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Abstract To apply the framework Topology of Sustainable Management
(tsm) by Heitzig et al. (2016) to dynamical models, we connect it to
viability theory via a variant definition of the former. This enables us
to use the Saint-Pierre algorithm to estimate the main partition of
tsm. Furthermore, we present an extension of the algorithm to com-
pute implicitly defined capture basins, regions of state space as defined
in viability theory. We use a low-complexity model coupling environ-
mental and socio-economic dynamics to demonstrate the applicability
of this approach. With this example, we highlight how common prob-
lems in estimations of these regions like (i) an unbounded state space
and (ii) highly varying time scales can be circumvented by introducing
appropriate coordinate transformations. The article thus shows how al-
gorithmic approaches from viability theory can be used to get a better
understanding of the state space of manageable dynamical systems.

[TODO Jobst: incorporate newer refs in intro, ref to Felix, go through earlier
reviewer comments and response.]

[TODO J-D: update refs to viability papers?]
[TODO all: update contact details, thanks and funding info in acknowledgements]

1 Introduction

When charting the pathways to a sustainable future for humanity, different constraints
we should abide by have been proposed. The idea of Planetary Boundaries which has
been developed by Rockström et al. [58] and extended by Steffen et al. [66] is to define
a set of biophysical boundaries chosen in order to ensure human development if they
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are respected. While they provide safety by defining a safe operating space, Raworth
[56] pointed out that a human future needs to concern justness as well, hence she
introduced the Social Foundations. Combined, they define the safe and just operating
space, often referred to as sajos.

While there is much research on refining the current definitions, e.g. for freshwater
[27] and phosphorus [17], extending them, e.g. terrestrial net primary plant production
[62], and downscaling them [28], another focus has emerged: their interaction due to
the system’s intrinsic dynamics [2; 29].

On a formal level, many similar problems on different scales can be found, e.g.
quotas for fishing [22; 19], water management [57] or language competition [20].

One approach to treat these kind of problems was developed by Heitzig et al. [30]
with the framework on Topology of Sustainable Management (tsm). It has already
shed a new light on the implications of boundaries when taking the dynamics and
possible management into account. Complex structures in state space, that we call
regions, corresponding to a hierarchy of safety levels, may occur naturally from this
concept. These regions in state space are a qualitative classification and differ in
how secure they are and how much management they need to either stay within
the desirable region or reach it. Combined, they give a partition that we want to
identify. As pointed out in [30], it might be important to have this kind of qualitative
analysis before performing a quantitative optimization. They have carefully chosen
the terms “default dynamics” and “management” in order to emphasize that usually
only a slight influence on the dynamics might be possible but not a complete control,
e.g. in the global climate system. On a formal level however, a relation to viability
theory (vt), a subfield of control theory, has already been sketched out. The analysis
of the models in [30] was possible to do without an automated classification as the
model systems were all two-dimensional. The need to apply this framework to more
complex models leads directly to the question governing this article: “How to properly
operationalize the tsm-framework? And how to automatize the identification of the
regions in state space?”

Viability theory was developed by Aubin and his collaborators [8; 4; 9; 7] to
address the problem of maintaining a dynamical system within a set of desirable
states, e.g. in our case delimited by planetary boundaries. The main concept, the
viability kernel, is defined as the set of states from where it is possible to keep its
trajectory within the desirable set indefinitely. Therefore, it is possible to avoid the
transgression of the boundaries. The second main concept is the capture basin. It
is defined with respect to a target set, i.e. a chosen set of states that one wants to
reach. Then, the capture basin is the set of states from which the target set can be
reached. Hence this concept is very close to the one of reachability in control theory.
Viability Theory has been applied in many domains, e.g. economics [5], fisheries [22;
19], wireless sensor node [37], forest [44], language competition [20], social networks
[46], sustainability management [25; 59; 60], resilience modeling [43; 23]. Mathias
et al. [45] recently used viability theory for showing our rapidly shrinking capacity
to comply with the planetary boundaries on climate change. Several algorithms for
the estimation of viability kernels have been developed, among them the Saint-Pierre
algorithm [63] with extension to machine-learning-based classification methods [24],
reachability based viability [42] or optimal-control-problem-based ideas [13; 25; 59].

In this article, we will present a variant definition of tsm based on the main ideas
of vt, which differs from the original definition by using control theory’s notion of
reachability instead of “safe reachability” (as defined in [30]). Also, we require a target
set be reached in finite but arbitrary large time, instead of infinite time because it
simplifies the computation and is more realistic. But for computationally supported
estimations of specific models these differences are usually not relevant. This new
approach to tsm allows us to access the tools from the established field of vt, in
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particular the Saint-Pierre Algorithm, leading to an operationalization of the tsm
framework.

Furthermore, we develop a nonlinear, local time homogenization solving the prob-
lem of vastly differing time scales when estimating viability kernels and capture basins
using the Saint-Pierre algorithm. It fully homogenizes the time scale of dynamics while
keeping the major properties of the system invariant, e.g. fixed points, other attrac-
tors, µ-Lipschitz continuity, C∞, etc. if they were present in the original system. Even
though the approach is straightforward, it is essential for the analysis of the example
model used in this article.

Commonly, the state space of a model can be unbounded in at least one variable,
e.g. economic production, but the Saint-Pierre algorithm is for bounded sets only.
To tackle the problem of unbounded state spaces, we propose a nonlinear coordinate
transformation to a bounded state space. In particular, this transformation has the
property that one can choose a scale to be “resolved best”.

Certain regions, the so-called eddies, of the tsm-partition in state space are shown
to be naturally defined as implicit target sets. To identify these numerically, we also
have developed an extension of the Saint-Pierre Pierre algorithm.

