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Abstract

Fractionally integrated autoregressive moving average (FIARMA) processes have been widely and
successfully used to model and predict univariate time series exhibiting long range dependence.
Vector and functional extensions of these processes have also been considered more recently. Here
we study these processes by relying on a spectral domain approach in the case where the processes
are valued in a separable Hilbert space H0. In this framework, the usual univariate long memory
parameter d is replaced by a long memory operator D acting on H0, leading to a class of H0-
valued FIARMA(D, p, q) processes, where p and q are the degrees of the AR and MA polynomials.
When D is a normal operator, we provide a necessary and sufficient condition for the D-fractional
integration of an H0-valued ARMA(p, q) process to be well defined. Then, we derive the best
predictor for a class of causal FIARMA processes and study how this best predictor can be
consistently estimated from a finite sample of the process. To this end, we provide a general result
on quadratic functionals of the periodogram, which incidentally yields a result of independent
interest. Namely, for any ergodic stationary process valued in H0 with a finite second moment, the
empirical autocovariance operator converges, in trace-norm, to the true autocovariance operator
almost surely at each lag.
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1. Introduction

Over the past several decades, the study of weakly stationary time series valued in a separable
Hilbert space has been an active field of research. For example, functional ARMA processes were
discussed in [3, 33, 22], a spectral theory was detailed in [27, 26, 34] and several estimation methods
were studied in [18, 19, 17, 20, 23, 2, 24, 9, 1, 32]. However, these references mainly focus on short35

memory processes. The study of long memory processes valued in a separable Hilbert space is a
more recent topic as seen in [29, 6, 5, 14, 25]. More specifically, in [25, Section 4], the fractionally
integrated autoregressive moving average (often abbreviated as ARFIMA, but we prefer to use
FIARMA for reasons that will be made explicit in Remark 1) processes are generalized to the case
of curve, or functional, time series. In short, the authors consider the functional case in which the40

Hilbert space is an L2 space of real valued functions defined on a compact subset of R, say [0, 1],
and they introduce the time series (Xt)t∈Z valued in this Hilbert space defined by

Xt(v) = Yt +

∞∑
k=1

∏k−1
j=0 (d+ j)

k!
Yt−k(v) , t ∈ Z, v ∈ [0, 1] , (1.1)

where −1/2 < d < 1/2 and Yt is a functional ARMA process. As pointed out in [25, Remark 9],
taking the same d for all v ∈ [0, 1] in (1.1) is highly restrictive compared to other long memory
processes recently introduced. For instance in [6, 5], they consider long memory processes of the
form

Xt(v) =

∞∑
k=0

(1 + k)−n(v) ϵt−k(v) , t ∈ Z , v ∈ V ,

where (V,V, ξ) is a σ-finite measure space, and (ϵt)t∈Z is a white noise valued in L2(V,V, ξ). Since
the ratio in (1.1) is asymptotically equivalent to (1 + k)−1+d as k → ∞, this new process is, in
fact, close to the previous one in the case where n(v) = d − 1 for all v ∈ V . A formulation that45

is not restricted to an L2 space was proposed in [14] where the author considers long memory
processes of the form

Xt =

∞∑
k=0

(1 + k)−N ϵt−k , t ∈ Z . (1.2)

Here, (ϵt)t∈Z is a white noise valued in a separable Hilbert space H0 and N is a bounded normal
operator on H0. This suggests defining FIARMA processes in (1.1) with d replaced by a function
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d(v), or in the case where it is valued in an arbitrary separable Hilbert space H0, by a bounded50

normal operator D acting on this space.
In this paper, we fill this gap by providing a definition of FIARMA processes valued in a

separable Hilbert space H0 with a long memory operator D, taken as a bounded linear operator on
H0. If the spectrum of D is included in (−∞, 1/2), the FIARMA process is well defined. However,
such a condition is not necessary: if D is normal, then we rely on its spectral decomposition and55

find necessary and sufficient conditions for the H0-valued FIARMA process with long memory
operator D to be well defined, which show that the spectrum of D may in fact reach the value
1/2. This allows us to compare FIARMA processes with the processes defined by (1.2) as in [14].

The definition of FARMA processes relies on linear filtering in the spectral domain. It is a
well known fact that linear filtering of real valued time series in the time domain is equivalent60

to pointwise multiplication by a transfer function in the frequency domain. This duality also
applies to Hilbert space valued time series using a proper spectral representation for them. In this
context, pointwise multiplication becomes a pointwise application of an operator-valued transfer
function defined on the set of frequencies. A complete account is provided in [13]. Here, we rely
on the spectral approach to define a D-fractional integration filter acting on a weakly stationary65

process X valued in H0. We provide necessary and sufficient conditions for this filter to apply to
an H0-valued ARMA process X. When the ARMA process is causal, we derive the best predictor
of Xt given its past (Xs)s<t. It is thus of interest to investigate whether this best predictor can
be consistently estimated from a finite sample X1, . . . , Xn. We provide a positive answer to this
question when the long memory parameter operator D has a positive definite real part, under70

mild additional conditions. To this end, we study quadratic functionals based on the periodogram
of X1, . . . , Xn. A very simple example of such quadratic functional is the empirical covariance
operator at a given lag, for which we obtain the following result of independent interest.

Theorem 1. Let H0 be a separable Hilbert space and let (Xt)t be an H0-valued ergodic stationary

process defined on (Ω,F ,P) and satisfying E
[
∥X0∥2H0

]
< ∞. Let us define, for all n ≥ 1 and

1 ≤ k ≤ n,

X
(c,n)
k = Xk − 1

n

n∑
j=1

Xj . (1.3)

Then, we have, for all h ∈ Z,

lim
n→∞

1

n

∑
1≤k,k′≤n

k−k′=h

(
X

(c,n)
k

)
⊗
(
X

(c,n)
k′

)
= Cov (Xh, X0) in S1(H0) , P-a.s. , (1.4)

where, for all x, y ∈ H0, x⊗ y denotes the usual rank one tensor operator and S1(H0) denotes the
space of trace-class operators endowed with the trace-norm.75

What makes Theorem 1 of particular interest and novel based on our up-to-date-knowledge, is
that the a.s. convergence holds in S1(H0) in (1.4).

This paper is organized as follows. We first recall in Section 2 the necessary definitions and
facts on operator theory and linear filtering needed for our purpose. Then, the construction of
FIARMA processes is introduced and discussed in Section 3 with a focus on the case where the80

long memory operator is normal. In Section 4, the prediction of FIARMA processes is studied.
To this end, in Section 4.1, we provide general results for parametric contrast estimation in the
spectral domain, based on a finite sample. Then, in Section 4.2, we show how to apply these results
for FIARMA prediction. Finally, proofs are provided in Section 5. In particular, Theorem 1 is
proven in Section 5.3.85

2. Preliminaries and useful notation

2.1. Operators, measurability and integrals
Throughout this paper, we denote by Lb(H0,G0) the set of continuous linear operators defined

on the separable (complex) Hilbert space H0 onto the separable (complex) Hilbert space G0.
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The operator norm on Lb(H0,G0) is denoted by ∥·∥∞. We denote by S∞(H0,G0) its subset of90

compact operators, and by S1(H0,G0) and S2(H0,G0), its subsets of trace-class and Hilbert-Schmidt
operators, respectively, with their respective norms denoted by ∥·∥1 and ∥·∥2. We follow the usual
convention of omitting G0 in the notation of operator spaces when G0 = H0. We use the notation
PH for the Hermitian adjoint of an operator P ∈ Lb(H0,G0). We say that P ∈ Lb(H0) is invertible
if P admits an inverse in the C-algebra Lb(H0). We denote by σ(P) the spectrum of an operator95

P ∈ Lb(H0), defined as the set {z ∈ C : z IdH0 − P is not invertible}, where IdH0 denotes the
identity operator on H0. An operator P ∈ Lb(H0) is said to be normal if PPH = PHP and we
denote by N (H0) the set of normal bounded operators. We further denote by L+

b (H0), S+
1 (H0)

and S+
2 (H0) the sets of positive, positive trace-class and positive Hilbert-Schmidt operators. Here

positive refers to positive-semidefinite, that is, P is positive if ⟨Px, x⟩H0
≥ 0 for all x. For a positive100

operator P, the operator P1/2 is the unique positive operator satisfying
(
P1/2

)2
= P. A general

and detailed presentation of operator theory can be found in [35].
We will make extensive use of integrals of functions valued in a Banach space (see [11, Chap-

ter 1] for details). Given a measure space (Λ,A, µ), a Banach space (E, ∥·∥E) and p ∈ [1,∞],
we denote by Lp(Λ,A, E, µ) the space of functions f : Λ → E which are Borel-measurable such105

that
∫
∥f∥pE dµ (or µ-essup ∥f∥E for p = ∞) is finite. Its quotient space for the µ-a.e. equality

is denoted by Lp(Λ,A, E, µ). We use the same notation for E = L+
b (H0), S+

1 (H0) or S+
2 (H0), in

which case Lp(Λ,A, E, µ) is a cone subset of the corresponding Lp space.
In the particular case where E = Lb(H0,G0) for two separable Hilbert spaces H0,G0, we also

use a weaker notion of measurability. Namely, we say that a function Φ : Λ → Lb(H0,G0) is simply110

measurable if for all x ∈ H0, λ 7→ Φ(λ)x is measurable as a G0-valued function. The set of simple
measurable functions from (Λ,A) to Lb(H0,G0) is denoted by Fs (Λ,A,H0,G0) where, again, we
ommit G0 if H0 = G0. A mapping Φ : Λ → E with E = S1(H0,G0) or E = S2(H0,G0) is simply
measurable if and only if it is Borel measurable (see Lemma 4.1 in [13]). A useful consequence is
that, if Φ ∈ L1(Λ,A,S+

1 (H0), µ), then the function Φ1/2 : λ 7→ Φ(λ)1/2 is in L2(Λ,A,S+
2 (H0), µ).115

2.2. Linear filtering of Hilbert space-valued time series in the spectral domain

This section gathers the spectral theory used for linear filtering of times series valued in a
separable Hilbert space. We refer the reader to [13, Section 3] for details. In the following,
we denote by T the set R/2πZ, which can be represented by an interval such as [−π, π). Let
(Ω,F ,P) be a probability space and H0 a separable Hilbert space. We recall that the expectation
of X ∈ L2(Ω,F ,H0,P) is the unique vector E [X] ∈ H0 satisfying

⟨E [X] , x⟩H0
= E

[
⟨X,x⟩H0

]
, for all x ∈ H0 .

The covariance operator between X,Y ∈ L2(Ω,F ,H0,P) is the unique linear operator
Cov (X,Y ) ∈ Lb(H0) satisfying

⟨Cov (X,Y ) y, x⟩H0
= Cov

(
⟨X,x⟩H0

, ⟨Y, y⟩H0

)
, for all x, y ∈ H0 .

A process X := (Xt)t∈Z is said to be an H0-valued, weakly stationary process if

(i) For all t ∈ Z, Xt ∈ L2(Ω,F ,H0,P).

(ii) For all t ∈ Z, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ Z, Cov (Xt+h, Xt) = Cov (Xh, X0).120

We denote by M(Ω,F ,H0,P) the space of all centered random variables in L2(Ω,F ,H0,P). As
explained in [13, Example 1.8], this space is a normal Hilbert Lb(H0)-module whose Gramian is
defined as the covariance operator. Let H = M(Ω,F ,H0,P) and X = (Xt)t∈Z ∈ HZ be a centered,
weakly stationary, H0-valued time series. Following [13, Section 3], a spectral representation for
X amounts to define a random Gramian-orthogonally scattered measure X̂ on (T,B(T)) such that125

Xt =

∫
eiλ t X̂(dλ) for all t ∈ Z . (2.1)
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The intensity measure νX : B(T) → S+
1 (H0) of X̂ is called the spectral operator measure and is

characterized by the identity

Cov (Xh, X0) =

∫
eihλ νX(dλ) , for all h ∈ Z .

The spectral operator measure is a trace-class Positive Operator-Valued Measure (p.o.v.m.) in the
sense that it is a mapping from B(T) to S+

1 (H0) which is σ-additive for the ∥·∥1-norm. Note that,
in this case, the mapping ∥νX∥1 : A 7→ ∥νX(A)∥1 is a finite non-negative measure. Throughout this
paper, we use the Radon-Nikodym property of the trace-class p.o.v.m. νX which is a consequence
of Theorem 1 in [10, Chapter III, Section 3]. Namely, for any σ-finite non-negative measure µ on130

(T,B(T)), which dominates ∥νX∥1, there exists a unique gX ∈ L1(T,B(T),S+
1 (H0), µ) such that,

for all A ∈ B(T), νX(A) =
∫
A
gX dµ. In this case, we say that gX is the spectral operator density

of X with respect to µ, and we write dνX = g dµ. In the following, when we say that g is the
spectral operator density of X with respect to a σ-finite non-negative measure µ, it is implicitly
assumed that µ dominates ∥νX∥1.135

Let us now briefly introduce the linear filtering in the spectral domain. We only state the facts
that will be useful in the following and refer the reader to [13] for further details. The spectral
representation (2.1) can be extended to define a Gramian-isometric mapping from the modular

spectral domain ĤX to the modular time domain HX , also denoted as an integral with respect to
X̂, namely,

Y =

∫
Φ(λ)X̂(dλ) , Y ∈ HX , Φ ∈ ĤX .

Here, HX is the smallest closed linear subspace of M(Ω,F ,H0,P), which contains {Xt : t ∈ Z}
and is stable through the left multiplication by any operator of Lb(H0). The space ĤX is its
spectral counterpart, a space of operator-valued functions defined on (T,B(T)) which only depends
on νX and is stable through the same module action, namely, through left multiplication by an
operator of Lb(H0). Conversely, given an operator-valued function Φ defined on (T,B(T)), we
denote by SΦ(Ω,F ,P) the class of all centered weakly stationary processes X such that Φ ∈ ĤX .
Then, the time-shift invariant linear filter with transfer operator function Φ is the mapping defined
on SΦ(Ω,F ,P) by mapping a centered weakly stationary process X (the input) to the centered
weakly stationary process Y (the output) defined by

Yt =

∫
eitλΦ(λ) X̂(dλ) , t ∈ Z ,

which we also write
Y = FΦ(X) or Ŷ (dλ) = Φ(λ)X̂(dλ) . (2.2)

We will use the following result, where we characterize the domain of definition of a filter FΦ in
the case where Φ is valued in Lb(H0). It follows by applying [13, Proposition 3.15] with G = Z
and G0 = H0.

Proposition 1. Let H0 be a separable Hilbert space, (Ω,F ,P) be a probability space, and Φ ∈140

Fs (T,B(T),H0). Let X be an H0-valued centered weakly stationary process admitting gX as a
spectral operator density with respect to a σ-finite non-negative measure µ on (T,B(T)). Then,
the mapping

∥∥ΦgXΦH
∥∥
1
is measurable from (T,B(T)) to (R,B(R)), and we have X ∈ SΦ(Ω,F ,P)

if and only if
∫ ∥∥ΦgXΦH

∥∥
1
dµ < ∞.

3. Hilbert space-valued FIARMA processes145

In this section, we propose a definition of FIARMA processes valued in a separable Hilbert
space thus extending the definition of [25, Section 4] to a long memory operator D. This definition
is introduced in Section 3.1 where we also recall known results on the existence of H0-valued
ARMA processes. We then state the main results, namely 1) Theorem 2 (resp. Corollary 1),
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where a sufficient condition is given for a weakly stationary H0-valued process (resp. a H0-valued150

ARMA process) X to belong the domain of definition of the fractional integration operator filter,
2) Theorem 3 where necessary and sufficient conditions are given for a weakly stationary H0-
valued process X to belong the domain of definition of the fractional integration operator filter
when D is a normal operator, 3) Corollary 2 where we specify these conditions to the case where
X is an ARMA process, thus ensuring the existence of FIARMA processes, and 4) Proposition 4155

where we compare the obtained FIARMA processes to the processes introduced in [14]. The main
definitions are in Section 3.1, Point 1) is treated in Section 3.2, Points 2) and 3) in Section 3.3
and Point 4) in Section 3.4.

3.1. Definition of FIARMA processes

Let H0 be a separable Hilbert space. In the following, for all D ∈ Lb(H0) and z ∈ C \ [1,∞),
we will use

(1− z)D = exp(D ln(1− z)) =

∞∑
k=0

1

k!
(D ln(1− z))k ,

where ln denotes the principal complex logarithm, so that z 7→ ln(1 − z) is holomorphic on160

C\ [1,∞), and so is z 7→ (1−z)D, as a Lb(H0)-valued function (see [15, Chapter 1] for an overview
on the subject). Let us now introduce the fractional integration operator transfer function. It is
an extension of the one-dimensional case introduced in [21].

Definition 1 (Fractional integration operator transfer function ID). Let H0 be a separable Hilbert
space and D ∈ Lb(H0). We define the D-order fractional integration operator transfer function
ID by

ID(λ) =

{(
1− e−iλ

)−D
if λ ̸= 0,

0 otherwise.

Using the properties of z 7→ (1−z)D recalled previously, we see that ID is a mapping from T to
Lb(H0), continuous on T \ {0}. Then, we have ID ∈ Fs (T,B(T),H0) and we can define the filter165

FID acting on centered H0-valued weakly stationary processes as in (2.2) of which the domain of
definition SID (Ω,F ,P) can thus be characterized by Proposition 1. Since ID has a singularity at
the null frequency, the domain SID (Ω,F ,P) is not obvious. For instance, in the scalar case, it is
well known that if X has a positive and continuous spectral density at the null frequency, then
FId(X) is well defined if and only if d < 1/2. Based on Proposition 1, we show that a similar170

sufficient condition holds in the Hilbert space valued case in Section 3.2, and provide a complete
description of SID (Ω,F ,P) in Section 3.3 when D is a normal operator.

A fractionally integrated autoregressive moving average (FIARMA) process is simply the output
of the filter in the case where X is an H0-valued autoregressive moving average (ARMA) process.
Let us first recall a basic result on the existence of weakly stationary ARMA processes (see [33,175

Corollary 2.2]).

Proposition 2. Let H0 be a separable Hilbert space and p, q be two positive integers. Let
A1, . . . , Ap ∈ Lb(H0), B1, . . . , Bq ∈ Lb(H0) and Z = (Zt)t∈Z be an H0-valued white noise (i.e.
a centered weakly stationary H0-valued process with constant spectral density operator). Suppose
that180

φ(z) := IdH0 −
p∑

k=1

Akz
k is invertible for all z ∈ U, (3.1)

where U = {z ∈ C : |z| = 1} is the complex unit circle. Then,

Xt −
p∑

k=1

AkXt−k = Zt +

q∑
k=1

BkZt−k , t ∈ Z , (3.2)

admits a unique weakly stationary solution. This solution is called an H0-valued ARMA(p, q)
process.
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Explicit constructions of the solution in the time domain can be found in [3, 33, 22], under
various assumption. Using a spectral approach, with φ as in (3.1) and θ(z) := IdH0 +

∑p
k=1 Bkz

k,
the solution is more directly given by

X̂(dλ) =
[
φ(e−iλ)

]−1
θ(e−iλ)Ẑ(dλ) ,

using the notation introduced in (2.2). In the following, for any integer d ∈ N, Pd(H0) denotes the
set of polynomials p of degree d with coefficients in Lb(H0), such that p(0) = IdH0 and P∗

d (H0)185

denotes the subset of all p ∈ Pd(H0), which are invertible on U. In particular, (3.1) is equivalent
to saying that φ ∈ P∗

d (H0). Time domain approaches for defining ARMA processes are easier to
derive when Condition (3.1) is extended on the closed unit disk, that is,

φ(z) = IdH0
−

p∑
k=1

Akz
k is invertible for all z ∈ D, (3.3)

where D := {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1} denote the open and closed complex
unit discs of C, respectively. We do not need Condition (3.3) for defining FIARMA processes.190

However, we will assume that φ and θ satisfy such a condition to derive predictors (see Section 4),
as in the well known case of univariate FIARMA processes.

We can now define FIARMA processes as follows.

Definition 2 (Hilbert space-valued FIARMA processes). Let H0 be a separable Hilbert space
and p, q be two non-negative integers. Let D ∈ Lb(H0), θ ∈ Pq(H0), φ ∈ P∗

p (H0) and Z195

be an H0-valued centered white noise. Let X be the ARMA(p, q) process defined by X̂(dλ) =
[φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) and suppose that X ∈ SID (Ω,F ,P). Then, the process defined by
Y = FID (X), that is, with spectral representation given by

Ŷ (dλ) = ID(λ)[φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) , (3.4)

is called a FIARMA process of order (p, q) with long memory operator D, abbreviated as
FIARMA(D, p, q).200

Remark 1. Definition 2 extends the usual definition of univariate (C or R-valued)
ARFIMA(p, d, q) processes to the Hilbert space-valued case. In the general case, we use the
acronym FIARMA to indicate the order of the operators in the definition (3.4), where the frac-
tional integration operator appears on the left of the autoregressive operator, which then is on the
left of the moving average operator. We also respected this order in the list of parameters (D, p, q).205

Following this convention, an ARFIMA(p,D, q) process is, in turn, defined as the solution of (3.2),
with Z defined as a FIARMA(0, D, q) process. Having this convention in mind is important since
the ARFIMA(p,D, q) process does not coincide with the FIARMA(D, p, q) process, except in highly
unique instances such as the univariate case where all operators commute.

Definition 2 extends the definition of ARFIMA curve time series proposed in [25] where it210

is restricted to the case where D is a scalar operator, that is D : f 7→ d × f for a constant
−1/2 < d < 1/2. In this particular case, it is rather straightforward to show that X ∈ SID (Ω,F ,P)
for any ARMA process X by directly making use of Proposition 1, However, in Remark 2(6), it
will be obtained as a special case of Corollary 2.

3.2. Existence : a sufficient condition215

In this section, we provide a simple sufficient condition for the existence of FIARMA processes
of Definition 2, namely when the real parts of all elements of σ(D) are less than 1/2. We first
derive a sufficient condition for the fractional integration of a general weakly stationary process
X and then specify this condition to the case where X is an H0-valued ARMA process.
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Theorem 2. Let H0 be a separable Hilbert space, D ∈ Lb(H0) and X = (Xt)t∈Z be a centered220

H0-valued weakly stationary time series defined on (Ω,F ,P) with spectral operator measure νX .
Let δ ≥ 0 and suppose that ℜ(z) < δ for all z ∈ σ(D) and that∫

|λ|−2δ ∥νX∥1(dλ) < ∞ . (3.5)

Then we have X ∈ SID (Ω,F ,P), where ID is as in Definition 1.

If, in the previous result, X is an H0-valued ARMA process, then its spectral measure admits a
spectral density operator function, with respect to the Lebesgue measure, and this spectral density225

operator function is continuous (hence bounded) from T to S1(H0). It follows that (3.5) holds for
any δ < 1/2. Since the spectrum of a bounded operator is a compact subset of C, we immediately
obtain the following result.

Corollary 1. Let H0 be a separable Hilbert space and D ∈ Lb(H0). Suppose that ℜ(z) < 1/2
for all z ∈ σ(D). Then the FIARMA process defined by (3.4) is well defined for all θ ∈ Pq(H0),230

φ ∈ P∗
p (H0) and any H0-valued centered white noise Z.

