.3.1. Resistar approximation. Among the vertices of the simplices de�ning697

∂KĤ
q, the barycentres of all boundary points of a grid cube are likely to be the furthest698

from ∂KV iab(K). The procedure estimates the distance from such vertices x to the699

projection of x on ∂KV iab(K) parallel to the estimated normal vector to the resistar700

surface at x and it returns the maximum of these distances. It is indeed assumed701

that the normal vector to ∂KĤ
q at x is close to the normal vector to ∂V iab(K) at702

the nearest point to x of ∂V iab(K). The procedure estimates the intersection y of703

∂V iab(K) with the segment [x, x + νDM ] or with the segment [x, x − νDM ] (DM704

being a parameter) by performing successive dichotomies. The case when x + νDM705

or x − νDM is located outside K requires a speci�c management. The estimation706

of the normal vector to ∂KĤ
q at point x, is based on the estimation (by successive707

dichotomies) of d − 1 a�nely independent points of ∂KĤ
q at a given distance from708

x, from which the normal vector can be derived. The method includes a speci�c709

tratment for the cases when x is on the border of K or very close to it.710

4.3.2. Nearest vertex approximation. The set Ĥq is now the nearest vertex711

approximation. The estimation of the Hausdor� distance from Ĥq to V iab(K) is712

derived from the method de�ned for the resistar set approximation. It uses indeed713

the resistar surface denotedH?, de�ned from the boundary points b = (v+v′)/2 where714

v and v′ de�ne a grid edge [v, v′] such that v ∈ Ĥq and v′ /∈ Ĥq. It estimates the715

distance from the centres of the cubes containing boundary points of H? to ∂V iab(K)716

using the normal to H? estimated at the barycentre of the boundary points of the717

cube. Indeed, the centre of the cube is always on the boundary of Ĥq and is likely to718

be the point from which ∂V iab(K) is the furthest. The direction normal to ∂KH
? at719

the barycentre of the boundary points of the cube is a reasonable approximation of720

the direction from the centre of the cube to its nearest point in ∂V iab(K).721

4.4. Results. Figure 1 shows the sets Ĥi for all the iterations of algorithm722

3.1 applied on the 2D problems. The �nal result can be visually compared with723

the theoretical viability kernel (quanti�ed evaluations of the Hausdor� distance are724

shown on �gure 3). Note that the algorithm stops after 4 iterations for the population725

and consumption problems and after 6 iterations for the spirals problem (even with726

ω = 0.01). The number of iterations is similar in higher dimensionality. Figure 2727

shows examples of �nal results on the 3D problems. The smooth non-linearity along728

the x2 axis ruled by parameters α and β appears in the viability kernel approximations729

of population and consumption problems. Panels (a), (b) and (c) of Figure 4 show the730

intersection with three chosen hyperplanes of viability kernel resistar approximations731

of algorithm 3.1 in 6 dimensions with n = 5 (grid size: 56).732

On Figure 3, panels (a), (b) and (c) show the estimated Hausdor� distance be-733

tween the viability kernel and its approximation (y axis) by the nearest vertex and by734

a resistar surface, in dimensionality 2, 3, 4 and 5, and for di�erent values of the grid735

size n (x axis). For resistar approximations, the values of n are 7, 9, 13, 17, 25, 33,736

49, 65, 97, 129, 193, 257 for the 2D problems, 7, 9, 13, 17, 25, 33, 49, 65, 97 for the737

3D problems, 7, 9, 13, 17, 25, 33, 49 for the 4D problems and 7, 9, 13, 17, 25 for the738

5D problems. For nearest vertex approximations, the values 7 and 9 are not tested739

because they are too small for de�ning properly the sets Biin. The other values of n740

are the same The axes are in a logarithmic scale.741

Table 3 shows the estimation of the slopes of the logarithm of the Hausdor�742

distance as a function of the logarithm of n, for the problems in 2 and 3 dimensions.743

These results are in good agreement with the theoretical prediction of an Hausdor�744

distance decreasing like n−1 for the approximation with the nearest vertex and like745
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Figure 1. Approximations of the viability kernel in 2D for the three problems (�rst row:
population, second row: consumption, third row: spirals). Left column: nearest vertex approximation
with n = 33 (grid size: 332), right column: resistar approximation with n = 9 (grid size: 92).

