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Hilbert space-valued fractionally integrated autoregressive

moving average processes with long memory operators

Amaury Durand ∗† François Roueff ∗

October 5, 2022

Abstract

Fractionally integrated autoregressive moving average (FIARMA) processes have been
widely and successfully used to model and predict univariate time series exhibiting long range
dependence. Vector and functional extensions of these processes have also been considered
more recently. Here we study these processes by relying on a spectral domain approach in the
case where the processes are valued in a separable Hilbert space H0. In this framework, the
usual univariate long memory parameter d is replaced by a long memory operator D acting on
H0, leading to a class of H0-valued FIARMA(D,p, q) processes, where p and q are the degrees
of the AR and MA polynomials. When D is a normal operator, we provide a necessary and
sufficient condition for the D-fractional integration of an H0-valued ARMA(p, q) process to
be well defined. Then, we derive the best predictor for a class of causal FIARMA processes
and study how this best predictor can be consistently estimated from a finite sample of the
process. To this end, we provide a general result on quadratic functionals of the periodogram,
which incidentally yields a result of independent interest. Namely, for any ergodic stationary
process valued in H0 with a finite second moment, the empirical autocovariance operator
converges, in trace-norm, to the true autocovariance operator almost surely at each lag.
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1 Introduction

Over the past several decades, the study of weakly stationary time series valued in a separable
Hilbert space has been an active field of research. For example, functional ARMA processes
were discussed in [2, 29, 19], a spectral theory was detailed in [24, 23, 30] and several estimation
methods were studied in [16, 17, 15, 18, 20, 1, 21, 31]. However, these references mainly focus
on short memory processes. The study of long memory processes valued in a separable Hilbert
space is a more recent topic as seen in [26, 4, 5, 12, 22]. More specifically, in [22, Section 4],
the fractionally integrated autoregressive moving average (often abbreviated as ARFIMA, but
we prefer to use FIARMA for reasons that will be made explicit in Remark 3.1) processes are
generalized to the case of curve, or functional, time series. In short, the authors consider the
functional case in which the Hilbert space is an L2 space of real valued functions defined on
a compact subset of R, say [0, 1], and they introduce the time series (Xt)t∈Z valued in this
Hilbert space defined by

Xt(v) = Yt +
∞∑

k=1

∏k−1
j=0 (d+ j)

k!
Yt−k(v) , t ∈ Z, v ∈ [0, 1] , (1.1)

where −1/2 < d < 1/2 and Yt is a functional ARMA process. As pointed out in [22, Remark
9], taking the same d for all v ∈ [0, 1] in (1.1) is highly restrictive compared to other long
memory processes recently introduced. For instance in [4, 5], they consider long memory
processes of the form

Xt(v) =
∞∑

k=0

(1 + k)−n(v) ǫt−k(v) , t ∈ Z , v ∈ V ,

where (V,V, ξ) is a σ-finite measure space, and (ǫt)t∈Z is a white noise valued in L2(V,V, ξ).
Since the ratio in (1.1) is asymptotically equivalent to (1+k)−1+d as k → ∞, this new process
is, in fact, close to the previous one in the case where n(v) = d−1 for all v ∈ V . A formulation
that is not restricted to an L2 space was proposed in [12] where the author considers long
memory processes of the form

Xt =
∞∑

k=0

(1 + k)−N ǫt−k , t ∈ Z . (1.2)

Here, (ǫt)t∈Z is a white noise valued in a separable Hilbert space H0 and N is a bounded
normal operator on H0. This suggests defining FIARMA processes in (1.1) with d replaced
by a function d(v), or in the case where it is valued in an arbitrary separable Hilbert space
H0, by a bounded normal operator D acting on this space.

Therefore, in this paper, we fill this gap by providing a definition of FIARMA processes
valued in a separable Hilbert space H0 with a long memory operator D, taken as a bounded
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linear operator on H0. If D is normal, then we can rely on its singular value decomposition
and find necessary and sufficient conditions to ensure that the H0-valued FIARMA process
with long memory operator D is well defined. This allows us to compare FIARMA processes
with the processes defined by (1.2) as in [12]. Our definition relies on linear filtering in
the spectral domain. It is a well known fact that linear filtering of real valued time series
in the time domain is equivalent to pointwise multiplication by a transfer function in the
frequency domain. This duality also applies to Hilbert space valued time series using a
proper spectral representation for them. In this context, pointwise multiplication becomes a
pointwise application of an operator-valued transfer function defined on the set of frequencies.
A complete account is provided in [11]. Here, we rely on the spectral approach to define a
D-fractional integration filter acting on a weakly stationary process X valued in H0. We
provide necessary and sufficient conditions for this filter to be well defined on a X, when X
is a H0-valued ARMA process and D a normal operator. When the ARMA process is causal,
we derive the best predictor of Xt given its past (Xs)s<t. It is thus of interest to investigate
whether this best predictor can be consistently estimated from a finite sample X1, . . . , Xn.
We provide a positive answer to this question when the long memory parameter operator D
has a positive definite real part, under mild additional conditions. To this end, we study
quadratic functionals based on the periodogram of X1, . . . , Xn. A result of this study, which
is of independent interest, and appears to be novel based on our up-to-date-knowledge, is the
following:

