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A simple coherent-imaging method due to Paganin et al. is widely employed for phase–amplitude
reconstruction of samples using a single paraxial x-ray propagation-based phase-contrast image. The
method assumes that the sample-to-detector distance is su�ciently small for the associated Fresnel
number to be large compared to unity. The algorithm is particularly e↵ective when employed in
a tomographic setting, using a single propagation-based phase-contrast image for each projection.
Here we develop a simple extension of the method, which improves the reconstructed contrast of
very fine sample features. This provides first-principles motivation for boosting fine spatial detail
associated with high Fourier frequencies, relative to the original method, and was inspired by several
recent works employing empirically-obtained Fourier filters to a similar end.

I. INTRODUCTION

In 2002 a simple algorithm was published for recon-
structing the projected thickness of a single-material
sample given a single propagation-based phase contrast
image obtained in the small-defocus regime [1]. In this
method, the ratio of the real part of the projected re-
fractive index decrement and the projected linear atten-
uation coe�cient is assumed to be both known and con-
stant. The method assumes paraxial coherent radiation
or matter waves (e.g. x-rays, visible light, electrons or
neutrons), plane-wave illumination of known intensity,
and an object-to-detector propagation distance that is
su�ciently small for each structure in the sample to pro-
duce no more than one Fresnel-di↵raction fringe [2] (more
precisely, the object-to-detector distance is assumed to be
small enough to make the corresponding Fresnel num-
ber [3] large compared to unity). Within its domain
of validity (single-material sample and small object-to-
detector propagation distance for paraxial radiation or
matter waves), the method may be viewed as providing a
computationally-simple unique closed-form deterministic
solution to the twin-image problem of inline holography
[4], since propagation-based phase contrast images are
synonymous with inline holograms [5].

The 2002 algorithm has been widely utilised, partic-
ularly for propagation-based x-ray phase contrast imag-
ing. Its advantages, bought at the price of the previously
stated strong assumptions, include simplicity, speed, sig-
nificant noise robustness even for strongly absorbing sam-
ples, and the ability to process time-dependent images
frame-by-frame. E�cient computer implementations are
available in the following software packages: ANKAphase
[6], X-TRACT [7], pyNX [8], PITRE [9], Octopus [10, 11],
pyHST2 [12], TomoPy [13, 14], SYRMEP Tomo Project
[15] and HoloTomo Toolbox [16]. While most applica-
tions to date have employed x-rays, the method was origi-
nally developed with a broader domain of applicability in
mind, including but not limited to electrons, visible light
and neutrons [1]. Accordingly, the method has now been
applied to out-of-focus contrast images [17] obtained us-
ing electrons [18], visible light [19] and neutrons [20].
When the method of Paganin et al. [1] (PM) is utilised

in a tomographic context [21], its domain of utility broad-
ens since many objects may be viewed as locally com-
posed of a single material of interest, in three spatial di-
mensions, even though they cannot be described as com-
posed of a single material in projection [22, 23]. Exam-
ples of applications of the PM in a tomographic setting
include the imaging of paper [21], polymer micro-wire
composites [24], high-Weber-number water jets [25], self
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healing thermoplastics [26], paint-primer micro-structure
[27], sandstone micro-structure [28], granite [29], melting
snow [30], anthracite coal [31], evolving liquid foams [32],
iron oxide particles in mouse brains [33, 34], rat brains
[23], mouse lungs [35], rabbit lungs [23], mouse tibiae
[36], crocodile teeth [37], mosquitoes [6], fly legs [21], high
speed in vivo imaging of a fly’s flight motor system [38],
wood [24], dynamic crack propagation in heat treated
hardwood [39], rose peduncles [40], amber-fossilised spi-
ders [41, 42], amber-fossilised centipedes [43], fossilised
rodent teeth [44], fossil bones [45], ancient cockroach co-
prolites [46], fossilised early-animal embryos [47], fossil
muscles of primitive vertebrates [48, 49] and the verte-
bral architecture of ancient tetrapods [50]. The preceding
list is restricted to papers published prior to 2014. From
2014 onwards, several hundred papers have employed the
PM for phase-contrast x-ray tomography1.

The present work was inspired by several publications
that incorporate unsharp masking [51] or related tech-
niques to boost fine spatial detail in reconstructions ob-
tained using the PM. These include the deconvolution
filter in the ANKAphase [6] version 2.1 implementation
of the PM, incorporation of an unsharp mask into the
pyHST2 implementation of the PM [12, 45], and utilisa-
tion of the measured phase contrast image as a physical
unsharp mask [52]. These extensions of the method all
suppress high spatial-frequency information by a factor
less than that given by the Fourier-space Lorentzian2 fil-
ter that is employed in the PM. Notable also is the work
of Yu et al. [53], which enhances fine spatial detail by
adapting the PM to a multi-image setting. The result-
ing improvements, most particularly in fine spatial detail
obtained via tomographic reconstructions utilising the
method, are clearly evident in the previously cited publi-
cations. These publications [6, 12, 49, 52, 53] provide im-
petus to revisit the theory underpinning the PM, thereby
seeking a first-principles justification for reduced suppres-
sion of high spatial frequency information, relative to the
Fourier filter in the original form of the method.

The remainder of the paper is structured as follows.
Section II derives a generalised form of the PM (“GPM”),
showing how it reduces to the original form of the single-
image phase-retrieval algorithm for low spatial frequen-
cies in the input phase-contrast image data. Simulated
x-ray data is considered in Sec. III, comparing the GPM
to the PM. Section IV presents two experimental demon-
strations of the method. Section V discusses the domain

1 For a partial list of additional references that
use the ANKAPhase implementation [6] of the
phase-retrieval algorithm of Paganin et al. [1],
see e.g. http://www.alexanderrack.eu/ANKAphase/
ankaphase users.html.

2 We use the term “Lorentzian” to refer to functions of the form
f(x, a) = 1/(a2 + x2), where a is a real non-zero constant and
x is real variable. Note, however, that such functions are also
often referred to as Breit–Wigner distributions or Cauchy distri-
butions.

of applicability for both the GPM and the PM, together
with the e↵ective high-pass filter to the PM that is im-
plied by the GPM. Section VI indicates some possible
avenues for future work. We conclude with a brief sum-
mary in Sec. VII.

