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Fully integrated multi-scale
modelling of damage and
time-dependency in
thermoplastic-based
woven composites

F Praud, G Chatzigeorgiou and F Meraghni

Abstract

In this work, a multi-scale model established from the concept of periodic homogenization is utilized to

predict the cyclic and time-dependent response of thermoplastic-based woven composites. The macro-

scopic behaviour of the composite is determined from finite element simulations of the representative

unit cell of the periodic microstructure, where the local non-linear constitutive laws of the components

are directly integrated, namely, the matrix and the yarns. The thermoplastic matrix is described by a

phenomenological multi-mechanisms constitutive model accounting for viscoelasticity, viscoplasticity and

ductile damage. For the yarns, a hybrid micromechanical–phenomenological constitutive model account-

ing for anisotropic damage and anelasticity induced by the presence of a diffuse micro-crack network is

utilized. The capabilities of the overall multi-scale model are validated by comparing the numerical

predictions with experimental data. Further illustrative examples are also provided, where the composite

undergoes time-dependent deformations under uni-axial and non-proportional multi-axial loading paths.

The multi-scale model is also employed to analyze the influence of the local deformation processes on the

macroscopic response of the composite.

Keywords

Woven composites, thermoplastic matrices, multi-scale modelling, periodic homogenization, damage,

time-dependent behaviour

Introduction

In the automotive industry, thermoplastic-based woven composites appear to be particularly attrac-
tive, due their lightweight and good mechanical properties associated with a relative ease of
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manufacturing. However, the wide-scale use of these composites in structural applications has been
hampered by the difficulty to predict their complex behaviour, especially over long periods of time.

Although the overall behaviour of thermoplastic-based composites can be described in a purely
phenomenological manner (Feld et al., 2018; Launay et al., 2011; Mandys et al., 2019; Vasiukov
et al., 2015), such a modelling strategy generally leads to a large number of parameters that may be
difficult to identify and their values are valid only for a unique microstructure configuration. This is
a real limitation towards capturing accurately the local behaviour and deformation processes. To
overcome this issue, the composites response can be described with the help of multi-scale modelling
approaches, by considering a representative volume element (RVE) of the microstructure. The main
advantage of this modelling strategy is that the local constitutive laws of the constituents are directly
integrated along with the geometric definition of the microstructure, leading to a more physical
description of the deformation processes.

The multi-scale modelling of heterogeneous materials, in which the components exhibit non-
linear mechanical response, requires advanced homogenization techniques. Among the existing
modelling strategies, two of them appear to be particularly attractive for this purpose, as they
can easily account for many types of constitutive laws and microstructures:

• The first one considers the so-called mean-field approaches (Mura, 1987; Nemat-Nasser and
Hori, 1999; Qu and Cherkaoui, 2006) based on the Eshelby’s solution (Eshelby, 1957) such as
the micromechanical scheme of Mori-Tanaka (Benveniste, 1987; Mori and Tanaka, 1973), the
self-consistent method (Hill, 1965) or the method proposed by Ponte Casta~neda and Willis
(1995). These theories usually deal with randomly distributed ellipsoidal inhomogeneities embed-
ded in a matrix material. Therefore, they are particularly adapted to the cases of short and long
fibres reinforced composites. Woven composites may be eventually considered if the yarns wav-
iness is neglected, or by discretizing the wavy yarns into smaller but straight segments and
replacing them with an equivalent system of ellipsoids (Abdin et al., 2016). While initially devel-
oped for linear elasticity, these methods can be extended to the case of non-linear behaviour
through an incremental formulation (Gavazzi and Lagoudas, 1990; Lagoudas et al., 1991).
Although these methods are based on semi-analytical solutions with fast computations, they
unfortunately keep a limited accuracy and must be used with caution, especially when the
matrix phase exhibits a non-linear response (Lagoudas et al., 1991). This inaccuracy is mainly
caused by the local fields in the matrix that are considered in an average way. This is likely not to
give good enough estimates when the non-linearity is matrix-dominated. More accurate solutions
are sometimes obtained through specific enhancements that are mostly dedicated to short or long
fibres reinforced composites (Barral et al., 2020; Chaboche et al., 2005; Doghri and Ouaar, 2003)
rather than the case of woven composites.

• The second strategy deals with full-field approaches, whose most representative case is the peri-
odic homogenization (Michel et al., 1999; Sanchez-Palencia, 1974; Suquet, 1987). By definition,
this method is particularly suitable for composites with periodic microstructure, such as woven
composites (Courtois et al., 2019; Hofer et al., 2020; Ullah et al., 2019; Xu et al., 2018).
Moreover, periodic homogenization allows to properly define the concept of homogenized
behaviour through a rigorous framework, which is fundamentally independent of the choice of
the local constitutive laws of the different phases (Charalambakis et al., 2018; Chatzigeorgiou
et al., 2015). Due to its periodicity, the RVE is represented by the smallest repeating element,
commonly referred to as the unit cell, on which well-defined periodic boundary conditions are
applied (Li, 1999, 2001; Li and Wongsto, 2004). Except for particular cases, the resolution of
such a problem requires the use of numerical techniques, mostly the finite element (FE) method.



The geometry of the unit cell is then represented through a FE mesh integrating the local con-
stitutive equations of each sub-domain. Compared to mean-field approaches, the use of periodic
homogenization may lead to an important computational cost, which is nevertheless necessary to
accurately and properly describe the behaviour of certain types of composite materials such as
woven composites.

In the present work, a fully integrated multi-scale model is utilized to describe and study the
cyclic and time-dependent response of thermoplastic-based woven composites, under the small
strain assumption and isothermal conditions. Based on the framework of periodic homogenization
(Michel et al., 1999; Sanchez-Palencia, 1974; Suquet, 1987), a proper transition is established
between the macroscopic and microscopic scales, enabling a direct integration of the local non-
linear constitutive laws of the components, namely, the thermoplastic polymer matrix and the yarns.
The proposed multi-scale model is thus referred as ‘fully integrated’ as the macroscopic response of
the composite is determined from FE simulations on its unit cell. The local behaviour of the ther-
moplastic matrix is described by a phenomenological multi-mechanisms constitutive model account-
ing for viscoelasticity, viscoplasticity and ductile damage (Praud, 2018; Praud et al., 2017a). For the
yarns, a hybrid micromechanical–phenomenological constitutive model is utilized to represent the
anisotropic damage and anelasticity induced by the presence of a diffuse micro-crack network
(Praud, 2018; Praud et al., 2017b).

By considering the theory of periodic homogenization and the established constitutive models for
the matrix and the yarn phases, the novelty of this work lies within the development of a compre-
hensive and robust fully integrated multi-scale model to describe the cyclic and time-dependent
response of thermoplastic-based woven composites. The accuracy of the proposed multi-scale model
is evaluated by comparing the numerical predictions with experiments carried out on a woven
composite made of a polyamide 6-6 matrix with an E-glass balanced 2-2 twill weave reinforcement,
referred to as the studied composite. The multi-scale model is furthermore employed to understand
the local damage mechanisms and deformation processes, and to analyze their influence on the
macroscopic response of the composite in relation with its microstructure. Up to the author’s
knowledge, such a comprehensive multi-scale analysis, integrating highly complicated constitutive
laws for the matrix and the yarns, has never been performed before for this type of materials.