Theorem 1.1. Let H0 be a separable Hilbert space and let (Xt)t be an H0-valued ergodic

stationary process defined on (Ω,F ,P) and satisfying E

[
‖X0‖2H0

]
< ∞. Let us define, for all

n ≥ 1 and 1 ≤ k ≤ n,

Xc
n,k = Xk − 1

n

n∑

j=1

Xj . (1.3)

Then, we have, for all h ∈ Z,

lim
n→∞

1

n

∑

1≤k,k′≤n

k−k′=h

(
Xc

k,n

)
⊗
(
Xc

k′,n

)
= Cov (Xh, X0) in S1(H0) , P-a.s. , (1.4)

where S1(H0) is the space of trace-class operators endowed with the trace-norm.

This paper is organized as follows. We first recall in Section 2 the necessary definitions and
facts on operator theory and linear filtering needed for our purpose. Then, the construction
of FIARMA processes is introduced and discussed in Section 3 with a focus on the case where
the long memory operator is normal. In Section 4, the prediction of FIARMA processes
is studied. To this end, in Section 4.1, we provide general results for parametric contrast
estimation in the spectral domain, based on a finite sample. Then, in Section 4.2, we show
how to apply these results for FIARMA prediction. Finally, proofs are provided in Section 5.
In particular, Theorem 1.1 is proven in Section 5.4.

2 Preliminaries and useful notation

2.1 Operators, measurability and integrals

Throughout this paper, we denote by Lb(H0,G0) the set of continuous linear operators defined
on the separable (complex) Hilbert space H0 onto the separable (complex) Hilbert space G0.
The operator norm on Lb(H0,G0) is denoted by ‖·‖∞. We denote by S∞(H0,G0) its subset of
compact operators, and by S1(H0,G0) and S2(H0,G0), its subsets of trace-class and Hilbert-
Schmidt operators, respectively, with their respective norms denoted by ‖·‖1 and ‖·‖2. We
follow the usual convention of omitting G0 in the notation of operator spaces when G0 = H0.
We use the notation PH for the Hermitian adjoint of an operator P ∈ Lb(H0,G0). An operator
P ∈ Lb(H0) is said to be normal if PPH = PHP and we denote by N (H0) the set of normal
bounded operators. We further denote by L+

b (H0), S+
1 (H0) and S+

2 (H0) the sets of positive,
positive trace-class and positive Hilbert-Schmidt operators. Here positive refers to positive-
semidefinite, that is, P is positive if 〈Px, x〉H0

≥ 0 for all x. For a positive operator P, the
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operator P1/2 is the unique positive operator satisfying
(
P1/2

)2
= P. A general and detailed

presentation of operator theory can be found in [32].
We will make extensive use of integrals of functions valued in a Banach space (see [9,

Chapter 1] for details). Given a measure space (Λ,A, µ), a Banach space (E, ‖·‖E) and
p ∈ [1,∞], we denote by Lp(Λ,A, E, µ) the space of functions f : Λ → E which are Borel-
measurable such that

∫
‖f‖pE dµ (or µ-essup ‖f‖E for p = ∞) is finite. Its quotient space for

the µ-a.e. equality is denoted by Lp(Λ,A, E, µ). We use the same notation for E = L+
b (H0),

S+
1 (H0) or S+

2 (H0), in which case Lp(Λ,A, E, µ) is a cone subset of the corresponding LP

space.
In the particular case where E = Lb(H0,G0) for two separable Hilbert spaces H0,G0, we

also use a weaker notion of measurability. Namely, we say that a function Φ : Λ → Lb(H0,G0)
is simply measurable if for all x ∈ H0, λ 7→ Φ(λ)x is measurable as a G0-valued function. The
set of simple measurable functions from (Λ,A) to Lb(H0,G0) is denoted by Fs (Λ,A,H0,G0)
where, again, we ommit G0 if H0 = G0. A mapping Φ : Λ → E with E = S1(H0,G0) or
E = S2(H0,G0) is simply measurable if and only if it is Borel measurable (see Lemma 5.1 in
[11]). A useful consequence is that, if Φ ∈ L1(Λ,A,S+

1 (H0), µ), then the function Φ1/2 : λ 7→
Φ(λ)1/2 is in L2(Λ,A,S+

2 (H0), µ).