Having a definition in terms of viability theory enables us to operationalize the
tsm-framework. We demonstrate it with a three dimensional example model coupling
environmental and socio-economic dynamics [65]. Similar to other low-complexity
models [71; 10; 40; 33; 2; 14; 55; 36] it focuses on the interaction between the eco-
sphere and the anthroposphere [38]. The former is represented by an atmospheric car-
bon stock and the latter by the (global) economic output and a knowledge stock on
renewable energy production, possibly leading to a technological change. The model’s
complexity has been held low so it can be used as an appropriate first example where
the tsm partition is estimated automatically. Two common policies, we call manage-
ments, can be implemented in a conceptual manner: (i) low growth and (ii) climate
mitigation by inducing an energy transformation.

In such a model, there are two naturally arising boundaries. The first one is the
planetary boundary on climate change (pb-cc) [58; 66] which limits the amount of
atmospheric carbon. The second one is a wealth-related social foundation prescribing
a threshold below that the yearly economic output should not fall.

The article is structured as follows. First we give details on software availability
in Section 2. In Section 3, we recall the necessary notions from viability theory in
order to introduce the variant definition of tsm in Section 4. In Section 5, we show
our means to deal with an unbounded state space and then introduce the nonlinear,
local time-homogenization. Next, we shortly recall the Saint-Pierre algorithm and
present its extension for implicitly defined target sets. In Section 6 we introduce
the example model with its different managements and analyze it using the tools
developed before. Finally, we close with a summary and an outlook for necessary
future work in Section 7.

2 Software availability

3 Viability theory

In this section, we shortly introduce the notions of viability theory (vt) needed in this
article, following [4; 6]. We start with a time-continuous (t ∈ T := R+) dynamical
control system

ẋ = f (x, u) (1)
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with x ∈ X = Rn, the state space, and u ∈ U , the set of all possible values for
the control parameter u. We call f the right-hand side function (RHS). Note that
no dependency of U on x is assumed for notational simplicity but the idea could be
extended in a straightforward manner.

A function qx0 : T → X is called a solution for an (arbitrary) initial condition
x0 ∈ X if there exists a measurable function of time π : T → U , called policy, such
that for any time t ∈ T the condition dq

dt (t) = f(q(t), π(t)) is fulfilled and qx0(0) = x0.
A viable set V of a constraint set Y ⊆ X is then defined as a set of initial

conditions x for which there exists a viable solution qx that stays within Y forever:

∀x ∈ V ∃qx ∀t ∈ T : qx(t) ∈ Y. (2)

The largest viable set of Y is called the viability kernel ViabU (Y). The set of possible
controls U is given as a subscript as we will distinguish different controls later. If one
assumes only some constant control uf ∈ U , i.e. any solution has a policy π(t) = uf ,
the corresponding viability kernel is called a viability niche

VNuf
(Y) := Viab{uf}(Y). (3)

The capture basin of a target set Z⊆ X is the subset of the state space in X for
which there exists a solution of Eq. (1) that reaches Z in finite time

Capt
Y
U (Z) = {x0 ∈ X | ∃ solution qx0

∃T ∈ T :

qx0
(T ) ∈ Z∧ ∀t < T : qx0

(t) ∈ Y} .
(4)

In case no constraint set is given, the whole state space is assumed, i.e. CaptU (Z) := CaptXU (Z).

4 A variant of the topology of sustainable management based on
viability theory

In this section, we present a variant definition of the tsm-partition based on vt.
From the point of view of vt it might be seen as an extension of the theory when
considering a qualitative distinction of controls into default and management, leading
to a partition of the state space and multiple dilemmas, whereof we introduce only
the “lake dilemma”.

We elucidate some central notions using a metaphorical example of ducklings in
Fig. 1. The water region represents the state space and the streamlines represent the
dynamics. The ducklings can either swim with the flow (default dynamics) or struggle
and swim against it (management). However, it is not possible to swim up a waterfall
once they have dropped down. The desirable region, a safe environment providing
enough food and nesting places for the ducklings, is on the left and the undesirable
region full of predators on the right. In the following, we will introduce the general
concept for each region first and then explain where it comes up in the ducklings
example.

The definition is based on a general control system as Eq. (1) where we additionally
require that a default control u0 ∈ U is separated out from all possible controls U .
Um = U − {u0} are the manageable controls.1 Hence we call f(x, u0) the default flow
giving rise to the default dynamics and the dynamics corresponding to the manageable
controls is called management options. Furthermore, we require a division of the state
space into desirable X+ ⊆ X and undesirable X− := X−X+.

1 Here and in the following we use the lax difference and union notation with “−” and
“+” for sets.
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Figure 1: Metaphorical example for the concepts introduces in Section 4, which is
a variant definition of the Topology of Sustainable Management (tsm) framework
developed by Heitzig et al. [30]. It depicts a river flowing downwards with ducklings
on it that may swim through the desirable (left) and undesirable parts (right). In the
nest, which corresponds to the shelter, the ducklings do not have to swim and can
stay there forever without effort. Outside they will slowly drift down or can swim, i.e.
manage, against the downward-flowing stream, if the the stream lines are not curly,
but long. In areas with curly stream lines, the waterfalls, the flow is so strong that
the ducklings move with the flow anyway. The example gives rise to a number of
qualitatively different regions from the tsm-framework.
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As already sketched in [30], when approaching the idea of tsm from vt’s point
of view, we can found it on two basic quantities, the shelters S and the manageable
region M

S := VNu0

(
X+
)

(5)

M := ViabU
(
X+
)
. (6)

Shelters are the viability niche of X+ with respect to the default control u0 only,
meaning the system will stay in the desirable region forever without management,
thus being the safest regions in the state space. For the ducklings the shelter is the
nest, a place in which they can stay in a safe environment forever without swimming
against the stream.

Inside the manageable region, one can also stay in the desirable region forever, but
may need all possible dynamics. In the case of the ducklings-model it corresponds to
the waters in the desirable region in Fig. 1 (including the shelter). This is a special
case only as we did not want to make the picture too complex and we refer the reader
to the detailed explanations in [30] for the full framework.