In this paper, the following notation is adopted. Bold lower-case Latin symbols are vectors (a,
b. . .). Bold upper-case Latin and Greek symbols are second-order tensors (A, B. . . a; b. . .) and I
denotes the second-order tensors identity tensor. Blackboard symbols are fourth-order tensors
(A; B . . .), and I denotes the fourth-order tensors identity tensor. All the others standard symbols
(neither in bold nor in blackboard) are scalars (a, b . . .A, B . . . a, b . . .). Furthermore, �; : and �
represent the single contracted, twice contracted and dyadic products, respectively.

Non-linear periodic homogenization

Theoretical background

A periodic medium is defined by a unit cell (the smallest repeating unit element) that is represen-
tative of the microstructure. If the dimensions of the unit cell are small enough compared to the
dimensions of the macroscopic medium, then a scale separation can be assumed with two scales: a
macroscopic one, defined by the macroscopic (or global) coordinates, denoted by �x 2 �V, and a
microscopic one, defined by the microscopic (or local) coordinates, denoted by x 2 V. The assump-
tion of scale separation ( �V >> V) allows to consider that the unit cell is representative of a



macroscopic material point. At the macroscopic scale, the heterogeneous medium is replaced by an
equivalent homogenized medium (Figure 1). Under quasi-static conditions (the inertia effects are
considered negligible), the motion of any macroscopic and microscopic material point �Mð�xÞ and
Mð�x; xÞ, respectively, is governed by the macro-scale and micro-scale equations given in Table 1.
The homogenization consists in defining the global constitutive behaviour, described by the oper-
ator �F (see the left part of Table 1), which is implicitly defined by the local operator F (see the right
part of Table 1) and the geometrical characteristics of the various constituents in the unit cell.
The local models may be non-linear and involve internal state variables. They may also be time-
dependent (viscoelasticity, viscoplasticity, etc.).

In order to link the micro-scale with the macro-scale equations, a connection between scales is
required. To do so, the macroscopic stress and strain fields are identified through volume average of
their microscopic counterparts over the unit cell (Hill, 1967; Mura, 1987; Nemat-Nasser and Hori, 1999).
Moreover, from the divergence theorem, it can be demonstrated that the stress and strain averages within
a unit cell are also connected to the traction and displacement vectors applied on its boundaries

�rð�x; tÞ ¼ 1

V

Z
V

rð�x; x; tÞdV ¼ 1

V

Z
@V

rð�x; x; tÞ � nðxÞ � xdS (1)

Figure 1. Schematic representation of a heterogeneous material with a periodic microstructure by considering a
scale separation.

Table 1. Macro-scale and micro-scale equations. Conversely to the operator �F, which is explicitly defined, the
operator �F is implicitly defined through the homogenization scheme.

Equations Macro-scale Micro-scale

8�x 2 �V ; 8t 8�x 2 �V ; 8x 2 V; 8t
Equilibrium div�xð�rÞ þ �ba ¼ 0 divxðrÞ ¼ 0

Kinematics �e ¼ 1
2
ðGrad�xð�uÞ þGradT�xð�uÞÞ e ¼ 1

2
ðGradxðuÞ þ GradTxðuÞÞ

Constitutive law �r ¼ �Fð�eÞ r ¼ Fðx; eÞ
Mechanical work �W ¼ �r : �e W ¼ r : e



�eð�x; tÞ ¼ 1

V

Z
V

eð�x; x; tÞdV ¼ 1

2V

Z
@V

ðuð�x; x; tÞ � nðxÞ þ nðxÞ � uð�x; x; tÞÞdS (2)

where n stands for the outward normal defined on each point of the unit cell borders (8x 2 @V).
In Table 1, the macro-scale equations are supplemented by boundary conditions specific to the

treated problem. For the micro-scale equations, the boundary conditions arise from the assumption

of periodicity (Suquet, 1987) implying that, within the unit cell, the displacement vector u of any

microscopic material point Mð�x; xÞ can be written under the following form

uð�x; x; tÞ ¼ �eð�x; tÞ � xþ u0ð�x; x; tÞ þ u0ð�x; tÞ (3)

where the first term stands for the affine part of the local displacement field. The latter is directly

related to the macroscopic strain �e. The second term u0 represents a periodic fluctuation, while the

last term u0 depicts a rigid body motion that comes out from the macroscopic problem and con-

sequently does not depend on the microscopic problem. As u0 is periodic, it takes the same value on

each pair of opposite points x1 and x� of the unit cell boundaries (x1; x� 2 @V)

u0ð�x; x1; tÞ ¼ u0ð�x; x�; tÞ (4)

By substituting (3) into (4), these periodicity conditions can be expressed in terms of u instead of

u0, while involving the macroscopic strain tensor �e

uð�x; x1; tÞ � uð�x; x�; tÞ ¼ �eð�x; tÞ � ðxþ � x�Þ (5)

Note that, due to its periodic aspect, the strain average (within the unit cell) produced by u0 is
null. Therefore, the total strain average is well equal to the macroscopic strain as expressed in (2).

Finite element resolution of the unit cell problem

The relationship between the macroscopic stress and strain (operator �F) results from the solution of

the microscopic problem (given in Table 1). The latter can be easily solved by the FE method, using

a mesh of the unit cell, on which the periodicity conditions (5) are applied using the generalized

methodology proposed by Li (1999, 2001), Li and Wongsto (2004) and Praud (2018), which is

described in this section.
Considering a cubic FE unit cell,1 the aim of this method is to apply a macroscopic strain �e, by

taking into account the periodic boundary conditions previously described in (5). A displacement

gradient is then applied between each pair of opposite boundary nodes, respectively, denoted by the

indices i and j. This gradient is directly related to the macroscopic strain tensor �e

ui1 � uj1

ui2 � uj2

ui3 � uj3

8>><
>>:

9>>=
>>; ¼

�e11 �e12 �e13

�e22 �e23

sym: �e33

0
BB@

1
CCA�

xi1 � xj1

xi2 � xj2

xi3 � xj3

8>><
>>:

9>>=
>>; (6)

In the above expression, u1, u2, u3 and x1, x2, x3 are the components of the displacement and

position vectors, u and x, respectively. The proposed method introduces the six components of the



macroscopic strain tensor as ‘additional degrees of freedom’ that are directly involved in the bound-
ary conditions (Li, 1999, 2001; Li and Wongsto, 2004). These ‘additional degrees of freedom’ are
linked to the mesh of the unit cell using kinematic constraint equations obtained from (6) and are
thus used as ‘constraint drivers’. From a practical point of view, the ‘constraint drivers’ can be
introduced by adding six new nodes among which only the first degree of freedom is used. Each
displacement of those ‘constraint drivers’, noted ucd11; u

cd
22; u

cd
33; u

cd
12; u

cd
13 and ucd23, takes the values of

each component of the macroscopic strain tensor: �e11; �e22; �e33; 2�e12; 2�e13 and 2�e23, respectively. By
proceeding this way, after properly formulating the kinematic constraint equations (Praud, 2018),
the dual forces associated with the ‘constraint drivers’, noted Fcd

11; F
cd
22; F

cd
33; F

cd
12; F

cd
13 and Fcd

23, directly
provide the product of the unit cell’s volume with the corresponding components of the macro-
scopic stress tensor, �r11; �r22; �r33; �r12; �r13 and �r23, respectively, as illustrated in Figure 2.