2.2 Linear filtering of Hilbert space-valued time series in the

spectral domain

This section gathers the spectral theory used for linear filtering of times series valued in a
separable Hilbert space. We refer the reader to [11, Section 4] for details. In the following,
we denote by T the set R/2πZ, which can be represented by an interval such as [−π, π).
Let (Ω,F ,P) be a probability space and H0 a separable Hilbert space. We recall that the
expectation of X ∈ L2(Ω,F ,H0,P) is the unique vector E [X] ∈ H0 satisfying

〈E [X] , x〉H0
= E

[
〈X,x〉H0

]
, for all x ∈ H0 .

The covariance operator between X,Y ∈ L2(Ω,F ,H0,P) is the unique linear operator
Cov (X,Y ) ∈ Lb(H0) satisfying

〈Cov (X,Y ) y, x〉H0
= Cov

(
〈X,x〉H0

, 〈Y, y〉H0

)
, for all x, y ∈ H0 .

A process X := (Xt)t∈Z is said to be an H0-valued, weakly stationary process if

(i) For all t ∈ Z, Xt ∈ L2(Ω,F ,H0,P).

(ii) For all t ∈ Z, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ Z, Cov (Xt+h, Xt) = Cov (Xh, X0).

We denote by M(Ω,F ,H0,P) the space of all centered random variables in L2(Ω,F ,H0, P).
Let H = M(Ω,F ,H0,P) and X = (Xt)t∈Z ∈ HZ be a centered, weakly stationary, H0-valued
time series. As explained in [11, Section 4], a spectral representation for X amounts to define
a random Gramian-orthogonally scattered measure X̂ on (T,B(T)) such that

Xt =

∫
eiλ t X̂(dλ) for all t ∈ Z . (2.1)

The intensity measure νX : B(T) → S+
1 (H0) of X̂ is called the spectral operator measure and

is characterized by the identity

Cov (Xh, X0) =

∫
eihλ νX(dλ) , for all h ∈ Z .

The spectral operator measure is a trace-class Positive Operator-Valued Measure (p.o.v.m.)
in the sense that it is a mapping from B(T) to S+

1 (H0) which is σ-additive for the ‖·‖1-norm.
Note that, in this case, the mapping ‖νX‖1 : A 7→ ‖νX(A)‖1 is a finite non-negative measure.
Throughout this paper, we use the Radon-Nikodym property of the trace-class p.o.v.m. νX
which is a consequence of Theorem 1 in [8, Chapter III, Section 3]. Namely, for any σ-
finite non-negative measure µ on (T,B(T)), which dominates ‖νX‖1, there exists a unique
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g ∈ L1(T,B(T),S+
1 (H0), µ) such that, for all A ∈ B(T), νX(A) =

∫
A
g dµ. In this case, we

say that g is the spectral operator density of X with respect to µ, and we write dνX = g dµ.
In the following, when we say that g is the spectral operator density of X with respect to a
σ-finite non-negative measure µ, it is implicitly assumed that µ dominates ‖νX‖1.

Let us now briefly introduce the linear filtering in the spectral domain. We only state the
facts that will be useful in the following and refer the reader to [11] for further details. The
spectral representation (2.1) can be extended to define a Gramian-isometric mapping from the

modular spectral domain ĤX to the modular time domain HX , also denoted as an integral
with respect to X̂ , namely,

Y =

∫
Φ(λ)X̂(dλ) , Y ∈ HX , Φ ∈ ĤX .

Here, HX is the smallest closed linear subspace of M(Ω,F ,H0,P), which contains
{Xt : t ∈ Z} and is stable through the left multiplication by any operator of Lb(H0). The

space ĤX is its spectral counterpart, a space of operator-valued functions defined on (T,B(T))
which only depends on νX and is stable through the same module action, namely, through
left multiplication by an operator of Lb(H0). Conversely, given an operator-valued function
Φ defined on (T,B(T)), we denote by SΦ(Ω,F , P) the class of all centered weakly stationary

processes X such that Φ ∈ ĤX . Then, the time-shift invariant linear filter with transfer
operator function Φ is the mapping defined on SΦ(Ω,F ,P) by mapping a centered weakly
stationary process X (the input) to the centered weakly stationary process Y (the output)
defined by

Yt =

∫
eitλΦ(λ) X̂(dλ) , t ∈ Z ,

which we also write
Y = FΦ(X) or Ŷ (dλ) = Φ(λ)X̂(dλ) . (2.2)

We will use the following result, where we characterize the domain of definition of a filter FΦ

in the case where Φ is valued in Lb(H0). It follows by applying [11, Proposition 4.8] with
G = Z and G0 = H0.

Proposition 2.1. Let H0 be a separable Hilbert space, (Ω,F , P) be a probability space, and
Φ ∈ Fs (T,B(T),H0). Let X be an H0-valued centered weakly stationary process admitting gX
as a spectral operator density with respect to a σ-finite non-negative measure µ on (T,B(T)).
Then, the mapping

∥∥ΦgXΦH
∥∥
1
is measurable from (T,B(T)) to (R,B(R)), and we have X ∈

SΦ(Ω,F , P) if and only if
∫ ∥∥ΦgXΦH

∥∥
1
dµ < ∞.