Note that the condition of Corollary 1 corresponds to the usual condition for R-valued FIARMA
processes imposing the long memory parameter to be less than 1/2. In this case, this condition
is also necessary as soon as the MA polynomial does not vanish at 1. However, in the functional
case, it is more involved to derive a necessary and sufficient condition on the operator D for the235

FIARMA process to be well defined. We address this question in the next section only in the case
where D is a normal operator.

3.3. A necessary and sufficient condition when D is normal

In this section, we provide a necessary and sufficient condition for the existence of FIARMA
processes as defined in Definition 2 in the case where D is a normal operator. In this case, we240

can rely on the spectral theorem, a consequence of which is that D is unitarily equivalent to a
multiplication by a bounded function on a L2 space (see [7, Theorem 9.4.6, Proposition 9.4.7]).
Namely, if D ∈ N (H0), then there exists a σ-finite measure space (V,V, ξ), a unitary operator
U : H0 → L2(V,V, ξ) and d ∈ L∞(V,V, ξ), such that

UDUH = Md , (3.6)

where Md denotes the pointwise multiplicative operator on L2(V,V, ξ) associated to d, that is245

Md : f 7→ d × f . Using this representation, we can rely on the process UX = (UXt)t∈Z valued
in G0 := L2(V,V, ξ). Note that G0 is separable because it is isometrically isomorphic to H0

through the unitary operator U . It is straightforward to check that, if gX is the spectral operator
density of X with respect to a non-negative measure µ on (T,B(T)), then the function gUX ∈
L2(T,B(T),S+

1 (G0), µ) defined by gUX(λ) = UgX(λ)UH, for all λ ∈ T, is the spectral operator250

density of UX with respect to µ. Note that we can always find a function h ∈ L2(T,B(T),S2(G0), µ)

such that gUX(λ) = h(λ)[h(λ)]H for µ-a.e. λ ∈ T (take e.g. h = g
1/2
UX). Then, [35, Theorem 6.11]

gives that, for all λ ∈ T, the operator h(λ) can be written as an integral operator with a kernel
𝒽(·, ·;λ) in L2(V2,V⊗2, ξ⊗2). In the following, we need the measurability of 𝒽 on (V2 × T,V⊗2 ⊗
B(T)) and therefore introduce the notion of joint kernel in the following lemma and definition.255

Lemma 1. Let (V,V, ξ) be a σ-finite measure space and suppose that the Hilbert space G0 =
L2(V,V, ξ) is separable. Let K be a measurable function from (Λ,A) to (S2(G0),B(S2(G0))). Then,
there exists a function 𝒦 : (v, v′, λ) 7→ 𝒦 (v, v′;λ) measurable from (V2×Λ,V⊗2⊗A) to (C,B(C))
such that, for all λ ∈ Λ, f ∈ H0 and v ∈ V,

[K(λ)f ](v) =

∫
𝒦 (v, v′;λ) f(v′) ξ(dv′) . (3.7)

Moreover, if K ∈ L2(Λ,A,S2(G0), µ) for some non-negative measure µ on (Λ,A), then 𝒦 ∈260

L2(V2 × Λ,V⊗2 ⊗A, ξ⊗2 ⊗ µ).
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Based on this lemma, for all λ ∈ Λ, the identity (3.7) defines (v, v′) 7→ 𝒦 (v, v′;λ) uniquely
over V2 up to a ξ⊗2-null set. This allows us to introduce the following definition.

Definition 3 (Joint kernel of S2-valued functions). Under the assumptions of Lemma 1, we call
𝒦 the Λ-joint kernel of K.265

Assuming that D is normal allows us to characterize the domain of definition of the D-order
fractional integration operator filter, as shown in the following result, which may be of independent
interest.

Theorem 3. Let H0 be a separable Hilbert space and X = (Xt)t∈Z be a centered H0-valued weakly
stationary time series defined on (Ω,F ,P) with spectral operator density gX with respect to a270

non-negative measure µ on (T,B(T)). Let D be in N (H0) satisfying the representation (3.6) with
U : H0 → G0 := L2(V,V, ξ) unitary and d ∈ L∞(V,V, ξ). Let h ∈ L2(T,B(T),S2(G0), µ) be such
that λ 7→ h(λ)[h(λ)]H is the spectral operator density of UX = (UXt)t∈Z with respect to µ, that
is, h(λ)[h(λ)]H = U gX(λ)UH for µ-a.e. λ ∈ T . Let 𝒽 denote the T-joint kernel function of h.
Then, the following assertions are equivalent.275

(i) We have X ∈ SID (Ω,F ,P).

(ii) There exists η ∈ (0, π) such that∫
V2×((−η,η)\{0})

|λ|−2ℜ(d(v)) |𝒽(v, v′;λ)|2 ξ(dv)ξ(dv′)µ(dλ) < ∞ ,

where, for all z ∈ C, ℜ(z) = (z + z̄)/2 denotes the real part of z.

(iii) We have ∫
V2×((−π,π)\{0})

|λ|−2ℜ+(d(v)) |𝒽(v, v′;λ)|2 ξ(dv)ξ(dv′)µ(dλ) < ∞ , (3.8)

where, for all z ∈ C, ℜ+(z) = max (0, (z + z̄)/2) denotes the non-negative real part of z.

In the following corollary, we specify Theorem 3 in the case where X is an ARMA process, as280

in [25]. However, unlike in [25], we let D be any normal operator and not necessarily a scalar one.
Our necessary and sufficient condition relies on the following definition:

Pn (φ, θ) =
{[
[φ]−1 θ

]
◦ exp

}(n)
(0) , n ∈ N , φ ∈ P∗

p , θ ∈ Pq , (3.9)

where the exponent (n) here denotes the n-th derivative of the mapping z 7→ [φ(ez)]−1 θ(ez),
which is infinitely differentiable in a neighborhood of z = 0 as a Lb(H0)-valued function, since
φ ∈ P∗

p (H0). In fact we have

P0 (φ, θ) = [φ(1)]−1θ(1) and Pn (φ, θ) =
n∑

k=1

bn,k
[
[φ]−1 θ

](k)
(1) , n ≥ 1 ,

where bn,k are known positive rational coefficients obtained by taking the exponential Bell n-order
Bell polynomial at (1, . . . , 1). We can now state our main result on FIARMA processes with
normal long memory operator.285

Corollary 2. In addition to the setting of Theorem 3, let us assume that X is the H0-valued

ARMA(p, q) process defined by X̂(dλ) =
[
φ(e−iλ)

]−1
θ(e−iλ)Ẑ(dλ) with θ ∈ Pq(H0), φ ∈ P∗

p (H0)

and Z a white noise with covariance operator Σ. Let σn : v 7→
(
E
[
|Wn(v, ·)|2

])1/2
, where

Wn = U Pn (φ, θ) Z0 is seen as a C-valued function defined on V × Ω. Then, the two following
assertions are equivalent:290
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(i) We have X ∈ SID (Ω,F ,P).

(ii) For all n ∈ N, we have ℜ(d(v)) < n+ 1/2, for ξ-a.e. v ∈ {σn > 0} and∫
{v : ℜ(d(v))<n+1/2}

σ2
n(v)

1 + 2n− 2ℜ(d(v))
ξ(dv) < ∞ . (3.10)

Note that there is a slight abuse of notation in the definition of σn since the definition of
measurability for L2(V,V, ξ)-valued random variables does not necessarily ensure measurability
of Wn(v, ·) as a C-valued random variable. This abuse of notation is common in the literature295

on functional data analysis and is harmless because we can always find a version of W which is
jointly measurable on (V × Ω,V ⊗ F), see Proposition 8 in Appendix B.

Remark 2. Let us briefly comment on Corollary 2.

(1) First, by definition of Wn and σn, we have σn ∈ L2(V,V, ξ) and thus Assertion (ii) always
holds for n large enough, namely, for all n > ξ-essupv∈V(ℜ(d(v)))− 1

2 = (
∥∥D +DH

∥∥
∞−1)/2.300

(2) If θ = φ is the unit polynomial, the ARMA process X equals the white noise process Z,
Pn(φ, θ) = IdH0

, and σn = σ0 for all n ∈ N, so that it is sufficient to check Condition (ii)

only for n = 0. Moreover, in this case, we have σ2
0(v) = E

[
|UZ0(v, ·)|2

]
, that is the variance

of a sample of the white noise variable Z0 mapped to the function space L2(V,V, ξ).

(3) In the case where θ = φ is the unit polynomial as in the previous point, we can easily305

exhibit the reason why the sufficient condition in Corollary 1 is not necessary. Suppose for
simplicity that the white noise satisfies σ2

0(v) = 1 for all v ∈ V with V = [0, 1] and ξ equal
to the Lebesgue measure. Then, the necessary and sufficient condition (3.10) (with n = 0)
allows σ(D) to contain an element with real part 1/2. Take for instance d(v) = 1/2 −

√
v,

in which case (3.10) holds for n = 0 and σ(D) = [−1/2, 1/2].310

(4) In the N -dimensional case with n finite, we have V = {1, . . . , N}, ξ is the counting measure
on V, and U can be interpreted as a n× n unitary matrix, and d and σn as N -dimensional
vectors. Condition (ii) then says that ℜ(d(k)) < n + 1/2 for all n ∈ N and k ∈ {1, . . . , N}
such that σn(k) > 0.

(5) For the real univariate case (N = 1, D = d ∈ R in (4)), Condition (ii) says that d < n0+1/2,315

where n0 is the smallest n such that σn > 0. Ruling out the case where Z is the null process
(in which case Σ = 0 and σn = 0 for all n ∈ N), one can see that n0 equals 0 if θ(1) ̸= 0 and
n0 equals the order of multiplicity of 1 as a root of θ otherwise (in other words, it corresponds
to the difference operator largest order contained in the MA operator). In particular, we find
the usual d < 1/2 condition for the existence of a weakly stationary ARFIMA(p, d, q) model in320

the case where the underlying ARMA(p, q) process is canonical (φ and θ do not vanish on the
unit disk). If n0 ≥ 1, the usual convention is to include the difference operator as a negative
exponent of the fractional integration operator hence leading to an ARFIMA(p, d−n0, q−n0)
with d− n0 < 1/2.

(6) We already mentioned in (1.1) the case treated in [25, Section 4]. In the setting of325

Corollary 2, it corresponds to the case where D = d IdH0
is a scalar operator on H0 =

G0 = L2(V,B(V), ξ) for a compact subset V of R, ξ being the Lebesgue measure on V and
−1/2 < d < 1/2 (thus d(v) ≡ d and U = IdH0

). Under this assumption, Condition (4)
trivially holds since 1 + 2n− 2d > 0 and σn ∈ L2(V,B(V), ξ) for all n ∈ N.

3.4. Other long memory processes330

Several non-equivalent definitions of long rang dependence, or long memory, are available in the
literature for time series. Some approaches focus on the behavior of the autocovariance function at
large lags, others on the spectral density at low frequencies (see [28, Section 2.1] and the references
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therein). Separating short range from long range dependence is often made more natural within a
particular class of models. For instance, for a Hilbert space-valued process Y = (Yt)t∈Z, one may335

rely on a causal linear representation, namely

Yt =

∞∑
k=0

Pk ϵt−k , t ∈ Z , (3.11)

where ϵ = (ϵt)t∈Z is a centered white noise valued in the separable Hilbert space H0 and (Pk)k∈Z
is a sequence of Lb(H0) operators. In (3.11), to make Y well defined and weakly stationary, the
convergence is meant in M(Ω,F ,H0,P) or in its subspace Hϵ, the time domain of ϵ. Obviously,

a sufficient condition for convergence is

∞∑
k=0

∥Pk∥∞ < ∞, and this assumption is referred to as340

the short range dependence (or short memory) case, in contrast to long range dependence (long
memory) case, for which the same series is infinite. The case where Pk = (k+1)−N is investigated
in [14] and exhibit long memory for a well chosen operator N . For convenience, we define the
same process using the spectral domain, based on the filter operator function

JN (λ) =

∞∑
k=0

(k + 1)−N e−iλ k (3.12)

Using the arguments of the proof of [14, Lemma A.1], we immediately have the following result,345

Proposition 3. Let ϵ = (ϵt)t∈Z be a centered white noise valued in the separable Hilbert space
H0 and N ∈ N (H0). Let UNUH = Mn be a unitarily equivalent representation of N , where
U : H0 → G0 := L2(V,V, ξ) is unitary, n ∈ L∞(V,V, ξ) and Mn is the pointwise n-multiplication

operator on L2(V,V, ξ). Define h : v 7→ ℜ(n(v)) and σ2
W : s 7→ E

[
|W (v, ·)|2

]
with W = Uϵ0 and

assume that350

h >
1

2
ξ-a.e. and

∫
V

σ2
W (v)

2h(v)− 1
ξ(dv) < ∞ . (3.13)

Then we have ϵ ∈ SJN
(Ω,F ,P) and the process Y = FJN

(ϵ) is equivalently defined by

Yt =

∞∑
k=0

(k + 1)−N ϵt−k , t ∈ Z . (3.14)

In [14, Theorem 2.1], the limit behavior of the partial sums of this process is provided when ϵ
is independent and identically distributed. In short, if h is valued in (1/2, 1), the exhibited limit
behavior naturally extends the usual behavior observed for univariate long memory processes.
The following result shows that the process (3.14) is closely related to a FIARMA process up to355

a bounded operator C and to an additive short memory process.

Proposition 4. Let N be as in Proposition 3 and let D = IdH0
− N . Then we have

ϵ ∈ SID (Ω,F ,P) and there exist C ∈ Lb(H0) and (P∗
k)k∈N ∈ Lb(H0)

N such that

∞∑
k=0

∥P∗
k∥∞ < ∞ and FID (ϵ) = C FJN

(ϵ) + Z ,

where Z is the short memory process defined, for all t ∈ Z, by Zt =

∞∑
k=0

P∗
kϵt−k.

Other classes of long memory functional time series have been recently considered. In [1],
the long memory part of the functional time series has a finite rank in the sense that it lives in
a finite dimensional linear subspace. In [32], a class of long memory processes is introduced by360

imposing the spectral density operator to be of the form λAM(λ) as the frequency λ → 0, with
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(A, M(λ))λ∈(−π,π) a family of self-adjoint operators sharing the same decomposition operator

(hence commuting), see Assumptions II and III in [32] (where ω refers to the frequency while
λ refers to an element of σ(D)). In opposition to these works, the class of FIARMA processes
introduced above neither impose a finite rank long memory, nor a particular commuting structure365

between a power law frequency behavior and a multiplicative bounded operator valued function.
In particular [32, Example 1] is a very specific subclass of FIARMA processes where the long
memory operator and all the AR and MA operators are assumed to be self-adjoint and compact
with the same eigenvectors, see [32, Eq. (3.16) and (3.17)]. In this reference, the author further
studies the bias of the periodogram in Hilbert-Schmidt norm and the spectral estimation of A370

(within a parametric class (Aθ)θ∈Θ) under the assumption that M(λ) is known and the common
decomposition operator of (Aθ)θ∈Θ and (M(λ))λ∈(−π,π) is also known. In the next section we
study the consistent estimation and prediction of a parametric class of FIARMA processes with
unknown AR, MA and long memory operators.

4. Prediction and estimation375

4.1. Main assumptions and preliminary result

We denote by µT the Lebesgue measure on (T,B(T)) divided by 2π, so that for any locally
integrable 2π-periodic function g,∫

g dµT = (2π)−1

∫
T
g(x) dx = (2π)−1

∫ π

−π

g(x) dx .

Let H0 be a separable Hilbert space, X = (Xt)t∈Z be a process defined on (Ω,F ,P), and valued
in H0, and consider the following assumptions.

(A-1) The process X is stationary and ergodic.

(A-2) The process X is weakly stationary.380

Under (A-2), we always denote by νX the spectral operator measure of X. Denote the discrete
Fourier coefficients of X1, . . . , Xn by

dXn (λ) =
1√
n

n∑
k=1

Xk e
−iλk , λ ∈ T , (4.1)

and the periodogram by
IXn (λ) = dXn (λ)⊗ dXn (λ) , λ ∈ T .

If X is not a centered process, one can use the empirical mean to center it, that is, in (4.1),

replace Xk by X
(c,n)
k as defined in (1.3), in which case we denote the corresponding discrete

Fourier coefficients and the corresponding periodogram by dX
(c,n)

n and IX
(c,n)

n , respectively.385

The periodogram is related to the empirical covariance estimators through the following iden-
tity, for all s, t ∈ Z,

Γ̂n(s− t) =

∫
IX

(c,n)

n (λ) ei (s−t)λ µT(dλ) =
1

n

∑
1≤k,k′≤n

k−k′=(s−t)

X
(c,n)
k ⊗X

(c,n)
k′ . (4.2)

The integral in this equation can be interpreted as a sesquilinear functional Q
IX(c,n)
n

applied to

exponential functions λ 7→ ei s λ on the left and λ 7→ ei t λ on the right, where, for any operator
functions L, g and R defined on T, we set

Qg(L,R) =

∫
Lg RH dµT . (4.3)
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Similarly, if ν is a trace-class p.o.v.m. defined on (T,B(T)) and valued in S+
1 (H0), we set

Qν(L,R) =

∫
Ldν RH . (4.4)

To ensure that these integrals are well defined, we assume that L and R are measurable bounded
functions valued in Lb(H0,G0), with G0 an additional separable Hilbert space. Namely, for any
Banach space (E , ∥·∥E), we further denote, by Fb (T,B(T), E) the set of bounded measurable func-
tions from (T,B(T)) to (E ,B(E)), and we endow Fb (T,B(T), E) with the sup norm, which, for all
L ∈ Fb (T,B(T), E), we denote by

sup (L) = sup
λ∈T

∥L(λ)∥E .

Then, for all g valued in S1(H0) and L,R ∈ Fb (T,B(T),Lb(H0,G0)), we have Qg(L,R) ∈ S1(G0)
with

∥Qg(L,R)∥1 ≤ sup(L) sup(R)

∫
∥g∥1dµT , (4.5)

and similarly, for a trace-class p.o.v.m. ν valued in S+
1 (H0), we have Qν(L,R) ∈ S1(G0) with390

∥Qν(L,R)∥1 ≤ sup(L) sup(R) ∥ν∥1(T) . (4.6)

We denote by Fb,b(H0,G0) the product vector space Fb (T,B(T),Lb(H0,G0)) ×
Fb (T,B(T),Lb(H0,G0)), endowed with the max norm defined by

∥(L,R)∥b,b := max(sup(L), sup(R)) for all (L,R) ∈ Fb,b(H0,G0) .

For any two metric spaces (E1, d1) and (E2, d2), C (E1, E2) denotes the space of continuous functions
from E1 to E2. If F and Fn are in C (E1, E2) for all n ∈ N and

lim
n→∞

sup
x∈E1

d2 (Fn(x), F (x)) = 0 ,

we say that (Fn)n∈N converges to F uniformly in C (E1, E2).
Using these definitions, immediate properties of the quadratic functionals Q

IX(c,n)
n

and QνX

are summarized in the following proposition.

Proposition 5. For any X1, . . . , Xn in H0, the mapping Q
IX(c,n)
n

is well defined and belongs to

C(Fb,b(H0,G0),S1 (G0)). If (A-2) holds, we also have QνX
∈ C(Fb,b(H0,G0),S1 (G0)).395

Proof. Observe that, under the given assumptions, X
(c,n)
1 , . . . , X

(c,n)
n all are in H0, and so is

dX
(c,n)

n (λ). Moreover,
∥∥∥dX(c,n)

n (λ)
∥∥∥
H0

is bounded independently of λ. Consequently, IX
(c,n)

n is

valued in S1(H0) and its trace-norm is integrable over T. The result on Q
IX(c,n)
n

thus follows

from (4.5). Under (A-2), νX is a trace-class p.o.v.m. valued in S+
1 (H0), with ∥νX∥1(T) =

E
[
∥X0∥2H0

]
< ∞. The result on QνX

thus follows from (4.6).400

Our next result only exploits (A-1) and (A-2), and is thus of independent interest. It is
a uniform convergence result for integral quadratic functionals based on the periodogram. It
applies to a parameterized pair of bounded operators functions defined on (T,B(T)) and valued
in Lb(H0,G0) as in the following.

Definition 4. Let (Θ,∆) be a metric space and L and R be in C (Θ× T,Lb(H0,G0)). For all405

n ≥ 1, we define Q̃(L,R)

IX(c,n)
n

: θ 7→ Q
IX(c,n)
n

(L(θ, ·), R(θ, ·)) and Q̃(L,R)
νX : θ 7→ QνX

(L(θ, ·), R(θ, ·)),
where Q

IX(c,n)
n

and QνX
are defined by in (4.3) and (4.4), respectively.
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Note that, by Proposition 5, Q̃(L,R)

IX(c,n)
n

and Q̃(L,R)
νX are in C (Θ,S1(G0)) in Definition 4. We can

now state a first result on the convergence of the periodogram quadratic functional, in the case
where the left and right operator functions’ arrival spaces are finite-dimensional.410

Theorem 4. Let H0 be a separable Hilbert space and G0 be a finite dimensional space. Let
X = (Xt)t∈Z be a process defined on (Ω,F ,P) and valued in H0 satisfying (A-1) and (A-2) and

let (Θ,∆) be a compact metric space. Let L and R be in C (Θ× T,Lb(H0,G0)), and set Q̃(L,R)

IX(c,n)
n

and Q̃(L,R)
νX as in Definition 4. Then, we have

lim
n→∞

Q̃(L,R)

IX(c,n)
n

= Q̃(L,R)
νX

uniformly in C (Θ,S1 (G0)) , P-a.s. (4.7)

We now consider the case where G0 = H0 and H0 is an infinite-dimensional separable Hilbert415

space. In order to obtain the convergence in S1(H0), we will rely on an additional assumption
in this case. To this end, for any sequence s = (sk)k∈N ∈ [1,∞)N and any orthonormal sequence
(ϕk)k∈N of H0, we set

Hs
0 =

{
x ∈ Span

H0
(ϕk, k ∈ N) :

∑
k∈N

s2k
∣∣⟨x, ϕk⟩H0

∣∣2 < ∞

}
. (4.8)

A typical example of such spaces are the Sobolev spaces with index α > 0 where (ϕk)k∈N is a well
chosen Hilbert basis (i.e. orthonormal and complete in H0) and sk = (1+ k)α. The space Hs

0 is a420

subspace of H0 and is itself a separable Hilbert space endowed with the inner product

⟨x, y⟩Hs
0
=
∑
k∈N

s2k ⟨x, ϕk⟩H0
⟨y, ϕk⟩H0

. (4.9)

Setting ξk = s−1
k ϕk for all k ∈ N, we note that (ξk)k∈N is a Hilbert basis of Hs

0.
Using the space Hs

0 that we have just introduced, we have the following result for the infinite-
dimensional case.

Theorem 5. Let H0 be an infinite-dimensional separable Hilbert space. Let X = (Xt)t∈Z be a425

process defined on (Ω,F ,P) and valued in H0 satisfying (A-1) and (A-2) and let (Θ,∆) be a
compact metric space. Let L and R in C (Θ× T,Lb(H0)). Let s = (sk)k∈N ∈ [1,∞)N and (ϕk)k∈N
be an orthonormal sequence of H0. Define the Hilbert space Hs

0 by (4.8) and (4.9). We suppose
that the three following assertions hold.