II. INCORPORATION OF PERIODIC
BOUNDARY CONDITIONS INTO THE

SINGLE-DISTANCE PHASE RETRIEVAL

For a monochromatic scalar x-ray wave-field with in-
tensity I(x, y, z) and phase '(x, y, z) that is paraxial with
respect to an optical axis z, the associated continuity
equation is known as the transport-of-intensity equation
[54] (TIE):

r? · [I(x, y, z)r?'(x, y, z)] = �k
@I(x, y, z)

@z
. (1)

Here, (x, y) denote Cartesian coordinates in planes per-
pendicular to the optical axis, r? denotes the gradient
operator in the xy plane and k = 2⇡/� is the wave-
number corresponding to the vacuum wavelength �. A
validity condition for this equation is that the Fresnel
number NF [3] obey

NF ⌘ W
2

��
� 1. (2)

Here, W is the characteristic transverse length scale for
the wave-field being propagated3, and � � 0 is the dis-
tance from (i) the planar exit surface z = 0 over which
the unpropagated wave-field is specified, to (ii) the par-
allel planar surface z = � over which the intensity of
the propagated wave-field is registered using a pixellated
position-sensitive detector.
Following Paganin et al. [1], consider a single-material

object lying immediately upstream of the plane z = 0,
whose z-projection of thickness is given by T (x, y) – see
Fig. 1. The projection approximation [55] gives the usual
Beer–Lambert law for the intensity I(x, y, z = 0) at the
exit surface z = 0 of the object, for the case where the ob-
ject is illuminated with z-directed monochromatic plane
waves having uniform intensity I0:

I(x, y, z = 0) = I0 exp[�µT (x, y)]. (3)

Here, µ is the linear attenuation coe�cient of the single-
material object. The projection approximation also gives
an expression for the transverse phase distribution over
the exit surface of the object [55]:

'(x, y, z = 0) = �k�T (x, y), (4)

3 Later in the paper, we use the same symbol W to denote the
pixel size of the position-sensitive detector that is used to register
the intensity of the wave-field. In general, these length scales—
i.e. the characteristic transverse length scale of the propagating
field, and the pixel size of the detector that is used to measure
the intensity of the field—will be di↵erent from one another.
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where 1�� is the real part of its complex refractive index

n = 1� � + i� (5)

and

µ = 2k�. (6)

Note that the single-material object may be generalised
to the case of variable mass density ⇢(x, y, z), the require-
ment then being that its complex refractive index have
the form

n(x, y, z) = 1�A⇢(x, y, z), (7)

where A is a fixed complex constant at fixed energy, and
Re(A) > 0 [56].

Assume vacuum to fill the half space z � 0 downstream
of the object. Assume the exit-surface wave-field over
the plane z = 0 to propagate through a distance � > 0
downstream of the object, with this distance being su�-
ciently small for the Fresnel number to be much greater
than unity. We may then make the following forward-
finite-di↵erence approximation to the longitudinal inten-
sity derivative on the right side of Eq. (1), using the prop-
agation based phase contrast image I(x, y, z = �) of the
single-material object in tandem with the estimate for
the contact image given by Eq. (3):

@I(x, y, z)

@z

����
z=0

⇡ I(x, y, z = �)� I0 exp[�µT (x, y)]

�
.

(8)

If Eqs (3), (4) and (8) are substituted into Eq. (1), re-
arrangement yields the screened Poisson equation [1]:

I(x, y, z = �)

I0
=

✓
1� ��

µ
r2

?

◆
exp[�µT (x, y)]. (9)

The manner in which this has been previously solved is
to notice that Fourier transformation turns this partial
di↵erential equation into an algebraic equation, via the
Fourier derivative theorem. This leads immediately to
the PM [1]:

T (x, y) = � 1

µ
loge

✓
F�1

⇢
F [I(x, y, z = �)/I0]

1 + (��/µ)(k2x + k2y)

�◆
.

(10)
Here F denotes Fourier transformation with respect to
x and y in any convention for which r? transforms to
(ikx, iky), F�1 is the corresponding inverse Fourier trans-
formation, and (kx, ky) are Fourier-space spatial frequen-
cies corresponding to (x, y). The Fourier-space filter,
in the above expression, has the previously-mentioned
Lorentzian form.

When Eq. (10) is directly applied to experimental
propagation-based x-ray phase contrast images that are
sampled over a Cartesian mesh, and the discrete Fourier
transform used to approximate the (continuous) Fourier
transform integral, there is an implicit assumption that

the object does not contain appreciable spatial frequency
information in the vicinity of the Nyquist limit [57] of the
mesh. While this assumption was once typically quite
reasonable in most coherent-x-ray-imaging contexts, the
exquisitely detailed structures that are now routinely im-
aged in contemporary x-ray phase-contrast-tomography
applications imply that this implicit assumption may
now be becoming somewhat less broadly applicable—see
e.g. Sanchez et al. [45]. For such applications, and as
the following argument will demonstrate, Eq. (10) overly
strongly filters the highest spatial-frequency information
that is present in the data.
With a view to extending the validity of the PM out to

the Nyquist limit of the data sampled on a typical pixel-
lated imaging-detector array, recall the following five-
point approximation for the transverse Laplacian [57, 58],
corresponding to a square mesh in which each pixel has
a width of W :

W
2r2

?h(xm, yn) ⇡ h(xm�1, yn) + h(xm+1, yn)

+h(xm, yn�1) + h(xm, yn+1)� 4h(xm, yn). (11)

Here, h(x, y) is a twice-di↵erentiable continuous single-
valued function, sampled over a mesh in which each grid
element is a square of physical width W metres by W

metres. Hence the mesh locations are given by

(xm, yn) = (Wm,Wn), (12)

where m and n are integers (mesh indices) that are re-
stricted to the ranges 0  m  N1�1 and 0  n  N2�1,
with N1 being the number of sample points in the x di-
rection, and N2 being the number of sample points in
the y direction. The key point, here, is that while the
fundamental-calculus definition of the transverse deriva-
tive considers the mesh step-size W to tend to zero, when
working with a discrete grid we are not justified in taking
W to be any smaller than the pixel size of the mesh.
With the specified mesh of pixel locations (xm, yn) in

place, the function h(xm, yn) may be expressed in terms
of its discrete Fourier transform H(kx,p, ky,q) [57]:

h(xm, yn) =
1

N1N2

N1�1X

p=0

N2�1X

q=0

H(kx,p, ky,q)

⇥ exp

✓
�2⇡imp

N1

◆
exp

✓
�2⇡inq

N2

◆
. (13)

Here, the discreteness of the sampling grid restricts the
allowed spatial frequencies (kx, ky) to the Fourier-space
mesh

(kx,p, ky,q) =

✓
2⇡p

N1W
,
2⇡q

N2W

◆
, (14)

with p lying in the range � 1
2N1, · · · , 1

2N1, and q lying in
the range � 1

2N2, · · · , 1
2N2.