3 Hilbert space-valued FIARMA processes

In this section, we propose a definition of FIARMA processes valued in a separable Hilbert
space thus extending the definition of [22, Section 4] to an operator long memory parameter.
This definition is introduced in Section 3.1 where we also recall known results on the existence
of ARMA processes. We then state the main results, namely 1) Theorem 3.3 where necessary
and sufficient conditions are given for a weakly stationary H0-valued process X to belong
the domain of definition of the fractional integration operator filter, 2) Theorem 3.4 where
we specify these conditions to the case where X is an ARMA process, thus ensuring the
existence of FIARMA processes, and 3) Proposition 3.6 where we compare the obtained
FIARMA processes to the processes introduced in [12]. The first two points are found in
Section 3.2 and the third in Section 3.3.

3.1 Definition of FIARMA processes

Let H0 be a separable Hilbert space. In the following, for all D ∈ Lb(H0) and z ∈ C \ [1,∞),
we will use

(1− z)D = exp(D ln(1− z)) =

∞∑

k=0

1

k!
(D ln(1− z))k ,

where ln denotes the principal complex logarithm, so that z 7→ ln(1 − z) is holomorphic on
C \ [1,∞), and so is z 7→ (1 − z)D, as a Lb(H0)-valued function (see [13, Chapter 1] for an
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overview on the subject). Let us now introduce the fractional integration operator transfer
function.

Definition 3.1 (Fractional integration operator transfer function). Let H0 be a separable
Hilbert space and D ∈ Lb(H0). We define the D-order fractional integration operator transfer
function FID by

FID(λ) =

{(
1− e−iλ

)−D
if λ 6= 0,

0 otherwise.

Using the properties of z 7→ (1 − z)D recalled previously, we see that FID is a mapping
from T to Lb(H0), continuous on T \ {0}. Then, we have FID ∈ Fs (T,B(T),H0) and we can
define the filter FFID as in (2.2) of which the domain of definition are the centered weakly
stationary H0-valued processes X ∈ SFID (Ω,F , P). Since FID has a singularity at the null
frequency, the domain SFID (Ω,F ,P) is not obvious. For instance, in the scalar case, it is
well known that if X has a positive and continuous spectral density at the null frequency,
then FFId(X) is well defined if and only if d < 1/2. We provide a complete description of
SFID (Ω,F ,P) in Section 3.2 when D is a normal operator.

A fractionally integrated autoregressive moving average (FIARMA) process is simply the
output of the filter in the case where X is an H0-valued autoregressive moving average
(ARMA) process. Let us first recall a basic result on the existence of weakly stationary
ARMA processes (see [29, Corollary 2.2]).

Theorem 3.1. Let H0 be a separable Hilbert space and p, q be two positive integers. Let
A1, . . . , Ap ∈ Lb(H0), B1, . . . , Bq ∈ Lb(H0) and Z = (Zt)t∈Z be an H0-valued white noise
(i.e. a centered weakly stationary H0-valued process with constant spectral density operator).
Suppose that

φ(z) := IdH0 −
p∑

k=1

Akz
k is invertible for all z ∈ U, (3.1)

where U = {z ∈ C : |z| = 1} is the complex unit circle. Then,

Xt −
p∑

k=1

AkXt−k = Zt +

q∑

k=1

BkZt−k , t ∈ Z , (3.2)

admits a unique weakly stationary solution. This solution is called an H0-valued ARMA(p, q)
process.

Explicit constructions of the solution in the time domain can be found in [2, 29, 19],
under various assumption. Using a spectral approach, with φ as in (3.1) and θ(z) := IdH0 +∑p

k=1 Bkz
k, the solution is more directly given by

X̂(dλ) =
[
φ(e−iλ)

]−1

θ(e−iλ)Ẑ(dλ) ,

using the notation introduced in (2.2). In the following, for any integer d ∈ N, Pd(H0) denotes
the set of polynomials p of degree d with coefficients in Lb(H0), such that p(0) = IdH0 and
P∗

d (H0) denotes the subset of all p ∈ Pd(H0), which are invertible on U. In particular, (3.1) is
equivalent to saying that φ ∈ P∗

d (H0). Time domain approaches for defining ARMA processes
are easier to derive when Condition (3.1) is extended on the closed unit disk, that is,

φ(z) = IdH0 −
p∑

k=1

Akz
k is invertible for all z ∈ D, (3.3)

where D := {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1} denote the open and closed complex
unit discs of C, respectively. We do not need Condition (3.3) for defining FIARMA processes.
However, we will assume that φ and θ satisfy such a condition to derive predictors (see
Section 4), as in the well known case of univariate FIARMA processes.

We can now define FIARMA processes as follows.