(i) The sequence s = (sk)k∈N ∈ [1,∞)N is non-decreasing and goes to ∞.430

(ii) We have X0 ∈ Hs
0 P-a.s. with E

[
∥X0∥2Hs

0

]
< ∞.

(iii) Defining Ls and Rs by Ls(θ, λ) = L(θ, λ)|Hs
0
and Rs(θ, λ) = R(θ, λ)|Hs

0
for all (θ, λ) ∈ Θ×T,

we have Ls and Rs in C (Θ× T,Lb(Hs
0)).

Then, the following convergence holds.

lim
n→∞

Q̃(L,R)

IX(c,n)
n

= Q̃(L,R)
νX

uniformly in C (Θ,S1 (H0)) , P-a.s. (4.10)

In fact, as shown by Lemma 12 in Section 5.2, Assumptions (A-1) and (A-2) imply Condi-435

tions (i) and (ii) of Theorem 5 for a well chosen s. This fact is useful to prove Theorem 1, by
applying Theorem 5 for a specific choice of L and R, for which (iii) holds for any sequence s, see
the proof of Theorem 1 in Section 5.3.
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4.2. FIARMA prediction and estimation

A common tool for M -estimation for finite dimensional time series is the Whittle contrast,440

which relies on a Gaussian approximation of dXn as n → ∞, hence suggesting to use a Gaussian
likelihood contrast for dXn , based on its asymptotic covariance operator. We still have such an
approximation for time series valued in a Hilbert space, see [4, Theorem 1]. However, using the
Whittle approach directly in infinite dimension does not seem to be directly applicable. Indeed,
Gaussian distributions are generally singular to each other in infinite dimension. In particular,445

the log determinant term of the noise covariance matrix appearing in the Whittle contrast (for
example, see the first term in L̄N on Page 344 of [12]), is not well defined when this matrix is
replaced by an infinite dimensional covariance operator.

There are two possible ways of circumventing this issue. The first one is to project the data on
some finite-dimensional subspace for statistical inference and then study the behavior of estimators450

as the dimension of this subspace diverges. The second one is to work on a least square criterion,
which does not include the optimization of the noise covariance operator. Here we investigate this
second approach.

Recall that, for any integer d ∈ N, Pd(H0) denotes the set of polynomials p of degree d with

coefficients in Lb(H0), and such that p(0) = IdH0
. In the following, we further denote by P†

d(H0),455

the set of all p ∈ Pd(H0), which are invertible on the closed unit disk D. We now derive the best
one-step ahead predictor of a FIARMA process (see Theorem 6). We then show that, under some
condition, such a predictor can be estimated from the data (see Theorem 7).

Theorem 6. Let H0 be a separable Hilbert space and p, q be two non-negative integers. Let Y be
an H0-valued FIARMA process, as in Definition 2, with long memory operator D ∈ Lb(H0), MA460

polynomial θ ∈ P†
q (H0), AR polynomial φ ∈ P†

p(H0) and an H0-valued centered white noise Z.

Assume that D ∈ N (H0) or that ℜ(z) < 1/2 for all z ∈ σ(D). Define Φ†
θ,φ,D : C → Lb(H0) by

Φ†
θ,φ,D (z) = IdH0 − {θ(z)}−1 φ(z) (1− z)D . (4.11)

Then, λ 7→ Φ†
θ,φ,D

(
e-iλ
)
belongs to ĤY , and, for all t ∈ Z, we have

proj
(
Yt|HY

t−1

)
=

∫
T
eiλt Φ†

θ,φ,D

(
e−iλ

)
Ŷ (dλ) , (4.12)

where proj
(
Yt|HY

t−1

)
denotes the best linear predictor of Yt given its past {Ys : s ≤ t− 1}, that

is, the orthogonal projection of Yt onto the closed space

HY
t−1 = Span

M(Ω,F,H0,P)
(PYs , s = t− 1, t− 2, . . . , P ∈ Lb(H0)) .

We now derive the best predictor among a collection of FIARMA predictors from a finite sample
X1, . . . , Xn. We will consider ARMA predictors or positive long memory FIARMA predictors.465

More precisely, Define

L†(H0) := {D ∈ Lb(H0) : for all s ∈ σ(D), ℜ(s) > 0} , (4.13)

As a subset of Lb(H0), we endow L†(H0) with the topology inherited from the operator norm
∥·∥∞. We consider a collection ℵ of FIARMA parameters satisfying the following assumption.

(A-3) Let ℵ = (Dθ, φθ, θθ)θ∈Θ be valued in Lb(H0) × P†
p(H0) × P†

q (H0) for some p, q ∈ N2 and

indexed by a compact metric space (Θ,∆). Moreover, the mappings (θ, λ) 7→ φθ
(
e−iλ

)
and470

(θ, λ) 7→ θθ
(
e−iλ

)
belong to C (Θ× T,Lb(H0)) and one of the following two assertions hold.

(i) For all θ ∈ Θ, Dθ = 0.

(ii) The mapping θ 7→ Dθ belongs to C
(
Θ,L†(H0)

)
.

15



In (A-3), Condition (i) corresponds to using an ARMA predictor. Therefore, we will call ℵ an
ARMA predictor model in this case. Condition (ii) corresponds to using a FIARMA predictor475

with positive long memory. Therefore, we will call ℵ a positive FIARMA predictor model in this
case. We say that the model ℵ of (A-3) is well-specified for Y when Y is indeed a FIARMA
process with a FIARMA parameter (θ, φ, D) among the collection ℵ.

Our goal is now to derive, based on a finite sample X1, . . . , Xn, an approximation of the best
possible ℵ-prediction of a weakly stationary process X taken among the ARMA or FIARMA480

predictors associated to ℵ. We first precise what we mean by this best prediction in the following
result, for a centered weakly stationary process Y , and show that, in the well specified case, it
corresponds to the best linear predictor of Theorem 6.

Proposition 6 (Definition of ℵ-best prediction). Let H0 be an infinite-dimensional separable
Hilbert space and p, q be two non-negative integers. Let Y = (Yt)t∈Z be a centered weakly stationary485

process defined on (Ω,F ,P) and valued in H0 and let ℵ be a model satisfying (A-3). Then, we
have the following facts and definitions.

(i) For all θ ∈ Θ, there exists an absolutely summable Lb(H0)-valued sequence
(
P†
k (θ)

)
k≥1

such

that, for all λ ∈ T \ {0},

F†(θ, λ) := IdH0
−

∞∑
k=1

P†
k (θ) e

−iλ k =
[
θθ(e

−iλ)
]−1

φθ(e
−iλ)

(
1− e−iλ

)Dθ
. (4.14)

(ii) For all t ∈ Z and θ ∈ Θ, we can define490

Ŷt(θ) :=

∞∑
k=1

P†
k (θ) Yt−k ∈ HY

t−1 . (4.15)

(iii) The best ℵ-prediction quadratic risk of Y is defined as

E2 (Y,ℵ) = inf
θ∈Θ

E
[∥∥∥Yt − Ŷt(θ)

∥∥∥2
H0

]
. (4.16)

which does not depend on t by weak stationarity of Y .

(iv) The inf in (4.16) is attained in Θ (hence is a minimum) and we call the argmin set the set
of best ℵ-predictors for Y , denoted by

Θ∗
Y :=

{
θ ∈ Θ : E

[∥∥∥Yt − Ŷt(θ)
∥∥∥2
H0

]
= E2 (Y,ℵ)

}
. (4.17)

Then, Θ∗
Y is a compact subset of Θ.495

(v) If there exists Ŷ ∗
t ∈ HY

t−1 such that the subset
{
Ŷt(θ) : θ ∈ Θ∗

Y

}
of HY

t−1 reduces to the

singleton
{
Ŷ ∗
t

}
, we call Ŷ ∗

t the best ℵ-predictor of Yt. Otherwise we say that the best

ℵ-predictor of Yt is not well defined.

(vi) When the best ℵ-predictor of Yt is well defined for one t it is well defined for all t. Moreover,
in this case, there exists a set of probability one on which, for all t ∈ Z and θ ∈ Θ∗

Y ,500

Ŷ ∗
t = Ŷt(θ).

(vii) Consider the well-specified case, where we assume that Y is a FIARMA process with param-
eter (D, θ, φ) among ℵ, and suppose that D ∈ N (H0) or that ℜ(z) < 1/2 for all z ∈ σ(D).
Then, the best ℵ-predictor Ŷ ∗

t is always well defined and coincides with the best predictor in
HY

t−1, that is,

E2 (Y,ℵ) = inf
V ∈HY

t−1

E
[
∥Yt − V ∥2H0

]
, (4.18)

Ŷ ∗
t = proj

(
Yt|HY

t−1

)
. (4.19)
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The next result shows how to estimate a predictor which converges to the best predictor that
we have just introduced.

We now introduce our estimation procedure. Using F†
θ defined by (4.14) and the periodogram

IX
(c,n)

n defined in Section 4.1, we consider a sequence of estimators (θ̂n)n∈N satisfying

lim sup
n→∞

(
Λn(θ̂n)− inf

θ∈Θ
Λn(θ)

)
= 0 , (4.20)

where, for all n ∈ N and θ ∈ Θ,

Λn(θ) := Tr

(
Q̃

(F†,F†)

IX(c,n)
n

(θ)

)
= Tr

(∫
F†(θ, λ) IX

(c,n)

n (λ)
(
F†(θ, λ)

)H
dµT

)
. (4.21)

Let X(c) be the centered version of X, X
(c)
t = Xt − E [X0]. Using that IX

(c,n)

n (λ)µT(dλ) approx-
imates νX(dλ) = νX(c)(dλ) with (4.14) and (4.15), Λn(θ) can be seen as an approximation of505

E

[∥∥∥∥X(c)
t − X̂

(c)
t (θ)

∥∥∥∥2
H0

]
, and θ̂n as an attempt to minimize this risk in θ, mimicking what is done

in (4.16). Then, to take onto account the unknown mean of X and since we can only use the
observations X1, . . . , Xn to predict Xn+1, we truncate the series defining the predictor in (4.15)

to keep its n first terms only, apply it to the empirically centered observations
(
X

(c,n)
n+1−k

)
1≤k≤n

and add the empirical mean to approximate E [X0]. This leads us to define the predictor of Xn+1510

from the sample X1, . . . , Xn associated to the estimator θ̂n by

X̂n+1,n =
1

n

n∑
k=1

Xk +

n∑
k=1

P†
k

(
θ̂n

)
X

(c,n)
n+1−k , (4.22)

where P†
k (θ) is defined in Proposition 6. Note that the predictor X̂n+1,n can be written as

m+

n∑
k=1

P†
k (θ) (Xn+1−k −m) (4.23)

by taking m ∈ H0 and θ ∈ Θ equal to 1
n

∑n
k=1 Xk and θ̂n, respectively. In the following theorem,

defining, for all n ≥ 1, m ∈ H0 and θ ∈ Θ, the quadratic prediction risk of a predictor of this form
by515

E2
X,n (m, θ) = E

∥∥∥∥∥Xn+1 −

(
m+

n∑
k=1

P†
k (θ) (Xn+1−k −m)

)∥∥∥∥∥
2

H0

 , (4.24)

we show that, as a predictor of Xn+1, X̂n+1,n asymptotically achieves the same prediction risk as
the optimal risk for predicting the centered process X(c) = X − E [X0] from its past.

Theorem 7. Let H0 be an infinite-dimensional separable Hilbert space and p, q be two non-negative
integers. Let X = (Xt)t∈Z be a process defined on (Ω,F ,P) and valued in H0 satisfying (A-1)
and (A-2). Let ℵ be a model satisfying (A-3) with compact parameter metric space (Θ,∆). Let520

s = (sk)k∈N ∈ [1,∞)N and (ϕk)k∈N be an orthonormal sequence of H0. Define the Hilbert space
Hs

0 by (4.8) and (4.9). We suppose that (i) and (ii) of Theorem 5 hold as well as the following
condition.

(iii) Defining, for all z ∈ C, φθ,s(z) = φθ(z)|Hs
0
and θθ,s(z) = θθ(z)|Hs

0
, we have that (θ, λ) 7→

φθ,s
(
e−iλ

)
and (θ, λ) 7→ θθ,s

(
e−iλ

)
belong to D (Θ× T,Lb(Hs

0)). Under (A-3)(ii), defining525

Dθ,s = Dθ|Hs
0
, assume, in addition, that θ 7→ Dθ,s belongs to C

(
Θ,L†(Hs

0)
)
.
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Finally, let (θ̂n)n∈N be a sequence of estimators satisfying (4.20). Then, we have

lim
n→∞

∆
(
θ̂n,Θ

∗
X(c)

)
= 0 , P-a.s. , (4.25)

lim
n→∞

E2
X,n

(
1

n

n∑
k=1

Xk, θ̂n

)
= E2

(
X(c),ℵ

)
, P-a.s. . (4.26)

where X(c) = (X
(c)
t )t∈Z denotes the centered process defined by X

(c)
t = Xt−E [Xt], Θ

∗
X(c) is defined

in (4.17), E2
X,n in (4.24), and E2

(
X(c),ℵ

)
in (4.16).

Moreover, if

(
X̂

(c)
t

)∗

is well defined (as in Proposition 6 (v)), we further have

lim sup
n→∞

E
[∥∥∥Xn+1 − X̂n+1,n

∥∥∥2
H0

]
≤ E2

(
X(c),ℵ

)
, (4.27)

where X̂n+1,n is defined by (4.22).

Let us briefly comment on the conclusions of Theorem 7. Equation (4.25) says that θ̂n is530

consistent for estimating the optimal θ up to the equivalence relationship θ ∼ θ′ defined by

E

[∥∥∥∥X(c)
t − X̂

(c)
t (θ)

∥∥∥∥2
H0

]
= E

[∥∥∥∥X(c)
t − X̂

(c)
t (θ′)

∥∥∥∥2
H0

]
. Equation (4.26) says that the risk of an

estimator of the form (4.23) for predicting Xn+1 is asymptotically minimal with m and θ re-

placed by the empirical mean and θ̂n. Finally , while (4.25) and (4.26) hold in the P-a.s. sense,
Equation (4.27) says that the prediction risk directly defined with the predictor X̂n+1,n is indeed535

asymptotically optimal. In contrast to (4.26), where the left-hand side is random as a function of

the empirical mean and θ̂n, the left-hand side of (4.27) is not random as the expectation applies
to the prediction error square norm.

5. Postponed proofs

5.1. Proofs of Section 3540

Many results of Section 3 require to control the behavior of some particular operator-valued
functions that depend on the long memory operator D. We obtain some general bounds of such
function that exploit assumptions on the spectrum of this operator in Section 5.1.1. Then we
proceed with the proofs of the results of Section 3.

5.1.1. Preliminary results545

For ς > 0 and ϱ ∈ R, we define the ϱ-above part of the open disk with radius ς by Dϱ,ς and its
closure by Dϱ,ς , that is,

Dϱ,ς = {z ∈ C : |z| < ς , ℜ(z) > ϱ} and Dϱ,ς = {z ∈ C : |z| ≤ ς , ℜ(z) ≥ ϱ} . (5.1)

If ϱ ≤ −ς, then Dϱ,ς is the open disk of radius ς and Dϱ,ς its closure, and, in this case, we also
use the simplified notation Dς , respectively Dς . We consider some special functions (all analytic
on C), which will be used all along this section, respectively defined as follows for some k ∈ N,
ρ ∈ [0, 1] and λ ∈ (−π/3, π/3) \ {0}:

fk(z) = (k + 1)−z , (5.2)

gk(z) = (k + 1)−z − (k + 2)−z , (5.3)

hρ,λ(z) =
(
1− ρ e−iλ

)z
, (5.4)

jρ,λ(z) =
(
1− ρ e−iλ

)−z (
1− e−iλ

)z
. (5.5)

We first derive the following bounds where these functions are applied on C.
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Lemma 2. Let ς > 0 and ϱ ∈ [−ς, ς]. There exist C2, . . . , C4 > 0 only depending on ς, ϱ such
that, for all k ∈ N, ρ ∈ [0, 1] and λ ∈ (−π/3, π/3) \ {0},

sup
z∈Dϱ,ς

|fk(z)| ≤ (k + 1)−ϱ , (5.6)

sup
z∈Dϱ,ς

|gk(z)| ≤ C2 (k + 1)−ϱ ln

(
1 +

1

k + 1

)
, (5.7)

sup
z∈Dϱ,ς

|hρ,λ(z)| ≤ C3 |λ|−ϱ− , (5.8)

sup
z∈Dϱ,ς

|jρ,λ(z)| ≤ C4 |λ|−ϱ− , (5.9)

where ϱ− = max(0,−ϱ) denotes the negative part of ϱ.

Proof. Let z ∈ Dϱ,ς . Then |fk(z)| = (k + 1)−ℜ(z) ≤ (k + 1)−ϱ, so (5.6) holds. To obtain (5.7),
observe that

|gk(z)| = (k + 1)
−ℜ(z)

∣∣∣∣1− exp

(
− ln

(
1 +

1

k + 1

)
z

)∣∣∣∣
≤ ς α(ς ln(2)) (k + 1)−ϱ ln

(
1 +

1

k + 1

)
,

where, here, we set, for any r > 0, α(r) := sup
{∣∣∣ 1−e−z

z

∣∣∣ : z ∈ C , 0 < |z| ≤ r
}
. To obtain (5.8),

we apply Lemma 22 and using that ℜ−(z) ≤ ς, |ℑ(z)| ≤ ς and ℜ−(z) ≤ ϱ−, we get that

|hρ,λ(z)| ≤
(
2π/(3

√
3)
)ς

eπς/2 |λ|−ϱ− .

Finally, to obtain (5.9), we apply Lemmas 21 and 22 and get that

|jρ,λ(z)| ≤
(
2π/(3

√
3)
)ℜ+(z)

|λ|−ℜ+(z)
eπ|ℑ(z)|/2 (π/2)

ℜ−(z) |λ|ℜ(z)
eπ|ℑ(z)|/2 .

Reassembling the terms in this upper bound conveniently, and using that |ℜ(z)| ≤ ς, |ℑ(z)| ≤ ς550

and ℜ−(z) ≤ ϱ−, we get that |jρ,λ(z)| ≤
(
2π/(3

√
3)
)ς

(π/2)
ς
eπς |λ|−ϱ− .

The bounds in Lemma 2 are easily extended to the case where these functions apply to a
normal operator whose spectrum is included in Dϱ,ς .

Lemma 3. Let ς > 0 and ϱ ∈ [−ς, ς]. Let H0 be a separable Hilbert space and let Nϱ,ς denote the
set of all P ∈ N (H0) such that σ(P) ⊆ Dϱ,ς . Then, there exist C2, . . . , C4 > 0 only depending on
ς, ϱ such that, for all k ∈ N, ρ ∈ [0, 1] and λ ∈ (−π/3, π/3) \ {0},

sup
P∈Nϱ,ς

∥fk(P)∥∞ ≤ (k + 1)−ϱ , (5.10)

sup
P∈Nϱ,ς

∥gk(P)∥∞ ≤ C2 (k + 1)−ϱ ln

(
1 +

1

k + 1

)
, (5.11)

sup
P∈Nϱ,ς

∥hρ,λ(P)∥∞ ≤ C3 |λ|−ϱ− , (5.12)

sup
P∈Nϱ,ς

∥jρ,λ(P)∥∞ ≤ C4 |λ|−ϱ− . (5.13)

Proof. Let P ∈ N (H0) such that σ(P) ⊆ Dϱ,ς . Let UPUH = Mn be a unitarily equivalent
representation of P, where U : H0 → G0 := L2(V,V, ξ) is unitary, p ∈ L∞(V,V, ξ) and Mp is
the pointwise p-multiplication operator on L2(V,V, ξ) (see [7, Theorem 9.4.6]). Let f be a power
function with infinite radius of convergence, we have

∥f(P)∥∞ = ∥f(Mp)∥∞ = ∥Mf◦p∥∞ = ξ- essup (f ◦ p) .
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Since ξ({p /∈ σ(P)}) = 0. we get that ∥fk(P)∥∞ ≤ sup
z∈σ(P)

|f(z)| . All the functions fk, gk, hρ,λ

and jρ,λ are analytic on C, so the bounds directly follow from Lemma 2.555

We finally derive similar bounds that apply to bounded operators P and not only normal ones.
There is a price to pay for this extension, namely the spectrum of P must now be included in the
open set Dϱ,ς . We rely on the following lemma.

Lemma 4. Let G be an open subset of C and D be a compact subset of G. Let H0 be a separable
Hilbert space. Then there exists a continuous function CD,G : {P ∈ Lb(H0) : σ(P) ⊆ D} → R+560

only depending on D and G such that, for all analytic functions f : G → C and all P ∈ Lb(H0)
such that σ(P) ⊆ D,

∥f(P)∥∞ ≤ CD,G(P) sup
z∈G

|f(z)| , (5.14)

where f(P) is defined as in [7, VII.4.5].

Proof. By [7, Proposition VII.4.4] and [7, VII.4.5], we can find n functions γ1, . . . , γn infinitely
differentiable from [0, 1] to G \D, such that for all P ∈ LD := {P ∈ Lb(H0) : σ(P) ⊆ D},

f(P) =
1

2πi

n∑
k=1

∫ 1

0

f ◦ γk(t) (γk(t) IdH0
− P)

−1
γ′
k(t) dt .

The bound (5.14) follows by setting

CD,G(P) :=

n∑
k=1

∫
|γ′

k|
2π

sup
t∈[0,1]

(∥∥∥(γk(t) IdH0
− P)

−1
∥∥∥
∞

)
.

It remains to show that CD,G is continuous on LD which is implied by continuity of P 7→
supt∈[0,1]

∥∥∥(γk(t) IdH0
− P)

−1
∥∥∥
∞

on LD for all 1 ≤ k ≤ n. This last continuity holds because565

(t,P) 7→
∥∥∥(γk(t) IdH0

− P)
−1
∥∥∥
∞

is continuous on [0, 1]× LD and [0, 1] is compact.

We can now apply Lemma 4 using the functions defined in (5.2)–(5.5) which are analytic on C.
In contrast to Lemma 3, in the following lemma, the sup is taken on a compact subset of Lb(H0).

Corollary 3. Let H0 be a separable Hilbert space and let K be a compact subset of Lb(H0). Then
{∥P∥∞ : P ∈ K} and {Re(z) : P ∈ K , z ∈ σ(P)} are compact subsets of R. Let us denote

ς = max
P∈K

(∥P∥∞) and ϱ = min
P∈K , z∈σ(P)

(Re(z)) .