The set CaptU (M) from where the manageable region can be reached is naturally
divided into the upstream

U := CaptU (S) (7)

from where the shelter is reachable and the rest, called downstream

D := CaptU (M)− U. (8)

As both sets, the upstream and the downstream, may have qualitatively very different
dynamics inside, we introduce a finer partition. From the glades

G= CaptX
+

U (S)−S (9)

the shelter can be reached through the sun. In our ducklings example, a glade is
formed by the water around the nest. There, the ducklings need to swim against the
flow to get back inside the nest and meanwhile they stay inside the desirable region.

Another region inside the upstream are the lakes

L= U∩M−S− G. (10)

There, the shelters are reachable trough the undesirable region only. However, one can
decide to stay within the desirable region forever but will always need the management
options. This leads to a qualitative choice, the lake dilemma: Inside of a lake one has
to choose between eventual safety and uninterrupted desirability. Deciding for the
first requires crossing the undesired region with all its consequences. But deciding for
the second implies that there will always be a need for management options.

Furthermore, there are two kinds of lakes, time-limited lakes Ll and time-unlimited
lakes Lu

Lu = ViabU (L) , (11)

Ll = L−Lu. (12)

Because time-unlimited lakes are the viability kernel of the lakes, there is no time
pressure for a decision on the dilemma. In contrast, there is a fixed deadline in time-
limited lakes. This leads to a stronger form of the dilemma called the pressing lake
dilemma. Within the metaphorical ducklings model in Fig. 1 the time-unlimited lake is
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the waterfall starting from the glade and the subsequent calmer waters. The ducklings
can swim in the calmer waters as long as they want to. The time-limited lake is the
following waterfall that splits into two streams. Here, the ducklings drop down the
waterfall and they have only a moment to decide for the left or the right.

The rest of the upstream is split into the remaining sunny and the dark upstream

U(+)/− = (U−M) ∩X+/− (13)

depending on whether the actual state is inside the desirable or undesirable region.
Within the ducklings model, both, the remaining sunny and the dark upstream, are
present.

The Backwaters

W= M− U (14)

belong to the manageable region as well as to the downstream. It is possible to stay
in the desirable region by managing but the shelters are not reachable. The calm
waters in the left lower corner of Fig. 1 is a backwater because the ducklings can
swim against the stream and stay inside the backwater but due to the waterfalls,
they cannot reach the nest.

Analogously to the upstream, the rest of the downstream is divided into the re-
maining sunny and the dark downstream

D(+)/− = (CaptU (W)− U− W) ∩X+/−. (15)

In Fig. 1, the part of the waters that belongs to the undesirable region of the down-
stream is the dark downstream.

If the desirable region can be reached over and over again one is inside the eddies
E that are divided into sunny eddies E+ and dark eddies E−. The metaphorical image
behind the naming is that of a circular flow where one part is in the desirable and
the other part in the undesirable region. They are the maximal pair of sets fulfilling

E+/− ⊆ X+/− − U− D, (16a)

E+/− ⊆ CaptU (E−/+), (16b)

E= E+ + E−. (16c)

The worst regions are trenches

Θ = X− CaptU
(
X+
)

(17)

because once inside one cannot reach the desirable region ever again. Inside the
abysses

Υ = X− U− D− E−Θ (18)

one can reach the desirable region a finite number of times only, and again it is
distinguished between sunny and dark abysses Υ+/− = Υ ∩ X+/−. This completes
the main partition of the tsm framework.

5 Estimation

In order to estimate the tsm-partition for a chosen model, several ingredients might
be necessary. The Saint-Pierre algorithm, that we want to use, is based on finitely



8 Will be inserted by the editor

discretizing the state space and then using local linear approximations of the dynam-
ics. Hence, it is applicable to bounded state spaces only. In case the relevant part of
the state space is unbounded, we need to map it to a bounded space first. Also, vastly
differing time scales might be problematic for the linear approximations, so there is
a need to homogenize the time scales.

Then, we will sketch the Saint-Pierre algorithm and show how it can even be used
to estimate implicitly defined capture basins, e.g. the eddies of the tsm-partition.

5.1 Dealing with an unbounded state space

There are multiple ways to map an unbounded state space to a bounded one, depend-
ing on the specific need for the system. In case of the example system analyzed later,
each coordinate is bounded from below and unbounded from above. This is rather
common in socio-economic models, in particular due to continuous economic growth.
Hence, we propose a solution that maps each coordinate separately.

We assume a general dynamic system given by a set of ordinary differential equa-
tions

ẋ = f(x) (19)

with x ∈ Rn≥0. In contrast to Eq. (1), there is no control parameter, because the
dependence on the control parameter is irrelevant here and the mapping can be done
for general ordinary differential equations. We imply an extension to control systems
by considering fixed controls. Then we propose the coordinate transformation

Φ : Rn≥0−→ [0, 1)
n

(xi) 7−→ ( xi

xi,mid+xi
),

(20)

where xi,mid ∈ R≥0 are parameters. Applying this transformation on the dynamics
leads to a new set of ordinary differential equations

ẏ = F (y) :=((DΦ · f) ◦ Φ−1)(y) (21)

=
(1− yi)

2

xi,mid
f

(
yixi,mid

1− yi

)
(22)

for y ∈ [0, 1)n, i.e. inside a bounded space, where DΦ is the Jacobian of Φ and ◦ is the
symbol for function composition. The parameters xi,mid, summarized to the vector
xmid, are precisely the scales for each coordinate that is “resolved best” because
Φ(xmid) = ( 1

2 ,
1
2 , . . . )

T . So they should be taken to be around the main region of
interest.

5.2 Nonlinear, local time-homogenization

A problem during the estimation of viability kernels from Section 3 is a possibly
inhomogeneous time scale, i.e. that the (norm of the) RHS function of the control
system (1) can have values through several orders of magnitude. For instance, models
like Eq. (22) often lead to divergences at the upper boundary of a coordinate.