Definition 3.2 (Hilbert space-valued FIARMA processes). Let H0 be a separable Hilbert
space and p, q be two non-negative integers. Let D ∈ Lb(H0), θ ∈ Pq(H0), φ ∈ P∗

p (H0)
and Z be an H0-valued centered white noise. Let X be the ARMA(p, q) process defined by
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X̂(dλ) = [φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) and suppose that X ∈ SFID (Ω,F , P). Then, the process
defined by Y = FFID (X), that is, with spectral representation given by

Ŷ (dλ) = FID(λ)[φ(e−iλ)]−1
θ(e−iλ)Ẑ(dλ) , (3.4)

is called a FIARMA process of order (p, q) with long memory operator D, abbreviated as
FIARMA(D,p, q).

Remark 3.1. Definition 3.2 extends the usual definition of univariate (C or R-valued)
ARFIMA(p, d, q) processes to the Hilbert space-valued case. In the general case, we use the
acronym FIARMA to indicate the order of the operators in the definition (3.4), where the
fractional integration operator appears on the left of the autoregressive operator, which then is
on the left of the moving average operator. We also respected this order in the list of param-
eters (D, p, q). Following this convention, an ARFIMA(p,D, q) process is, in turn, defined
as the solution of (3.2), with Z defined as a FIARMA(0, D, q) process. Having this con-
vention in mind is important since the ARFIMA(p,D, q) process does not coincide with the
FIARMA(D,p, q) process, except in highly unique instances such as the univariate case where
all operators commute.

Definition 3.2 extends the definition of ARFIMA curve time series proposed in [22] where
it is restricted to the case where D is a scalar operator, that is D : f 7→ d× f for a constant
−1/2 < d < 1/2. In this particular case, it is rather straightforward to show that X ∈
SFID (Ω,F ,P) for any ARMA process X by directly making use of Proposition 2.1, However,
in Remark 3.2(5), it will be obtained as a special case of Theorem 3.4.

3.2 Existence of FIARMA processes

In this section, we provide a necessary and sufficient condition for the existence of FIARMA
processes as defined in Definition 3.2 in the case where D is a normal operator. In this case, we
can rely on the singular value decomposition of D (see [6, Theorem 9.4.6, Proposition 9.4.7]).
Namely, if D ∈ N (H0), then there exists a σ-finite measure space (V,V, ξ), a unitary operator
U : H0 → L2(V,V, ξ) and d ∈ L∞(V,V, ξ), such that

UDUH = Md , (3.5)

where Md denotes the pointwise multiplicative operator on L2(V,V, ξ) associated to d, that
is Md : f 7→ d × f . We say that D has a singular value function d on L2(V,V, ξ) with a
decomposition operator U . Using the decomposition operator, we can rely on the process
UX = (UXt)t∈Z valued in G0 := L2(V,V, ξ). Note that G0 is separable because it is iso-
metrically isomorphic to H0 through the unitary operator U . It is straightforward to check
that, if gX is the spectral operator density of X with respect to a non-negative measure µ on
(T,B(T)), then the function gUX ∈ L2(T,B(T),S+

1 (G0), µ) defined by gUX(λ) = UgX(λ)UH,
for all λ ∈ T, is the spectral operator density of UX with respect to µ. Note that we can
always find a function h ∈ L2(T,B(T),S2(G0), µ) such that gUX(λ) = h(λ)[h(λ)]H for µ-a.e.

λ ∈ T (take e.g. h = g
1/2
UX). Then, [32, Theorem 6.11] gives that, for all λ ∈ T, the operator

h(λ) can be written as an integral operator with a kernel h(·, ·; λ) in L2(V2,V⊗2, ξ⊗2). In the
following, we need the measurability of h on (V2 × T,V⊗2 ⊗ B(T)) as given by the following
lemma.

Lemma 3.2. Let (V,V, ξ) be a σ-finite measure space and suppose that the Hilbert space G0 =
L2(V,V, ξ) is separable. Let K be a measurable function from (Λ,A) to (S2(G0),B(S2(G0))).
Then, there exists a function K : (v, v′, λ) 7→ K(v, v′; λ) measurable from (V2 × Λ,V⊗2 ⊗A)
to (C,B(C)) such that, for all λ ∈ Λ, f ∈ H0 and v ∈ V,

[K(λ)f ](v) =

∫
K(v, v′;λ) f(v′) ξ(dv′) . (3.6)

Moreover, if K ∈ L2(Λ,A,S2(G0), µ) for some non-negative measure µ on (Λ,A), then K ∈
L2(V2 × Λ,V⊗2 ⊗A, ξ⊗2 ⊗ µ).

Based on this lemma, for all λ ∈ Λ, the identity (3.6) defines (v, v′) 7→ K(v, v′;λ) uniquely
over V2 up to a ξ⊗2-null set. This allows us to introduce the following definition.
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Definition 3.3 (Joint kernel of S2-valued functions). Under the assumptions of Lemma 3.2,
we call K the Λ-joint kernel of K.