Then, for all ς > ς and ϱ ∈
[
−ς, ϱ

)
there exist C ′

1, . . . , C
′
4 > 0 only depending on ς, ϱ and K such

that, for all k ∈ N, ρ ∈ [0, 1] and λ ∈ (−π/3, π/3) \ {0},

sup
P∈K

∥fk(P)∥∞ ≤ C ′
1 (k + 1)−ϱ , (5.15)

sup
P∈K

∥gk(P)∥∞ ≤ C ′
2 (k + 1)−ϱ ln

(
1 +

1

k + 1

)
, (5.16)

sup
P∈K

∥hρ,λ(P)∥∞ ≤ C ′
3 |λ|−ϱ− , (5.17)

sup
P∈K

∥jρ,λ(P)∥∞ ≤ C ′
4 |λ|−ϱ− . (5.18)

Proof. Since K is compact and P 7→ ∥P∥∞ is continuous on K, {∥P∥∞ : P ∈ K} is compact and
ς is well defined. We next show that {Re(z) : P ∈ K , z ∈ σ(P)} is compact. Let g : K × Dς →570

Lb(H0) denote the continuous mapping (P, z) 7→ z IdH0 − P. Since the set of non-invertible oper-

ators is closed in Lb(H0), its reciprocal set by g, that is, K̃ =
{
(P, z) ∈ K × C : z ∈ σ(P) ∩ Dς

}
,
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is closed, thus compact, as a subset of the compact set K × Dς . By definition of ς, we have
K̃ = {(P, z) ∈ K × C : z ∈ σ(P)}. Hence {Re(z) : P ∈ K , z ∈ σ(P)}, as the image of K̃ by the
continuous mapping (P, z) 7→ ℜ(z), is also compact.575

Let now ς > ς and ϱ ∈
[
−ς, ϱ

)
. Then, for all P ∈ K, σ(P) ⊂ Dϱ,ς and we can apply Lemma 4

with D := Dϱ,ς ⊂ G := Dϱ,ς and f equal to one of the functions defined by (5.2)–(5.5). Since

CD,G is continuous, it is bounded on K. Then (5.15)–(5.18) follow from (5.14) and (5.6)–(5.9) in
Lemma 2.

5.1.2. Proof of Theorem 2580

Let gX be the spectral operator density of X with respect to ∥νX∥1. By Proposition 1, we

have X ∈ SID (Ω,F ,P) if and only if

∫ ∥∥ID gX IHD
∥∥
1
d∥νX∥1 < ∞. Now observe that∫ ∥∥ID gX IHD

∥∥
1
d∥νX∥1 =

∫
T\{0}

∥∥∥(1− e−iλ
)−D

(gX(λ))
1/2
∥∥∥2
2
∥νX∥1(dλ)

≤
∫
T\{0}

∥∥∥(1− e−iλ
)−D

∥∥∥2
∞

∥νX∥1(dλ) ,

where, in the last inequality, we have used that ∥gX(λ)∥1 = 1 for ∥νX∥1-a.e. λ ∈ T. To show that

this bound is finite, we first observe that for all λ ∈ T\{0}, we have the bound
∥∥∥(1− e−iλ

)−D
∥∥∥
∞

≤

e∥D∥∞|ln(1−e−iλ)|. This bound is useless for λ close to 0 but we can use it away from 0. For
instance, for λ ∈ T \ (−π/3, π/3),

∣∣ln(1− e−iλ)
∣∣ remains bounded away from 0 and ∞ and thus∥∥∥(1− e−iλ

)−D
∥∥∥
∞

is bounded on this set of frequencies. Since
∫
∥νX∥1(dλ) = E

[
∥X∥2H0

]
< ∞, it585

only remains to show that∫
(−π/3,π/3)\{0}

∥∥∥(1− e−iλ
)−D

∥∥∥2
∞

∥νX∥1(dλ) < ∞ . (5.19)

We apply Corollary 3 with K = {−D}, which gives ϱ > −δ. Then (5.17) with ϱ = −δ and ρ = 1

gives us that, there exists C > 0 such that for all λ ∈ (−π/3, π/3) \ {0},
∥∥∥(1− e−iλ

)−D
∥∥∥2
∞

≤

C |λ|−2 δ
. This implies (5.19) and the proof is concluded.

5.1.3. Proofs of Lemma 1 and Theorem 3590

Lemma 1 is used to show the existence of the joint kernels in Definition 3.

Proof of Lemma 1. Let (ϕi)0≤i<N denote a Hilbert basis of L2(V,V, ξ), assumed to be of
dimension N ∈ {1, 2, . . . ,∞}. Define 𝒦n : (v, v′;λ) 7→

∑
0≤i,j≤n ϕ

H
i K(λ)ϕj ϕi(v)ϕ̄j(v

′) on

V2 × T and, for all n ∈ N and λ ∈ T, let us denote by Nn(λ) the smallest integer in0 ≤ k < N :
∑

i or j>k

∣∣ϕH
i K(λ)ϕj

∣∣2 ≤ 2−n

. Note that this set is not empty since, if N is finite,595

it contains N − 1 and, if N = ∞, we have
∑

i,j

∣∣ϕH
i K(λ)ϕj

∣∣2 = ∥K(λ)∥2 < ∞. Now let us define,
for all v, v′ ∈ V and λ ∈ T, 𝒦 (v, v′;λ) := limn→∞ 𝒦Nn(λ)(v, v

′;λ) whenever this limit exists in C
and set 𝒦 (v, v′;λ) = 0 otherwise. Since (ϕk ⊗ ϕ̄k′)0≤k,k′<N is a Hilbert basis of L2(V2,V⊗2, ξ⊗2),
we immediately have that, for any λ ∈ Λ, 𝒦Nn(λ)(·, ·;λ) converges in the sense of this L2 space to∑

0≤i,j<N ϕH
i K(λ)ϕj ϕi⊗ϕ̄j , and thus, this limit must be equal to𝒦 (·, ·;λ), ξ⊗2-a.e. It follows that,600

that for any λ ∈ Λ, for all i, j ∈ N,
∫
𝒦 (v, v′;λ)ϕ̄i(v)ϕj(v

′) ξ(dv)ξ(dv′) = ϕH
i K(λ)ϕj , which gives

thatK(λ) is an integral operator associated with the kernel𝒦 (·, ·;λ). Since (v, v′, λ) 7→ 𝒦 (v, v′;λ)
is measurable by definition, this concludes the proof of the existence of the Λ-joint kernel of K.
If, moreover, K ∈ L2(Λ,A,S2(H0), µ), then 𝒦n converges in L2(V2 × Λ,V⊗2 ⊗ A, ξ⊗2 ⊗ µ) and
the limit must be equal to 𝒦 , ξ⊗2 ⊗ µ-a.e. since for each λ ∈ Λ, 𝒦n(·, ·;λ) converges to 𝒦 (·, ·;λ)605

in L2(V2,V⊗2, ξ⊗2). Hence, we get that 𝒦 ∈ L2(V2 × Λ,V⊗2 ⊗A, ξ⊗2 ⊗ µ).
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We now prove Theorem 3.

Proof of Theorem 3. We assume without loss of generality that µ({0}) = 0 (since it affects
none of the given assertions). The proof is organized as follows. We first show that Assertion (i)
is equivalent to610 ∫

V2×(−π,π]

|λ|−2ℜ(d(v)) |𝒽(v, v′;λ)|2 ξ(dv)ξ(dv′)µ(dλ) < ∞ . (5.20)

Then we successively check that Condition (5.20) is equivalent to Assertions (iii) and (ii).
Step 1:(i)⇔(5.20). By Proposition 1, Assertion (i) is equivalent to∫

T

∥∥∥(1− e−iλ)−DgX(λ)
[
(1− e−iλ)−D

]H∥∥∥
1
µ(dλ) < ∞ . (5.21)

Using the unitarily equivalent representation (3.6), and since U is unitary from H0 to L2(V,V, ξ),
we get that, for all λ ∈ T \ {0},∥∥∥(1− e−iλ)−DgX(λ)

[
(1− e−iλ)−D

]H∥∥∥
1
=
∥∥∥UHM(1−e−iλ)−dUgX(λ)UHMH

(1−e−iλ)−dU
∥∥∥
1

=
∥∥M(1−e−iλ)−dh(λ)

∥∥2
2
.

Hence, using the T-joint kernel 𝒽 of h, the left-hand side of (5.21) reads∫ ∣∣∣(1− e−iλ)−d(v)𝒽(v, v′;λ)
∣∣∣2 ξ(dv)ξ(dv′)µ(dλ). Applying Lemma 21 to z = −d(v), since

d is ξ-essentially bounded, we get that (5.21), thus Assertion (i), is equivalent to (5.20).
Step 2:(5.20)⇔(iii). Using the identity |λ|−2ℜ(d(v)) = |λ|−2ℜ+(d(v)) + |λ|2ℜ−(d(v)) − 1, that
|λ|2ℜ−(d(v)) is bounded independently of v and λ and that∫

|𝒽(v, v′;λ)|2 ξ(dv)ξ(dv′)µ(dλ) =

∫
∥h(λ)∥22 µ(dλ) < ∞ ,

we get that (5.20) is equivalent to Assertion (iii).615

Step 3:(5.20)⇔(ii). This follows similarly by observing that, for any η ∈ (0, π), |λ|−2ℜ(d(v)) is
bounded independently of v on λ ∈ (−π, π] \ (−η, η).

5.1.4. Proof of Corollary 2

We start with a result providing a decomposition of the square root of the spectral operator
density of an Hilbert space valued ARMA process. It is required for the proof of Corollary 2.620

Lemma 5. Let H0 be a separable Hilbert space and X be an ARMA(p, q) process defined by
X̂(dλ) = [φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) with θ ∈ Pq(H0), φ ∈ P∗

p (H0) and Z an H0-valued white noise
with covariance operator Σ. Then, there exists η ∈ (0, π) such that∑

n∈N

ηn

n!
∥Pn (φ, θ)∥∞ < ∞ , (5.22)

where Pn (φ, θ) is defined in (3.9). Moreover, for µ-a.e. λ ∈ (−η, η), we have

gX(λ) = h(λ) [h(λ)]H with h(λ) =
∑
n∈N

(−iλ)n

n!
Pn (φ, θ) Σ

1/2 , (5.23)

where h can be seen as a power series valued in S2(H0) with a convergence radius at least equal625

to η.
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Proof. Since z 7→ [φ(z)]−1 θ(z) is holomorphic in an open ring containing U and the exponential
function is holomorphic on C, by [15, Theorem 1.8.5], there exists η > 0 such that (5.22) holds
and [φ(ez)]−1 θ(ez) coincides with the Lb(H0)-valued power series

∑∞
n=0 Pn (φ, θ) zn/n! on the set

{z ∈ C : |z| ≤ η}.630

Finally, we observe that gX = hhH with h(λ) = [φ(e−iλ)]−1 θ(e−iλ) Σ1/2 and the given expres-
sion of h in (5.23) follows from (5.22) and the usual bound∥∥∥Pn (φ, θ) Σ

1/2
∥∥∥
2
≤ ∥Pn (φ, θ)∥∞

∥∥∥Σ1/2
∥∥∥
2
= ∥Pn (φ, θ)∥∞ ∥Σ∥1/21 .

This concludes the proof.

Proof of Corollary 2. Before proving the claimed implications, we start with some preliminary
facts that follow from Lemma 5, Lemma 24 and Theorem 3. First observe that the process UX =
(UXt)t∈Z is the G0-valued ARMA(p, q) process defined by ÛX(dλ) = [φ̃(e−iλ)]−1 θ̃(e−iλ) ÛZ(dλ),
where θ̃ := UθUH ∈ Pq(G0) and φ̃ := UφUH ∈ P∗

p (G0), and UZ = (UZt)t∈Z is a G0-valued white635

noise. Then, applying Lemma 5 with µ as the Lebesgue measure, we get that, for some η > 0,
νUX has density h(λ)[h(λ)]H on (−η, η) with h a power series valued in S2(G0) with radius of
convergence at least η > 0,

h(λ) =
∑
n∈N

(−iλ)n

n!
U Pn (φ, θ) Σ

1/2 UH . (5.24)

Now, define, for any η′ ∈ (0, η),

I(η′) :=

∫
V2×(−η′,η′)

|λ|−2ℜ(d(v)) |𝒽(v, v′;λ)|2 ξ(dv)ξ(dv′)
dλ

2π
,

where 𝒽 is the T-joint kernel of h in (5.24). By Theorem 3, Assertion (i) holds if, and only if,
there exists η′ ∈ (0, η) such that I(η′) < ∞ which is itself equivalent to having I(η′) < ∞ for all640

η′ ∈ (0, η). Using (5.24), we have

I(η′) =

∫
V2×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∑
n∈N

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣
2

ξ(dv)ξ(dv′)
dλ

2π
, (5.25)

where 𝓀n denotes the kernel of U Pn (φ, θ) Σ1/2 UH ∈ S2(G0). In particular we have by Lemma 24
that

σn(v) =
(
E
[
|Wn(v, ·)|2

])1/2
= ∥𝓀n(v, ·)∥G0

. (5.26)

Denote

In(η
′) :=

∫
V2×(−η′,η′)

|λ|2n−2ℜ(d(v)) |𝓀n(v, v
′)|2 ξ(dv)ξ(dv′)

dλ

2π
, (5.27)

d = ξ-essup
v∈V

(ℜ(d(v))) and m := inf
{
m ∈ N : m > d− 1/2

}
.

Note that d and m are finite since d ∈ L∞(V,V, ξ). Defining, moreover,

I(η′) :=

∫
V2×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

0≤n<m

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣∣
2

ξ(dv)ξ(dv′)
dλ

2π

and R(η′) :=

∞∑
n=m

I
1/2
n (η′)

n!
,

and applying the Minkowski inequality in (5.25), for any η′ ∈ (0, η), we have that, if R(η′) < ∞,

I(η′) < ∞ ⇔ I(η′) < ∞ .
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Let us pick η′ ∈ (0, 1∧ η). Then, for all λ ∈ (−η′, η′) and n ∈ N, we have |λ|2n−2ℜ(d(v)) ≤ |λ|2n−2d

and thus, for all n ≥ m,

In(η
′) ≤ η′(1+2n−2d)

π(1 + 2n− 2d)

∫
V2

|𝓀n(v, v
′)|2 ξ(dv)ξ(dv′)

=
η′(1+2n−2d)

π(1 + 2n− 2d)

∥∥∥Pn (φ, θ) Σ
1/2
∥∥∥2
2
.

Using that
∥∥Pn (φ, θ) Σ1/2

∥∥
2
≤ ∥Pn (φ, θ)∥∞∥Σ∥1/21 and the bound (5.22) of Lemma 5, we get that

R(η′) < ∞. We thus conclude that Assertion (i) is equivalent to have, for some η′ ∈ (0, 1 ∧ η),645

I(η′) < ∞ . (5.28)

Next, we show that, for any η′ ∈ (0, 1), Condition (ii) is, in fact, equivalent to have

In(η
′) < ∞ for all n ∈ N . (5.29)

Indeed, integrating w.r.t. v′ and λ in the definition of In(η
′) in (5.27), we have that, for all n ∈ N,

In(η
′) =

∫
{v : ℜ(d(v))<n+1/2}

η′ (1+2n−2ℜ(d(v))) σ2
n(v)

1 + 2n− 2ℜ(d(v))
ξ(dv)

π
,

if ℜ(d(v)) < n+ 1/2 for ξ-a.e. v ∈ {σn > 0}, and is equal to ∞ otherwise. Since d is bounded on
V, so is η′ (1+2n−2ℜ(d(v))) on v ∈ V and we conclude that Condition (ii) is equivalent to (5.29).

We are now ready to prove each implication of the claimed equivalence successively.
Proof of (i)⇐(ii). This is now trivial, since applying the Minkowski inequality in the integral650

defining I in (5.28) and the definition of In in (5.27), we immediately see that Condition (5.28) is
implied by (5.29).
Proof of (i)⇒(ii). The proof of this implication is a bit more complex. The first step is to prove
that Assertion (i) implies

for all n ∈ N and ξ-a.e. v ∈ {σn > 0}, ℜ(d(v)) < n+ 1/2 . (5.30)

Then, we show that it must also imply (3.10) for all n ∈ N in a second and last step. For655

convenience, from now on, for any c ∈ R, we simply write {ℜ(d) < c} for {v : ℜ(d(v)) < c}.
Step 1. Suppose that (5.30) does not hold; let us show that Assertion (i) cannot hold. Since it
is equivalent to (5.28), it is sufficient to show that I(η′) = ∞ for any arbitrary η′ > 0. Let m
be the smallest n ∈ N for which ξ ({ℜ(d) ≥ n+ 1/2} ∩ {σn > 0}) > 0. Note that by their mere
definitions, we have m < m. In addition, for all 0 ≤ n < m, we have

ξ ({ℜ(d) ≥ m+ 1/2} ∩ {σn > 0}) ≤ ξ({ℜ(d) ≥ n+ 1/2} ∩ {σn > 0}) = 0 .

Hence, 𝓀n(v, v
′) = 0 for ξ⊗2-a.e. (v, v′) ∈ {ℜ(d) ≥ m+ 1/2}×V. Now we have, using the definition

of I(η′) in (5.28) and what we just deduced,

I(η′) ≥
∫
{ℜ(d)≥m+1/2}×V×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

0≤n<m

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣∣
2

ξ(dv)ξ(dv′)
dλ

2π

=

∫
{ℜ(d)≥m+1/2}×V×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m≤n<m

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣∣
2

ξ(dv)ξ(dv′)
dλ

2π
.

Note that, for all (v, v′) ∈ V2 and λ ∈ R, we have

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m≤n<m

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣∣
2

= |λ|2m−2ℜ(d(v))

(∣∣𝓀m(v, v′)
∣∣2

(m!)2
+ o(1)

)
,
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where o-term tends to 0 as λ → 0. We get that, for all (v, v′) ∈ ({ℜ(d) ≥ m+ 1/2} × V) ∩{∣∣𝓀m

∣∣2 > 0
}
and η′ > 0,

∫
(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m≤n<m

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣∣
2

dλ

2π
= ∞ .

With the previous lower bound on I(η′), we deduce that I(η′) = ∞ if

ξ⊗2
(
({ℜ(d) ≥ m+ 1/2} × V) ∩

{∣∣𝓀m

∣∣2 > 0
})

> 0 .

By definition of σn in (5.26), we have, for all v ∈ V,

g(v) :=

∫
V

1{
|𝓀m(v,v′)|2>0

} ξ(dv′) > 0 ⇔ σm(v) > 0 .

Hence,

ξ⊗2
(
({ℜ(d) ≥ m+ 1/2} × V) ∩

{∣∣𝓀m

∣∣2 > 0
})

=

∫
{ℜ(d)≥m+1/2}

g dξ

is positive if and only if ξ
(
{ℜ(d) ≥ m+ 1/2} ∩

{
σm > 0

})
> 0, which is true by definition of m.

This concludes the first step.
Step 2. Suppose now that (5.30) does hold but (3.10) does not hold for all n ∈ N and let us
show again that Assertion (i) cannot hold. Let us define m̃ as the smallest n ∈ N such that (3.10)660

does not hold. Again by definition of m, we must have m̃ < m, since (3.10) holds for n = m by
definition of m. Take now an arbitrary η′ ∈ (0, 1 ∧ η). We have shown in the preamble of the
proof that if (5.30) is satisfied, then (3.10) is equivalent to In(η

′) < ∞. Hence, we can also see m̃
as the smallest n ∈ N such that In(η

′) = ∞. Thus, we have Ik(η
′) < ∞ for all 0 ≤ k < m̃ and

Im̃(η′) = ∞. It follows that Assertion (i) is not only equivalent to having I(η′) < ∞ as in (5.28)665

but also to the condition

Ĩ(η′) :=

∫
V2×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m̃≤n<m

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣∣
2

ξ(dv)ξ(dv′)
dλ

2π
< ∞ . (5.31)

Now, we observe that

Ĩ(η′) ≥
∫
{ℜ(d)<m̃+1/2}×V×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m̃≤n<m

(−iλ)n

n!
𝓀n(v, v

′)

∣∣∣∣∣∣
2

ξ(dv)ξ(dv′)
dλ

2π
.

Therefore, to conclude that Ĩ(η′) = ∞ (implying that Assertion (i) does not hold), by the
Minkowski inequality, it is sufficient to show that

Ĩm̃(η′) = ∞ and, for all n > m̃, Ĩn(η
′) < ∞ , (5.32)

where, for all n ∈ N, we denoted

Ĩn(η
′) :=

∫
{ℜ(d)<m̃+1/2}×V×(−η′,η′)

|λ|2n−2ℜ(d(v)) |𝓀n(v, v
′)|2 ξ(dv)ξ(dv′)

dλ

2π
.

For all n ≥ m̃ we have, as in the previous computation of In that

Ĩn(η
′) < ∞ ⇔

∫
{ℜ(d)<m̃+1/2}

σ2
n(v)

1 + 2n− 2ℜ(d(v))
ξ(dv) < ∞ .

For an integer n > m̃, we have 1+ 2n− 2ℜ(d(v)) ≥ 2 on {ℜ(d) < m̃+ 1/2}, hence the right-hand
side of (5.32) follows as a consequence of

∫
σ2
n dξ < ∞. For n = m̃, the left-hand side of (5.32)

follows as a consequence of (3.10) not being satisfied for n = m̃ by definition of m̃.
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5.1.5. Proof of Proposition 4670

The proof of Proposition 4 relies on the following two lemmas where we recall that the open
and closed complex unit discs of C are denoted by D and D, respectively. The first lemma involves
Banach-space-valued series and is used in the next one.

Lemma 6. Let E be a Banach space and (an)n∈N ∈ EN such that ∥an∥E −−−−→
n→∞

0 and the series∑
∥an − an+1∥E converges. Then for all z0 ∈ D \ {1}, the series

∑∞
n=0 anz

n
0 converges in E and675

the mapping z 7→
∑∞

n=0 anz
n is uniformly continuous on [0, z0].

Proof. By assumption on (an),
∑

anz
n is a power series valued in E with a convergence radius at

least equal to 1, and hence is uniformly continuous on any compact subset of D. When |z0| = 1,
the result follows using Abel’s transform.

The following lemma provides a useful identity between operator-valued functions defined on680

convenient domains of C, whose restrictions to the unit circle are the transfer functions ID and
JN . It is needed in the proofs of Proposition 4 and Lemma 18.

Lemma 7. Let H0 be a separable Hilbert space and ς > 0. Then there exist C1, C2 > 0 only
depending on ς such that, for all N ∈ Lb(H0) satisfying ∥N∥∞ ≤ ς, there exist Q ∈ Lb(H0) and
(P∗

k)k∈N ∈ Lb(H0)
N satisfying the four following assertions.685

(i) We have ∥Q∥∞ ≤ C1.

(ii) We have, for all k ≥ 0, ∥P∗
k∥∞ ≤ C2 (k + 1)−1

∥∥∥(k + 1)
−N
∥∥∥
∞
.

(iii) We have, for all z ∈ D, (1 − z)N−IdH0 = Q

( ∞∑
k=0

(k + 1)−Nzk

)
+

∞∑
k=0

P∗
kz

k, where the two

infinite sums converge in Lb(H0).

(iv) If ℜ(z) > 0 for all z ∈ σ(N), then Assertion (iii) can be extended to all z ∈ D \ {1} and we690

have

∞∑
k=0

∥P∗
k∥∞ < ∞.