Motivated by the form of the di↵erential operator in
Eq. (9), we can show by direct substitution of Eq. (13)
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   sample-to-detector 
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   W

position-sensitive
         detector

FIG. 1. A single-material object of projected thickness T (x, y) is illuminated by normally incident z-directed monochromatic
scalar plane waves of uniform intensity I0, where (x, y) are Cartesian coordinates perpendicular to the optical axis z. The
resulting paraxial exit-surface wave-field, over the plane z = 0, propagates in vacuum through a distance z = �. The associated
propagation-based phase contrast image has intensity distribution I(x, y, z = �), sampled using square detector pixels having a
width of W . This propagation-based phase contrast image will be sensitive to both the intensity and the phase, of the complex
wave-field existing over the exit surface (x, y, z = 0) of the sample. Single-image phase retrieval seeks to recover the projected
thickness T (x, y), using the propagation-based phase contrast image as input data. If a tomographic reconstruction of the
sample is performed, the phase-retrieval process can be independently repeated for a number of di↵erent angular orientations
⇠ of the the sample with respect to the indicated rotation axis. The recovered projected thickness, for this family of angular
orientations of the sample, can then be tomographically reconstructed to give a three-dimensional map of the mass density
⇢(x, y, z) of the sample.

into Eq. (11) that (cf. Freischlad and Koliopoulos [59],
Ghiglia and Romero [60] and Arnison et al. [61]):

(1 � ↵r2
?)h(xm, yn)

=
1

N1N2

N1�1X

p=0

N2�1X

q=0

H(kx,p, ky,q)

⇥
⇢
1� 2↵

W 2


cos

✓
2⇡p

N1

◆
+ cos

✓
2⇡q

N2

◆
� 2

��

⇥ exp

✓
�2⇡imp

N1

◆
exp

✓
�2⇡inq

N2

◆
, (15)

where ↵ is a constant having dimensions of squared
length. Set this constant to the real non-negative num-
ber:

↵ =
��

µ
. (16)

Equation (15) then implies that Eq. (9) may be solved
for the projected thickness T (x, y) of the single-material
sample, over the lattice of points (xm, yn), via the fol-
lowing generalised form of the PM (termed the “GPM”
henceforth):

T (xm, yn) = � 1

µ
loge IDFTp!m

q!n

⇥
DFTm!p

n!q [I(xm, yn, z = �)/I0]

1� 2↵
W 2 [cos (Wkx,p) + cos (Wky,q)� 2]

,

↵ =
��

µ
, |Wkx,p|, |Wky,q|  ⇡. (17)

Here, DFTm!p
n!q is the discrete Fourier transform oper-

ator, which maps a function h(xm, yn) sampled on the
real-space lattice (xm, yn) to its discrete Fourier trans-
form H(kx,p, ky,q) sampled on the Fourier-space lattice
(kx,p, ky,q), and IDFTp!m

q!n is the corresponding inverse
discrete Fourier transform (cf. Eq. (13); cf. Ghiglia and
Romero [60], who write a similar expression in the con-
text of the Poisson equation). Note that operators such
as DFTm!p

n!q and the natural logarithm are considered
to act from right to left, both in Eq. (17) and for the
remainder of the paper, so that e.g. loge IDFTp!m

q!n Q is
equivalent to loge(IDFTp!m

q!n (Q)) for any Q. Note, also,
that the key numerical parameter in Eq. (17) is the di-
mensionless constant:

↵

W 2
=

�/�

4⇡NF
. (18)

Before proceeding any further, for the sake of clar-
ity we now give a verbal description corresponding to
the five-step algorithm expressed in mathematical form
by Eq. (17). This five-step algorithm takes a single
propagation-based phase-contrast image I(xm, yn, z =
�) as input, and yields an estimate for the projected
thickness T (xm, yn) of a single-material sample that cre-
ated the measured image, as output. These five steps
are:

1. Normalise the pixellated propagation-based phase-
contrast image I(xm, yn, z = �) by dividing it
through by the uniform intensity I0 of the inci-
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dent plane-wave illumination. Note that, if the in-
cident illumination is non-uniform in intensity, this
step would correspond to a “flat field correction”
in which we divide by the position-dependent in-
tensity of the non-uniform illumination.

2. Take the discrete Fourier transform DFTm!p
n!q of

the normalised (flat-field corrected) image, using
e.g. the fast Fourier transform [57].

3. Divide by the low-pass Fourier-space filter given by
the denominator in the second line of Eq. (17). Ex-
plicitly, this “GPM Fourier-space filter” PGPM is:

PGPM(kx,p, ky,q)

=
1

1� 2↵
W 2 [cos (Wkx,p) + cos (Wky,q)� 2]

. (19)

4. Take the inverse discrete Fourier transform
IDFTp!m

q!n of the resulting image.

5. Take the natural logarithm of the resulting image,
then divide by the negative of the linear attenuation
coe�cient µ.

The Fourier-space filter PGPM(kx,p, ky,q) in Eq. (19) is
not rotationally-symmetric in the discrete Fourier space
of spatial-frequency coordinates (kx,p, ky,q), but it is nev-
ertheless useful to first plot this filter as a function of
only one variable, namely the scaled transverse Fourier-
space coordinate Wkx,p, for the case where ky,q = 0.
Such plots of PGPM(Wkx,p,Wky,q = 0) are given in
Fig. 2(a), for four di↵erent cases of the governing di-
mensionless parameter ↵/W

2 (see Eq. (18)). The di-
mensionless form of the scaled spatial-frequency coordi-
nate Wkx,p here varies from zero to its maximum value
(Nyquist frequency) of ⇡. Four di↵erent values of ↵/W 2

are considered: ↵/W
2 = 0.01 (red), ↵/W 2 = 0.1 (blue),

↵/W
2 = 1 (green) and ↵/W

2 = 10 (brown). For each
value of ↵/W 2, two curves are provided: the GPM form
of the phase-retrieval filter that is given by Eq. (19), to-
gether with the corresponding PM form of the filter that
is given by the rotationally-symmetric expression:

PPM(kx,p, ky,q) =
1

1 + ↵(k2x,p + k2y,q)
. (20)

For any given value of ↵/W 2 and for any non-zero spa-
tial frequency, we see from Fig. 2(a) that the GPM fil-
ter is always less strongly suppressing at any specified
spatial frequency, in comparison to the corresponding
PM filter. Stated slightly di↵erently, each GPM filter
curve always lies above the corresponding PM curve, for
any non-zero spatial frequency. However, it is only at
su�ciently-high spatial frequencies that the filters dif-
fer appreciably. As ↵/W 2 increases from the smallest to
the largest values in the sequence ↵/W 2 = 0.01, 0.1, 1, 10
we observe general trends such as: (i) both filters become
progressively more strongly filtering, with the GPM filter

FIG. 2. (a) One-dimensional cross sections of Fourier-space
GPM filter in Eq. (19) and its corresponding PM limiting case
in Eq. (20), for 0  Wkx,p  ⇡ and ky,q = 0, where W is the
physical pixel width and ↵ = ��/µ. (b) Ratio of filters as
given by Eq. (21). Note that ↵/W 2 = (4⇡NF)

�1�/�. Both
panels show curves for four di↵erent values of the dimension-
less parameter ↵/W 2, namely ↵/W 2 =0.01 (red), 0.1 (blue),
1 (green) and 10 (brown).