Assuming that D is normal allows us to characterize the domain of definition of the D-
order fractional integration operator filter, as shown in the following result, which may be of
independent interest.

Theorem 3.3. Let H0 be a separable Hilbert space and X = (Xt)t∈Z be a centered H0-valued
weakly stationary time series defined on (Ω,F , P) with spectral operator density gX with respect
to a non-negative measure µ on (T,B(T)). Let D be in N (H0) with singular value function
d on G0 := L2(V,V, ξ) and decomposition operator U . Let h ∈ L2(T,B(T),S2(G0), µ) be such
that λ 7→ h(λ)[h(λ)]H is the spectral operator density of UX = (UXt)t∈Z with respect to µ,
that is, h(λ)[h(λ)]H = U gX(λ)UH for µ-a.e. λ ∈ T . Let h denote the T-joint kernel function
of h. Then, the following assertions are equivalent.

(i) We have X ∈ SFID (Ω,F , P).

(ii) There exists η ∈ (0, π) such that

∫

V2×((−η,η)\{0})

|λ|−2ℜ(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ .

(iii) We have

∫

V2×((−π,π)\{0})

|λ|−2ℜ+(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ , (3.7)

where, for all z ∈ C, ℜ+(z) = max (0, (z + z̄)/2) denotes the non-negative real part of z.

In the following theorem, we specify Theorem 3.3 in the case where X is an ARMA process,
as in [22], but we let D be any normal operator and not necessarily a scalar one. Our necessary
and sufficient condition relies on the following definition:

Pn (φ, θ) =
{[

[φ]−1
θ
]
◦ exp

}(n)
(0) , n ∈ N , φ ∈ P∗

p , θ ∈ Pq , (3.8)

where the exponent (n) here denotes the n-th derivative of the mapping z 7→ [φ(ez)]−1 θ(ez),
which is infinitely differentiable in a neighborhood of z = 0 as a Lb(H0)-valued function, since
φ ∈ P∗

p (H0). In fact we have

P0 (φ, θ) = [φ(1)]−1
θ(1) and Pn (φ, θ) =

n∑

k=1

bn,k

[
[φ]−1

θ
](k)

(1) , n ≥ 1 ,

where bn,k are known positive rational coefficients obtained by taking the exponential Bell
n-order Bell polynomial at (1, . . . , 1).

We have the following result.

Theorem 3.4. Let H0 be a separable Hilbert space. Let X be an H0-valued ARMA(p, q)

process defined by X̂(dλ) =
[
φ(e−iλ)

]−1
θ(e−iλ)Ẑ(dλ) with θ ∈ Pq(H0), φ ∈ P∗

p (H0) and
Z a white noise with covariance operator Σ defined on (Ω,F , P). Let D ∈ N (H0), with
singular value function d on G0 := L2(V,V, ξ) and decomposition operator U . Let σn : v 7→(
E
[
|Wn(v, ·)|2

])1/2
where Wn = U Pn (φ, θ) Z0 is seen as a C-valued function defined on

V× Ω. Then, the two following assertions are equivalent:

(i) We have X ∈ SFID (Ω,F , P).

(ii) For all n ∈ N, we have ℜ(d) < n+ 1/2, ξ-a.e. on {σn > 0} and

∫

{ℜ(d)<n+1/2}

σ2
n(v)

1 + 2n− 2ℜ(d(v)) ξ(dv) < ∞ . (3.9)

Note that there is a slight abuse of notation in the definition of σn since the definition of
measurability for a L2(V,V, ξ)-valued random variable does not necessarily ensure measura-
bility of Wn(v, ·) as a C-valued random variable. This abuse of notation is common in the
literature on functional data analysis and is harmless because we can always find a version of
W which is jointly measurable on (V× Ω,V ⊗ F), see Proposition B.1 in Appendix B.
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Remark 3.2. Let us briefly comment on Theorem 3.4.

(1) First, by definition of Wn and σn, we have σn ∈ L2(V,V, ξ) and thus Assertion (ii)
always holds for n large enough, namely, for all n > sup(ℜ(d)) − 1/2 (recall that the
singular value function of a normal operator is bounded).

(2) If θ = φ is the unit polynomial, the ARMA process X equals the white noise process Z,
Pn(φ, θ) = IdH0 , and σn = σ0 for all n ∈ N, so that Condition (ii) only needs to be
verified for n = 0.

(3) In the N-dimensional case with n finite, we have V = {1, . . . , N}, ξ is the counting
measure on V, and U can be interpreted as a n × n unitary matrix, and d and σn as
N-dimensional vectors. Condition (ii) then says that ℜ(d(k)) < n + 1/2 for all n ∈ N

and k ∈ {1, . . . , N} such that σn(k) > 0.