Proof. Let z ∈ D, then

(1− z)N−IdH0 = IdH0
+
∑
k≥1

Nkz
k with Nk =

k∏
j=1

(
IdH0

− N

j

)
, for all k ≥ 1 . (5.33)

The proof is now three steps. First, by separating the above sum in two parts k < k0 and k ≥ k0
and by decomposing Nk conveniently for k ≥ k0. we obtain Assertion (iii) for well defined Q and
P∗
k, k ≥ 0. Then we show that Assertions (i) and (iii) hold. Finally we prove Assertion (iv).695

Step 1. Define the integer k0 ≥ 1 by the condition ς < k0 ≤ ς + 1. Then, for all j ≥ k0,

IdH0
− N

j = exp
(
ln
(
IdH0

− N
j

))
= exp

(
−
∑

ℓ≥1
Nℓ

ℓ jℓ

)
and therefore, for all k ≥ k0,

Nk =

k0−1∏
j=1

(
IdH0 −

N

j

)
exp

−
∑
ℓ≥1

N ℓ

ℓ

k∑
j=k0

1

jℓ


=

k0−1∏
j=1

(
IdH0

− N

j

)
exp

−N

k∑
j=k0

1

j

 exp

−
∑
ℓ≥2

N ℓ

ℓ

k∑
j=k0

1

jℓ

 . (5.34)
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Moreover, we have the following asymptotic expansions. For all k ≥ k0,

k∑
j=k0

1

j
=

k∑
j=1

1

j
−

k0−1∑
j=1

1

j
= ln(k + 1) + γe −

k0−1∑
j=1

1

j
+

αk

k
,

k∑
j=k0

1

jℓ
=

∞∑
j=k0

1

jℓ
−

∞∑
j=k+1

1

jℓ
=

βℓ

kℓ0
+

ηk,ℓ
(ℓ− 1)kℓ−1

, for all ℓ ≥ 2 ,

where γe is Euler’s constant, βℓ :=
∑∞

k=k0

(
k0

k

)ℓ
, and (αk)k≥1 and (ηk,ℓ)k≥1,ℓ≥2 are some universal

constants satisfying
sup
k≥1

|αk| < ∞ and sup
k≥1,ℓ≥2

|ηk,ℓ| < ∞ . (5.35)

Also note that
sup
ℓ≥2

βℓ = β2 < ∞ . (5.36)

Using these definitions in (5.34), we obtain, for all k ≥ k0,

Nk = Q(k + 1)−N exp

−N
αk

k
−
∑
ℓ≥2

N ℓηk,ℓ
(ℓ− 1)kℓ−1


where

Q =

k0−1∏
j=1

(
IdH0

− N

j

)
exp

(
−N

(
γe −

k0−1∑
t=1

1

t

))
exp

−
∑
ℓ≥2

(
N

k0

)ℓ
βℓ

ℓ

 . (5.37)

Using the previous equations in (5.33), for all z ∈ D, we can write (1− z)N−IdH0 as

IdH0
+

k0−1∑
k=1

k∏
j=1

(
IdH0

− N

j

)
zk +Q

∑
k≥k0

(k + 1)−N exp

−N
αk

k
−
∑
ℓ≥2

N ℓηk,ℓ
(ℓ− 1)kℓ−1

 zk .

Thus, Assertion (iii) immediately follows by setting

P∗
0 := IdH0

−Q , (5.38)

P∗
k :=

k∏
j=1

(
IdH0

− N

j

)
−Q (k + 1)−N , for 1 ≤ k ≤ k0 − 1, (5.39)

P∗
k := Q(k + 1)−N

exp
−N

αk

k
−
∑
ℓ≥2

N ℓηk,ℓ
(ℓ− 1)kℓ−1

− IdH0

 for k ≥ k0. (5.40)

Step 2. We now prove Assertion (i) and Assertion (ii). Since ∥N∥∞ ≤ ς and k0 only depends on
ς, using (5.37) and (5.36), we immediately get Assertion (i) for C1 > 0 well chosen only depending
on ς. By (5.38) and (5.39), for k < k0 ≤ ς + 1 we can similarly bound ∥P∗

k∥∞ by a constant only
depending on ς. Now let k ≥ k0 and define

Φk := −N
αk

k
−
∑
ℓ≥2

N ℓηk,ℓ
(ℓ− 1)kℓ−1

.

Relation (5.40) yields

∥P∗
k∥∞ ≤ ∥Q∥∞

∥∥(k + 1)−N
∥∥
∞

∑
t≥1

∥Φk∥t∞
t!

.
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Using that ∥N∥∞ ≤ ς, we have

∥Φk∥∞ ≤ ς
|αk|
k

+
∑
ℓ≥2

ςℓηk,ℓ
(ℓ− 1)kℓ−1

=
ς

k

|αk|+
∑
ℓ≥1

ςℓ

ℓ
ηk,ℓ+1k

1−ℓ


≤ ς

k

(
|αk|+

(
sup

k≥1,ℓ≥2
|ηk,ℓ|

)
ς

(
1− ς

k0

)−1
)

.

The two previous bounds, with Assertion (i) and (5.35), yield Assertion (iii).700

Step 3. We conclude with the proof of Assertion (iv) and therefore assume that ℜ(z) > 0 for
all z ∈ σ(N). Since σ(N) is a compact subset of C, there exists ς > 0 and ϱ ∈ (0, ς) such that
σ(N) ⊂ Dϱ,ς with Dϱ,ς defined as in (5.1). Applying Corollary 3 with K = {N}, the bounds (5.15)
and (5.16) gives us that ∥∥(k + 1)−N

∥∥
∞ = O

(
(k + 1)−ϱ

)
, (5.41)∥∥(k + 1)−N − (k + 2)−N

∥∥
∞ = O

(
(k + 1)−ϱ−1

)
. (5.42)

We can now extend Assertion (iii) to D \ {1}, that is, to the case z = e−iλ for some λ ∈ T \ {0}.
For such a λ, as a consequence of Assertion (iii), we already have, for all 0 < a < 1,

(1− ae−iλ)N−IdH0 = Q
∑
k≥0

(k + 1)−Nake−iλk +
∑
k≥0

P∗
ka

ke−iλk .

Moreover, (1 − e−iλ)N−IdH0 = lima↑1(1 − ae−iλ)N−IdH0 by continuity of z 7→ (1 − z)N−IdH0

in C \ [1,∞). It remains to show that, for λ ∈ T \ {0},
∑

k≥0(k + 1)−Nake−iλk converges to∑
k≥0(k + 1)−Ne−iλk and

∑
k≥0 P

∗
ka

ke−iλk converges to
∑

k≥0 P
∗
ke

−iλk and as a ↑ 1 and that
these convergences hold in Lb(H0). The first convergence follows by applying Lemma 6 with
ak = (k + 1)−N using (5.41) and (5.42). The second convergence follows from Assertion (ii)705

and (5.41), which concludes the proof.

We can now prove Proposition 4.

Proof of Proposition 4. Let us first show that ϵ ∈ SID (Ω,F ,P). Since ϵ is a white noise, as
explained in Remark 2 (2), Assertion (ii) of Corollary 2 needs to be checked only for n = 0. The
result follows since this case precisely corresponds to the conditions in (3.13) with D = IdH0 −N .710

We apply Lemma 7 with ς = ∥N∥∞. Let h be as in Proposition 3, we have ℜ(z) ≥ ϱ :=
ξ-essinf(h) for all z ∈ σ(N). The first condition in (3.13) implies that ϱ ≥ 1/2. Then, Assertion (iv)
of Lemma 7 gives us that, for all λ ∈ T\{0}, we have (1−e−iλ)N−IdH0 = Q

∑∞
k=0(k+1)−Ne−iλk+∑∞

k=0 P
∗
ke

−iλk in Lb(H0) and

∞∑
k=0

∥P∗
k∥∞ < ∞. Thus C FJN

(ϵ) + Z and FID (ϵ) coincide in the

spectral domain of ϵ, which concludes the proof.715

5.2. Proofs of Section 4.1

5.2.1. Preliminary results

In the following, for two separable Hilbert spaces H0 and I0 and a finite non-negative measure
µ on (T,B(T)), we denote by ∥·∥1,1 the natural norm of the Bochner space L1,1(H0, I0, µ) :=

L1 (T,B(T),S1(H0, I0), µ), that is,

∥g∥1,1 :=

∫
∥g(λ)∥1 dµ .
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We use the notation

B1,1(r,H0, I0, µ) =
{
g ∈ L1 (T,B(T),S1(H0, I0), µ) : ∥g∥1,1 ≤ r

}
,

for the ball of radius r in the Banach space L1,1(H0, I0, µ). As usual, if I0 = H0, we drop I0 in
the notation, thus writing L1,1(H0, µ) and B1,1(r,H0, µ) in this case. Also if µ = µT we drop the
measure in the notation, thus writing L1,1(H0, I0) and B1,1(r,H0, I0), or L1,1(H0) and B1,1(r,H0)720

if I0 = G0, in this case.
These definitions and those introduced in Section 4.1 (such as Q and Q̃) will be useful in

the following. Recall, in particular, that Fb (T,B(T), E) denotes the set of bounded measurable
functions from (T,B(T)) to (E ,B(E)). We will also need to define Fb,b ((H0,G0) , (I0,J0)) as the
product vector space Fb (T,B(T),Lb(I0,J0)) × Fb (T,B(T),Lb(H0,G0)), endowed with the max
norm

∥(L,R)∥b,b := max(sup(L), sup(R)) for all (L,R) ∈ Fb,b ((H0,G0) , (I0,J0)) .

This simply extends the definition of Fb,b(H0,G0) already introduced in Section 4.1, which can be
seen as a short-hand notation for Fb,b ((H0,G0) , (H0,G0)).

We now derive a series of useful lemmas.

Lemma 8. Let µ be a finite non-negative measure on (T,B(T)) and H0, G0, I0 and J0 be four
separable Hilbert spaces and g ∈ L1,1(H0, I0, µ). Then the mapping Qg,µ defined by

Qg,µ(L,R) =

∫
Lg RH dµ (5.43)

is a continuous sesquilinear mapping from Fb,b ((H0,G0) , (I0,J0)) to S1 (G0,J0) satisfying

sup
{
∥Qg,µ(L,R)∥1 : ∥(L,R)∥b,b ≤ 1

}
≤ ∥g∥1,1 .

Consequently, for any positive radius r, the set {Qg,µ : g ∈ B1,1(r,H0, I0, µ)} is equicontinuous725

in C (Fb,b ((H0,G0) , (I0,J0)) ,S1 (G0, I0)).

Proof. For all (L,R) ∈ Fb,b ((H0,G0) , (I0,J0)), g ∈ L1,1(H0, I0) and λ ∈ T, we have∥∥L(λ) g(λ)R(λ)H
∥∥
1
≤ ∥L(λ)∥∞ ∥g(λ)∥1

∥∥R(λ)H
∥∥
∞ ,

which is thus integrable with respect to µ. Moreover, we obtain that

∥Qg,µ(L,R)∥1 ≤ ∥g∥1,1 sup(L) sup(R) .

The given claim immediately follows as well as its consequence.

We also derive the following lemma, which will be useful in the following.

Lemma 9. Let H0, G0 and I0 be three separable Hilbert spaces, Θ be a compact metric space, and
let L and R be two continuous mappings from Θ×T into Lb(H0,G0) and Lb(H0, I0), respectively.730

Then, for any positive radius r, the set R(r) :=
{
Q̃(L,R)

g : g ∈ B1,1(r,H0)
}

is equicontinuous in

C (Θ,S1 (I0,G0)).

Proof. Let r > 0. Since Θ × T is compact, R and L are uniformly continuous on Θ × T and we
get that θ 7→ (L(θ, ·), R(θ, ·)) ∈ C (Θ,Fb,b ((H0,G0) , (H0, I0))). By Lemma 8, we get that R(r) is
equicontinuous in C (Θ,S1 (I0,G0)).735

We next provide four last preliminary lemmas, one about the non-centered periodogoram, and
two dealing with the centering term.
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Lemma 10. Let H0 and I0 be two separable Hilbert spaces such that I0 is continuously embedded

in H0. Assume (A-1) and suppose moreover that X0 ∈ I0 P-a.s. with E
[
∥X0∥2I0

]
< ∞. Then,

for all n ≥ 1, IXn ∈ L1,1(H0, I0) P-a.s. and we have

sup
n≥1

∥∥IXn ∥∥1,1 < ∞ P-a.s.

Proof. Note that, for all n ≥ 1, we have, using the definition of IXn , and then that of dXn ,∥∥IXn ∥∥1,1 =

∫ ∥∥IXn ∥∥1 dµT

≤
∫ ∥∥dXn (λ)

∥∥
I0

∥∥dXn (λ)
∥∥
H0

dµT

≤
(∫ ∥∥dXn (λ)

∥∥2
I0

dµT

)1/2 (∫ ∥∥dXn (λ)
∥∥2
H0

dµT

)1/2

=

(
1

n

n∑
k=1

∥Xk∥2I0

)1/2 (
1

n

n∑
k=1

∥Xk∥2H0

)1/2

,

where in the right-hand side of the first line ∥·∥1 denotes the S1(H0, I0)-norm. By (A-1), with
the Birkhoff ergodic theorem, we get that the right-hand of the previous bound converges P-a.s.
The claim P-a.s.uniform bound of

(∥∥IXn ∥∥1,1)n≥1
follows.740

Lemma 11. Recall that IXn and IX
(c,n)

n denote the periodograms respectively computed from

X1, . . . , Xn and from X
(c,n)
1 , . . . , X

(c,n)
n , as defined in (1.3). Suppose that X1, . . . , Xn ∈ H0.

Then, IXn and IX
(c,n)

n belong to S1(H0) and we have, for all λ ∈ T,

∥∥∥IXn (λ)− IX
(c,n)

n (λ)
∥∥∥
1
≤

∥∥∥∥∥∥ 1n
n∑

j=1

Xj

∥∥∥∥∥∥
2

H0

Fn(λ) + 2

∥∥∥∥∥∥ 1n
n∑

j=1

Xj

∥∥∥∥∥∥
H0

∥∥dXn (λ)
∥∥
H0

(Fn(λ))
1/2

,

where Fn denotes the Fejér kernel defined by

Fn(λ) =
1

n

∣∣∣∣∣
n∑

k=1

e−iλ k

∣∣∣∣∣
2

. (5.44)

Proof. By (1.3) and (4.1), we have, for all λ ∈ T,

dX
(c,n)

n (λ) = dXn (λ)−

 1

n

n∑
j=1

Xj

 (
1√
n

n∑
k=1

e−iλ k

)
.

Computing IX
(c,n)

n (λ) = dX
(c,n)

n (λ) ⊗ dX
(c,n)

n (λ) and using that ∥x⊗ y∥1 = ∥x∥H0
∥y∥H0

for all
x, y ∈ H0, we easily get the result.

We have the following result on the process X.

Lemma 12. Let H0 be a separable Hilbert space. Assume (A-1) and (A-2). Then, the process745

X is valued in a finite-dimensional space G0 ⊂ H0 or, if it is not the case, there always exists an
orthonormal sequence (ϕk)k∈N of H0 and a sequence s = (sk)k∈N ∈ [1,∞)N such that Conditions (i)
and (ii) in Theorem 5 hold.

30



Proof. Define Σ = E [X0 ⊗X0]. Since Σ ∈ S+
1 (H0), there exists a finite or countable non-

increasing sequence (σk)0≤k<K ∈ (0,∞)N and an orthonormal sequence (ϕk)0≤k<K ∈ HN
0 such

that
Σ =

∑
0≤k<K

σ2
k ϕk ⊗ ϕk and

∑
0≤k<K

σ2
k < ∞ .

In particular, we have that P-a.s., X0 is valued in Span
H0

(ϕk , 0 ≤ k < K). If K is finite, then
X0 is valued in the finite-dimensional space G0 = Span (ϕk , 0 ≤ k < K).750

From now on, we take K = ∞. By Lemma 23, we can find s = (sk)k∈N ∈ [1,∞)N, non-
decreasing and going to ∞ (hence, satisfying Condition (i) in Theorem 5), such that

∑
k∈N s2kσ

2
k <

∞. Defining Hs
0 by (4.8) and its inner product by (4.9), we get that

E
[
∥X0∥2Hs

0

]
=
∑
k∈N

s2kσ
2
k < ∞ .

We thus have Condition (ii) in Theorem 5.

The following lemma is used to treat the centering term in the next result, and also to prove
Theorem 1.

Lemma 13. Let H0 be a separable Hilbert space. Assume (A-1) and (A-2). Then,

lim
n→∞

1

n

n∑
j=1

Xj = E [X0] in H0 , P-a.s. (5.45)

Proof. If we can find a finite-dimensional space G0 ⊂ H0 such that X is valued in G0, then (5.45)
follows straightforwardly from the Birkhoff ergodic theorem. If not, by Lemma 12, we can find an
orthonormal sequence (ϕk)k∈N of H0 such that Conditions (i) and (ii) in Theorem 5 hold. As a
consequence, by the Birkhoff ergodic theorem, we get that

lim
n→∞

1

n

n∑
j=1

∥Xj∥Hs
0
= E

[
∥X0∥Hs

0

]
P-a.s.

Since
∥∥∥ 1
n

∑n
j=1 Xj

∥∥∥
Hs

0

≤ 1
n

∑n
j=1 ∥Xj∥Hs

0
for all n ≥ 1, we get that, P-a.s., there exists r > 0

such that supn≥1

∥∥∥ 1
n

∑n
j=1 Xj

∥∥∥
Hs

0

≤ r. Using that (sk)k∈N is going to infinity, we get that the

operator
∑

k∈N s−1
k ϕk ⊗ ϕk belongs to S∞(H0). Since the image by this operator of the unit H0-

ball is the unit Hs
0-ball, we get that all Hs

0-balls are compact in H0. In particular, we have that(
1
n

∑n
j=1 Xj

)
n≥1

is P-a.s. valued in a compact subset of H0. Therefore, it only remains to show

that, P-a.s., the only possible accumulation point of this sequence is E [X0]. This fact follows by
using the Birkhoff ergodic theorem again, which gives us, for all x ∈ H0,

lim
n→∞

〈
1

n

n∑
j=1

Xj , x

〉
H0

= lim
n→∞

1

n

n∑
j=1

⟨Xj , x⟩H0
= E

[
⟨X0, x⟩H0

]
= ⟨E [X0] , x⟩H0

P-a.s.

Hence we get the convergence (5.45).755

We can now state a result which applies both in the context of Theorem 4 and Theorem 5.

Theorem 8. Let H0 and G0 be two separable Hilbert spaces. Assume (A-1) and (A-2), and
suppose that (Θ,∆) is a compact metric space. Let L and R in C (Θ× T,Lb(H0,G0)). Moreover,
suppose that, P-a.s., there exists, for all θ ∈ Θ, a compact subset B ⊂ S1 (G0) such that, for all

n ≥ 1 Q̃(L,R)

IX
n

(θ) ∈ B. Then, we have760

lim
n→∞

Q̃(L,R)

IX(c,n)
n

= Q̃(L,R)
νX

uniformly in C (Θ,S1 (G0)) , P-a.s. (5.46)
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Proof. Thanks to the centering (1.3), we can replace all Xk’s by Xk − E [X0] without modifying

X
(c,n)
k for any n, k ≥ 1. Hence, without loss of generality, from now on in this proof, we assume

that E [X0] is zero, that is, the process X is centered.
By Lemma 11 and using that

∫
Fn dµT = 1, first note that for all θ ∈ Θ we have, for all n ≥ 1,∥∥∥Q̃

IX(c,n)
n

(θ)− Q̃IX
n
(θ)
∥∥∥
1
≤ An (An +Bn) sup

θ∈Θ

λ∈T

∥L(θ, λ)∥∞ sup
θ∈Θ

λ∈T

∥R(θ, λ)∥∞ ,

where we set

An :=

∥∥∥∥∥∥ 1n
n∑

j=1

Xj

∥∥∥∥∥∥
H0

and Bn = 2

∫ ∥∥dXn ∥∥H0
(Fn)

1/2
dµT .

By the Cauchy-Schwartz inequality and then the Parseval identity, we have

Bn ≤ 2

(∫ ∥∥dXn ∥∥2H0
dµT

)1/2

= 2

(
1

n

n∑
k=1

∥Xk∥2H0

)1/2

,

which, by the Birkhoff ergodic theorem and (A-2), converges P-a.s.. On the other hand, using
Lemma 13, we have that, P-a.s., limn→∞ An = 0. Hence, we finally get that

lim
n→∞

sup
θ∈Θ

∥∥∥Q̃
IX(c,n)
n

(θ)− Q̃IX
n
(θ)
∥∥∥
1
= 0 P-a.s.

Therefore, to prove (5.46), we can replace IX
(c,n)

n by IXn , that is, it only remains to prove that

lim
n→∞

Q̃(L,R)

IX
n

= Q̃(L,R)
νX

uniformly in C (Θ,S1 (G0)) , P-a.s. (5.47)

We immediately have from Proposition 5 that Q̃(L,R)

IX
n

and Q̃(L,R)
νX belong to C (Θ,S1 (G0)). The765

rest of the proof is now in three steps. First, we show that, P-a.s., every sequence valued in{
Q̃(L,R)

IX
n

: n ≥ 1
}

admits a subsequence which converges uniformly in C (Θ,S1 (G0)). Second, we

show that, for all x, y ∈ G0 and θ ∈ Θ, we have

lim
n→∞

xHQ̃(L,R)

IX
n

(θ)y = xHQ̃(L,R)
νX

(θ)y , P-a.s. (5.48)

We then conclude in Step 3 from these two results.

Step 1. By (A-2), we have E
[
∥X0∥2H0

]
< ∞, and we can apply Lemma 10 with I0 = H0770

and get that, P-a.s., there exists C such that, for all n ∈ N,
∥∥IXn ∥∥1,1 ≤ C, where here ∥·∥1,1

denotes the norm in L1,1(H0). We conclude with Lemma 9 that, P-a.s.,
{
Q̃(L,R)

IX
n

: n ≥ 1
}

is

equicontinuous in C (Θ,S1(G0)). Using the last assumption of the theorem, we also have that,

P-a.s., for all θ ∈ Θ, there is a compact subset B of S1(G0) such that
{
Q̃(L,R)

IX
n

(θ) : n ≥ 1
}

is

included in B. Thus, P-a.s., the Ascoli-Arzelà theorem (see [31, Section 7.10]) applies and any775

sequence in
{
Q̃(L,R)

IX
n

: n ≥ 1
}
admits a uniformly convergent subsequence in C (Θ,S1(G0)), which

concludes the proof of Step 1.
Step 2. This step is similar to the scalar case and we follow the ideas of [16]. Let x, y ∈ G0, θ ∈ Θ,
and denote x = xHL(θ, ·) and y = yHR(θ, ·), so that x and y are continuous functions from T to
HH

0 = Lb(H0,C), and (5.48) can be written as780

lim
n→∞

QIX
n
(x,y) = QνX

(x,y) , P-a.s. (5.49)

We can write, for any N ∈ N∗,

x = FN ⋆ x+ (x− FN ⋆ x) ,
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where ⋆ denotes the convolution of locally integrable 2π-periodic functions,

f ⋆ g(λ) =

∫
f(λ′) g(λ− λ′) µT(dλ

′) , λ ∈ T ,

and FN is the Fejér kernel defined by (5.44). Using standard properties of Fejér’s kernel and the
fact that λ 7→ x(λ) is continuous on R, we have, denoting eℓ(λ) = eiλℓ so that (eℓ)ℓ∈Z is a Hilbert
basis of L0 := L2 (T,B(T), µT),

FN ⋆ x =

N∑
ℓ=−N

αℓ(N) cℓ(x) eℓ , (5.50)

with αℓ(N) = 1− |ℓ|
N

and cℓ(x) =

∫
x(λ)e−iℓλ µT(dλ) ,

lim
N→∞

sup
λ∈R

∥x(λ)− FN ⋆ x(λ)∥∞ = 0 . (5.51)

Eq (5.51) can be interpreted as saying that FN ⋆ x converges to x in Fb (T,B(T),Lb(H0,C)). The
same holds with y replacing x and, applying Lemma 8 with I0 = H0 and G0 = J0 = C and
µ = µT, since by Step 1,

{
IXn : n ≥ 1

}
remains in a ball of L1,1 P-a.s., we have, P-a.s.,

lim
N→∞

sup
g∈{IX

n : n≥1}
|Qg(FN ⋆ x, FN ⋆ y)−Qg(x,y)| . (5.52)

Similarly by the continuity of QνX
= QgX ,µ (with gX the density of νX with respect to µ = ∥νX∥1)

established in Lemma 8, we have

lim
N→∞

QνX
(FN ⋆ x, FN ⋆ y) = QνX

(x,y) . (5.53)

Next, using (5.50), we have

QIX
n
(FN ⋆ x, FN ⋆ y) =

N∑
ℓ,ℓ′=−N

αℓ(N)αℓ′(N) cℓ(x)QIX
n
(eℓ, eℓ′) cℓ′(y)

H

=

N∑
ℓ,ℓ′=−N

αℓ(N)αℓ′(N) cℓ(x) Γ̃n(ℓ− ℓ′) cℓ′(y)
H , (5.54)

where Γ̃n denotes the empirical covariance defined as in (4.2), but with X(c,n) replaced by X, that
is,

Γ̃n(s− t) =

∫
IXn (λ) ei (s−t)λ µT(dλ) =

1

n

∑
1≤k,k′≤n

k−k′=(s−t)

Xk ⊗Xk′ .