This approach enables to apply any state of macroscopic strain or stress on the unit cell. Since
each ‘constraint driver’ can be independently set either in terms of displacement (macroscopic
strain) or in terms of force (macroscopic stress). Mixed stress–strain states can also be assigned.
As previously mentioned, the solution of a periodic homogenization is determined up to a rigid
body motion. For this reason, a node of the model needs to be clamped in order to guarantee the
uniqueness of the solution and the solvability of the FE system.

Unit cells for woven composites

In order to apply the framework of periodic homogenization to the case of woven composites, it is
necessary to provide a geometric representation of the unit cell along with its associated FE mesh.
With this purpose, many works have been already undertaken (Cou�egnat, 2008; Lin et al., 2011;
Lomov et al., 2000, 2001, 2007; Sherburn, 2007), leading to the development of several dedicated
tools. Among these tools, the TexGen platform (Lin et al., 2011; Sherburn, 2007), which is utilized in
this work, is an open source and free software developed at the University of Nottingham and
shows very interesting capabilities in generating FE unit cell of any woven pattern.

Concerning the 2-2 twill weave pattern studied in the present case (see Figure 3(b)), the geometry of
the woven microstructure is defined through the parameters l1, l2, l3, l4 and l5, shown in Figure 3(a).
For the examined composite, the characteristic dimensions l1, l2 and l3 are evaluated from experi-
mental observations carried out by means of X-ray computed micro-tomography, as illustrated in
Figure 4. The dimension l4 is obtained by dividing the total thickness of the provided plates by the
number of layers they contain. The parameter l5 has been deliberately over-sized in the present work

Figure 2. Connection of the ‘constraint drivers’ with the unit cell.



to ensure a proper enough mesh within the matrix domain. The average values considered for the

multi-scale model are listed in Table 2. Note that, under this configuration, the unit cell yields to a

yarn volume fraction of 59%. Furthermore, analyses from micrography have shown that the intra-

yarn fibre volume fraction is about 85%. Overall, the fibre volume fraction in the whole composite is

about 50%, which is well in accordance with the supplier data.

Figure 3. Geometric definition of the microstructure. The grey domain represents the matrix phase, while the blue
and red domains are the warp and weft yarns, respectively. (a) Characteristic dimensions of a woven microstructure.
(b) 2–2 twill weave pattern.

Figure 4. 3D reconstruction of the microstructure of the studied composite using X-ray computed micro-
tomography with a voxel size of 6 mm.



Using the data in Table 2, the unit cell of the studied composite is generated and subsequently meshed
through the TexGen utilities (Lin et al., 2011; Sherburn, 2007) (see Figure 5). The yarns, which are
composed of numerous fibres unidirectionally oriented inside the matrix, are treated within the described
modelling approach as an equivalent homogeneous medium with an anisotropic constitutive behaviour.
The material orientation is defined for each point with respect to the yarns middle line whose waviness is
automatically calculated according to the considered weaving pattern, as shown in Figure 5(d).

The mesh of the unit cell, shown in Figure 5, contains 8,522 nodes and 40,060 first-order tetra-
hedral elements (C3D4 in ABAQUS/Standard). Note that a spatial convergence analysis was carried
out regarding the mesh refinement in order to obtain a good enough compromise between accuracy
and reasonable computational cost.

Local constitutive models

The constitutive models (or sub-models) presented in this section are utilized to describe the behav-
iour of the matrix and yarn phases. Nevertheless, it should be pointed out that the homogenization
framework previously introduced is completely independent of the local constitutive models, which

Table 2. Characteristic dimensions of the microstructure and adopted values for the studied composite.

Characteristic dimensions l1 l2 l3 l4 l5

Values (mm) 3.46 0.21 3.75 0.5 0.025

Figure 5. Finite element mesh of the unit cell of the studied composite. (a) Mesh of the entire unit cell; (b) mesh of
the yarns; (c) side view of the mesh; (d) material orientations of the yarns elements: the first axis (in blue) is always
oriented along the middle line of the yarns, while the second axis (in yellow) is always parallel to the plane of the
woven reinforcement.



means that the sub-models presented in this section work as ‘bricks’ that can be easily interchanged

with other sub-models.

Local constitutive model for the matrix

Thermoplastics and more especially semi-crystalline polymers, such as polyamide 6-6, are known to

exhibit a complex dissipative behaviour combining both fluid and solid properties. Moreover,

experimental investigations (Detrez et al., 2011) showed that these materials, when loaded, present

a reduction of their apparent stiffness induced by damage mechanisms. To account for this partic-

ular behaviour, the constitutive model developed for such type of materials by Praud (2018) and

Praud et al. (2017a) is utilized to describe the response of the matrix phase. This model is written

within the framework of thermodynamics (Chatzigeorgiou et al., 2018; Germain et al., 1983;

Lemaitre and Chaboche, 1990) and integrates viscoelasticity, viscoplasticity and ductile damage

through a multi-mechanisms formulation, as represented by the rheological scheme in Figure 6.
For the matrix phase, the state laws are based on the following form of the Helmholtz free energy

potential

qwðe; evi ; ep; r;DÞ ¼ 1

2
e�

XN
i¼1

evi � ep

!
: ð1�DÞCe : e�

XN
i¼1

evi � ep

!

þ
XN
i¼1

1

2
evi : ð1�DÞCvi : evi þ

Z r

0

R nð Þdn
(7)

which describes the energetic state of any matrix material point as a function of the strain e, as
observable state variable, and the internal state variables evi ; ep, r and D that represent the strain

related to the ith Kelvin–Voigt branch, the viscoplastic strain, the hardening variable and the

damage variable, respectively.
Through the thermodynamical derivation, the stress in the matrix phase is expressed as

r ¼ q
@w
@e

¼ 1�Dð ÞCe : e�
XN
i¼1

evi � ep

!
(8)

In the same manner, for the other associated variables related to the matrix phase, it yields

�rvi ¼ q
@w
@evi

¼ 1�Dð ÞCvi : evi � r (9)

Figure 6. Rheological scheme of the proposed model for the matrix (Praud, 2018; Praud et al., 2017a).



and

�r ¼ q
@w
@ep

; R rð Þ ¼ q
@w
@r

; � Y ¼ q
@w
@D

(10)

where, rvi , R(r) and Y denote the viscous stress in the ith Kelvin–Voigt branch, the hardening
function and the energy density release rate, respectively. Note that, in equations (7) to (9), Ce

and Cvi denote the initial fourth-order stiffness tensors of the single spring and the spring of the ith
Kelvin–Voigt branch, respectively. These tensors are classically formulated for bulk isotropic mate-
rials and are defined by the Young modulus Ee or Evi , respectively, as well as the Poisson ratio �
which is assumed to be the same in all stiffness tensors. Moreover, in equations (7) and (10), the
hardening function R(r) is chosen as a power law, such as R rð Þ ¼ Krn, where K and n are material
parameters.