(4) For the real univariate case (N = 1, D = d ∈ R in (3)), Condition (ii) says that
d < n0 +1/2, where n0 is the smallest n such that σn > 0. Ruling out the case where Z
is the null process (in which case Σ = 0 and σn = 0 for all n ∈ N), one can see that n0

equals 0 if θ(1) 6= 0 and n0 equals the order of multiplicity of 1 as a root of θ otherwise
(in other words, it corresponds to the difference operator largest order contained in the
MA operator). In particular, we find the usual d < 1/2 condition for the existence of a
weakly stationary ARFIMA(p, d, q) model in the case where the underlying ARMA(p, q)
process is canonical (φ and θ do not vanish on the unit disk). If n0 ≥ 1, the usual
convention is to include the difference operator as a negative exponent of the fractional
integration operator hence leading to an ARFIMA(p, d− n0, q − n0) with d− n0 < 1/2.

(5) We already mentioned in (1.1) the case treated in [22, Section 4]. In the setting of
Theorem 3.4, it corresponds to the case where D = d × IdH0 is a scalar operator on
H0 = G0 = L2(V,B(V), ξ) for a compact subset V of R, ξ being the Lebesgue measure
on V and −1/2 < d < 1/2 (thus d(v) ≡ d and U = IdH0). Under this assumption,
Condition (3) trivially holds since 1+2n−2d > 0 and σn ∈ L2(V,B(V), ξ) for all n ∈ N.

3.3 Other long memory processes

Several non-equivalent definitions of long rang dependence, or long memory, are available in
the literature for time series. Some approaches focus on the behavior of the autocovariance
function at large lags, others on the spectral density at low frequencies (see [25, Section 2.1]
and the references therein). Separating short range from long range dependence is often made
more natural within a particular class of models. For instance, for a Hilbert space-valued
process Y = (Yt)t∈Z, one may rely on a causal linear representation, namely

Yt =
∞∑

k=0

Pkǫt−k , t ∈ Z , (3.10)

where ǫ = (ǫt)t∈Z is a centered white noise valued in the separable Hilbert space H0 and
(Pk)k∈Z is a sequence of Lb(H0) operators. A sufficient condition for convergence of this
series in M(Ω,F ,H0, P) is that

∑∞
k=0 ‖Pk‖∞ < ∞, and this assumption is referred to as the

short range dependence (or short memory) case, in contrast to long range dependence (long
memory) case, for which

∑∞
k=0 ‖Pk‖∞ = ∞, under which the convergence in (3.10) is no

longer granted. The case where Pk = (k + 1)−N for some N ∈ N (H0) is investigated in [12].
More precisely, let n and U be the singular value function and decomposition operator of N
on G0 := L2(V,V, ξ). Assume that

h >
1

2
ξ-a.e. and

∫

V

σ2
W (v)

2h(v)− 1
ξ(dv) < ∞ , (3.11)

where h : v 7→ ℜ(n(v)) and σ2
W : s 7→ E

[
|W (v, ·)|2

]
withW = Uǫ0. Then, using the arguments

of the proof of [12, Lemma A.1], one can show that, for all t ∈ Z,

Yt =

∞∑

k=0

(k + 1)−N ǫt−k (3.12)

converges in M(Ω,F ,H0,P).
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In [12, Theorem 2.1], the author also studies the partial sums of the process (3.12) and
exhibits asymptotic properties which naturally extend the usual behavior observed for uni-
variate long memory processes. In the following, we explain how the process (3.12) can be
related to a FIARMA(D,0,0) process. First, we prove that Condition (3.11) also implies the
existence of this FIARMA process.

Lemma 3.5. Condition (3.11) implies ǫ ∈ SFID (Ω,F ,P) with D = IdH0 −N .

We can now state a result which shows that the process defined by (3.12) is closely related
to a FIARMA process up to a bounded operator C and to an additive short memory process.

Proposition 3.6. Assume that (3.11) holds and define Y = (Yt)t∈Z by (3.12). Then, there
exists C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)

N with
∑∞

k=0 ‖∆k‖∞ < ∞ such that

FFID (ǫ) = C Y + Z ,

where Z is the short memory process defined, for all t ∈ Z, by Zt =
∑∞

k=0 ∆kǫt−k.

4 Prediction and estimation

4.1 Main assumptions and preliminary result

We denote by LebT the Lebesgue measure on (T,B(T)) divided by 2π, so that for any locally
integrable 2π-periodic function g,

∫
g dLebT = (2π)−1

∫

T

g(x) dx = (2π)−1

∫ π

−π

g(x) dx .

Let H0 be a separable Hilbert space, X = (Xt)t∈Z be a process defined on (Ω,F ,P), and
valued in H0, and consider the following assumptions.

(A-1) The process X is stationary and ergodic.

(A-2) The process X is weakly stationary.