The black curves are the boundaries of the theoretical viability kernel. The approximations Ĥi are
represented in darker and darker grey as i increases. The darkest set is the output of algorithm 3.1.
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Figure 2. Approximations of the viability kernel in 3D for the three problems (�rst row:
population, second row: consumption, third row: spirals). Left column: nearest vertex approximation
with n = 33 (grid size: 333), right column: resistar approximation with n = 9 (grid size: 93).
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Nearest v. Resistars
2D 3D 2D 3D

Population −1.00 −0.97 −2.00 −1.99
Consumption −1.01 −1.03 −2.01 −1.98

Spiral −1.02 −0.94 −2.02 −2.01
Table 3

Slopes of the linear regression of the logarithm of the estimated Haussdorf distance between the
viability kernel and its approximation as a function of the logarithm of n. The R2 values are all
superior to 0.98.

n−2 for the approximation with the resistars.746

Figure 3. Estimation of the Hausdor� distance between the viability kernel and its approxima-
tion (y axis) as a function of n de�ning the grid size as nd (x axis) for the population, consumption
and spirals problems in d ∈ {2, 3, 4, 5} dimensions. The dashed lines are the linear regressions on
the 2D values (slopes given in table 3).

On �gure 3, for a given value of n, the error does not change much when increasing747

the dimensionality. This observation is con�rmed on Figure 4, panel (d) showing that748

the error of the resistar approximation for a grid de�ned by n = 5 does not vary749

signi�cantly when the dimensionality d varies from 3 to 9.750

5. Discussion - conclusion. In general conditions, there exists a range of pa-
rameter values for which BSViabApp(n, δ, θ, jA), the output of the approximation
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Figure 4. Panels (a), (b) and (c): Resistar backstop viability kernel approximations in dimen-
sionality d = 6 and n = 5 (grid size: 56), for respectively the population, consumption and spirals
problems. Each panel represents the intersection of the resistar approximation with 3 hyperplanes
(x3 = 0.02, x4 = 0.05 and x5 = 0.08 in K = [0, 1]6). Panel (d): Hausdor� distance between viability
kernel and its resistar approximation (y axis) for the population, consumption and spirals problems
in a grid of size n = 5 and dimensionality varying from 3 to 9 (x axis).

algorithm, satis�es:

BSV iab(
3δ

2
, θ,K) ∩ Γ(n) ⊂ BSViabApp(n, δ, θ, jA) ∩ Γ(n) ⊂ V iabEDT (θ,K) ∩ Γ(n).

The second inclusion implies that all the points of BSViabApp(n, δ, θ, jA) ∩ Γ(n)
are viable. This is generally not guaranteed with the Saint-Pierre algorithm which
provides an approximation of a set which contains the viability kernel. This di�erence
is important when the objective is to guarantee the viability of a system. When the
backstop viability kernel BSV iab(K) exists, under general conditions, there exists a
range of parameter values such that:

BSViabApp(n, δ, θ, jA) ∩ Γ(n) = BSV iab(K) ∩ Γ(n).
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Overall, these results lead to a convergence rate of the algorithm to the backstop751

viability kernel which is the same as the convergence rate of the chosen set approxi-752

mation technique.753

When the viability kernel is equal to the backstop viability kernel, the conditions754

to get this convergence rate are more general. Even when using the nearest vertex755

approximation, we expect our algorithm to then outperform the current techniques756

approximating viability kernels for three reasons. Firstly, the convergence to the757

viability kernel is ensured without decreasing the time step to 0, which is a major758

di�erence. Secondly, for a given time step, our algorithm requires a lower number759

of iterations, especially when the supremum of time steps in K for the non-viable760

points is in�nite (as illustrated on the spiral problem). Thirdly, our algorithm avoids761

cumulating the error of the successive set approximations taking place in standard762

algorithms.763

When using resistars as set approximation technique, if the best conditions are764

satis�ed, the convergence rate of our algorithm is like O(n−2) which signi�cantly765

increases the advantage over the standard methods, converging at best like O(n−1).766

Indeed, in order to be as accurate as a resistar approximation using a grid of nd767

points, the standard methods need a grid of at least n2d points. For instance, we have768

shown that it is possible to run resistars approximations in 5 dimensions using a grid769

of 255 (about 8 106) points. In order to reach the same accuracy as the one of these770

approximations, the standard methods would require a grid of at least (252)5 (about771

9.5 1013) points, which is not manageable by current standard computers.772
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