The evolution of each viscoelastic strain evi is governed by a dual dissipation potential written as

u� rvi ;Dð Þ ¼
XN
i¼1

1

2
rvi :

V
�1
vi

1�D
: rvi (11)

whose derivative with respect to the associated variable rvi gives the following evolution law

_evi ¼
@u�

@rvi
¼ V

�1
vi

1�D
: rvi (12)

where Vvi denotes the viscosity tensor of the linear dash-pot of the ith Kelvin–Voigt branch. As for
the stiffness tensors, each viscosity tensor is classically formulated for bulk isotropic materials and is
defined by a viscosity gvi and the Poisson ratio �. The latter is assumed to be the same in each
stiffness and viscosity tensor.

In the matrix phase, the damage mechanism is assumed to be ductile as it only evolves with the
viscoplasticity, making those two mechanisms directly coupled and simultaneously activated. Such
an evolution is represented through the normality rule of an indicative function (Krairi and Doghri,
2014; Lemaitre, 1985) given by

F r;R;Y;Dð Þ ¼ eq rð Þ
1�D

� R� R0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
f r;R;Dð Þ

þ S

bþ 1ð Þ 1�Dð Þ
Y

S

� �bþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fD Y;Dð Þ

(13)

In the above equation, the first term f r;R;Dð Þ represents the yield function where eq rð Þ desig-
nates the equivalent Von Mises stress2 and R0 the yield threshold. The second term fD Y;Dð Þ depicts
the damage contribution in which S and b are material parameters. Thus, expressing the normality
of the indicative function F r;R;Y;Dð Þ leads to the following viscoplastic-damage flow rules

_r ¼ � @F

@R
_k ¼ _k (14)

_ep ¼ @F

@r
_k ¼ K rð Þ

1�D
_r; with K rð Þ ¼ 3

2

Dev rð Þ
eq rð Þ (15)



_D ¼ @F

@Y
_k ¼ X Yð Þ

1�D
_r; with X Yð Þ ¼ Y

S

� �b

(16)

where k depicts the viscoplastic-damage multiplier, which appears to be equal to the hardening

variable (k ¼ r). Its evolution is obtained by considering that the positive part of the yield function

f is linked to _r by �
eq rð Þ
1�D

� R rð Þ � R0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f

�
þ
¼ Q _rð Þ (17)

In this relationship, Q _rð Þ represents a viscous stress function, which is chosen under the form of a

power law, such as Q _rð Þ ¼ H _rm, where H and m are material parameters. It should be noticed that r

is only allowed to increase, _r > 0 if f> 0, or to remain constant, _r ¼ 0 if f< 0.
Note that the convexity of u� and F, given in equations (11) and (13), respectively, guarantees the

thermodynamical admissibility of the evolution laws (12), (14) to (16).
The constitutive models of the matrix have been implemented into the FE solver ABAQUS/

Standard by means of User MATerial subroutines (UMAT). The numerical integration scheme is

based on the ‘convex cutting plane’ form of the ‘return mapping algorithm’ (Ortiz and Simo, 1986;

Simo and Hughes, 1998; Simo and Ortiz, 1985), which is described in Praud (2018) and Praud et al.

(2017) for this model. Readers are referred to these references for more details regarding the numer-

ical implementation.

Local constitutive model for the yarns

As previously mentioned, at lower scale a yarn is composed of numerous unidirectionally oriented

fibres embedded in the matrix. Consequently, their behaviour can be considered as equivalent to the

one of a unidirectional composite. In media with continuous reinforcement (long fibres), the lon-

gitudinal behaviour (tension 11) appears to be linear elastic up to the material brittle failure due to

fibres breakage. The transverse behaviour (tension 22 and/or in-plane shear 12) exhibits a more

progressive degradation induced by the growth of a diffuse micro-crack network that initiates by

debonding at the fibre/matrix interfaces and propagates by coalescence (Yang et al., 2020). To

represent this behaviour, the constitutive model specifically developed for this type of materials

(Praud, 2018; Praud et al., 2017b) is utilized to describe the response of the yarn phase. This model

is also written within the framework of thermodynamics (Chatzigeorgiou et al., 2018; Germain

et al., 1983; Lemaitre and Chaboche, 1990) while being based on a hybrid micromechanical–phe-

nomenological formulation. Accordingly, the damage is introduced through a micromechanical

description of a RVE containing a micro-crack density cc, as illustrated in Figure 7.

Furthermore, in this type of material, damage is often accompanied by permanent strains caused

by the non-closure effect of the micro-cracks. This aspect is phenomenologically described by an

anelastic strain tensor es that is added to the elastic part of the strain.
For the yarn phase, the state laws are based on the following form of the Helmholtz free energy

potential

qw e; es; ccð Þ ¼ 1

2
e� esð Þ : ½C0 � D ccð Þ� : e� esð Þ (18)

This potential depends on the strain e, as observable state variable, and the internal state

variables es and cc representing the anelastic strain and the micro-crack density, respectively.



Through the thermodynamical derivation, the stress in the yarn phase is expressed as

r ¼ q
@w
@e

¼ ½C0 � D ccð Þ� : e� esð Þ (19)

The other associated variables related to the yarn phase are given by

�r ¼ q
@w
@es

; � Yc ¼ q
@w
@cc

(20)

where, Yc depicts the energy density release rate.
In equations (18) to (20), the initial stiffness tensor C0, defined as transversely isotropic, is

gradually lowered by the stiffness reduction tensor, denoted by D ccð Þ. The latter is calculated as

a function of the micro-crack density cc through the micromechanical scheme of Mori–Tanaka
(Mori and Tanaka, 1973), where micro-cracks are idealized by quasi-flat ellipsoidal inclusions of

void (with zero stiffness) whose normal is oriented along the second direction ~x2 (see Figure 7).