This problem can actually be addressed by rescaling the time of the system in a
nonlinear way. The used definitions of viability theory depend only qualitatively but
not quantitatively on time. Hence viability kernels and capture basins in the rescaled
system are equivalent to the original ones.
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As the control parameter is not necessary for the rescaling of the system, we use
a differential equation

ẏ = F (y). (23)

We propose to use the new system

ẏ = F̃ (y) :=
F (y)

‖F (y)‖+ ε
. (24)

Assuming ε is small enough, this new system generally fulfills three criteria:

1. The systems (23) and (24) are orbitally equivalent (cf. [39, p. 42], Definition 2.4),
i.e. the trajectories of solutions with the same initial conditions follow the same
path. In other words, only the time has been rescaled.

2. Everywhere away from fixed points ‖F (y)‖ � ε holds and hence the time scale is
properly homogenized

‖F̃ (y)‖ =
‖F (y)‖
‖F (y)‖+ ε

≈ 1. (25)

3. At fixed points of the original system, the function goes to zero with the same
properties as f at that point (e.g. µ-Lipschitz or C∞, same Lyapunov-Exponents
etc.) because within a small enough environment of the fixed point ‖F (y)‖ � ε
holds, thus

F̃ (y) =
F (y)

‖F (y)‖+ ε
≈ 1

ε
F (y). (26)

Because the units of the coordinates of y might be different from each other, there

is no real physical interpretation of F̃ . But that is not necessary either as it is only
an auxiliary system for the estimation with the Saint-Pierre Algorithm.

5.3 Sketch of the Saint-Pierre algorithm

The Saint-Pierre algorithm [63] was developed in order to estimate the viability kernel
of a control system Eq. (1).

It starts with a discretization Yh of the constraint set Y where a point x ∈ Y is
at most at a distance h of a point y ∈ Yh

2. Furthermore, a small time step ∆t > 0
is chosen and it supposes that the set of controls U is discrete (if not, it is also
discretized). It supposes that f is l-Lipschitz and there exists an upper bound M of
Y.

The algorithm starts by computing, for each point x ∈ Yh and for each control
u ∈ U , the successors S(x, u) of x when applying control u, for a linearized, extended
dynamics defined from f . Note that the linearization is done in the x variable only.
It is extended in the sense that the successors include all the points located in a ball
around x + f(x, u) · ∆t. The successors S(x, u) of x when applying control u are
given by

S(x, u) =

{
y ∈ Yh | ‖y− (x+ f(x, u) ·∆t)‖ ≤ h+

Ml

2
· (∆t)2

}
. (27)

2 Often, a regular grid with resolution h is chosen for this discretization, but this is by no
means a necessity.
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This extension of the dynamics guarantees that the algorithm described below con-
verges to the actual viability kernel when ∆t and the resolution of the grid decrease to
0. Computing and storing all the successors for each point of the grid rapidly becomes
computationally heavy when the dimensionality of the the state space is large and
the grid resolution is small (this is an example of the famous curse of dimensionality).

Then, the algorithm builds a series of discrete sets (subsets of the grid Yh)
K0 = Yh,K1, ...,Kn such that Ki+1 ⊂ Ki, defined as follows:

Ki+1 = {x ∈ Ki | ∃u ∈ U : S(x, u) ∩Ki 6= ∅} (28)

After a finite number of steps, the algorithm reaches a fixed point, i.e. Kn+1 = Kn.
The set Kn is the viability kernel of Yh for the linearized, extended discrete dynamics.
Saint-Pierre [63] shows that this set converges to the viability kernel of the continuous
time dynamics when ∆t and h tend to 0 appropriately. Note that the approximations
are done from the exterior of the viability kernel: generally, the approximation includes
points that do not belong to the actual viability kernel (their proportion decreases
when the resolution of the grid decreases).

This algorithm has been extended by Deffuant et al. [24] for using continuous sets
Ki, using a machine learning algorithm that takes as input the points of the grid that
belong to Ki and the ones that do not, and derives an approximation of its boundary.
This opens the possibility to represent continuous viability kernels that are defined
more conveniently than a huge set of points.

A slight modification of the of the algorithm described above enables us to ap-
proximate the capture basin. We start with a discretization of the state space Xh,
analogously to Yh above, and define the discretized target set Zh = Z∩ Xh for a
target set Z. Again, we create a series of discrete sets K ′i with K ′0 = Zh and where
the successors of all elements in K ′i+1 are in K ′i

K ′i+1 = {x ∈ Xh | ∃u ∈ U : S(x, u) ∩K ′i 6= ∅} . (29)

Again, after a finite number of steps, the algorithm reaches a fixed point, i.e.K ′n+1 = K ′n,
and K ′n is the capture basin of Zh in Xh for the linearized extended discrete dynamics.
In contrast to the viability estimation, this is an approximation from the interior.

Improvements and extensions to this algorithm are currently under intensive re-
search. Relations to dynamical programming [26] and other extensions [11; 64] can
provide the minimal time to reach the target set. Also, one can even find controllers
that drive the system to the target set [16; 41; 18].

5.4 Estimation of implicitly defined capture basins: eddies

For capture basins we only care about entering a target set at least once. However,
eddies are defined by being able to reach the sunny part over and over again, so the
most natural definition is an implicit one as in Eqs. (16a) and (16b). In order to
estimate them, we find an alternate definition in terms of a limit process.