always being less strongly filtering than the correspond-
ing PM filter; (ii) the discrepancy between the curves is
greater at higher spatial frequencies, because the e↵ects
of non-zero W become progressively more important for
progressively higher spatial frequencies; (iii) the curves
converge towards one another, for su�ciently low spatial
frequencies, because finite pixel size W is irrelevant for
structures that vary so slowly with respect to transverse
position that they are essentially constant over the width
W of any single pixel. Similar general trends may be seen
in Fig. 2(b), which plots a one-dimensional cross-section
of the Fourier-filter ratio:

R(kx,p, ky,q) =
PGPM(kx,p, ky,q)

PPM(kx,p, ky,q)
. (21)

As mentioned earlier, the GPM filter is not rotation-
ally symmetric, hence we now consider the fully two-
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dimensional form of the one-dimensional plots given in
Fig. 2(a). Several two-dimensional plots of the low-
pass Fourier-space GPM filter (see Step 3 above, to-
gether with Eq. (19)) are given in Fig. 3, for the same
set of four values for the single dimensionless parameter
↵/W

2 = 0.01, 0.1, 1, 10 considered previously. Note the
transition from (i) near-rotational-symmetry and near-
Lorentzian-form close to the origin of Fourier space, to
(ii) the symmetry of a square at the edges of Fourier
space. The filter obeys periodic boundary conditions at
the edges of the Fourier-space mesh, with each mesh value
along the mesh’s edges corresponding to a Nyquist fre-
quency [57]:

Wk
max
x,p ,Wk

max
y,q = ±⇡. (22)

In the low-spatial-frequency limit, we may make the
second-order Taylor-series approximation

cos(Wkx,p) ⇡ 1� 1

2
(Wkx,p)

2
,

cos(Wky,q) ⇡ 1� 1

2
(Wky,q)

2
. (23)

Equation (17) then reduces to the PM with its
rotationally-symmetric discrete-Fourier-transform repre-
sentation of Eq. (10) and the associated Lorentzian filter:

T (xm, yn) �! � 1

µ
loge IDFTp!m

q!n

⇥
DFTm!p

n!q [I(xm, yn, z = �)/I0]

1 + ↵
�
k2x,p + k2y,q

� ,

↵ =
��

µ
, |Wkx,p|, |Wky,q| ⌧ 1. (24)

The Lorentzian filter, implied by the above equation, has
already been written down in Eq. (20).

III. COMPUTER SIMULATIONS FOR
PROPAGATION-BASED PHASE RETRIEVAL

The e�ciency of the generalised phase-retrieval recon-
struction method can be asserted by simulating paraxial
x-ray propagation through a suitably-high-resolution ob-
ject, and reconstructing it using both the PM and the
GPM. To perform this, we chose a spatially random bi-
nary object (Fig. 4(a)) with an x-ray wavelength of 0.5 Å,
� = 10�9, � = 5 ⇥ 10�7, a pixel size of 10 µm, and
a thickness for the object of 40 µm. A simulated unit-
amplitude plane wave was transmitted through this ob-
ject and propagated by a distance of � = 0.1 m using a
near-field propagator. In order to avoid aliasing e↵ects
due to the discrete Fourier transform used, the propaga-
tion was performed on a 2⇥ over-sampled object (where
the binary random pattern pixels had a 2 ⇥ 2 size), and
the propagated intensity was rebinned (averaging the in-
tensity over 2 ⇥ 2 pixels) before being back-propagated.
Thus the object-plane image was over-sampled and the

 

(a) a/W2=0.01

(b) a/W2=0.1  

(c) a/W2=1     

(d)  a/W2=10  

FIG. 3. Contour plot of GPM Fourier-space filter in Eq. (19),
over the full discrete Fourier-space range �⇡  Wkx,Wky 
⇡, where W is the physical pixel width and ↵ = ��/µ. (a)
↵/W 2 = 0.01; (b) ↵/W 2 = 0.1; (c) ↵/W 2 = 1; (d) ↵/W 2 =
10. All plots equal unity at the origin of Fourier space. Note
also that ↵/W 2 = (4⇡NF)

�1�/�.
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FIG. 4. Simulated reconstructions using (a) a spatially random binary transmission pattern, before propagation and recon-
struction using (b) the standard and (c) generalised approach (see text for details). Coordinates are given in pixels. (d) Line
profile (indicated by a red line in (a-c)) along the original and reconstructed binary patterns. Note that, throughout both
this caption and its associated figure, the term “original” is a shorthand for “original image input into the simulation”. Both
images and line profiles exhibit a higher contrast for the generalised method. (e) Line profile of the kernel obtained using a
Richardson–Lucy deconvolution [62, 63] between the original array and each of the back-propagated arrays. The generalised
method yields a sharper kernel.

corresponding propagated intensity subsequently down-
sampled to compensate for the initial oversampling of the
object.

Figures 4(b) and 4(c) show the intensity of the prop-
agated waves reconstructed using the PM and GPM,
respectively, where the obtained thickness maps (nor-
malised to the starting object thickness of 40 µm) are
compared. There is a significant improvement in the
reconstructed images obtained with the GPM relative
to the images reconstructed with the PM. Figure 4(d)
displays line profiles across the images which indicate
improvement in the contrast. Since the low-frequency
reconstructed images can be approximated as due to a
convolution-induced blurring of the original image, we
also performed a Richardson–Lucy deconvolution [62, 63]
using the original pattern as a reference, which allows us
to estimate the point-spread-function kernel relating the
reconstructed and original arrays. Figure 4(e) shows that
the GPM yields a sharper kernel.

IV. EXPERIMENTAL RESULTS FOR
PROPAGATION-BASED X-RAY PHASE

CONTRAST TOMOGRAPHY

Here we give two experimental demonstrations of the
ideas developed in the present paper, for 3D propagation-
based x-ray phase contrast imaging. Both experiments
were performed at the ID19 microtomography beamline
[64, 65] of the European Synchrotron (ESRF) in Greno-
ble, France.
The two samples used for testing the algorithm were

(i) a wooden toothpick and (ii) an alumina rod. Im-
ages were produced using an incident parallel beam gen-
erated by a single-harmonic U17.6 undulator, recorded
over 360� sample rotation on an indirect detector po-
sitioned in the near-field condition and consisting of a
thin scintillator (i: lutetium aluminium garnet (LuAG)
25 µm thick; ii: gadolinium gallium garnet (GGG) 100
µm thick) that was lens-coupled (i: X20 Mitutoyo; ii:
X10 Olympus) to a visible-light camera equipped with a
2560⇥ 2160 pixel sCMOS sensor having 6.5µm⇥ 6.5µm
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Sample W (µm) E (keV) P t (ms) � (mm) �/�
Toothpick 0.32 19.6 2999 30 3 1961

Alumina rod 0.72 35 2499 35 30 1797

TABLE I. Key parameters used for the two propagation-based
x-ray phase-contrast tomography experiments: pixel size W ,
energy E, number of tomographic projections P, exposure
time t for each 2D phase-contrast image, sample-to-detector
distance � and delta-to-beta ratio �/�.

pixel size (pco.edge 5.5, PCO, Kelheim, Germany). The
principal tomographical and reconstruction parameters,
used for both samples, are listed in Table I.