Indeed, due to the microstructure arrangement in the yarns, the micro-cracks are forced to prop-
agate in a plane parallel to the fibre direction ~x1 (Li et al., 2019). Moreover, by assuming that the

yarns are mainly loaded in the plane (~x1; ~x2), the propagation plane of the micro-cracks necessarily
becomes perpendicular to the second direction ~x2 and consequently always oriented in the same

plane. Accordingly, it yields for the stiffness reduction tensor

D ccð Þ ¼ ccC0 : Tc : A0 ccð Þ (21)

with

Tc ¼ I� SEð Þ�1
; and A0 ccð Þ ¼ Iþ cc Tc � Ið Þ� ��1

(22)

where Tc is the interaction tensor of the void inclusion, itself defined from the Eshelby’s tensor SE
(Eshelby, 1957). The latter is numerically evaluated (Gavazzi and Lagoudas, 1990) from the stiffness

tensor of the reference medium, namely C0, and the geometrical configuration of the void inclusion,
which is the same as in Praud (2018) and Praud et al. (2017b). A0 ccð Þ designates the strain

Figure 7. Damage definition in the yarn phase: (a) Initial state: transversely isotropic. (b) Damaged state: intro-
duction of a micro-crack density cc (void volume fraction) in the RVE. (c) Evaluation of the stiffness reduction induced
by cc by homogenization (Praud, 2018; Praud et al., 2017b).



localization tensor, which allows to define the local strain and stress fields, and more specially the
ones in the virgin part of the material

e0 e; cc; esð Þ ¼ A0 ccð Þ : e� esð Þ; r0 e; cc; esð Þ ¼ C0 : A0 ccð Þ : e� esð Þ (23)

In the yarns, the damage is driven by Hill-like quadratic interaction criterion (Hill, 1948; Ottosen
and Ristinmaa, 2005) expressed from the stress in the virgin part of the material, namely r0

Hc r0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 : H : r0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r022
R22

� �2

þ r012
R12

� �2
s

(24)

where H is a fourth-order tensor set in such a way that Hc only depends on the components 22 and
12 of r0. H contains the parameters R22 and R12, which represent the initial damage thresholds in
pure transverse tension and in pure in-plane shear, respectively. The development of the micro-crack
density cc initiates only when Hc exceeds 1. After this stage, it follows a Weibull-like function g of
the maximal value ofHc reached in the whole loading history, noted hereafter as sup Hcð Þ. This gives

cc ¼ g sup Hcð Þð Þ ¼ c1c 1� exp � hsup Hcð Þ � 1iþ
S


 �b!" #
(25)

where S and b are material parameters. Additionally, c1c depicts a saturation level that cannot be
exceeded (cc < c1c ). Note that the development relationship (25) accounts well for the irreversible
aspect of damage. Indeed, cc can only grow, _cc > 0 if Hc ¼ sup Hcð Þ, or remain constant, _cc ¼ 0 if
Hc < sup Hcð Þ.

The proposed model for the yarn phase considers that the anelasticity occurs as permanent
strains caused by the micro-cracks non-closure upon unloading. Thus, the anelastic strain es evolves
with the micro-crack density cc, making the two mechanisms directly coupled and simultaneously
activated. This evolution is governed by the normality rule of an indicative function given by

F r;Ycð Þ ¼ Hs rð Þ þ Yc (26)

with

Hs rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r : F : r

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22r22ð Þ2 þ a12r12ð Þ2

q
(27)

In the above two equations, Hs rð Þ is another quadratic interaction criterion, where the fourth-
order tensor F is set in such a way that Hs only depends on the components 22 and 12 of r. F
contains the parameters a22 and a12, which are transverse tension and in-plane shear anelasticity
parameters, respectively. Therefore, applying the normality of the indicative function F r;Ycð Þ gives
the following evolution laws

_cc ¼
@F

@Yc

_k ¼ _k (28)

_es ¼ @F

@r
_k ¼ Ks rð Þ cc

:
; with Ks rð Þ ¼ F : r

Hs rð Þ (29)



where k is the damage-anelasticity multiplier, which appears to be equal to the micro-crack density
cc (k ¼ cc) whose evolution is governed by the damage development relationship (25). Note that the
form of Hs rð Þ implies that only the components 22 and 12 of es are active.

Note that the convexity of F given in equation (27), as well as the irreversibility aspect of cc
through the damage development relationship (25), ensures the thermodynamical admissibility of
the evolution laws (28) and (29).

Like for the matrix, the constitutive model of the yarns has also been implemented into the FE
solver ABAQUS/Standard by means of UMAT. The numerical integration scheme is based on the
‘convex cutting plane’ form of the ‘return mapping algorithm’ (Ortiz and Simo, 1986; Simo and
Hughes, 1998; Simo and Ortiz, 1985), which is described in Praud (2018) and Praud et al. (2017b)
for this model. Readers are referred to these references for more details regarding the numerical
implementation.

Remarks and discussion

In the matrix phase, damage is assumed to be isotropic through the scalar internal state variable D.
However, it is worth mentioning that, even if in reality the matrix is assumed to be initially isotropic,
its response may exhibit anisotropic effects induced by damage depending on the directions of the
principal stresses. Although some modelling approaches can take such behaviour into account
(Ayadi et al., 2018; Chaboche, 1992; Ekh et al., 2003; Lemaitre and Desmorat, 2005), this requires
unconventional characterization highlighting the directional effects of damage. In the absence of
such data, the isotropic idealization of damage remains the most appropriate assumption.

Unlike the matrix, the definition of damage in the yarn phase is anisotropic through the stiffness
reduction tensor D ccð Þ. Based on micromechanical relationships, this tensor depends on the internal
state variable cc, which represents a density of micro-cracks whose normal is oriented along ~x2 (see
Figure 7). It is recalled that this assumes that the yarns are mainly loaded in the plane (~x1; ~x2 ).

The constitutive model of the matrix phase is time-dependent whereas the one of the yarn phase
is not. Since the yarns are composed of fibres and matrix, they should normally exhibit a time-
dependent response inherited from the matrix they contain. However, in the studied woven com-
posite, the amount of matrix within the yarns is relatively low (about 15%). Therefore, it is assumed
that the behaviour of the yarns is idealized as time-independent as it is mostly driven by the fibres.
This assumption also allows to reduce the number of parameters for the identification, which is the
topic of the next section.

It is important to mention that the constitutive models utilized for the matrix and the yarn phases
make use of local continuum damage theories for modelling the degradation mechanisms caused by
micro-defects within the unit cell of the woven composite. Thus, the damage mechanisms are
described according to continuum quantities (internal state variables). This allows to conveniently
formulate the problem according to the theory of continuum mechanics. This works well as long as
the materials do not reach the strain softening regime, which was well verified in all the examples
considered in this study. In the contrary case, the use of non-local modelling theories (Kiefer et al.,
2018; Miehe et al., 2010; Peerlings et al., 1996; Pijaudier-Cabot and Bazant, 1987; Seupel and Kuna,
2019) would be necessary to objectively represent the localization phenomena beyond the strain
softening onset (Bazant, 1984; De Borst et al., 1993).

Moreover, the macro-scale and micro-scale equations are both expressed in the small strains
formalism. In this paper, all the studied cases and the related results are performed and presented at
moderate strain levels. However, it is worth noticing that the proposed multi-scale model cannot
capture geometrical non-linearities such as micropolar or chiral effects (Kadic et al., 2019) that are



likely to occur at high strain levels in a woven microstructure. To account for these phenomena, the

use of higher-order homogenization strategies (Forest, 2002; Goda et al., 2013; Goda and

Ganghoffer, 2016; Larsson and Diebels, 2007) would be necessary. This would also require extend-

ing the local constitutive models of the matrix and the yarns to a large deformation formalism.