We start by defining the largest sets that could contain eddies

E+
0 = X+ − U− D, (30a)

E−0 = X− − U− D, (30b)

and then use the iteration step

E−i = CaptU (E+
i−1) ∩ E−i−1, (31a)

E+
i = CaptU (E−i) ∩ E+

i−1 (31b)
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for i = 1, 2, . . . . Note that E−i used in Eq. (31b) is already computed in Eq. (31a).
So this can really be seen as a step-by-step prescription. Thus, the eddies can be
recovered as

E+ = lim
i→∞

E+
i, (32a)

E− = lim
i→∞

E−i. (32b)

The limit exists because both sequences are monotone and nonincreasing. The Saint-
Pierre algorithm works on a discretized state space with finitely many elements.
Hence, the existence of the limit provides that there exists an k ∈ N such that
E+ = E+

k = E+
k−1 and E− = E−k = E−k−1 and the algorithm converges after a

finite number of steps.
This iteration process follows the idea of being able to visit the sunny part over

and over again and is an algorithmic description for the estimation of eddies. Other
similarly implicitly given sets can be estimated by adjusting this basic idea.

6 Example: the AYS low-complexity model of climate change,
wealth, and energy transformation

We demonstrate the operationalization of the tsm-framework using a three dimen-
sional example model.

To develop a low-complexity model already incorporating climate change, welfare
growth and energy transformation, we took inspiration from Kellie-Smith and Cox
[33] and added a renewable energy sector with a learning-by-doing dynamics. Its
structure is depicted in Fig. 2.

Our model has only three dynamical variables. The first is the excess atmospheric
carbon stock A [GtC = giga tons of carbon], measured w.r.t. a pre-industrial level
A0 ≈ 600 GtC. It increases with current CO2 emissions E [GtC/a = GtC per year].
Taking A0 as an estimate for the long-term no-emissions equilibrium value, we assume
A approaches zero if E = 0, due to carbon uptake by oceans, plants and soil. To keep
the complexity of the model as low as possible, we do not explicitly model a carbon
cycle as in Anderies et al. [2] but simply assume the carbon uptake leads to an
exponential relaxation towards equilibrium on a characteristic time scale of τA ≈ 50 a
[a = years]. Hence our first model equation is

dA

dt
= E −A/τA, (33)

where E will be derived below from economic assumptions.
The second variable is economic output / production Y [US$/a] representing the

relation to wealth of a society, using the gross world product as its indicator as
usual. We assume the economy to have a positive basic growth rate β ≈ 3 % [1/a]
and additional climate impacts as in [33]. As a proxy for temperature we simply
use A, effectively assuming an infinitely fast greenhouse effect. Hence this terms is
represented by −θAY where θ ≈ 8.57 · 10−5 /(GtC a) is a temperature sensitivity
parameter chosen such that the total growth rate β − θA becomes negative when A
exceeds the level corresponding to a global warming of +2 ◦C. This gives

dY

dt
= βY − θAY. (34)

The third dynamical variable is the renewable energy knowledge stock S that
indicates how much knowledge is available for the production of renewable energy R
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CO2

Figure 2: The interplay of the three dynamical variables excess atmospheric carbon
stock A, economic production Y and renewable energy knowledge stock S and the five
dependent variables energy demand U , fossil (or renewable) energy flow F (or R),
emissions E and the share of the fossil sector Γ .

[GJ/a = giga joule per year]. In accordance with Wright’s law (e.g., [53]) of learning-
by-doing, we basically identify S with the past cumulative production of renewables
and thus measure it in units of [GJ]. To account for the human capital component,
we additionally assume that knowledge depreciates on a characteristic time scale of
τS ≈ 50 a. Cumulation and depreciation then give

dS

dt
= R− S/τS , (35)

where R will be derived below.
Finally, to determine E and R, we use the following simplistic economic assump-

tions. The energy demand U [GJ/a] is proportional to the economic output

U = Y/ε, (36)

where ε ≈ 147 US$/GJ is an energy efficiency parameter. This demand is satisfied
by a mix of fossil and renewable energy which are assumed to be perfect substitutes
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Figure 3: (color online) The default flow of the AWS model is sampled with trajectories
from randomly distributed initial conditions on nonlinearly scaled axes so the full
states space X = R3

≥0 is displayed (more details in Section 6.5). Green trajectories
end up at the green attractor xg and black ones at xb which are analyzed in Section 6.1.

(and ignoring other energy sources such as agriculture and other bioenergy). Their
respective shares are determined by a price equilibrium. We assume convex monomial
cost functions and unit costs of renewable energy that show a power-law decay with
growing S [53]. This implies that the fossil sector has a share given by the sigmoidal
function

Γ =
1

1 +
(
S
σ

)ρ , (37)

where σ ≈ 4 ·1012GJ is the break-even knowledge level at which renewable and fossil
extraction costs become equal, and ρ ≈ 2 is a dimensionless parameter determined
from the cost convexity and learning rate. Γ approaches unity (no renewables) as
S → 0 and zero (no fossils) as S → ∞. Fossil and renewable energy flows and
emissions are then

F = Γ U, R = (1− Γ )U, E = F/φ, (38)

where our final parameter φ ≈ 4.7 · 1010 GJ/GtC is the fossil fuel combustion effi-
ciency. This completes the model equations. Appendix B contains details on how we
estimated the parameters.

The 3 dynamical variables A, Y , and S are interrelated due to the various connect-
ing equations and the nonlinearities arise particularly due to Eq. (37) and Eq. (34).
The resulting flow is depicted in Fig. 3 where the basins of the two attractors (dis-
cussed in Section 6.1) are already colored differently.

In Section 6.4, we introduce management options for β and σ, hence the control
parameter u is two-dimensional and the particular control u0 for the default flow is

u0 =

(
β
σ

)
. (39)
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6.1 Attractors

With the above parameter values, the dynamics has two fixed points. The “black
fixed point” xb at

xb =

AbYb
Sb

 =

 β
θ
φεβ
θτA
0

 =

 350 GtC
4.84 · 1013 US$

0

 (40)

corresponding to a carbon based ecomony without renewable energy use, reduced
economic output, and constant climate damages. And there is the “green fixed point”
xg at

xg =

AgYg
Sg

 =

 0
+∞
+∞

 (41)

corresponding to eventually unbounded exponential growth of economic output and
renewable knowledge. Also, there is an exponential decline of fossil usage and emis-
sions towards zero. The mathematical meaning of “+∞” is made clear in Section 6.5.