The dry wooden toothpick, used for the first experi-
ment, had a nominal diameter of 2 mm. A �/� ratio of
1961 was used for the reconstruction, based on the chemi-
cal formula for cellulose (C6H10O5) at the utilised energy
of E = 19.6 keV. Figure 5(a) shows a reconstruction of
one tomographic slice of the sample based on the PM
(Eq. (24)). Figure 5(b) shows the corresponding GPM
reconstruction based on Eq. (17). These two images look
nearly identical to eye, in the greyscale representations
of Figs. 5(a) and 5(b), however the pointwise di↵erence
between these reconstructions, as shown in Fig. 5(c), re-
veals additional fine-level detail that is present in the
GPM reconstruction (Fig. 5(b)) but absent in the PM re-
construction (Fig. 5(a)). The insets in the di↵erence map
(Fig. 5(c)), which are bounded by yellow, blue and red
rectangles, are magnified in Figs. 5(d,e,f) respectively.
The additional fine-level detail, which is present in the
GPM reconstruction, includes the fine striations in the
wood-cell wall that are marked “1” in Figs. 5(c,d), the
point of increased density within the wood-cell pore that
is marked “2” in Figs. 5(c,e), and the pair of points with
increased density that are labelled “3” in Figs. 5(c,f).

In addition to the di↵erence image in Fig. 5(c) re-
vealing fine spatial detail that is present in the GPM
reconstruction but absent from the PM reconstruction,
this di↵erence map evidently displays structure related
to the Laplacian of the images in Fig. 5(a,b). We now
explain why the obtained Laplacian-type signal in the
di↵erence map (Figs. 5(c,d,e,f)) gives an explicit exper-
imental signature that the GPM indeed gives a higher-
spatial-resolution reconstruction than the PM. Very sim-
ilar calculations, to those given in the remainder of this
paragraph, are presented in e.g. Subbarao et al. [66] and
Gureyev et al. [67], as well as in a number of works related
to edge-detection in contexts such as image analysis and
machine vision [68–72]. Let f(x, y) be a given greyscale
image as a function of transverse coordinates (x, y), with

f1(x, y) = f(x, y)⌦N1 exp[�(x2 + y
2)/(2�2

1)] (25)

being the said image blurred by two-dimensional convo-
lution with a Gaussian point-spread function of standard
deviation �1 > 0. Similarly,

f2(x, y) = f(x, y)⌦N2 exp[�(x2 + y
2)/(2�2

2)] (26)

is the same initial image f(x, y), blurred with a di↵erent

two-dimensional Gaussian point-spread function of stan-
dard deviation �2 > �1. Here, ⌦ denotes convolution
over x and y, with

N1,2 =
1

2⇡�2
1,2

(27)

being the normalisation constants for the Gaussians,
which ensure that each Gaussian integrates to unity.
Note that the condition �2 > �1 is consistent with the
convolution kernels obtained using Richardson–Lucy de-
convolution, as shown in Fig. 4(e), for which the GPM
kernel has a standard deviation �1 that is narrower than
the standard deviation �2 associated with the PM kernel.
The Fourier transforms with respect to x and y, of our
two blurred images f1(x, y) and f2(x, y), are

f̃1,2(kx, ky) = f̃(kx, ky) exp[� 1
2 (k

2
x + k

2
y)�

2
1,2]. (28)

Above, note that (i) we have made use of the convolution
theorem of Fourier analysis, (ii) a tilde denotes Fourier
transformation with respect to x and y, and (iii) we have
used the Fourier-transform convention:

f̃(kx, ky) =
1

2⇡

ZZ
f(x, y) exp[�i(kxx+ kyy)] dx dy. (29)

The exponential term in Eq. (28) may be approximated
by a second-order Taylor series (inverted parabola)

exp[� 1
2 (k

2
x + k

2
y)�

2
1,2] ⇡ 1� 1

2�
2
1,2(k

2
x + k

2
y), (30)

since a su�ciently narrow blur-function in real space will
be rather wide in Fourier space, relative to the width of
the power spectrum |f̃(kx, ky)|2 of f . If we now sub-
stitute Eq. (30) into Eq. (28), take the inverse Fourier
transform of the resulting expression and then apply the
Fourier derivative theorem in reverse, we see that:

f1,2(x, y) ⇡ (1 + 1
2�

2
1,2r2

?)f(x, y). (31)

Finally, Eq. (31) gives the following expression for the dif-
ference between two images of the same function f(x, y),
that are obtained at slightly di↵erent spatial resolutions:

f2(x, y)� f1(x, y) ⇡ 1
2 (�

2
2 � �

2
1)r2

?f(x, y). (32)

Equation (32) shows that the pointwise di↵erence, be-
tween two images that are reconstructions of the same
function at di↵erent spatial resolutions, gives an image
that is proportional to the Laplacian of the original im-
age. This is consistent with the Laplacian signal in
Figs. 5(c,d,e,f), but the same result may also be under-
stood conceptually, as sketched in Fig. 6. This depicts an
image f(x) as a function of one spatial variable x, with
arbitrary units for x, corresponding to a step-like edge
A and a “bump” C. The green curve for f1(x) corre-
sponds to slightly better spatial resolution, with the blue
curve f2(x) representing slightly coarser spatial resolu-
tion. When the di↵erence map f2(x) � f1(x) is formed,
we obtain the brown curve. The step-like feature A gives
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(a) (b) (c)

1

3

2

2
1

3

(d) (e) (f)

FIG. 5. Experimental results for propagation-based x-ray phase contrast tomography, applied to a dry wooden toothpick
imaged at 19.6 keV energy. Reconstruction of tomographic slice using (a) PM and (b) GPM, with the pointwise di↵erence
between the reconstructions in (a) and (b) being shown in panel (c). The insets in panel (c), that are bounded by yellow, blue
and red rectangles, are magnified in panels (d,e,f), respectively.

a peak-plus-trough feature labelled B, which is propor-
tional to the second derivative of the green or blue curves,
and which corresponds to the black–white contrast seen
at the cell-wall boundaries in Figs. 5(c,d,e,f). Similarly,
the “bump” C leads to the feature labelled D in Fig. 6;
such contrast is seen in the dark dots labelled “2” and
“3” in Figs. 5(e,f).