Identification and comparisons with experimental data

Experimental procedure and identification strategy

The matrix is identified from experiments directly performed on the unfilled polyamide 6–6, from

specific experiments and a dedicated identification procedure, which are detailed in Praud (2018)

and Praud et al. (2017b). The obtained parameters for the matrix are listed in Table 3. Note that

polyamide and polyamide-based composites are well known to be highly sensitive to the environ-

mental conditions (Arif et al., 2014; Launay et al., 2013; Malpot et al., 2015), especially the relative

humidity (RH) and the temperature (T). In this work, the following environmental conditions were

considered: RH ¼ 50% and T ¼ 23�C (room temperature) for both the studied composite and its

unfilled polyamide 6–6 matrix.
Regarding the yarns, it is impossible to be separated from the matrix in order to perform

mechanical tests on them. Consequently, the yarns parameters are identified from the macroscopic

response of the entire woven composite through reverse techniques (Levenberg, 1944; Marquardt,

1963; Meraghni et al., 2011, 2014). Moreover, it is recalled that the behaviour of the yarns is

assumed to be time-independent. Thus, for the multi-scale model, the overall time-dependency is

driven exclusively by the rheology of the matrix phase. With this in mind, the parameters related to

Table 3. Identified parameters for the constitutive model of the matrix (polyamide 6–6).

Feature Parameter Value Unit

Viscoelasticity Single spring Ee 2,731 MPa

Kelvin–Voigt branch 1 Ev1 8,766 MPa

gv1 1,395 MPa.s

sv1 ¼
gv1
Ev1

0.16 s

Kelvin–Voigt branch 2 Ev2 13,754 MPa

gv2 165,601 MPa.s

sv2 ¼
gv2
Ev2

12.04 s

Kelvin–Voigt branch 3 Ev3 15,010 MPa

gv3 457,955 MPa.s

sv3 ¼
gv3
Ev3

30.51 s

Kelvin–Voigt branch 4 Ev4 11,634 MPa

gv4 1,307,516 MPa.s

sv4 ¼
gv4
Ev4

112.39 s

Poisson ratio (standard value) � 0.3 –

Viscoplasticity Yield threshold R0 4.86 MPa

coupled to damage Hardening function K 1,304.33 MPa

n 0.674 –

Viscous stress function H 47.35 MPa.sm

m 0.068 –

Damage S 21.607 MPa

b –1.105 –



the yarns are identified only from strain-controlled off-axis tests. Those tests are performed on ½	h�s
tensile laminated specimens3 (see Figure 8) repeatedly loaded and unloaded at progressively increas-
ing stress levels and at a relatively slow strain rate (about 3:5� 10�3 s� 1) until failure. These tests,
referred to as ‘quasi-static’, are performed with a servo-hydraulic tensile machine where the axial
macroscopic strain �exx is measured by means of an extensometer, while the axial macroscopic stress
�rxx is monitored by a load cell.

From these quasi-static tests, an optimization algorithm based on the Levenberg–Marquardt
technique (Levenberg, 1944; Marquardt, 1963; Meraghni et al., 2011, 2014) is utilized to identify the
parameters of the yarn phase. This is achieved by minimizing the least squares between the numer-
ical and experimental macroscopic stress responses (�rxx). Beforehand, the initially transversely

Figure 8. Tensile laminated specimens ½	h�s axially loaded in the~x direction. During the tests, the axial macroscopic
strain �exx is measured by means of an extensometer, while the axial macroscopic stress �rxx is monitored by a load
cell. (a) Laminate: multi-layered composite; the thickness of a single layer is about 0.5 mm, making a total thickness of
2 mm for the whole laminated specimens. (b) Oriented layer: (~x;~y;~z) is the coordinate system of the laminate, while
(~x1;~x2;~x3) is the material one within a single layer. (c) Geometry and adopted dimensions of the laminated specimens
(dimensions in mm), rectangular specimens with large enough dimensions were considered to obtain experimental
data that are reasonably representative of the macroscopic response of the composite.



isotropic stiffness of the yarns (C0) is estimated by means of linear periodic homogenization (Praud,

2018). Therefore, only the parameters related to the damage and the anelasticity in the yarns are

identified through the reverse engineering procedure. However, during the identification, the micro-

crack saturation parameter c1c is kept fixed at a sufficiently high level so that it is never reached and

only the ascending part of the Weibull function (25) is acting (Praud, 2018; Praud et al., 2017b). In

this manner, the identification remains well conditioned and robust. The obtained values of the

yarns parameters are listed in Table 4.
Once all parameters are identified, the predictions obtained with the multi-scale model are com-

pared with additional experimental data, where the laminated specimens are subjected to a sinu-

soidal stress signal oscillating at a frequency of 1Hz during 100 s, i.e. 100 cycles. These tests are

referred to as cyclic. Under cyclic loading, thermoplastic-based composites may exhibit a significant

temperature increase due to the self-heating phenomenon, caused by the dissipation (Benaarbia

et al., 2014, 2015; Praud, 2018). For this reason, during the cyclic tests, thermal measurements were

carried out by means of an IR thermal camera.

Results and comparisons with experimental data

Figure 9(a) to (d) shows the numerical simulations provided by the multi-scale model and the

experimental data for the quasi-static tests performed with the ½0� �4; ½	15
� �s; ½	30

� �s and ½	45
� �s

specimens, respectively. It is recalled that these tests were used for the identification. First of all, it is

observed that the response of the ½0� �4 specimen is quasi-elastic, as only a small amount of apparent

damage and anelasticity are generated before the composite brutally fails at a relatively high stress

level (about 430MPa). On the contrary, for the ½	45
� �s specimen, the response is much more ductile

and no failure occurs at the end of the test. For the ½	15
� �s; ½	30

� �s specimens, the composite

exhibits an intermediate response between the ones observed with the ½0� �4 and ½	45
� �s. This impor-

tant difference of behaviour for the different layers angles brings out the strong anisotropy induced

by the microstructure which is, overall, well captured by the multi-scale model. Indeed, for the

½0� �4; ½	15
� �s and ½	30

� �s specimens, the simulated quasi-static responses are in very good agreement

with the experiments (see Figure 9(a) to (c)). For the ½	45
� �s specimen, the multi-scale model

Table 4. Identified parameters for the constitutive model of the yarns. The initial stiffness properties of the yarns
were estimated by means of linear periodic homogenization.