In particular, we have for any ℓ, ℓ′ ∈ {−N, . . . , N},

cℓ(x) Γ̃n(ℓ− ℓ′) cℓ′(y)
H =

1

n

∑
1∨(1+ℓ−ℓ′)≤k≤n∧(n+ℓ−ℓ′)

cℓ(x)Xk X
H
k−(ℓ−ℓ′) cℓ′(y)

H

By (A-1), with the Birkhoff ergodic theorem, we get, for any ℓ, ℓ′ ∈ {−N, . . . , N}, P-a.s.,

lim
n→∞

cℓ(x) Γ̃n(ℓ− ℓ′) cℓ′(y)
H = E

[
cℓ(x)Xℓ−ℓ′ X

H
0 cℓ′(y)

H
]

= cℓ(x) Cov (Xℓ−ℓ′ , X0) cℓ′(y)
H

= cℓ(x)QνX
(eℓ, eℓ′) cℓ′(y)

H .

where we used that X is centered and that νX is the spectral operator measure of X. From (5.54),
using (5.50) again, we get that, P-a.s., for any N ≥ 1,

lim
n→∞

QIX
n
(FN ⋆ x, FN ⋆ y) = QνX

(FN ⋆ x, FN ⋆ y) .
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This, with (5.52) and (5.53), concludes Step 2.
Step 3. From Step 1, there exists Ω′ ∈ F with probability 1 such that on Ω′, any sequence

valued in
{
Q̃(L,R)

IX
n

: n ≥ 1
}

admits a subsequence uniformly converging in C (Θ,S1(H0)). To

obtain (5.47), we will exhibit Ω′′ ⊂ Ω′ with probability one such that, on Ω′′, Q̃(L,R)
νX is the only

possible accumulation point of the sequence
(
Q̃(L,R)

IX
n

)
n≥1

. Let E0 be a countable linearly dense

subset of G0 and let (θj)j∈N be a dense sequence in Θ, which exists since Θ is compact. Then,
from Step 2, we have, P-a.s.,

∀j ∈ N ,∀x, y ∈ E0 , lim
n→N

xHQ̃(L,R)

IX
n

y = xH Q̃(L,R)
νX

y .

We can thus take Ω′′ ⊂ Ω′ with probability one, on which the previous display holds. Let ω ∈ Ω′′

and take an accumulation point Q̃∞ of
(
Q̃(L,R)

I
X(ω)
n

)
n≥1

in C (Θ,S1(G0)). Then, for all j ∈ N, using

the previous display and the fact that Q̃∞ must also be an accumulation point for the weak

operator topology, we get that, for all x, y ∈ E0, x
HQ̃∞(θj)y = xHQ̃(L,R)

νX (θj)y, which implies785

Q̃∞(θj) = Q̃(L,R)

νX (θj). Since Q̃∞ and Q̃(L,R)

νX are continuous on Θ, and (θj)j∈N is dense in Θ, we

get that Q̃∞ and Q̃(L,R)

νX coincide, which concludes the proof.

5.2.2. Proof of Theorem 4

We can now prove Theorem 4 as a direct application of Theorem 8.

Proof of Theorem 4. Theorem 4 directly follows from Theorem 8, if we can prove that, P-a.s.,790

there exists B, a compact subset of S1(G0), such that Q̃(L,R)

IX
n

(θ) ∈ B for all n ≥ 1 and θ ∈ Θ.

Because G0 is finite-dimensional, so is S1(G0), and we only need to show that, P-a.s., there exists

C > 0 such that
∥∥∥Q̃(L,R)

IX
n

(θ)
∥∥∥
1
≤ C for all n ≥ 1 and θ ∈ Θ. By Lemma 8, this follows from the

fact that, P-a.s., there exists r > 0 such that
∥∥IXn ∥∥1 ≤ r for all n ≥ 1, which has already been used

in the proof of Theorem 8 and is a consequence of Lemma 10 with (A-2) in the case H0 = I0.795

This concludes the proof.

5.2.3. Proof of Theorem 5

The proof of Theorem 5 essentially follows the same path as that of Theorem 4. However, in the
infinite-dimensional case, we will need an additional result (Proposition 7) to prove the assumption
involving the set B in Theorem 8. The result relies on the space Hs

0 introduced in Section 4.1. In800

this section, we will make extensive use of partial isometries as (see [8, Definition 3.8]). We recall
that a partial isometry U on the Hilbert space H0 onto another Hilbert space G0 is a bounded
operator which is an isometry on (ker(U))⊥. The subspaces (ker(U))⊥ and Im(U) are respectively
called the initial space and final space of U . We recall that, if U is a partial isometry, then UHU
and UUH are the orthogonal projections onto the initial and the final space of U respectively.805

Let us start with the following lemma, whose proof is straightforward, but which contains some
important definitions

Lemma 14. Let H0 be a separable Hilbert space and let (ϕk)k∈N be an orthonormal sequence in

H0. Let s = (sk)k∈N ∈ [1,∞)N and define
(
Hs

0, ⟨·, ·⟩Hs
0

)
by (4.8) and (4.9). Denote by Js the

continuous Hs
0 ↪→ H0-inclusion map defined on Hs

0 onto H0 by x 7→ x. Further denote by Us the810

partial isometry with initial space Span
H0

(ϕk, k ∈ N) and final space Hs
0 such that, for all k ∈ N,

Usϕk = s−1
k ϕk. Finally, let us set Js = Js Us ∈ Lb(H0). Then, for all x ∈ H0, we have

Js =
∑
k∈N

s−1
k ϕk ⊗ ϕk . (5.55)

Moreover, suppose that s is non-decreasing and going to ∞. Then, we have Js ∈ S∞ (H0).
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We now have the following result.

Proposition 7. Let H0 be a separable Hilbert space and let (ϕk)k∈N be a an orthonormal sequence815

in H0. Define Js as in Lemma 14 for s = (sk)k∈N ∈ [1,∞)N non-decreasing and going to ∞. Define

B1 =
{
P ∈ S1(H0) : ∥P∥1 ≤ 1 and (Js P)H = Js P

}
. Then the set B1 = {Js P : P ∈ B1} is

compact in S1(H0).

Proof. Let (Pn)n∈N be a sequence valued in B1 and let us prove that it admits a subsequence
which converges in B1. By definition, we can write, for all n ∈ N, Pn = Js P̃n with P̃n ∈ B1.
We use that S1(H0) is isometric to the dual of the space S∞(H0) (see [8, Theorem 19.1]. Then,
by the Banach-Alaoglu Theorem (see Theorem 3.1 in [7, Chapter V]), we get that the unit ball
of S1(H0) is compact for the weak-star topology, that is the topology generated by the family
of semi-norms {P 7→ |Tr(CP)| : C ∈ S∞(H0)}. This implies that (P̃n)n∈N admits a subsequence
(P̃an)n∈N converging to an element Q̃ in the unit ball of S1(H0) in the sense of the weak-star
topology, that is, for all C ∈ S∞(H0), we have

lim
n→∞

Tr
(
CP̃an

)
= Tr

(
CQ̃
)

.

Observe that for all x, y ∈ H0, the operator C = x ⊗ yJs is a rank-one (hence compact) linear
operator on H0 onto H0. The last display thus gives that P̃an converges to Q̃ in weak operator820

topology (that is, for all x, y ∈ H0,
〈
P̃anx, y

〉
H0

converges to ⟨Qx, y⟩H0
). Since Js P̃an

is hermitian

for all n, we get that Js Q̃ is hermitian as well and we finally get that Q̃ must be in B1. (In fact
we have shown that B1 is compact for the weak-star topology).

Let us set Q = JsQ̃ ∈ B1 and for all n ∈ N, ∆n = Pan − Q = Js∆̃n with ∆̃n = P̃an − Q̃,
and let us summarize our findings so far. We already know that Pan and Q are in B1 (hence are825

hermitian and so is ∆n), that
∥∥∥∆̃n

∥∥∥
1
≤ 2 and that

(
∆̃n

)
n→∞

converges to zero in S1(H0) for the

weak-star topology, which also implies the convergence in weak operator topology. To conclude,
we now proceed in two steps. First, we show that (∆n)n∈N converges to 0 for the strong operator
topology. Second, we use the first step to show that limn→+∞ ∥∆n∥1 = 0.
Step 1. Let x ∈ H0, then, for all n ∈ N, using (5.55), we have

∥∆n x∥2H0
=
∑
k∈N

∣∣⟨∆n x, ϕk⟩H0

∣∣2 =
∑
k∈N

s−2
k

∣∣∣∣〈∆̃n x, ϕk

〉
H0

∣∣∣∣2 .

Since
(
∆̃n

)
n∈N

converges to 0 for the weak operator topology, we have, for all m ≥ 1,

lim
n→∞

m−1∑
k=0

s−2
k

∣∣∣∣〈∆̃n x, ϕk

〉
H0

∣∣∣∣2 = 0 .

On the other hand, for all m,n ≥ 1, using the fact that
∥∥∥∆̃n

∥∥∥
∞

≤
∥∥∥∆̃n

∥∥∥
1
≤ 2 and that s is

non-decreasing, we get that

∞∑
k=m

s−2
k

∣∣∣∣〈∆̃n x, ϕk

〉
H0

∣∣∣∣2 ≤ s−2
m

∞∑
k=0

∣∣∣∣〈∆̃n x, ϕk

〉
H0

∣∣∣∣2
= s−2

m

∥∥∥∆̃n x
∥∥∥2
Hs

0

≤ 4 s−2
m ∥x∥2H0

,

hence converges to 0 independently of n as m → ∞, by assumption on s. With the two previous830

displays, we conclude that (∆n x)n∈N converges to 0 in H0. Hence, (∆n)n∈N converges to 0 for
the strong operator topology.
Step 2. Let n ∈ N. Since ∆̃n ∈ S1(H0) and Js ∈ Lb(H0), we have ∆n ∈ S1(H0). Consider the
polar decomposition of ∆n, that is ∆n = Vn |∆n| where Vn is a partial isometry with initial space
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ker(∆n)
⊥ = Im(|∆n|) and final space Im(∆n) (see §3.9 in [8]). Since ∆n is autoadjoint we have835

ker(∆n)
⊥ = Im(∆n) and we get that Im(|∆n|) = Im(∆n) ⊂ Im(Js) = Span (ϕk, k ∈ N). Hence

∥∆n∥ = Tr(|∆n|) =
∑
k∈N

⟨|∆n|ϕk, ϕk⟩H0
=
∑
k∈N

⟨∆nϕk, Vnϕk⟩H0
, (5.56)

where the last equality comes from the fact that |∆n| = V H
n ∆n.

Now, note that for all m ≥ 1,

m−1∑
k=0

∣∣⟨∆nϕk, Vnϕk⟩H0

∣∣ ≤ m−1∑
k=0

∥∆nϕk∥H0
,

which converges to zero by Step 1. Thus,

for all m ≥ 1, lim
n→∞

m−1∑
k=0

⟨∆nϕk, Vnϕk⟩H0
= 0 . (5.57)

On the other hand, using the fact that ∆n is hermitian and (5.55), we have, for all n, k ∈ N,

⟨∆nϕk, Vnϕk⟩H0
= ⟨ϕk,∆nVnϕk⟩H0

=
〈
ϕk, Js∆̃nVnϕk

〉
H0

= s−1
k

〈
ϕk, ∆̃nVnϕk

〉
H0

= s−1
k

〈
∆̃nϕk, Vnϕk

〉
H0

.

It follows that, for all m ≥ 1,∑
k≥m

∣∣⟨∆nϕk, Vnϕk⟩H0

∣∣ ≤ s−1
m

∑
k∈N

∣∣∣∣〈∆̃nϕk, Vnϕk

〉
H0

∣∣∣∣ ≤ s−1
m

∥∥∥∆̃n

∥∥∥
1
,

where we used [8, Corollary 18.12]. Since
∥∥∥∆̃n

∥∥∥
1
≤ 1 and s−1

m converges to 0, we obtain that

lim
m→∞

sup
n∈N

∑
k≥m

∣∣⟨∆nϕk, Vnϕk⟩H0

∣∣ = 0 .

This with (5.56) and (5.57) concludes the second and final step.

We can now prove Theorem 5.840

Proof of Theorem 5. By the polarization formula we can write Q̃(L,R)

IX(c,n)
n

as a linear combination

of Q̃(W,W )

IX(c,n)
n

with W in {L+R,L−R,L+ iR,L− iR}. The same formula holds for expressing

Q̃(L,R)
νX using Q̃(W,W )

νX with the same W ’s. Hence, to obtain the claimed result, it suffices to show
that, for all W ∈ {L+R,L−R,L+ iR,L− iR}, we have

lim
n→∞

Q̃(W,W )

IX(c,n)
n

= Q̃(W,W )
νX

uniformly in C (Θ,S1 (H0)) , P-a.s. (5.58)

So, take W ∈ {L+R,L−R,L+ iR,L− iR}, and let us show (5.58).845

By assumption on L and R, we have W ∈ C (Θ× T,Lb(H0)) and, using Condition (iii), Ws ∈
C (Θ× T,Lb(Hs

0)) where Ws(θ, λ) = W (θ, λ)|Hs
0
for all (θ, λ) ∈ Θ × T. By Condition (ii), we can

apply Lemma 10 with I0 = Hs
0, and obtain that, P-a.s.,

there exists r1 > 0 such that
{
IX

(c,n)

n : n ≥ 1
}
⊂ B1,1(r1,H0,Hs

0) . (5.59)

Now let us define Js, Us and Js as in Lemma 14. Applying these definitions carefully and using
the fact that UUH is the orthogonal projection onto Im(Us) = Hs

0, it straightforwardly yields that,
for all (θ, λ) ∈ Θ× T, and x ∈ Hs

0,

Js UH
s Ws(θ, λ)x = Js Ws(θ, λ)x = W (θ, λ)x .
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Thus, for all n ∈ N, P-a.s., IXn ∈ L1,1 (H0,Hs
0), and for all θ ∈ Θ,

Q̃(W,W )

IX
n

(θ) = Js Q̃
(UH

s Ws,W )

IX
n

(θ) . (5.60)

Observe that Ws ∈ C (Θ× T,Lb(Hs
0)) immediately implies that UH

s Ws(θ, ·) ∈ Fb (Hs
0,H0). Thus,850

for all θ, we can apply Lemma 8 with I0 = Hs
0 and G0 = J0 = H0, L = UH

s Ws(θ, ·), R = W ,
g = IXn and µ = µT, which, with (5.59), gives us that, P-a.s.: for all θ ∈ Θ, there exists r > 0 such

that
∥∥∥Q̃(UH

s Ws,W )

IX
n

(θ)
∥∥∥
1
≤ r, where, here, ∥·∥1 denotes the trace-class norm in S1 (H0). With (5.60)

and the fact that Q̃(W,W )

IX
n

(θ) is an hermitian operator for all θ, we get that, P-a.s.: for all θ ∈ Θ,

there exists r > 0 such that Q̃(W,W )

IX
n

(θ) belongs to the set B = r B1, with B1 defined as in855

Proposition 7. Since B is compact by Proposition 7, we can apply Theorem 8 with L = R := W
and we obtain (5.58), which concludes the proof.

5.3. Proof of Theorem 1

Hereafter we prove (1.4) by relying on Theorem 5. Of course the uniform convergence in θ does
not matter in this case and it could be proven by relying directly on Proposition 7, by mimicking860

the argument used in the proof of Theorem 5 to show that
(
Γ̂n(h)

)
n∈N

remains in a compact

subset of S1(H0), P-a.s. (since the convergence of Γ̂n(h) to Γ(h) = Cov (Xh, X0) in weak operator
topology is obvious under the assumptions of Theorem 1).

Proof of Theorem 1. Let h be a given lag in Z. The claimed result follows from Theorem 5 with
L(θ, λ) = eihλIdH0 and R(θ, λ) = IdH0 , with θ being an arbitrary point and Θ the corresponding865

singleton. Indeed, with these definitions, the convergence (1.4) can be rewritten as (5.46). Thus,
we only need to show that (Xt)t∈Z and the above defined L and R satisfy the assumptions of
Theorem 5. Obviously (A-1) and (A-2) are satisfied. As for Conditions (i) and (ii), they follow
from (A-1) and (A-2) by Lemma 12, for well chosen s and (ϕk)k∈N. Now, defining Ls and

Rs as in Theorem 5 with L and R as above, we get Ls(θ, λ) = eihλIdHs
0
and Rs(θ, λ) = IdHs

0
,870

and L,R,Ls and Rs obviously satisfy the assumptions of the theorem (including Condition (iii)).
Hence Theorem 5 applies and the proof is finished.

5.4. Proofs of Section 4.2

5.4.1. Preliminary results

The following simple lemma gathers basic properties related to the function Φ†
θ,φ,D and is used875

repeatedly in the following.

Lemma 15. Let H0 be a separable Hilbert space and p, q be two non-negative integers. Let D ∈
Lb(H0), θ ∈ P†

q (H0) and φ ∈ Pp(H0). Define Φ†
θ,φ,D by (4.11). Then θ−1 : z 7→ [θ(z)]−1

and Φ†
θ,φ,D

are holomorphic functions on D onto Lb(H0). Moreover θ−1 is continuous on D and (z, θ, φ, D) 7→
Φ†

θ,φ,D (z) is continuous from
(
D \ {1}

)
× P†

q (H0)× Pp(H0)× Lb(H0) to Lb(H0).880

Proof. By holomorphic in Lemma 15 we mean the same as in [15, Definition 1.1.1]. Since φ and θ
are polynomials they are holomorphic in C. For θ ∈ P†

q (H0), we further have that z 7→ [θ(z)]−1
is

holomorphic on D and continuous on D. Since the principal logarithmic function is holomorphic
on C \ [1,∞), and the exponential function P 7→ exp(P) is a power series with infinite radius
of convergence, z 7→ (1 − z)D is holomorphic as a Lb(H0)-valued function (see [15, Chapter 1]).885

Moreover, (z,D) 7→ (1− z)D is continuous on (C \ [1,∞))×Lb(H0). The remaining claims follow

from these facts and the definition of Φ†
θ,φ,D in (4.11).

The following lemma is useful in the proof of Theorem 6.
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Lemma 16. Let H0 be a separable Hilbert space and p, q be two non-negative integers. Let D ∈
Lb(H0), θ ∈ P†

q (H0) and φ ∈ Pp(H0) and define Φ†
θ,φ,D by (4.11). Let moreover X ∈ SID (Ω,F ,P)890

with spectral operator density gX with respect to µ. We assume that one of the two following
condition holds.

(i) There exists δ ≥ 0 such that ℜ(z) < δ for all z ∈ σ(D) and

∫
T\{0}

|λ|−2 δ
gX(λ) µ(dλ) < ∞.

(ii) We have D ∈ N (H0).

Then, we have ∫
(−π/3,π/3)\{0}

sup
0≤ρ≤1

∥∥Ψ(ρ, λ)gX(λ)ΨH(ρ, λ)
∥∥
1
µ(dλ) < ∞ , (5.61)

in the two following cases:

if Ψ(ρ, λ) :=
(
1− ρe−iλ

)−D −
(
1− e−iλ

)−D
. (5.62)

or if Ψ(ρ, λ) :=
(
Φ†

θ,φ,D

(
ρe−iλ

)
− Φ†

θ,φ,D

(
e−iλ

)) (
1− e−iλ

)−D
. (5.63)

Proof. The proof is three steps. First, we first find sufficient conditions for (5.61) that hold895

respectively under (5.62) and (5.63). Then we show that these conditions are satisfied under
Condition (i). Finally we show that they are also satisfied under Condition (ii).
Step 1. Consider the two conditions:∫

(−π/3,π/3)\{0}
sup

0≤ρ≤1

∥∥∥(1− ρe−iλ
)−D

(gX(λ))
1/2
∥∥∥2
2
µ(dλ) < ∞ , (5.64)∫

(−π/3,π/3)\{0}
sup

0≤ρ≤1

∥∥∥(1− ρe−iλ
)D (

1− e−iλ
)−D

(gX(λ))
1/2
∥∥∥2
2
µ(dλ) < ∞ . (5.65)

In this step we show that under (5.62), the bound (5.61) is implied by (5.64) and under (5.63),
the bound (5.61) is implied by (5.65). Indeed, for Ψ(ρ, λ) as in (5.62), we have, for all 0 ≤ ρ ≤ 1
and λ ̸= 0,∥∥Ψ(ρ, λ)gX(λ)ΨH(ρ, λ)

∥∥
1
=
∥∥∥Ψ(ρ, λ) (gX(λ))

1/2
∥∥∥2
2
≤ 4 sup

0≤ρ≤1

∥∥∥(1− ρe−iλ
)−D

(gX(λ))
1/2
∥∥∥2
2
.

Hence we get that (5.61) follows from (5.64). Let us now take Ψ(ρ, λ) as in (5.63). By (4.11), for

all λ ∈ T \ {0} and 0 ≤ ρ ≤ 1, the difference Φ†
θ,φ,D

(
ρe−iλ

)
− Φ†

θ,φ,D

(
e−iλ

)
can be written as[

θ(e−iλ)
]−1

φ(e−iλ) (1− e−iλ)D −
[
θ(ρe−iλ)

]−1
φ(ρe−iλ) (1− ρe−iλ)D .