We now turn to the second experiment, which imaged
a compacted alumina (Al203) cylinder, contained within
a fused-silica quartz glass capillary having nominal wall
thickness of approximately 10 µm. See Table I for other
key parameters used in this experiment, leading to the
reconstructions shown in Fig. 7. Figure 7(a) shows one
tomographically reconstructed slice of the alumina cylin-
der as obtained using the PM, with Fig. 7(b) giving the
corresponding GPM reconstruction. Figure 7(c) shows
the pointwise di↵erence between the PM and GPM re-
constructions. Alumina pores [73] are evident in all re-
constructions, with the additional fine spatial detail that
is present in panel (b) being rendered visible to the eye
in the di↵erence map that is shown in panel (c). The dif-
ference map in Fig. 7(c) again displays a Laplacian-type
signature, consistent with the fact that Fig. 7(b) has a
higher spatial resolution than Fig. 7(a) (cf. Eq. (32) and
Fig. 6). As particular examples of the Laplacian-type
signature, (i) the black–white edges labelled “1” and “2”

FIG. 6. Graphical illustration of Eq. (32), showing that
the pointwise di↵erence between two images obtained at two
slightly di↵erent spatial resolutions, is proportional to the
Laplacian of either image. Here, f1(x) is the image at slightly
better spatial resolution (green curve) and f2(x) is the same
image at slightly coarser spatial resolution (blue curve), with
both images being considered as functions of one spatial vari-
able x (arbitrary units). The di↵erence map f2(x)� f1(x) is
shown in brown, multiplied by 5 to aid visualisation.

in Fig. 7(c) correspond to feature B in Fig. 6, and (ii)
the features labelled “3” and “4” in Fig. 7(c) correspondAcc
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to a contrast-reversed form of feature D in Fig. 6, with
the contrast reversal being due to the fact that the centre
of such features corresponds to a local trough in sample
density rather than a local peak (cf. feature C in Fig. 6).

V. DISCUSSION

As stated in the introduction, the work of the present
paper was inspired by several experimental investiga-
tions [6, 12, 45, 49, 52] that phenomenologically employ
unsharp masks or deconvolution to boost high-spatial-
frequency information in x-ray phase contrast tomograms
whose reconstructions are obtained with the assistance of
the PM. This phenomenological modification to the PM
often very significantly improves the level of fine-detail
clarity in the reconstructions. Is there a fundamental ex-
planation, derivable from an optical-imaging-physics per-
spective, that casts some light on why the phenomenolog-
ical high-frequency-boost strategy is so successful? While
we do not claim to give a complete answer to this still-
open question, below we argue that the PM-to-GPM
transition may go partway to addressing it.

Consider the ratio R(kx, ky) of the GPM and PM
Fourier-space filters, as given by Eqs (17) and (24). We
have already written this ratio in a generic form, in
Eq. (21), but in order to now consider it in more detail,
we here write it explicitly as:

R(kx, ky) =
1 + ↵(k2x + k

2
y)

1� 2↵
W 2 [cos(Wkx) + cos(Wky)� 2]

,

�⇡/W  kx, ky  ⇡/W. (33)

This ratio may be viewed as a form of deconvolution
mask, here derived from first principles, whose applica-
tion transforms the PM into the GPM. As mentioned
earlier, such a deconvolution-mask viewpoint may be
compared to (and was indeed inspired by) previously-
published work which introduced such masks from a phe-
nomenological perspective [6, 12, 45, 52].

The ratio in Eq. (33) is always greater than or equal to
unity, implying that the GPM filter (Eq. (17)) suppresses
each Fourier component of the measured phase contrast
signal, by an amount that is never more than the degree
of suppression based on the PM filter (Eq. (24)). We have
already encountered this point, in the one-dimensional
cross-sections that were presented in Fig. 2. To exam-
ine this in further detail, see Fig. 8 for a series of con-
tour plots of the Fourier-filter-ratio in Eq. (33), for the
same range of ↵/W 2 values that was used in Figs. 2 and
3. The form of these plots—which give a GPM-to-PM
filter ratio of unity at the Fourier-space origin, taking
values that are progressively greater than unity the fur-
ther we move away from the Fourier-space origin—gives
a partial first-principles justification for the previously
cited works boosting high spatial frequencies of tomo-
graphic reconstructions based on the PM. However, we
must emphasise that the degree of high-spatial-frequency

boost, in the previously cited works [6, 12, 45, 49, 52],
is typically significantly larger than the degree of boost
that can be justified using the arguments developed in
the present paper. It is for this reason that we describe
our first-principles justification as “partial”: the GPM
gives a reconstruction of fine spatial detail that is supe-
rior to that obtained with the PM, but the GPM yields
reconstructions that are inferior to those obtained by ap-
plying the previously-cited phenomenological approaches
[6, 12, 45, 49, 52] to improve the PM by suitably boost-
ing high spatial frequencies. We conjecture there to be an
additional factor or factors that can be used to derive ad-
ditional high-frequency boosts from first principles, but
the nature of these factors remains unanswered by the
present investigation.
In light of the above comments, let us make some addi-

tional remarks regarding the Fourier-filter-ratio plots in
Fig. 8. Near the origin of Fourier space, corresponding
to coarser spatial detail in the reconstruction, the plots
of Fig. 8 have a plateau of values near unity. Again, this
is consistent with the GPM reducing to the PM at suf-
ficiently coarse spatial resolution. The maximum value
Rmax of the ratio R(kx, ky), attained at the corners of
the Fourier-space mesh, is given by

Rmax =
1 + 2⇡2⌥

1 + 8⌥
, (34)

where

⌥ ⌘ ↵/W
2 = (4⇡NF)

�1
�/�. (35)

When ⌥ � 1, we see that the maximal Fourier-space
boost Rmax (of the GPM Fourier filter relative to the
PM Fourier filter) is by a factor of ⇡2

/4 ⇡ 2.5: see the
corners of Fig. 8(d) together with the maximum value
taken by the brown curve in Fig. 2(b). Conversely, when
⌥ ⌧ 1, then Rmax tends to unity: see Fig. 8(a) together
with the red curve in Fig. 2(b).
If we Taylor expand Eq. (33) to fourth order in spatial

frequency, which will be a fair approximation for spatial
frequencies that are not too large in magnitude relative
to the Nyquist frequency, we obtain

R(kx, ky) ⇡ 1 + 1
12↵W

2(k4x + k
4
y). (36)

The fact, that the smallest non-constant term in this
expansion is quartic in spatial-frequency coordinates, is
consistent with the plateau of values close to unity, exhib-
ited by the plots in Fig. 8 near the Fourier-space origin.
This aligns with the idea that the usual form of the PM
works well for coarser spatial detail, but needs the GPM
(or some other suitable approach) for better treatment of
higher-spatial-frequency detail. The above result also im-
plies that the GPM Fourier filter is approximately equal
to R(kx, ky) ⇡ 1+ 1

12↵W
2(k4x+k

4
y) multiplied by the PM

Fourier filter, at least for su�ciently small Fourier fre-
quencies; the corresponding real-space unsharp mask is
therefore proportional to the result of applying the non-
rotationally-symmetric fourth-order di↵erential operator
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(b)
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1
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4

FIG. 7. Experimental results for propagation-based x-ray phase contrast tomography, applied to a compacted alumina tube
imaged at 35 keV energy. Reconstruction of tomographic slice using (a) PM and (b) GPM, with the di↵erence between the
reconstructions in (a) and (b) being shown in panel (c).