Feature Parameter Value Unit

Transversely isotropic stiffness tensor C01111 65,822 MPa

(non-null components) C01122 ¼ C01133 7,041 MPa

C02222 ¼ C03333 23,947 MPa

C02233 6,971 MPa

C01212 ¼ C01313 8,661 MPa

C02323 ¼ 1
2
ðC02222 � C02233Þ 8,488 MPa

Pure transverse tension threshold R22 20.0 MPa

Pure in-plane shear threshold R12 7.5 MPa

Weibull length parameter S 12.3 –

Weibull exponent parameter b 2.75 –

Micro-cracks saturation (fixed) c1c 0.025 –

Transverse tension anelasticity parameter a22 3.60 –

In-plane shear anelasticity parameter a12 2.15 –



overestimates the quasi-static response (see Figure 9(d)), retaining though the same order of stress

levels and a similar tendency. The deviation of the present model may be caused by not accounting

for other damage mechanisms occurring under significant in-plane shear stress levels, like for

instance the debonding at the yarns/matrix interface.
Figures 10 and 11 show the predictions provided by the multi-scale model and the experimental

data obtained for the stress-controlled cyclic tests performed with the ½0� �4 and ½	45
� �s laminated

specimens, respectively. These tests were not used for the identification. It is noted that the ½0� �s
specimen was loaded at a maximum stress level which corresponds to about 80% of the quasi-static

failure point. For the ½	45
� �s specimens, as the response is much more ductile, a maximum stress

level of 95MPa is taken instead, in order to keep a moderate strain amplitude. The failure occurred

after 80 cycles for the ½0� �4 specimen, while for the ½	45
� �s no failure appeared before the completion

of the 100 cycles. When the composite is subjected to a cyclic loading, phenomena directly inherited

from the viscous and damage mechanisms of the matrix phase can be clearly observed, namely, the

accumulation of strain accompanied by a progressive stiffness reduction. According to the layers

angles, the amplitudes of these phenomena are quite different and, once more, bring out the anisot-

ropy induced by the microstructure. Overall, similar tendencies are predicted by the multi-scale

model, compared to the experimental results. The macroscopic strain responses are in relatively

good agreement for the ½0� �4 specimen, while the overall accumulation of strain and damage is

underestimated for the ½	45
� �s specimen.

Moreover, it is worth pointing out that the hysteresis loops upon the loading/unloading stages of

each single cycle are not well reproduced by the multi-scale model, especially for the ½	45
� �s

Figure 9. Quasi-static tests for the ½0� �4; ½	15
� �s; ½	30

� �s and ½	45
� �s laminated specimens. These data were used

for the identification. (a) Stress (�rxx) vs. strain (�exx) for the ½0� �4 laminated specimen. (b) Stress (�rxx) vs. strain (�exx) for
the ½	15

� �s laminated specimen. (c) Stress (�rxx) vs. strain (�exx) for the ½	30
� �s laminated specimen. (d) Stress (�rxx) vs.

strain (�exx) for the ½	45
� �s laminated specimen.



laminated specimen (see Figure 11). This is likely due to the sub-model of the yarn phase, which,

unlike the one of the matrix, does not integrate any viscoelastic mechanism and time-dependent

features in general. Moreover, from the thermal measurements (see Figure 12(a) and (b)), it can be

observed that, while the self-heating is relatively limited for the ½0� �4 specimen (about 3�C of tem-

perature increase), this phenomenon becomes important for the ½	45
� �s specimens (about 10�C of

temperature increase). This can also explain the deviation between the experimental data and the

model (see Figure 11), which assumes isothermal conditions in the present case.

Macroscopic response of the woven composite

In order to provide a better understanding of the multi-scale model, additional examples of simu-

lations carried out on a single macroscopic material point, so-called virtual tests, are performed. In

these examples, the parameters previously identified for the matrix and the yarns in Tables 3 and 4

are utilized. The composite is subjected to several loading configurations: warp tension, in-plane

Figure 10. Cyclic test: 100 cycles performed at 1Hz for the ½0o�4 laminated specimen. These data were not used for
the identification. (a) Applied stress (�rxx) vs. time. (b) Experimental strain response (�exx) vs. time. (c) Simulated strain
response (�exx) vs. time. (d) Stress (�rxx) vs. strain (�exx) for the 1st, 10th and 79th cycles, represented in black, red and
blue, respectively.



Figure 11. Cyclic test: 100 cycles performed at 1Hz for the ½	45o�s laminated specimen. These data were not used
for the identification. (a) Applied stress (�rxx) vs. time. (b) Experimental strain response (�exx) vs. time. (c) Simulated
strain response (�exx) vs. time. (d) Stress (�rxx) vs. strain (�exx) for the 1st, 10th and 100th cycles, represented in black,
red and blue, respectively.

Figure 12. Temperature elevation measured during the cyclic tests for the ½0o�4 and ½	45o�s laminated specimens.
(a) Temperature (T) vs. time for the ½0o�4 laminated specimen. (b) Temperature (T) vs. time for the ½	45o�s laminated
specimen.



shear and combined warp tension and in-plane shear stress states, as illustrated in Figure 13(a)

to (c), respectively. These loading configurations are applied according to different paths including,
creep and strain recovery in warp tension and in in-plane shear, and non-proportional combined
warp tension and in-plane shear.

Creep and strain recovery

In the creep and strain recovery in warp tension ‘virtual test’, a normal stress �r11 of 350MPa is first
applied on the composite in 5 s. This stress is then held for 300 s before returning back to zero in 5 s.

Figure 13. Illustrations of the simulated loading configurations. (a) Warp tension. (b) In-plane shear. (c) Combined
warp tension and in-plane shear.

Figure 14. Macroscopic response of the composite for the creep and strain recovery in warp tension ‘virtual test’.
(a) Applied stress (�r11) vs. time. (b) Strain response (�e11) vs. time. (c) Stress (�r11) vs. strain (�e11).



Figure 15. Local damage fields (D) in the matrix for the creep and strain recovery in warp tension ‘virtual test’,
presented in Figure 14. (a) Damage (D) in the matrix at the end of the loading stage (t¼ 5 s). (b) Damage (D)
in the matrix at the end of the creep stage (t¼ 305 s). (c) Damage (D) in the matrix, for the element 26514
marked above.



In the final stage, the composite is kept at zero stress for another 300 s (see Figure 14(a)). The results
of this ‘virtual test’ are presented in Figures 14 to 16. In the case of the creep and strain recovery
in-plane shear, a shear stress �r12 of 40MPa is applied on the composite with the same loading
path as for the warp tension (see Figure 17(a)). The results of this ‘virtual test’ are presented in
Figures 17 to 19.

Figure 16. Local micro-crack density fields (cc) in the yarns for the creep and strain recovery in warp tension ‘virtual
test’, presented in Figure 14. (a) Micro-crack density (cc) in the yarns at the end of the loading stage (t¼ 5 s).
(b) Micro-crack density (cc) in the yarns at the end of the creep stage (t¼ 305 s). (c) Micro-crack density (cc) in the
yarns, for the element 30843 marked above.



When the composite is loaded in the warp direction (0 s < t < 5 s), most of the load is carried by
the warp yarns in their longitudinal direction. Meanwhile, a small part of this load is also carried by
the weft yarns in their transverse direction. This brings about the occurrence of micro-cracks only in
these yarns (see Figure 16(a)). In the matrix, most of the stresses are concentrated in the yarns-
crossing areas, leading to the development of some damage in these locations (see Figure 15(a)).
The degradations occurring in the weft yarns and in the matrix seem to have limited consequences at
the macroscopic scale, as most of the load is carried by the warp yarns in their longitudinal direc-
tion, which behave elastically with an important stiffness. For this reason, the response of
the composite at the macroscopic scale remains quasi-linear during the first loading stage
(see Figure 14(c)).

When the composite is loaded in in-plane shear (0 s < t < 5 s), most of the load is carried by the
yarns in in-plane shear. This brings about a fast growth of the micro-cracking in both warp and weft
yarns (see Figure 19(a)). Then, the overall load is progressively transferred to the matrix, in the
inter-yarns areas, where the stresses are mainly concentrated and where damage develops (see
Figure 18(a)). Note that those degradation mechanisms have a significant influence on the macro-
scopic in-plane shear response of the composite, which appears to be more matrix-dominated and
strongly non-linear (see Figure 17(c)).