Both attractors are rather extreme cases. We find this acceptable because this
model is a first example and we want to focus on the transients. We understand the
asymptotics to be conceptual.

6.2 Current state

The current state xc = (Ac, Yc, Sc) can be estimated. Ac is currently around 240 GtC,
corresponding to a concentration of 400 ppm [12], and the world gross product of 2015
is around 70 Trillion US$ [68]. Sc is estimated on the basis of the total past renewable
energy consumption of roughly 2 ·1012 GJ [52]. Since this figure has accumulated over
roughly the same time as the characteristic knowledge depreciation time, τS = 50 a,
we assume roughly half of it has already depreciated, leaving 1012 GJ. Because of
the large error margins involved in estimating this figure and because it contains
hydroelectricity whose growth potential is somewhat problematic, we aim at staying
on the conservative side with our estimate and again take only half of this value,
giving 5 · 1011 GJ.

xc =

Ac
Yc
Sc

 =

 240 GtC
7 · 1013 US$
5 · 1011 GJ

 (42)

6.3 Desirable states

Steffen et al. [66] set the the planetary boundary for climate change (pb-cc) to
350 ppm [ppm = parts per million] with an uncertainty zone until 450 ppm. We chose
the desirable states to be where A > APB = 345 GtC (above the pre-industrial
level A0), corresponding to the looser 450ppm boundary (see Appendix B for the
conversion).

Raworth [56] demands that the planetary boundaries are to be complemented with
social boundaries that she calls social foundations. Combining both ideas is important
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to have not only a safe operating space but also a just operating space. Her social
foundations shaped only illustrative indicators so we have to choose a suitable one
for this case. A pragmatic choice is a lower boundary of YSF = 4 · 1013 US$ (sf-y),
the economic production of the year 2000. The exact value is open for discussion, but
as our model has rather low complexity this choice seems reasonable. When trying to
refine the number, one should model the distributions in order to include distributive
justice and tackle inequality.

Note that for the default dynamics, the green fixed point xg is not violating either
of the boundaries, while the black one xb violates the pb-cc as can be seen in Fig. 4a.

6.4 Management options

The above parameter values define what we consider the default dynamics since they
represent a “business-as-usual” case. This means humanity applies no specific man-
agement that would alter “the way things usually go”.

In addition to the default dynamics, we study some management options repre-
senting possible policy choices that may be combined in any way, leading to more or
less shifted trajectories.

(i) The option of low growth (lg) reduces the basic growth rate β to half its value
βlg = 1.5%/a, leading to the control

ulg =

(
βlg
σ

)
. (43)

This moves the black fixed point to xb,lg = (A, Y, S) = (175 GtC, 2.42·1013 US$/a, 0),
no longer violating the pb-cc (see Fig. 4b) but now violating the sf-y.

(ii) Climate mitigation by inducing an energy transformation (et), e.g. via tax-
ing fossils and/or subsidizing renewable resource use. These policy instruments shift
the relative costs of fossil and renewable energy, which according to Eq. (37) can be
effected in our model by a reduction of σ. Hence, we represent this option by reduc-
ing σ to approx. (1/2)1/ρ = 1/

√
2 of its default value, i.e. to σet = 2.83 · 1012 GJ,

corresponding to dividing the renewable to fossil cost ratio by half and leading to the
control

uet =

(
β
σet

)
. (44)

This does not affect the location of the two attractors. But, more important, it changes
the shape of the basins of attractions. When carefully inspecting Fig. 4c, one can
see that the volume of the green fixed point’s the basin of attraction is enlarged in
comparison to the default flow in Fig. 4a. Within the concept of Basin Stability [47; 48]
the volume of the basin of attraction has been found to be an important indicator
for an attractor’s stability hence we will use a similar approach for the bifurcation
analysis in Section 6.7.

With these two management options, the set of possible managements is given by
Um = {ulg, uet}.

6.5 Dealing with the unbounded state space

The model (33)-(38) in Section 6 is defined on an unbounded state space and in this
section we map it to a bounded one for two reasons: the attractor at “xg = (0,+∞,+∞)”
and the need for a bounded state space in order to apply the Saint-Pierre algorithm.
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(a) Default dynamics

(b) Low growth (lg)

(c) Energy transformation (et)

Figure 4: (color online) The flows of the AWS model for (a) the default dynamics, (b)
the low growth (lg) and (c) the energy transformation management mangement (et)
option including the combination of both boundary. Note how the black attractor xb
changes its position as discussed in Section 6.4.
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In order to make this mathematically sound, we map X = R3
≥0 (parameterized by

the variables x = (A, Y, S)) to a bounded space Y= [0, 1)3 (parameterized by trans-
formed coordinates y = (a, y, s)) and then add the point yg = (0, 1, 1) which is the
equivalent of xg in these new coordinates. So we perform a change of coordinates

ẋ = f(x) −→ ẏ = F (y), (45)

where we switch from the old right-hand side (RHS) f to the new RHS F . Following
the explanations in Section 5.1, we use the transformation

Φ : X= [0,∞)
3−→ Y= [0, 1)

3

A 7−→ a = A
Amid+A

Y 7−→ y = Y
Ymid+Y

S 7−→ s = S
Smid+S

,

(46)

where the parameters xmid = (Amid,Wmid, Smid)
T are such that Φ(xmid) = ( 1

2 ,
1
2 ,

1
2 )T .

They can be understood as the scale where the “resolution is the best”. Hence, chang-
ing this value does not qualitatively influence the result, but a good choice can make
them clearer.

This is exactly the transformation that has been used to create Figs. 3 and 4a
to 4c and will be used for all the following figures, too. As we care most about the
current state of the world, we choose xmid = xc.