By Lemma 15, θ−1 is continuous on D, hence θ−1 and the polynomial φ have bounded operator
norms over D. Thus, for some positive constants C1, C2, we have, for all 0 ≤ ρ ≤ 1 and λ ̸= 0,∥∥∥Ψ(ρ, λ) (gX(λ))

1/2
∥∥∥
2
≤ C1

∥∥∥(1− e−iλ)D(1− e−iλ)−D (gX(λ))
1/2
∥∥∥
2

+ C2

∥∥∥(1− ρe−iλ)D(1− e−iλ)−D (gX(λ))
1/2
∥∥∥
2

≤ (C1 + C2) sup
ρ∈[0,1]

∥∥∥(1− ρe−iλ)D(1− e−iλ)−D (gX(λ))
1/2
∥∥∥
2
.

We get that (5.65) implies (5.61), which concludes this step.
Step 2. We now show that Condition (i) implies (5.64) and (5.65). We apply Corollary 3 with
K = {−D}, which gives ϱ > −δ by the first part of Condition (i). Then (5.17) with ϱ = −δ gives
us that there exists C > 0 such that for all λ ∈ (−π/3, π/3) \ {0},

sup
0≤ρ≤1

∥∥∥(1− ρe−iλ
)−D

(gX(λ))
1/2
∥∥∥2
2
≤ sup

0≤ρ≤1

∥∥∥(1− ρe−iλ
)−D

∥∥∥2
∞

∥gX(λ)∥1 ≤ C |λ|−2 δ ∥gX(λ)∥1 .
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We thus get (5.64) by using the second part of Condition (i). The proof of (5.65) is similar, but
based on (5.18).900

Step 3. We now assume that Condition (ii) holds. In this case, we can apply Theorem 3. This
gives that X ∈ SID (Ω,F ,P) implies∫

V2×((−π,π)\{0})
|λ|−2ℜ+(d(v)) |𝒽(v, v′;λ)|2 ξ(dv)ξ(dv′)µ(dλ) < ∞ , (5.66)

where 𝒽 denote the T-joint kernel function of h such that h(λ)[h(λ)]H =
U gX(λ)UH for µ-a.e. λ ∈ T . Using the same unitarily equivalent representation (3.6),
Conditions (5.64) and (5.65) are respectively implied by∫

V2×((−π/3,π/3)\{0})
sup

0≤ρ≤1

∣∣∣(1− ρe−iλ
)−d(v)

𝒽(v, v′;λ)
∣∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ ,

∫
V2×((−π/3,π/3)\{0})

sup
0≤ρ≤1

∣∣∣∣∣
(
1− ρe−iλ

1− e−iλ

)d(v)

𝒽(v, v′;λ)

∣∣∣∣∣
2

ξ(dv)ξ(dv′)µ(dλ) < ∞ .

Now, for each v ∈ V, we apply Lemma 2 with ϱ = −ℜ(d(v)) and ς = |d(v)|. Then ϱ− = ℜ+(d(v))
and the two above conditions follow from (5.8), (5.9), and (5.66).

The following remark will be useful.905

Remark 3. We note that if X is an ARMA process then ∥νX∥1 admits a bounded density with

respect to the Lebesgue measure and we thus have

∫
|λ|−2 δ

gX(λ) µT(dλ) < ∞ for all δ ∈ [0, 1/2).

Thus, if ℜ(z) < 1/2 for all z ∈ σ(D) then Condition (i) holds since, by compactness of σ(D),
there would exists δ ∈ [0, 1/2) such that ℜ(z) < δ for all z ∈ σ(D).

In the following, for any positive integer p, we endow the set of polynomials of degree less than
of equal to p (or any of its subsets Pp(H0), P†

p(H0) or P∗
p (H0)) with the max of the ∥·∥∞-norms

of its Lb(H0) coefficients. For instance if ψ(z) :=
∑p

k=0 Akz
k we denote

∥ψ∥ = max {∥Ak∥∞ : k = 1, . . . , p} .

It is straightforward to show that the convergence of a Pp(H0)-valued sequence in the obtained910

Banach space is equivalent to the uniform convergence of this sequence in C (U,Lb(H0)). In
particular, if (θ, λ) 7→ φθ

(
e−iλ

)
and (θ, λ) 7→ θθ

(
e−iλ

)
are continuous on Θ × T onto Lb(H0) as

assumed in (A-3), then θ 7→ φθ and θ 7→ θθ are continuous on Θ onto Pp(H0).
The following lemma is needed in the following.

Lemma 17. Let K be a compact subset of P†
q (H0). Then there exists r > 1 such that for all915

z ∈ C with |z| < r and all θ ∈ K, θ(z) is invertible in Lb(H0).

Proof. We proceed by contradiction. Suppose that the conclusion of the lemma is not true. Then
there exists a sequence (zn) valued in {z ∈ C : 1 < |z| ≤ 2} and a sequence (Pn) ∈ KN such that
Pn(zn) is not invertible and lim |zn| = 1. Since K is compact, we can extract a subsequence
(z′n,P

′
n) of (zn,Pn) that converges to an element (z∗,P∗) of D×K and since the set of invertible920

operators is open in Lb(H0) and (z, θ) 7→ θ(z) is continuous from C × Pq(H0) to Lb(H0) we get
that P∗(z∗) is not invertible. But this contradicts the assumption on K.

We can now state a lemma gathering all the important properties of the power series expansion
of Φ†

θ,φ,D, that are repeatedly used in the proofs of the main results.

Lemma 18. Let H0 be a separable Hilbert space and p, q be two non-negative integers. Let Φ†
θ,φ,D925

be defined by (4.11). Then, for all (θ, φ, D) ∈ P†
q (H0)× Pp(H0)× Lb(H0) and all k ∈ N,

P†
k (θ, φ, D) :=

1

2iπ

∫
z∈C,|z|=ρ

Φ†
θ,φ,D (z) z−k−1 dz (5.67)
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is well defined as Lb(H0)-valued Bochner integral for any ρ ∈ (0, 1) and does not depend on ρ.
Moreover, the following assertions hold.

(i) For all (θ, φ, D) ∈ P†
q (H0)× Pp(H0)× Lb(H0) and z ∈ D,

Φ†
θ,φ,D (z) =

∞∑
k=1

P†
k (θ, φ, D) zk . (5.68)

(ii) For any k ≥ 1, (θ, φ, D) 7→ P†
k (θ, φ, D) is continuous on P†

q (H0)× Pp(H0)× Lb(H0).930

(iii) For any compact subset K̄ ⊂ P†
q (H0)× Pp(H0)×

(
{0} ∪ L†(H0)

)
, we have

∞∑
k=1

sup
(θ,φ,D)∈K̄

∥∥∥P†
k (θ, φ, D)

∥∥∥
∞

< ∞ . (5.69)

(iv) For all (θ, φ, D) ∈ P†
q (H0)× Pp(H0)× L†(H0) and z ∈ D \ {1},

Φ†
θ,φ,D (z) =

∞∑
k=1

P†
k (θ, φ, D) zk . (5.70)

Proof. By Lemma 15, Φ†
θ,φ,D is continuous on D for all (θ, φ, D) ∈ P†

q (H0) × Pp(H0) × Lb(H0).
Thus the integral (5.67) is well defined. We now successively prove Assertions (i)-(iv).

Proof of (i). Using Lemma 15 and [15, Theorem 1.8.5], we can expand Φ†
θ,φ,D as a power series935

on the open unit disk D, that is (5.68) holds with P†
k (θ, φ, D) defined by (5.67) for any ρ ∈ (0, 1).

Note that the sum in the right-hand side of (5.68) starts at k = 1 because P†
0 (θ, φ, D) = 0 since,

by the Cauchy Formula (see [15, Theorem 1.5.1]), we have P†
0 (θ, φ, D) = Φ†

θ,φ,D(0), which is the

null operator following (4.11) and φ(0) = φ(0) = 1D = IdH0 .

Proof of (ii). The mapping (z, θ, φ, D) 7→ Φ†
θ,φ,D (z) is continuous as a D × P†

q (H0) × Pp(H0) ×940

Lb(H0) → Lb(H0) function by Lemma 15. Hence Assertion (ii) follows from (5.67) by dominated
convergence.
Proof of (iii). Let K̄ be a compact subset of P†

q (H0)× Pp(H0)× {0} or of P†
q (H0)× Pp(H0)×

L†(H0). Then
{

φ : (θ, φ, D) ∈ K̄
}
is a compact subset of P†

q (H0) and applying Lemma 17, there

exists r > 1 such that for all (θ, φ, D) ∈ K̄, θ does not vanish over the open disk of radius r. It945

follows that for all (θ, φ, D) ∈ K̄, z 7→ [θ(z)]−1 φ(z) is a power series with a radius of convergence
at least equal to r and that, for all (z, θ, φ, D) ∈ D× K̄,

[θ(z)]−1 φ(z) = IdH0
+

∞∑
k=1

Ck(θ, φ) z
k , (5.71)

where, for all k ≥ 1 and all ρ ∈ (0, r), Ck(θ, φ) =
1

2iπ

∫
z∈C,|z|=ρ

[θ(z)]−1 φ(z) z−k−1 dz. As a result,

picking any ρ1 ∈ (r−1, 1), there exists c1 > 0 such that,

for all k ≥ 1 sup
(θ,φ,D)∈K̄

∥Ck(θ, φ)∥∞ ≤ c1 ρ
k
1 (5.72)

If K̄ ⊂ P†
q (H0)× Pp(H0)× {0}, we have P†

k (θ, φ, D) = −Ck(θ, φ) and (5.69) follows.950

We now consider the case where K̄ ⊂ P†
q (H0) × Pp(H0) × L†(H0). For all D ∈ L†(H0),

applying Lemma 7 with N = D + IdH0
and any ς ≥ ∥D + IdH0

∥∞, we get, for all z ∈ D,

(1− z)D =

∞∑
k=0

(
Q(D) (k + 1)−IdH0

−D + P∗
k(D)

)
zk where Q(D),P∗

k(D) ∈ Lb(H0) satisfy

∥∥Q(D) (k + 1)−N + P∗
k(D)

∥∥
∞ ≤ C

∥∥(k + 1)−IdH0
−D
∥∥
∞ , (5.73)
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for some C > 0 only depending on ς. By (4.11) and (5.71), setting C0(θ, φ) = IdH0
, we obtain, for

all z ∈ D and (θ, φ, D) ∈ K̄,

Φ†
θ,φ,D (z) = −

∞∑
k=1

(
k∑

ℓ=0

Ck−ℓ(θ, φ)
(
Q(D) (ℓ+ 1)−IdH0

−D + P∗
ℓ (D)

))
zk .

By (5.68), we thus have, for all k ≥ 1,

P†
k (θ, φ, D) = −

(
k∑

ℓ=0

Ck−ℓ(θ, φ)
(
Q(D) (ℓ+ 1)−IdH0

−D + P∗
ℓ (D)

))
,

Let K =
{
D + IdH0

: (θ, φ, D) ∈ K̄
}
. Then it is a compact subset of Lb(H0) and ℜ(z) > 1 for

all P ∈ K and z ∈ σ(P). Thus ϱ as defined in Corollary 3 is in (1,∞) and (5.15) in this corollary955

gives us that we can find ς > 1 and ϱ ∈ (1, ς) such that, for all (θ, φ, D) ∈ K̄, N = D + IdH0

satisfies
∥∥(ℓ+ 1)−N

∥∥
∞ ≤ C ′ (ℓ + 1)−ϱ for some C ′ only depending on (ς, ϱ). With the previous

display, (5.72) and (5.73), this implies that

for all k ∈ N, sup
(θ,φ,D)∈K̄

∥∥∥P†
k (θ, φ, D)

∥∥∥
∞

≤ c1 C C ′
k∑

ℓ=0

ρk−ℓ
1 (ℓ+ 1)−ϱ , (5.74)

from which (5.69) is straightforward.
Proof of (iv). Assertions (ii) and (iii) imply that the right-hand side of (5.70) is continuous on D.960

Since, by Lemma 15, the left-hand side is continuous on D \ {1}, with Assertion (i), we conclude
that Assertion (iv) holds.

Finally, the following lemma will be useful.

Lemma 19. Let H0 be a separable Hilbert space and X = (Xt)t∈Z be an ergodic stationary process

defined on (Ω,F ,P) valued in H0 such that E
[
∥X∥2H0

]
< ∞. Then we have

lim
n→∞

E

∥∥∥∥∥ 1n
n∑

k=1

Xk − E [X]

∥∥∥∥∥
2

H0

 = 0 .

Proof. The assumptions imply that X is weakly stationary. Moreover, the space of shift-invariant
elements in HX (where the shift is defined by Xt 7→ Xt−1) is the null set, otherwise X would not be965

ergodic : take V shift-invariant in the sense of HX , then, for all x ∈ H0, ⟨V, x⟩H0
is shift-invariant

in the PX -a.s. sense. Therefore, the result simply follows from the von Neumann ergodic theorem
(see [30, Theorem II.11]).

In the previous proof, we quickly explained why the assumptions of the von Neumann ergodic
theorem hold. To conclude this section, we next state a more precise and detailed result for the970

sake of completeness.

Lemma 20. Let H0-valued be a separable Hilbert space and X := (Xt)t∈Z be a centered H0-valued
weakly stationary process. Denote by UX the shift operator defined on the modular time domain
HX by UX : Xt 7→ Xt+1 and let νX be the spectral operator measure of X. Then the two following
assertions are equivalent and they hold if X is an ergodic stationary process.975

(i) For all Y ∈ HX , we have UXY = Y if and only if Y = 0.

(ii) We have νX({0}) = 0.
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Proof. By the Kolmogorov isomorphism theorem (see [13, Theorem 3.8]), we can represent any
Y ∈ HX as Y =

∫
Φ dX̂ with Φ ∈ ĤX , Assertion (i) is thus equivalent to saying that for all

Φ ∈ ĤX , we have
∫
T
∣∣1− eiλ

∣∣2 ∥∥∥Φg1/2X

∥∥∥2
2
d∥νX∥1 = 0 if and only if

∫
T

∥∥∥Φg1/2X

∥∥∥2
2
d∥νX∥1 = 0, where980

gX = dνX

d∥νX∥1
. Since ∥gX∥1 = 1 ∥νX∥1-a.e., νX({0}) ̸= 0 is equivalent to have ∥νX∥1({0}) > 0 and

we clearly obtain that Assertions (i) and (ii) are equivalent.
Suppose now that X is an ergodic stationary process and let us show that Assertion (i) holds.

The ergodicity of X means that (HZ
0 ,B(H0)

⊗Z,PX , T ) is an ergodic measure preserving dynamical
system, where PX is the distribution of X = (Xt)t∈Z defined on the canonical space (HZ

0 ,B(H0)
⊗Z)985

and T is the shift operator on HZ
0 defined by (xt)t∈Z 7→ (xt+1)t∈Z. Now take Y ∈ HX . Setting

Ω = HZ
0 and F = B(H0)

⊗Z, Y can be seen as the equivalence class in L2(Ω,F ,H0,PX) of a
measurable function h : Ω → H0. Then h ◦ T belongs to the equivalence class UXY . To prove
Assertion (i), let us suppose that Y = UXY (as elements of HX) and show that Y = 0 (since the
reverse implication is obvious). From what precedes, Y = UXY implies h ◦ T = h, PX -a.s. Since990

(HZ
0 ,B(H0)

⊗Z,PX , T ) is ergodic, this implies that h is constant, PX -a.s., which in turn implies
Y = 0, since all elements in HX have mean zero. The proof is concluded.

5.4.2. Proof of main results

Proof of Theorem 6. By Definition 2, denoting by Σ the covarariance operator of Z, Y admits
the spectral density

gY (λ) =
(
1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ)Σ

((
1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ)

)H
with respect to the normalized Lebesgue measure µT. Let t ∈ Z. We first show that the right-hand
side of (4.12) is well defined, that is, that λ 7→ eiλt Φ†

θ,φ,D

(
e−iλ

)
belongs to ĤY . Since this mapping

is continuous on T \ {0} onto Lb(H0), by Proposition 1, this is equivalent to have∫ ∥∥∥Φ†
θ,φ,D

(
e−iλ

)
gY (λ)Φ

†
θ,φ,D

(
e−iλ

)H∥∥∥
1
µT(dλ) < ∞ .

By definition of gY , we thus have to show that∫ ∥∥∥Φ†
θ,φ,D

(
e−iλ

) (
1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ)Σ1/2

∥∥∥2
2
µT(dλ) < ∞ . (5.75)

By definition of Φ†
θ,φ,D in (4.11), we have, for all λ ∈ T \ {0},(
IdH0

− Φ†
θ,φ,D

(
e−iλ

)) (
1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ) = IdH0

.

We thus get that, for all λ ∈ T \ {0}, Φ†
θ,φ,D

(
e−iλ

) (
1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ)Σ1/2 can be

expressed as (
1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ)Σ1/2 − Σ1/2 .

Thus, since
∥∥Σ1/2

∥∥2
2
= ∥Σ∥1 < ∞, Condition (5.75) is implied by∫ ∥∥∥(1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ)Σ1/2

∥∥∥2
2
µT(dλ) < ∞ .

On the other hand, the square S2-norm inside the previous integral is equal to ∥gY ∥1 which is
µT-integrable as a spectral density. We thus get that the right-hand side of (4.12) is well defined
and, in the following, we denote

Ŷt =

∫
eiλt Φ†

θ,φ,D

(
e−iλ

)
Ŷ (dλ) .

It only remains to show the two following assertions.995
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(i) We have Ŷt ∈ HY
t−1.

(ii) We have Yt − Ŷt ⊥ HY
t−1.

Let us first prove Assertion (i). By Assertion (i) in Lemma 18, we immediately have that, for all
ρ ∈ (0, 1),

Ŷ
(ρ)
t =

∫
eiλt Φ†

θ,φ,D

(
ρe−iλ

)
Ŷ (dλ) ∈ HY

t−1 .

To conclude Assertion (i), it is thus sufficient to show that

lim
ρ↑1

Ŷ
(ρ)
t = Yt in M(Ω,F ,H0,P). (5.76)

By the Kolmogorov Gramian isometric theorem (see [13, Theorem 3.8]), setting

Ψ(ρ, λ) := Φ†
θ,φ,D

(
ρe−iλ

)
− Φ†

θ,φ,D

(
e−iλ

)
,

we can write, for any η ∈ (0, π) and ρ ∈ (0, 1),

E
[∥∥∥Ŷ (ρ)

t − Ŷt

∥∥∥2
H0

]
=

∫ ∥∥Ψ(ρ, λ)gY (λ)Ψ
H(ρ, λ)

∥∥
1
µT(dλ)

≤
(∫

∥gY ∥1dµT

)
sup

λ∈T\[−η,η]

∥Ψ(ρ, λ)∥2∞

+

∫ η

−η

sup
0≤ρ≤1

∥∥Ψ(ρ, λ)gY (λ)Ψ
H(ρ, λ)

∥∥
1
µT(dλ) .

By Lemma 15 the first term of this bound tends to zero as ρ ↑ 1 for all η ∈ (0, π). It thus only
remain to check that the second term can be made arbitrarily small as η ↓ 0, which follows if there
exists η > 0 such that ∫ η

−η

sup
0≤ρ≤1

∥∥Ψ(ρ, λ)gY (λ)Ψ
H(ρ, λ)

∥∥
1
µT(dλ) < ∞ .

By definition of gY , setting X as the ARMA(p, q) process defined by

X̂(dλ) = [φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) , (5.77)

denoting by gX the density of X with respect to µT, the previous condition is equivalent to∫ η

−η

sup
0≤ρ≤1

∥∥∥Ψ̃(ρ, λ)gX(λ)Ψ̃H(ρ, λ)
∥∥∥
1
µT(dλ) < ∞ , (5.78)

where Ψ̃(ρ, λ) := Ψ(ρ, λ)
(
1− e−iλ

)−D
=
(
Φ†

θ,φ,D

(
ρe−iλ

)
− Φ†

θ,φ,D

(
e−iλ

)) (
1− e−iλ

)−D
.

Since X here is an ARMA process and we assume in Theorem 6 that the real parts of all elements1000

of σ(D) is less than 1/2 or that D ∈ N (H0), Condition (i) (see Remark 3) or Condition (ii) of
Lemma 16 hold, and we can apply this lemma. This gives us that the Condition (5.78) holds,
which concludes the proof of (5.76) and thus of Assertion (i).

We now prove Assertion (ii). By definition of Ŷt, (4.11) and (3.4), we have

Yt − Ŷt =

∫
eiλt

(
IdH0

− Φ†
θ,φ,D

(
e−iλ

))
Ŷ (dλ)

=

∫
eiλt

[
θ(e−iλ)

]−1
φ(e−iλ) (1− e−iλ)D Ŷ (dλ)

=

∫
eiλt Ẑ(dλ) = Zt .
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Since Z is a white noise we have Zt⊥HZ
t−1. To prove Assertion (ii), it thus only remains to show

that HY
s is included in HZ

s for all s ∈ Z. Since we assumed φ ∈ P†
p(H0), we have that φ−1 is

holomorphic in an open domain that includes D and thus can be written as a power series on the
unit circle. It follows that the ARMA process X defined by (5.77) satisfies HX

s ⊂ HZ
s for all s ∈ Z.

To conclude, we now prove that HY
s ⊂ HX

s for all s ∈ Z. Observe that, for all s ∈ Z,

Ys =

∫
eiλs

(
1− e−iλ

)−D
X̂(dλ) .

Using that z 7→ (1− z)
−D

is holomorphic on C \ [1,∞), it can be expanded as a power series on
D and it follows that, for all s ∈ Z and ρ ∈ (0, 1),

Y (ρ)
s =

∫
eiλs

(
1− ρe−iλ

)−D
X̂(dλ) ∈ HX

s .

Using the same trick as for the proof of Assertion (i), we write, for any η ∈ (0, π) and ρ ∈ (0, 1),

E
[∥∥∥Ys − Y (ρ)

s

∥∥∥2
H0

]
≤
(∫

∥gX∥1dµT

)
sup

λ∈T\[−η,η]

∥∥∥(1− ρe−iλ
)−D −

(
1− e−iλ

)−D
∥∥∥2
∞

+

∫ η

−η

sup
0≤ρ≤1

∥∥Ψ(ρ, λ)gX(λ)ΨH(ρ, λ)
∥∥
1
µT(dλ) ,

where, here, Ψ(ρ, λ) :=
(
1− ρe−iλ

)−D −
(
1− e−iλ

)−D
.

By continuity of z 7→ (1− z)
−D

on C \ [1,∞), the first term in the upper bound tends to zero for
all η, while the second bound can be made arbitrarily small as η ↓ 0 by using again Lemma 16.1005

We thus get the claim HY
s ⊂ HX

s and the proof is concluded.

Proof of Proposition 6. All the assertions follow straightforwardly from Lemma 18 and other
previous results. Observe indeed that (4.14) immediately follows from the fact that F†(θ, λ) =

IdH0 − Φ†
Dθ,φθ,θθ

(e−iλ). As for the other claimed facts, here are some details.

Moreover, the continuity of (D, φ, θ) 7→ P†
k (θ, φ, D) (and thus with (A-3), that of θ 7→ P†

k (θ),1010

and the bound (5.69) gives us that θ 7→ Ŷt(θ) is continuous on Θ onto HY
t−1, hence the expectation

in the right-hand side of (4.16) is continuous in θ, which shows that the inf is attained on a compact
subset of Θ.