Note that identical degradation mechanisms were experimentally observed by means of X-ray
computed micro-tomography for a similar thermoplastic-based woven composite (Pomar�ede
et al., 2018).

During the creep stages, when the stress is held (5 s < t < 305 s), the macroscopic strain increases
under the action of a constant macroscopic stress (see Figures 14(b) and (c), 17(b) and (c)). The
macroscopic creep response of the composite is caused by the time-dependent behaviour of the

Figure 17. Macroscopic response of the composite for the creep and strain recovery in in-plane shear ‘virtual test’.
(a) Applied stress (�r12) vs. time. (b) Strain response (2�e12) vs. time. (c) Stress (�r12) vs. strain (2�e12).



matrix phase, as well as the microstructure interactions between the matrix and the yarn phases.
Although the sub-model of the yarns does not account for any time-dependent feature, a micro-

crack density growth is observed within the yarn phase (see Figures 16 and 19). Indeed, when the
matrix locally creeps and gets damaged, a part of its sustained load is gradually transferred to
the yarns, leading to an increase of the micro-crack density in this phase. Moreover, in warp tension,

Figure 18. Local damage fields (D) in the matrix for the creep and strain recovery in in-plane shear ‘virtual test’,
presented in Figure 17. (a) Damage (D) in the matrix at the end of the loading stage (t¼ 5 s). (b) Damage (D) in the
matrix at the end of the creep stage (t¼ 305 s). (c) Damage (D) in the matrix, for the element 1998 marked above.



the macroscopic creep is quite low, in contrast to the in-plane shear. Indeed, in the latter case, the

behaviour of the composite is mainly matrix-dominated.

Non-proportional combined warp tension and in-plane shear

In these examples, the composite is subjected to a combined warp tension and in-plane shear stress

state, which is applied through two different loading paths having the same amplitudes. In the first

Figure 19. Local micro-crack density fields (cc) in the yarns for the creep and strain recovery in in-plane shear
‘virtual test’, presented in Figure 17. (a) Micro-crack density (cc) in the yarns at the end of the loading stage (t¼ 5 s).
(b) Micro-crack density (cc) in the yarns at the end of the creep stage (t¼ 305 s). (c) Micro-crack density (cc) in the
yarns, for the element 3372 marked above.



loading path, referred to as path 1, a normal stress in the warp direction �r11 of 200MPa is first
applied in 5 s. In the next stage, �r11 is held constant, while an in-plane shear stress �r12 of 30MPa is
applied in 5 s. Afterwards, both �r11 and �r12 are held constant for 5 s before being released in another
5 s (see Figure 20(a)). In the second loading path, referred to as path 2, the normal and shear stresses
are interchanged with respect to the path 1 (see Figure 20(b)).

The results of these simulations are presented in Figure 20. These ‘virtual tests’ highlight the
importance of the loading path when the composite is subjected to combined stress states. Although
the same stress amplitudes are applied for both paths 1 and 2, it can be noticed that the amplitudes
of the strain responses are quite different (see Figure 20(c)). The maximum value of the normal
strain �e11 resulting from the path 1 is slightly greater than the one obtained from the path 2. Indeed,
the normal stress �r11 is held longer for the path 1 than for the path 2, which means that the
composite is exposed for more time to creep in the warp direction. Similarly, the maximum value
of the in-plane shear strain 2�e12 resulting from the path 2 is far greater than the one obtained from
the path 1. This time, the in-plane shear stress �r12 is held longer for the path 2 than for the path 1
and, consequently, the composite has more time to creep in in-plane shear. The difference in the
strain amplitudes is much more important in in-plane shear, as in this case the behaviour of the
composite is more matrix-dominated and therefore exhibits more creep.

Figure 20. Macroscopic response of the composite for the non-proportional combined warp tension and in-plane
shear ‘virtual tests’. (a) Path 1: applied stresses (�r11 and �r12) vs. time. (b) Path 2: applied stresses (�r11 and �r12) vs.
time. (c) Paths 1 and 2: strain responses (�r11 and 2�e12) vs. time.



Conclusions and perspectives

In this work, a multi-scale model is employed to describe the cyclic and time-dependent behaviour

of thermoplastic-based woven composites. This effort has succeeded to combine advanced sub-

models including viscoelastic, viscoplastic and damage deformation mechanisms in a robust fully

integrated multi-scale modelling strategy, which is the main novelty of this work. The overall

good agreements between the simulations and the experiments demonstrate the capabilities of the

multi-scale model to capture the anisotropic response of the composite induced by the

microstructure, as well as the time-dependent effects inherent to the thermoplastic matrix.

Besides analyzing the influence of the local deformation processes on the macroscopic behaviour,

these examples also highlight the capacity of the developed model to capture the effect of the

loading path, considering either proportional or non-proportional conditions. The proposed

multi-scale model has the strong advantage to be entirely modular and applicable to any

type of composites with periodic microstructure. Furthermore, this modularity enables the

multi-scale model to be easily enhanced with even more advanced sub-models that might be

developed in the future.
Among the main perspectives of this work, the present multi-scale model could be implemented

into the FE2 computational scheme (Asada and Ohno, 2007; Feyel, 2003; Tchalla et al., 2013;

Tikarrouchine et al., 2018, 2019), for performing large-scale structure analyses. In a computa-

tionally cheaper strategy, the multi-scale model could also be utilized to generate a ‘virtual tests’

in a view of identifying purely phenomenological models for the composite (Achour, 2017; Garoz

et al., 2017; Sodhani et al., 2018). Another perspective would be to extend the proposed multi-

scale model to fully coupled thermomechanical analyses (Chatzigeorgiou et al., 2016, 2018;

Tikarrouchine et al., 2019). This would allow accounting for the self-heating phenomenon,

which may be an important aspect, especially under cyclic loading. Such analyses would require

the local constitutive models to account for the heat produced by the mechanical work through a

proper thermodynamical formalism (Benaarbia et al., 2019; Krairi et al., 2019; Mouelle et al.,

2020; Yu et al., 2017).
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Notes

1. Note that the use of periodic boundary conditions requires the mesh of the unit cell to be well periodic.

This means that for each boundary surface node, there must be another node at the same relative position

on the opposite boundary surface.
2. The operators eq rð Þ designate the equivalent Von Mises stress. Additionally, Dev rð Þ and hyd rð Þ depict

the deviatoric and the hydrostatic parts of a stress tensor r, respectively. They are all defined by

eq rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 Dev rð Þ : Dev rð Þð Þ

q
; Dev rð Þ ¼ r� hyd rð ÞI; hyd rð Þ ¼ 1

3 tr rð Þ:
3. It is noted that in ½	h�s tensile laminated specimens, neither tension-shear nor tension-bending couplings

appear. So, the laminates can be axially loaded in the ~x direction without generating any unsuitable shear

deformations or curvatures.
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