Using Eq. (22), we get a new set of ODEs with y = (a, y, s) as coordinates

ȧ =
Wmid

φεAmid
γ(1− a)2

y

1− y
− a(1− a)

τA
, (47a)

ẏ = y(1− y)(β − θAmid
a

1− a
), (47b)

ṡ = (1− γ)
Wmid

εSmid
(1− s)2 y

1− y
− s(1− s)

τS
, (47c)

γ =
(1− s)ρ

(1− s)ρ +
(
Smids
σ

)ρ , (47d)

where γ is the equivalent of Γ in Eq. (37) but in the y-coordinates. The fixed points
in the new y-coordinates are

yg =

agyg
sg

 =

0
1
1

 ←→ xg =

AgYg
Sg

 =

 0
∞
∞

 (48a)

yb =

abyb
sb

 =

 β
β+θAmid
φεβ

φεβ+YmidθτA
0

 ←→ xb =

AbYb
Sb

 =

 β
θ
φεβ
θτA
0

 . (48b)

Now, we formally extend the dynamics such that F (yg) = 0.

6.6 Results

The model introduced in Section 6 has been analyzed in its compactified form Eqs. (47a)
to (47d). For that, we used the nonlinear, local time-homogenization from Section 5.2
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Figure 5: (color online) The safest region, the Shelter (left, light green), is the part
where enough knowledge on renewable resource use has already been accumulated and
hence the relative price of of the renewable resource is low enough such that even the
exponentially growing total energy demand which is proportional to the Welfare can
be fully compensated by the renewable energy resource so the planetary boundaries
are not transgressed. The Backwater (left, yellow) corresponds to the region where
one can stay using the low growth management option leading finally to a zero-growth
economy but still staying within the boundaries.
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and the Saint-Pierre algorithm that was sketched in Section 5.3. We do not write out
the equations for the time-homogenized version as they are lengthy, their calculations
straight-forward and they do not give much insight.

The most important identified regions are depicted in Figs. 5a and 5b and we use
them for the following discussion.

The first regions to note are the shelters and backwaters, depicted in Fig. 5a. The
former, where one can stay without management forever in the sun and which is
the safest region thus, is in our model the invariant kernel of the green fixed point’s
basin of attraction when restricting to the desirable states X+ only. When being in
X+ and having accumulated already enough knowledge for the energy production
with renewable resources, they become so cheap that there is basically no need for
fossil fuels anymore. So the remaining (excess) CO2 (above long-term equilibrium) is
removed over time due to the carbon uptake, leading the system to the green fixed
point. The glades, where one can reach the shelter through the desirable region, are
just a thin layer under the shelter so they have not been included in Fig. 5a.

The backwater, where one can stay in the sun forever but needs to apply man-
agement over and over again, is the part of the desirable region where the growth of
economic output and hence of emissions can be restricted. That way, the atmospheric
carbon concentration can be kept within the planetary boundary. Also, within the
backwater the decarbonization of the economy is impossible, since the given maximal
carbon tax and renewable subsidy policy are too weak to make renewables compet-
itive with fossil fuel. Instead, one can manage to stay in a state that corresponds
to a carbon-based economy where the low background economic growth is compen-
sated by the climate impacts. The atmospheric carbon level is relatively high but
still within the boundary and in equilibrium with the emissions. Hence, using the low
growth option properly, one can stay within the desirable region but cannot reach the
green fixed point. Note that for simplicity, we did not include the option to choose a
value of the base growth rate lying between the two options β and βlg. So formally,
the management strategy required to stay in the desirable state described above in-
volves a fast switching between β and βlg, since either of these two extreme values
alone leads to a black fixed point in the undesirable region. Still, it is easy to see
that this management strategy is equivalent to using a constant intermediate value
of βm (e.g. βm = 2.7 %/a) instead. This dynamics has a black fixed point that lies in
the desirable region. So this real-world option is implicitly included in the model. In
other words, since the tsm-framework allows arbitrarily fast and frequent switches
between the management options, one only needs to model the “corners” of the op-
tion space explicitly and gets all intermediate options (= all convex combinations).
Still, replacing the value of βlg with βm would introduce further changes, since the
maximal management in the transient would be restricted and thus the size of the
backwaters reduced. We show this in Section 6.7. Here, it becomes obvious that the
tsm-framework incorporates the asymptotics and the transient of a model.

The current state xc (as estimated in Section 6.2) seems to lie between the two
regions discussed above. It is in a region we call a time-limited lake as can be seen
in the zoom in Fig. 5b. This means humanity appears to be currently facing the so-
called lake dilemma where we have to make the qualitative decision between staying
within the desirable region uninterruptedly but being in need of management forever
or going through the undesirable region to finally end up in the shelter. In the model,
the choice is between using the energy-transformation option (et) in order to speed
up the knowledge accumulation on renewable resource use and finally reach the green
fixed point or the low growth option (lg) in order to restrict the total energy demand
and reach the black fixed point. Note that even with a combined usage of the different
options (convex combinations) it cannot be avoided to transgress the boundary when
going for the first choice.
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(b) Energy transformation

Figure 6: The bifurcation diagrams when varying the parameters governing the two
management options from their maximally deviating value to their corresponding
value of the default dynamics (except (a) where the default dynamics value is marked
by a red vertical line). In (a) a Downstream-Eddies-Bifurcation occurs when varying
βlg due to the stable focus of the low growth option crossing the boundary between
desirable and undesirable states. In (b), we observe that for small σET , i.e. strong
management, the glade and dark upstream increase in size drastically because the
meaning of the energy transformation option is to make the transition to the renew-
able resource use easier.

6.7 Bifurcation analysis

Within the example model from Section 6, varying the parameters corresponding to
the two managements options may lead to bifurcations because of possible changes in
the topological structure of the state space with respect to tsm. As an indicator for
the bifurcations we use the relative volume of each region, motivated by the concept
of Basin Stability [47; 48] and its extensions [31; 35; 49; 69; 34; 50; 51]. Because we
use uniformly distributed points in state space for the Saint-Pierre algorithm, we
estimate the relative volume of one region with the number of points associated to
this region over the total number.