When the best predictor Ŷ ∗
t is well defined for one t ∈ Z, by weak stationarity of Y it must be

well defined for all t. Then, for all t ∈ Z and all θ ∈ Θ∗
Y , we have Ŷ ∗

t = Ŷt(θ), P-a.s.. Of course,1015

since Z is countable, we can exchange the P-a.s. with the “for all t ∈ Z”. We can also exchange
the P-a.s. with the “for all θ ∈ Θ∗

Y ” as claimed in Assertion (vi) of the proposition because the

arguments above also give that, P-a.s., θ 7→ Ŷt(θ) is continuous on Θ onto H0, and consequently,
is uniquely defined by its value on a dense countable subset of (the compact set) Θ∗

Y .
Finally, in the well-specified case, we have that Y is a FIARMA process with parameter1020

(D, θ, φ) such that (D, θ, φ) = (Dθ, φθ, θθ) for some θ∗ ∈ Θ. Since we suppose that D ∈ N (H0)
or that ℜ(z) < 1/2 for all z ∈ σ(D) in Assertion (vii), we can apply Theorem 6. Observe that,
by Assertion (iv) of Lemma 18, Ŷt(θ

∗) defined as in (4.15) with θ = θ∗ is the right-hand side
of (4.12). This gives us that proj

(
Yt|HY

t−1

)
= Ŷt(θ

∗). Since the projection is uniquely defined

and Ŷt(θ) ∈ HY
t−1 for all θ ∈ Θ, we conclude that the inf in (4.16) is achieved with θ = θ∗, and1025

from (4.17) that Ŷt(θ) = proj
(
Yt|HY

t−1

)
for all θ ∈ Θ∗

Y . Hence Ŷ ∗
t of Assertion (v) is well defined

and coincides with proj
(
Yt|HY

t−1

)
. This concludes the proof of Assertion (vii).

Proof of Theorem 7. By Lemma 18, we have that F† ∈ C(Θ × T,Lb(H0)) with F† defined in
(4.14). Similarly, using Condition (iii) in Theorem 7, we also have F†

s ∈ C(Θ × T,Lb(Hs
0)), with

F†
s(θ, λ) := F†(θ, λ)|Hs

0
. Hence Assertions (i), (ii) and (iii) of Theorem 5 hold with L = R = F†.

Applying this theorem, with the fact that the trace is continuous on S1(H0), we obtain that, P-a.s.,

lim
n→∞

Λn = Tr
(
Q̃(F†,F†)

νX

)
uniformly in C (Θ,R).
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Now, applying Proposition 6 to Y = X(c), (4.14) and (4.15) yield, for all θ ∈ Θ,

Tr
(
Q̃(F†,F†)

νX
(θ)
)
= E

[∥∥∥∥X(c)
0 − X̂

(c)
0 (θ)

∥∥∥∥2
H0

]
.

Therefore, with (4.20) and (4.16), we can write that, P-a.s.,

lim sup
n→∞

Λn(θ̂n) ≤ lim sup
n→∞

inf
θ∈Θ

Λn(θ) = E2
(
X(c),ℵ

)
.

Thus, P-a.s., all accumulation points θ of the Θ-valued sequence (θ̂n)n≥1 satisfy

E

[∥∥∥∥X(c)
0 − X̂

(c)
0 (θ)

∥∥∥∥2
H0

]
≤ E2

(
X(c),ℵ

)
, which implies θ ∈ Θ∗

X(c) .

Since Θ is compact, we obtain (4.25).
We now prove (4.26). By Assertion (iii) in Lemma 18, we have

sup
n∈N

sup
θ∈Θ

∥∥∥∥∥IdH0 −
n∑

k=1

P†
k (θ)

∥∥∥∥∥
∞

≤ 1 +

∞∑
k=1

sup
θ∈Θ

∥∥∥P†
k (θ)

∥∥∥
∞

< ∞ . (5.79)

Let us denote, for all θ ∈ Θ,

E2
∞ (θ) = E

∥∥∥∥∥X(c)
0 −

( ∞∑
k=1

P†
k (θ) X

(c)
−k

)∥∥∥∥∥
2

H0

 . (5.80)

By (4.24) and Minkowski’s inequality, we have, for all (m, θ) ∈ H0 ×Θ and n ≥ 1,

|E∞ (θ)− EX,n (m, θ)| ≤
∣∣E∞ (θ)− EX(c),n (0, θ)

∣∣+ ∥∥∥∥∥
(
IdH0 −

∞∑
k=1

P†
k (θ)

)
(E [X0]−m)

∥∥∥∥∥
H0

.

Using this bound and (5.79), to obtain (4.26), it is sufficient to prove the three following facts:

lim
n→∞

E2
∞(θ̂n) = E2

(
X(c),ℵ

)
P-a.s. , (5.81)

lim
n→∞

sup
θ∈Θ

∣∣E∞ (θ)− EX(c),n (0, θ)
∣∣ = 0 , (5.82)

lim
n→∞

1

n

n∑
k=1

Xk = E [X0] P-a.s. (5.83)

We prove these fact in reverse order. Lemma 13 directly gives us (5.83). To obtain (5.82), we use
that, for all m ∈ H0 and n ≥ 1,

sup
θ∈Θ

∣∣E∞ (θ)− EX(c),n (0, θ)
∣∣ ≤ sup

θ∈Θ

E

∥∥∥∥∥
∞∑

k=n+1

P†
k (θ) X

(c)
−k

∥∥∥∥∥
2

H0

1/2

≤

( ∞∑
k=n+1

sup
θ∈Θ

∥∥∥P†
k (θ)

∥∥∥
∞

) (
E
[∥∥∥X(c)

0

∥∥∥2
H0

])1/2

,

which, by (5.79), converges to zero as n → ∞. We finally prove (5.81). By (4.25), there exists1030

a set Ω∗ of probability 1 on which ∆
(
θ̂n, ,Θ

∗
X(c)

)
converges to 0. Thus (5.81) holds if we can
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show that, for any (deterministic) sequence (θn)n∈N such that lim
n→∞

∆
(
θn, ,Θ

∗
X(c)

)
= 0, we have

lim
n→∞

E2
∞(θn) = E2

(
X(c),ℵ

)
. Take such a sequence (θn)n∈N and set ℓn := E2

∞(θn) for all n.

Observe that, by (5.79) and Assertion (ii) of Lemma 18, we have that E2
∞ is continuous on Θ onto

R+. Since Θ is compact, (ℓn)n≥1 is a bounded sequence in R+ and it is sufficient to show that all1035

its accumulation points are equal to the constant E2
(
X(c),ℵ

)
. By compactness of Θ, from any

subsequence of (ℓn)n≥1 converging to an accumulation point ℓ∗, we can extract a subsubsequence
(ℓ′n)n≥1 for which the corresponding extraction (θ′n) from (θn) converges in Θ. By the assumption
made on (θn), the limit of (θ′n) must be an element θ∗ ∈ Θ∗

X(c) (which is closed by Assertion (iv)

in Proposition 6). By continuity of E2
∞, we get that ℓ∗ = E2

∞(θ∗), thus is equal to E2
(
X(c),ℵ

)
by1040

definition of Θ∗
X(c) in (4.17).

Let us show the last assertion of the theorem. To this end, we suppose that X̂
(c)
t

∗
is well

defined and show that (4.27) holds. Since X
(c,n)
k is unmodified by translating X to X(c), we have

Xn+1 − X̂n+1,n = X
(c)
n+1 −

n∑
k=1

P†
k

(
θ̂n

)
X

(c)
n+1−k −

(
IdH0

−
n∑

k=1

P†
k

(
θ̂n

)) ( 1

n

n∑
k=1

X
(c)
k

)
.

Therefore, to obtain (4.27), we only need to show that

lim sup
n→∞

E

∥∥∥∥∥X(c)
n+1 −

n∑
k=1

P†
k

(
θ̂n

)
X

(c)
n+1−k

∥∥∥∥∥
2

H0

 ≤ E2
(
X(c),ℵ

)
, (5.84)

lim
n→∞

E

∥∥∥∥∥
(
IdH0

−
n∑

k=1

P†
k

(
θ̂n

)) ( 1

n

n∑
k=1

X
(c)
k

)∥∥∥∥∥
2

H0

 = 0 . (5.85)

Let us start with (5.85). Then, we get (5.85) by applying Lemma 19.
We now prove (5.84). For all n ≥ 1, the squared norm in the left-hand side’s expectation

of (5.84) can be written as

inf
θ∈Θ∗

X(c)

∥∥∥∥∥X(c)
n+1 −

n∑
k=1

P†
k (θ) X

(c)
n+1−k +

n∑
k=1

(
P†
k (θ)− P†

k

(
θ̂n

))
X

(c)
n+1−k

∥∥∥∥∥
2

H0

.

We thus have, for all n ≥ 1,

E

∥∥∥∥∥X(c)
n+1 −

n∑
k=1

P†
k

(
θ̂n

)
X

(c)
n+1−k

∥∥∥∥∥
2

H0

 ≤ E
[
(An +Bn)

2
]
, (5.86)

where we set

An := inf
θ∈Θ∗

X(c)

∥∥∥∥∥
n∑

k=1

(
P†
k (θ)− P†

k

(
θ̂n

))
X

(c)
n+1−k

∥∥∥∥∥
H0

,

Bn := sup
θ∈Θ∗

X(c)

∥∥∥∥∥X(c)
n+1 −

n∑
k=1

P†
k (θ) X

(c)
n+1−k

∥∥∥∥∥
H0

.

We are going to show, successively that

lim
n→∞

E
[
A2

n

]
= 0 , (5.87)

lim
n→∞

E
[
B2

n

]
= E2

(
X(c),ℵ

)
. (5.88)
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These two facts with (5.86) indeed imply (5.84). First observe that Lemma 18 straightforwardly
yields

lim
n→∞

E

sup
θ∈Θ

∥∥∥∥∥
∞∑

k=n+1

P†
k (θ) X

(c)
n+1−k

∥∥∥∥∥
2

H0

 = 0 . (5.89)

Thus, to have (5.87) and (5.88), and by stationarity of X(c), we can use

A′
n := inf

θ∈Θ∗
X(c)

∥∥∥∥∥
∞∑
k=1

(
P†
k (θ)− P†

k

(
θ̂n

))
X

(c)
−k

∥∥∥∥∥
H0

,

B′ := sup
θ∈Θ∗

X(c)

∥∥∥∥∥X(c)
0 −

∞∑
k=1

P†
k (θ) X

(c)
−k

∥∥∥∥∥
H0

,

and prove instead

lim
n→∞

E
[
A′2

n

]
= 0 , (5.90)

E
[
B′2] = E2

(
X(c),ℵ

)
. (5.91)

To get Relation (5.91), we observe that, with the assumption that the best ℵ-predictor is well

defined, Assertion (vi) in Proposition 6 and (4.15) give that, P-a.s., for all θ ∈ Θ∗
X(c) , X̂

(c)
0 (θ) =1045 ∑∞

k=1 P
†
k (θ) X

(c)
−k = X̂

(c)
0

∗
. Hence, P-a.s., B′ =

∥∥∥∥X(c)
0 − X̂

(c)
0

∗∥∥∥∥. We thus have (5.91).

We conclude with the proof of (5.90). Note that

A′
n ≤ 2 sup

θ∈Θ∗
X(c)

∥∥∥∥∥
∞∑
k=1

P†
k (θ) X

(c)
−k

∥∥∥∥∥
H0

.

Note that the L2-norm of this upper bound satisfiesE

 sup
θ∈Θ∗

X(c)

∥∥∥∥∥
∞∑
k=1

P†
k (θ) X

(c)
−k

∥∥∥∥∥
2

H0

1/2

≤

( ∞∑
k=1

sup
θ∈Θ∗

X(c)

∥∥∥P†
k (θ)

∥∥∥
∞

) (
E
[∥∥∥X(c)

0

∥∥∥2
H0

])1/2

,

which is finite by Lemma 18. Thus, we can apply the dominated convergence theorem, and (5.90)
follows from

lim
n→∞

A′
n = 0 P-a.s. ,

which we now prove by contradiction. Suppose that, with positive probability, we can find η > 0
and an increasing sequence (nj)j∈N of integers such that A′

nj
≥ η for all j. Then, by (4.25) and

since Θ is compact, with positive probability, there also exists a subsequence (n′
j)j∈N integers such

that A′
n′
j
≥ η for all j and θ̂n′

j
converges to some θ ∈ Θ∗

X(c) as j → ∞. By Lemma 18, this latter

fact implies that, for this θ,

lim
j→∞

∥∥∥∥∥
∞∑
k=1

(
P†
k (θ)− P†

k

(
θ̂nj

))
X

(c)
−k

∥∥∥∥∥
H0

= 0 .

But since θ ∈ Θ∗
X(c) , this contradicts the assumption that yielded A′

n′
j
≥ η > 0 for all j. This

finishes the proof.

47



Appendix A. Some technical lemmas

We start with two lemmas on some useful complex valued functions.1050

Lemma 21. For all z ∈ C and λ ∈ [−π, π] \ {0}, we have

(2/π)
2ℜ+(z) |λ|2ℜ(z) e−π|ℑ(z)| ≤

∣∣(1− e−iλ)z
∣∣2 ≤ (π/2)

2ℜ−(z) |λ|2ℜ(z) eπ|ℑ(z)| , (A.1)

where ℜ(z) = (z + z̄)/2, ℜ+(z) = max(ℜ(z), 0) and ℜ−(z) = max(−ℜ(z), 0).

Proof. Let z ∈ C and λ ∈ (−π, π] \ {0}. By definition of the principal logarithm, we have

for all y ∈ C \ R−, |yz|2 = |exp (z ln(y))|2 = |y|2ℜ(z)
e−2ℑ(z)b(y) , (A.2)

where b(y) denotes the argument in the polar form of y in
(
−π

2 ,
π
2

)
. It follows that e−π|ℑ(z)| ≤

e−2ℑ(z)b(y) ≤ eπ|ℑ(z)|. Applying (A.2) with y = 1 − e−iλ, using that 2|λ|
π ≤ |2 sin(λ/2)| =∣∣1− e−iλ

∣∣ ≤ |λ| for all λ ∈ (−π, π) and separating the cases where ℜ(z) ≥ 0 and where ℜ(z) < 0,1055

we get (A.1).

Lemma 22. For all z ∈ C and λ ∈ [−π/3, π/3] \ {0}, we have

sup
0≤ρ≤1

∣∣(1− ρ e−iλ)z
∣∣2 ≤

(
2π/(3

√
3)
)2ℜ−(z)

|λ|−2ℜ−(z) eπ|ℑ(z)| , (A.3)

where ℜ(z) = (z + z̄)/2, ℜ+(z) = max(ℜ(z), 0) and ℜ−(z) = max(−ℜ(z), 0).

Proof. Applying (A.2) with with y = 1− ρe−iλ and using that b(y) ∈
(
−π

2 ,
π
2

)
, we get that

sup
0≤ρ≤1

∣∣(1− ρ e−iλ)z
∣∣2 ≤ sup

0≤ρ≤1

∣∣1− ρe−iλ
∣∣2ℜ(z)

eπ|ℑ(z)| .

Let now z ∈ C and λ ∈ [−π/3, π/3] \ {0}. It is straightforward to show that, in this case,

sin2(λ) = inf
0≤ρ≤1

∣∣(1− ρ e−iλ)
∣∣2 ≤ sup

0≤ρ≤1

∣∣(1− ρ e−iλ)
∣∣2 = 1 .

Separating the cases where ℜ(z) ≥ 0 and where ℜ(z) < 0, and, in the latter case, using that
|sin(λ)| ≥ 3

√
3 |λ| /(2π) for |λ| ≤ π/3, we easily get (A.3).

We conclude this appendix with a lemma on non-negative sequences.1060

Lemma 23. Let (uk)k∈N be a non-negative non-increasing sequence such that
∑

k∈N uk < ∞.
Then there exists a non-decreasing sequence (vk)k∈N, going to ∞ as k → ∞ such that

∑
k∈N ukvk <

∞.

Proof. Let k0 = 0, and for all n ≥ 1, define by induction

kn = min

j > kn−1 :

∞∑
k=j

uk ≤ 4−n

 .

Then (kn) is an increasing sequence of integers going to ∞ as n → ∞. Define, for all n ≥ 1, and
for all kn−1 ≤ k < kn, vk = 2n. Then (vk)k∈N is a non-decreasing sequence going to ∞ and we
have, by definition of (vk), using that (uk) is non-negative and then, by definition of (kn),

∑
k∈N

ukvk =

∞∑
n=0

2n

 ∑
kn−1≤k<kn

uk

 ≤
∞∑

n=0

2n

 ∞∑
k=kn−1

uk

 ≤ 4

∞∑
n=0

2−n < ∞ .

The proof is concluded.
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Appendix B. Some details on L2(V,V, ξ)-valued weakly stationary time series1065

Within this appendix, we set H0 = L2(V,V, ξ) for a σ-finite measured space (V,V, ξ) and we
assume that the Hilbert space H0 is separable with dimension N ∈ {1, 2, . . . ,∞}. This will allow
us to use a Hilbert basis (ϕi)0≤i<N of H0.

We first show that we can always find a version of an H0-valued random variable which is
jointly measurable on V × Ω.1070

Proposition 8. Let (V,V, ξ) be a σ-finite measured space. Assume that H0 = L2(V,V, ξ) is
separable and let Y be an H0-valued random variable defined on (Ω,F ,P). Then Y admits a
version (v, ω) 7→ Ỹ (v, ω) jointly measurable on (V × Ω,V ⊗ F).

Proof. Let us define for all 0 ≤ n < N , ω ∈ Ω, v ∈ V and ϵ > 0, SY
n (v, ω) :=

∑n
k=0 ⟨Y (ω), ϕk⟩ϕk(v)

and NY
ϵ (ω) := inf

{
n < N :

∥∥SY
n (·, ω)− Y (ω)

∥∥2
H0

≤ ϵ
}
. Then it is straightforward to show that,1075

for all ω ∈ Ω and ϵ > 0, NY
ϵ (ω) is well defined in N and that (NY

2−n(ω))n is a non-decreasing

sequence. We now defined Ỹ on V × Ω by Ỹ (v, ω) = lim
n→∞

SY
NY

2−n (ω)(v, ω) if the limit exists in

C and 0 otherwise. It follows that, for all ω ∈ Ω, SY
NY

2−n (ω)
(·, ω) converges to Y in H0 and

SY
NY

2−n (ω)
(v, ω) converges to Ỹ (v, ω) for ξ-a.e. v ∈ V as n → ∞ and that Ỹ (·, ω) = Y (ω) (as

elements of H0). The result follows since SY
n is jointly measurable on V×Ω for all n ∈ N and NY

ϵ1080

is measurable on Ω for all ϵ > 0.

Hence, an H0-valued random variable Y can always be assumed to be represented by a V×Ω →
C-measurable function Ỹ . If, moreover, Y ∈ L2(Ω,F ,H0,P), then, by Fubini’s theorem, we can see
Ỹ as an element of L2(V×Ω,V ⊗F , ξ⊗P), and we can write Ỹ (v, ω) =

∑
0≤k<N ⟨Y (ω), ϕk⟩ϕk(v),

where the convergence holds in L2(V×Ω,V ⊗F , ξ ⊗ P). As expected, in this case, the covariance1085

operator Cov(Y ) is an integral operator with kernel (v, v′) 7→ Cov
(
Ỹ (v, ·), Ỹ (v′, ·)

)
. It is tempting

to write that Var
(
Ỹ (v, ·)

)
is equal to the kernel of Cov(Y ) on the diagonal

{
v = v′ : (v, v′) ∈ V2

}
.

However, because this diagonal set has null ξ⊗2-measure, this “equality” is meaningless. In the
following lemma we make this statement rigorous by relying on a decomposition of the form
Cov(Y ) = KKH for some K ∈ S2(H0). In particular, this can be used to give a rigorous definition1090

of σW in Corollary 2 or (3.13).

Lemma 24. Let (V,V, ξ) be a σ-finite measured space. Assume that H0 = L2(V,V, ξ) is separable
and let Y be an H0-valued random variable defined on (Ω,F ,P). Let K ∈ S2(H0) and denote by
𝒦 its kernel in L2(V2,V⊗2, ξ⊗2). Suppose that Cov(Y ) = KKH. Then, we have, for ξ-a.e. v ∈ V,

E
[∣∣∣Ỹ (v, ·)

∣∣∣2] = ∫ |𝒦 (v, v′)|2 ξ(dv′) = ∥𝒦 (v, ·)∥2H0
, (B.1)

where Ỹ is a version of Y in L2(V × Ω,V ⊗ F , ξ ⊗ P).1095

Proof. As explained before the lemma, we have that Ỹn : (v, ω) 7→
∑

0≤k<n ⟨Y (ω), ϕk⟩H0
ϕk(v)

converges to Ỹ as n → N in L2(V × Ω,V ⊗ F , ξ ⊗ P). Let us define, for all v, v′ ∈ V
and 0 ≤ n ≤ N , 𝒦n(v, v

′) =
∑

0≤k<n ⟨𝒦 (·, v′), ϕk⟩H0
ϕk(v). Then, using that 𝒦 ∈

L2(V2,V⊗2, ξ⊗2), it is easy to show that 𝒦n converges to 𝒦 in L2(V2,V⊗2, ξ⊗2) as n →
N . By the Cauchy-Schwartz inequality, the mappings (g, h) 7→ [v 7→ E

[
g(v, ·)h(v, ·)

]
] and

(g, h) 7→ [v 7→ ⟨g(v, ·), h(v, ·)⟩H0
] sesquilinear continuous from L2(V × Ω,V ⊗ F , ξ ⊗ P) to

L1(V,V, ξ) and from L2(V2,V⊗2, ξ⊗2) to L1(V,V, ξ), respectively. This, with the two previ-

ous convergence results, shows that v 7→ E
[∣∣∣Ỹn(v, ·)

∣∣∣2] and v 7→ ∥𝒦n(v, ·)∥2H0
both converge

in L1(V,V, ξ), to E
[∣∣∣Ỹ (v, ·)

∣∣∣2] and ∥𝒦 (v, ·)∥2H0
, respectively, that is to the left-hand side and
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right-hand side of (B.1). Hence, to conclude, we only have to show that, for all v ∈ V

and 0 ≤ n < N , E
[∣∣∣Ỹn(v, ·)

∣∣∣2] = ∥𝒦n(v, ·)∥2H0
. To this end, we write E

[∣∣∣Ỹn(v, ·)
∣∣∣2] =

E
[∑

0≤j,k<n ⟨Y, ϕj⟩H0
⟨ϕk, Y ⟩H0

ϕj(v)ϕk(v)
]

=
∑

0≤j,k<n ϕ
H
j Cov(Y )ϕk ϕj(v)ϕk(v). Using the

fact that Cov(Y ) = KKH and Fubini’s theorem, we get

ϕH
j Cov(Y )ϕk =

∫
⟨𝒦 (·, v′′), ϕj⟩H0

⟨𝒦 (·, v′′), ϕk⟩H0
ξ(dv′′) .

Inserting this in the previous equation and moving the double sum inside the integral with respect
to ξ(dv′′), this double sum becomes a product of two conjugate sums. Namely, we get that

E
[∣∣∣Ỹn(v, ·)

∣∣∣2] = ∫
∣∣∣∣∣∣
∑

0≤k<n

⟨𝒦 (·, v′′), ϕk⟩H0
ϕk(v)

∣∣∣∣∣∣
2

ξ(dv′′) = ∥𝒦n(v, ·)∥2H0
,

which concludes the proof.
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