@
4
/@x

4+@
4
/@y

4 to the PM image, rather than the more
usual unsharp mask proportional to the result of apply-
ing the rotationally-symmetric second-order di↵erential
operator �(@2

/@x
2 + @

2
/@y

2) to the PM image.

It is interesting to further examine the conditions un-
der which the GPM di↵ers significantly from the PM.
Take the ratio of Fourier filters in Eq. (33), and evalu-
ate this ratio at the maximum (Nyquist) x and y spatial
frequencies

k
max
x = k

max
y =

⇡

W
. (37)

This gives the condition

R

⇣
kx =

⇡

W
,ky =

⇡

W

⌘
= Rmax =

1 + 2↵⇡2

W 2

1 + 8↵
W 2

� 1 + @

(38)
for the GPM to be significantly di↵erent in comparison
to the PM. Here, @ is a lower bound on the maximum rel-
ative di↵erence, between the ratio of the two filters and
unity, which is considered to be “significant”. Next we
(i) make use of Eqs. (6) and (16); (ii) incorporate both
the definition of the Fresnel number and its associated
requirement as given in Eq. (2). Hence we obtain the fol-
lowing material-dependent parameter domain for which
the GPM is both (i) a significant improvement upon the
PM, and (ii) still within the domain of validity for the

underpinning transport-of-intensity equation:

�

�

✓ ⇡
2 � 2

⇡

@ � 2

⇡

◆
� NF � 1. (39)

Thus e.g. if we choose @ = 0.1, and round numerical
factors to the nearest order of magnitude, the above in-
equalities become the material-dependent conditions:

10
�

�
� NF � 1. (40)

Some sample numerical values may be used to illustrate
the above expression: if �/� = 500, � = 0.5 Å =
0.5⇥ 10�10 m and W = 10 µm= 10�5 m, then Eq. (40)
will be satisfied if 0.4 mm  � ⌧ 2 m. If the pixel size
is halved to W = 5 µm, leaving all other parameters un-
changed, we instead obtain 0.1 mm  � ⌧ 50 cm. If the
condition in Eq. (39) is violated then more sophisticated
methods than either the PM or the GPM will need to
be employed, including but not limited to (i) holotomog-
raphy [74], (ii) approaches based on the first Born and
Rytov approximations [75], (iii) approaches based on the
contrast-transfer-function formalism [76, 77], and (iv) the
variety of approaches that are both reported upon and
compared in Yu et al. [78].
One further point should be made regarding unsharp

masks and deconvolution. The GPM will still bene-
fit from additional unsharp masking or deconvolution,
to further boost high-spatial-frequency detail, since—
among other reasons beyond the scope of the presentAcc
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(a) a/W2=0.01

(b) a/W2=0.1  

(c) a/W2=1     

(d)  a/W2=10  

FIG. 8. Contour plot of the ratio of Fourier-space filters given
by Eq. (33). (a) ↵/W 2 = 0.01; (b) ↵/W 2 = 0.1; (c) ↵/W 2 =
1; (d) ↵/W 2 = 10. All plots equal unity at the origin of
Fourier space. Note that ↵/W 2 = (4⇡NF)

�1�/�.

investigation, such as truncation of the e↵ects of Fres-
nel di↵raction to ignore the presence of multiple Fresnel-
di↵raction fringing—the GPM does not explicitly take
source-size-induced blurring into account. The degree of
sharpening required for GPM-reconstructed images will
necessarily be less pronounced than that which has been
needed for PM-reconstructed images. In this context
we point out that the image-blurring e↵ect due to finite
source size may be modelled by making the following re-
placement in Eq. (9) [79]:

�

µ
�! �

µ
� 2S2

�
. (41)

Here, S is the radius of the e↵ective incoherent point-
spread function at the detector plane, that is due to
source-size blurring (cf. Gureyev et al. [67]). The above
replacement transforms Eq. (9) into a Fokker–Planck
form [80–82] for which 2S2

/� plays the role of an e↵ec-
tive di↵usion coe�cient4. This simple algebraic replace-
ment may be carried through all of the calculations of the
present paper, thereby incorporating a partial source-size
deconvolution into the analysis.
It is also interesting to observe that we can introduce

a real parameter ⌧ , which lies between zero and unity
inclusive, that continuously deforms the PM algorithm
in Eq. (24) (⌧ = 0), into the GPM algorithm in Eq. (17)
(⌧ = 1), via:

T (xm, yn; ⌧) = � 1

µ
loge IDFTp!m

q!n

⇥
DFTm!p

n!q [I(xm, yn, z = �)/I0]

1 + ↵
�
k2x,p + k2y,q

�
� 2↵⌧

W 2 �(kx,p, ky,q)
, (42)

where 0  ⌧  1 and

�(kx,p, ky,q) ⌘ cos(Wkx,p) + cos(Wky,q)� 2

+ 1
2 (Wkx,p)

2 + 1
2 (Wky,q)

2
. (43)

We close this discussion by returning, once again, to
the theme of unsharp-mask image enhancement. As
pointed out earlier, the work of the present paper was
inspired by the success of applying unsharp-mask pro-
cessing and related concepts, to improve the fine spatial
detail apparent in PM-based reconstructions. In this con-
text, it is perhaps fitting to “come full circle” by point-
ing out that the di↵erence maps, such as those shown
in Figs. 5(c,d,e,f) and 7(c), may themselves be viewed
as a form of unsharp mask. We have already argued
and observed that such di↵erence maps emphasise the

4 See, in particular, the special case of Eq. (59) in the paper by Pa-
ganin and Morgan [82], in which their “e↵ective di↵usion coe�-
cient” De↵(x, y) is considered to be independent of transverse co-
ordinates (x, y). The resulting Fokker–Planck equation is mathe-
matically identical in form to the screened Poisson equation given
when Eq. (9) of the main text is modified by the replacement that
is indicated in Eq. (41).
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fine spatial details that are present in the GPM recon-
structions, but which are suppressed in the corresponding
PM-based reconstructions. The reason that this addi-
tional fine detail is not evident in comparing the GPM
to the PM reconstructions, is that this additional fine
detail is of su�ciently small amplitude to be di�cult to
discern by eye in greyscale representations such as those
shown in Figs. 5(b) and 7(b). This last-mentioned ob-
servation arises from the physiological limitations of the
human eye, which can only discriminate on the order of
30 di↵erent greyscale levels [83]. It is also worth point-
ing out, in the present phase-retrieval imaging context,
that it is often of utility to decompose physical mod-
els of samples—such as spatial distributions of complex
refractive index—into a sum of (i) a spatially slowly-
varying function that may and in general will have a large
magnitude, and (ii) a spatially rapidly-varying function
that has a small amplitude relative to the amplitude of
the slowly-varying component. Such decompositions are
used in e.g. Gureyev et al. [75, 76] and Nesterets [84], to-
gether with references therein. Bearing all of the above
points in mind, let TPM(x, y) denote a PM-based recon-
struction of a projected thickness (or density) distribu-
tion, with TGPM(x, y) denoting the corresponding GPM
reconstruction. We then write the identity:

TGPM(x, y) = TPM(x, y) + [TGPM(x, y)� TPM(x, y)]. (44)

The term in square brackets, on the right-hand
side of Eq. (44), is the “di↵erence map” plotted in
Figs. 5(c,d,e,f) and 7(c). Considering this to be a form of
unsharp mask that is induced by the transition from the
PM to the GPM, we may follow the formulation given in
e.g. Sheppard et al. [51] to modify Eq. (44) as follows:

T (x, y; s) ⌘ TPM(x, y) + s[TGPM(x, y)� TPM(x, y)]. (45)

Here, s is a real parameter. The case s = 0 corre-
sponds to using the PM, with s = 1 corresponding to
the GPM. When s > 1 we may consider T (x, y; s > 1) to
be an unsharp-mask image-sharpened representation of
T (x, y). In a similar vein, we may also consider Eq. (42),
in which ⌧ is now taken to be a real parameter that is
greater than unity, to constitute a form of unsharp-mask
image enhancement that is directly based upon the GPM.

VI. SOME AVENUES FOR FUTURE WORK

Since Beltran et al. [22, 23] reported signal-to-noise
ratio (SNR) boosts of up to 200 in utilising the PM in
a tomographic setting, relative to absorption contrast,
there has been some interest in the “SNR boosting” prop-
erties of the PM [85–88]. Of particular note is the re-
sult that the SNR boost has 0.3 �/� as an approximate
upper bound under the assumption of Poisson statistics
[85, 86], with the SNR boost being even more favourable
for very low sample-exposure times [87, 89]. Since dose
is proportional to the square of SNR, dose reductions of
3002 = 90, 000 or more are in principle possible with the

PM [87]. This implies that tomographic analyses are pos-
sible using much less dose (or, equivalently, much lower
acquisition times) than previously required for a single
two-dimensional projection. This reduced dose is of im-
portance in the context of medical imaging, while in an
industrial-inspection product-quality-control context (or
security screening context) it enables significant increases
in throughput speed due to the associated increase in
source e↵ective-brilliance; cf. e.g. the recent achievement
of over 200 x-ray phase-contrast tomograms per second
[90], incorporating PM-based data processing. In light of
the above comments, it would be interesting to see how
the previously published analyses for SNR boost and as-
sociated dose reduction are altered by passage from the
PM to the GPM. It appears likely that SNR boosts will
be reduced somewhat if the GPM is used in place of the
PM, in accord with the trade-o↵ between noise and spa-
tial resolution [91, 92].
Another interesting avenue for future work begins with

the previously mentioned observation that, from version
2.1 onwards, the ANKAphase [6] implementation of the
PM incorporates a deconvolution mask to boost fine spa-
tial detail. This deconvolution filter RANKA(kx, ky) takes
the Fourier-space form5

RANKA(kx, ky) =
1 + c

c+ exp[�⇡�2(k2x + k2y)]
, (46)

where c is a dimensionless constant and � is a charac-
teristic width. In light of the findings of the present
paper, it would be interesting to consider replacing the
ANKAphase deconvolution filter with

R̃ANKA(kx, ky) =
1 + c

c+ exp[��4(k4x + k4y)]
, (47)

since the fourth-order Taylor expansion of the deconvolu-
tion filter would then agree with the fourth-order Taylor
expansion of R(kx, ky), provided that

12�4

1 + c
= W

2
↵. (48)

It would also be interesting to investigate any util-
ity that the present work may have, in the context of
tomographic image segmentation [93, 94]. For exam-
ple, would a tomographic segmentation—of di↵erence
maps such as those shown in Figs. 5(c) or 7(c)—reveal
additional fine morphological detail compared to tomo-
graphic segmentation of unsharp-mask image-sharpened
PM-based reconstructions? What advantage (if any)

5 See https://imagej.nih.gov/ij/plugins/ankaphase/
ankaphase-userguide.html for an updated form of the
ANKAphase software, which extends the form reported in
Weitkamp et al. [6], to incorporate the optional image-
restoration deconvolution filter that is reproduced in Eq. (46) of
the main text.
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arises for image segmentations that are based on the
GPM-induced unsharp-mask image-enhancement given
by the s > 1 case of Eq. (45), or the ⌧ > 1 case
of Eq. (42)? What advantage (if any) arises for im-
age segmentations that are based on taking existing
unsharp-mask image-enhancement strategies, and apply-
ing them to GPM-based rather than PM-based recon-
structions? The e�cacy of the various approaches to seg-
mentation, as listed above, could be quantitatively com-
pared via their application to segmentation-derived quan-
tities such as porosity, surface density, Euler-number den-
sity, mean-curvature density, mean coordination number,
fibre-direction distributions etc. [94].

One more avenue for future research would be to re-
place Eq. (11) with a higher-order discrete approximation
to the transverse Laplacian. For example, Eq. (25.3.30)
of Abramowitz and Stegun [58] makes it clear that, while
we have a Taylor-series truncation error on the order of
W

2 in the five-point approximation in Eq. (11), their
nine-point approximation in Eq. (25.3.31) [58] gives a
better estimate whose truncation error is on the order of
W

4. Use of such higher-order approximations may lead
to improved forms of Eq. (17).

We end these indications of possible avenues for fu-
ture work, by noting that both (i) the two-image TIE-
based phase-retrieval method of Paganin and Nugent [95]
(see also Sec. 4.5.2 of Paganin [55] as well as Sec. 4
of Zuo et al. [96]), which does not make the assump-
tion of a single-material object, and (ii) the single-image
di↵erential-phase-contrast version of the PM [97], which
does make such an assumption, would benefit from an
analogous treatment of di↵erential operators under the
discrete Fourier transform, to that used in the passage

from Eqs. (24) to (17). Perhaps the former method
(namely that which is based on Ref. [95]) may become of
increasing utility in an x-ray imaging setting, given both
recent advances in semi-transparent detectors, and the
fact that this method does not need the single-material
assumption upon which the PM relies.

VII. CONCLUSION

A simple extension was given for the method of Pa-
ganin et al. [1] (PM), for phase–amplitude reconstruc-
tion of single-material samples using a single paraxial
x-ray propagation-based phase contrast image obtained
under the conditions of small object-to-detector propaga-
tion distance. This improves the reconstructed contrast
of very fine sample features, using an approximation that
is derived from a first-principles perspective. This inves-
tigation was motivated by, and partially explains from
a fundamental perspective, the success of several papers
incorporating unsharp masking or related techniques to
boost fine spatial detail in reconstructions obtained using
the PM [6, 12, 45, 49, 52].
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[90] F. Garćıa-Moreno, P. H. Kamm, T. R. Neu, F. Bülk,
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