When varying βlg in Fig. 6a corresponding to the low growth management option
(lg) from 1.5 %/a to 3.5 %/a, a downstream-eddies bifurcation occurs. Until the fixed
point of the lg flow crosses the planetary boundary at the critical value of βlg =
βPB ≈ 2.95%/a there is always a backwater. Beyond, there are only eddies left. The
eddies occur because the focus of the default flow and the one of the log-growth flow
are both in the undesirable region. One can (in this case) switch between the two flows
in a smart way such that one circles far around both foci and can reach the desirable
region over and over again while having to pass through the undesirable region in
between. Due to the discretization in state space and time during the estimation, the
bifurcation seems to occur already at ≈ 2.8%/a in Fig. 6a.
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As discussed in Section 6.6 the backwater for βlg = 1.5 %/a occurs because there
exists an in-between value βm = 2.7 %/a where the focus lies in the desirable region.
In Fig. 6a, the volume of the backwater for β′lg = βm = 2.7 %/a is smaller than for
βlg = 1.5 %/a, because the maximal management in the transient is restricted.

In Fig. 6b, the change in σET from the energy-transformation management option
is depicted and a notable change for small σET corresponding to strong management
can be observed. As the name implies, this management speeds up the transformation
to renewable resource use and thus the glade increases in size, because from more
initial conditions it is possible to reach the green fixed point without transgressing
the boundaries.

7 Summary & Outlook

To study the operationalization of the topology of sustainable management (tsm),
we have introduced a variant definition of it in terms of viability theory (vt).

Using this connection, we have been able to apply the Saint-Pierre algorithm
in order to operationalize the analysis of the tsm partition. Because the algorithm
works on bounded spaces only, we have introduced a coordinate transformation to a
bounded space. The transformation parameters are chosen to fix the scale of “highest
resolution”. Furthermore, we solved the problem that time scales may vary through
orders of magnitude by introducing a nonlinear, local time homogenization.

These novel concepts were applied to an example system combining climate change,
welfare and energy transformation. While the system was kept minimalistic, a rich
topology was found. The current state of the world was estimated within the scope
of the model; particularly interesting was that it seems to be inside a finite-time lake.
So, humanity is facing a pressing lake-dilemma where it has to make a choice be-
tween two qualitatively different options. Furthermore, we performed a bifurcation
analysis under change of the management parameters and found a downstream-eddies
bifurcation.

The example system had a rather low-complexity so we can focus on the oper-
ationalization of tsm. But for that reason, relevant parts, e.g. a carbon cycle, an
economic cycle and different energy productions, were represented simplistically only,
so a more complex model is necessary. The one developed in [54; 55] seems to be a
good candidate. The complexity is higher than the one used in this article but the
analysis might still be possible.

Increasing the dimensionality of the system induces the need for improved algo-
rithms also. While there exist some [13; 42; 15; 1], they need to be adjusted and
extended to fit to the computation of the tsm partition.
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Appendix

A Existence of eddies

Eddie-like We call a pair of sets A+/− ⊆ Xeddie-like iff they fulfills (i) A+/− ⊆ X+/−−U−D
and (i) A+/− ⊆ Capt

(
A−/+

)
. Note the inverted order of the signs in the last term.

Union of two Eddie-like pair sets are also Eddie-like We claim that for two eddie-like
pairs of sets E+/−

1 and E+/−
2 the union pair E+/−

3 = E+/−
1 ∪ E+/−

2 is eddie-like,
too.

Proof The first condition is trivially fulfilled and the second one follows straight away
from Capt (A) ∪ Capt (B) = Capt (A∪B) for two state sets A,B⊆ X. Hence, the
union of all eddie-like pairs of sets is maximal and eddies exist. ut

B Parameter estimation

To get a roughly realistic setting, we estimated the parameters of the model using
several publicly available data sources.

A0 was taken from [21] and slightly rounded. τA and β were taken from [33]. φ
was based on the ton oil equivalent of various fossil fuels and a typical mass share of
90% carbon in fossil fuels, as described in [54].

Assuming that two degrees warming correspond to a carbon concentration of
450 ppm and thus to a carbon stock of 950 GtC (both being 1.6 times their pre-
industrial value), we require that the total growth rate β − θA1 becomes zero for
A1 ≈ 950 GtC−A0 = 350 GtC, hence θ was taken to be β/A1 ≈ 8.57 · 10−5/(GtC a).

ε was estimated from the World Bank’s primary energy intensity data [67].
For τS , the characteristic depreciation time of renewable energy knowledge, no

reliable source was found, so we made a very coarse guess by setting it roughly to the
length of an average working life of 50 a.

The break-even knowledge level σ was also estimated very coarsely. According to
past cumulative world consumption of renewable energy is ≈ 2 ·1018 Btu ≈ 2 ·1012 GJ
or roughly 20 years of world energy consumption. To be on the conservative side and
avoid overestimating the potential of renewables, we took σ to be two times that
value.

ρ was set as follows. We assume fossil and renewable energy production costs of
CF ∝ F 1+γ and CR ∝ R1+γ/Sλ, where γ > 0 is a convexity parameter and λ > 0 is
a learning exponent. Then energy prices are πF ∝ ∂CF /∂F ∝ F γ and πR ∝ ∂CR/∂R
∝ Rγ/Sλ. In the price equilibrium, πF = πR, hence R/F ∝ Sλ/γ , and thus ρ = λ/γ.
According to [61], the learning rate LR = 1 − 2−λ of several renewables is around
1/8, hence λ ≈ log2(8/7) ≈ 0.2. Assuming a mild convexity of γ ≈ 0.1, we get ρ ≈ 2.