Under (A-2), we always denote by νX the spectral operator measure of X. Denote the discrete
Fourier coefficients of X1, . . . , Xn by

dXn (λ) =
1√
n

n∑

k=1

Xk e
−iλk , λ ∈ T , (4.1)

and the periodogram by
IXn (λ) = dXn (λ)⊗ dXn (λ) , λ ∈ T .

If X is not a centered process, one can use the empirical mean to center it, that is, in (4.1),
replace Xk by Xc

n,k as defined in (1.3), in which case we denote the corresponding discrete

Fourier coefficients and the corresponding periodogram by d
Xc

n
n and I

Xc
n

n , respectively.
The periodogram is related to the empirical covariance estimators through the following

identity, for all s, t ∈ Z,

Γ̂n(s− t) =

∫
I
Xc

n
n (λ) ei (s−t) λ LebT(dλ) =

1

n

∑

1≤k,k′≤n

k−k′=(s−t)

Xc
n,k ⊗Xc

n,k′ . (4.2)

The integral in this equation can be interpreted as a sesquilinear functional Q
I
Xc

n
n

applied to

exponential functions λ 7→ ei s λ on the left and λ 7→ ei t λ on the right, where, for any operator
functions L, g and R defined on T, we set

Qg(L,R) =

∫
Lg RH dLebT . (4.3)

Similarly, if ν is a trace-class p.o.v.m. defined on (T,B(T)) and valued in S+
1 (H0), we set

Qν(L,R) =

∫
L dν RH . (4.4)
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To ensure that these integrals are well defined, we assume that L and R are measurable
bounded functions valued in Lb(H0, G0), with G0 an additional separable Hilbert space.
Namely, for any Banach space

(
E , ‖·‖E

)
, we further denote, by Fb (T,B(T), E) the set of

bounded measurable functions from (T,B(T)) to (E ,B(E)), and we endow Fb (T,B(T), E) with
the sup norm, which, for all L ∈ Fb (T,B(T), E), we denote by

sup (L) = sup
λ∈T

‖L(λ)‖E .

Then, for all g valued in S1(H0) and L,R ∈ Fb (T,B(T),Lb(H0, G0)), we have Qg(L,R) ∈
S1(G0) with

‖Qg(L,R)‖1 ≤ sup(L) sup(R)

∫
‖g‖1dLebT , (4.5)

and similarly, for a trace-class p.o.v.m. ν valued in S+
1 (H0), we have Qν(L,R) ∈ S1(G0) with

‖Qν(L,R)‖1 ≤ sup(L) sup(R) ‖ν‖1(T) . (4.6)

We denote by Fb,b(H0,G0) the product vector space Fb (T,B(T),Lb(H0,G0)) ×
Fb (T,B(T),Lb(H0,G0)), endowed with the max norm defined by

‖(L,R)‖b,b := max(sup(L), sup(R)) for all (L,R) ∈ Fb,b(H0, G0) .

For any two metric spaces (E1, d1) and (E2, d2), C (E1, E2) denotes the space of continuous
functions from E1 to E2. If F and Fn are in C (E1, E2) for all n ∈ N and

lim
n→∞

sup
x∈E1

d2 (Fn(x), F (x)) = 0 ,

we say that (Fn)n∈N converges to F uniformly in C (E1, E2).
Using these definitions, immediate properties of the quadratic functionals Q

I
Xc

n
n

and QνX

are summarized in the following proposition.

Proposition 4.1. For any X1, . . . , Xn in H0, the mapping Q
I
Xc

n
n

is well defined and belongs

to C(Fb,b(H0,G0),S1 (G0)). If (A-2) holds, we also have QνX ∈ C(Fb,b(H0,G0),S1 (G0)).

Proof. Observe that, under the given assumptions, Xc
n,1, . . . , X

c
n,n all are in H0, and so is

d
Xc

n
n (λ). Moreover,

∥∥∥dX
c
n

n (λ)
∥∥∥
H0

is bounded independently of λ. Consequently, I
Xc

n
n is valued

in S1(H0) and its trace-norm is integrable over T. The result on Q
I
Xc

n
n

thus follows from (4.5).

Under (A-2), νX is a trace-class p.o.v.m. ν valued in S+
1 (H0), with ‖ν‖1(T) = E

[
‖X0‖2H0

]
<

∞. The result on QνX thus follows from (4.6).

Our next result only exploits (A-1) and (A-2), and is thus of independent interest. It
is a uniform convergence result for integral quadratic functionals based on the periodogram.
It applies to a parameterized pair of bounded operators functions defined on (T,B(T)) and
valued in Lb(H0, G0). More precisely, for L and R in C (Θ× T,Lb(H0,G0)), for all n ≥ 1, we

define Q̃(L,R)

I
Xc

n
n

: θ 7→ Q
I
Xc

n
n

(L(θ, ·), R(θ, ·)). We also define Q̃(L,R)
νX : θ 7→ QνX (L(θ, ·), R(θ, ·)),

with Q
I
Xc

n
n

and QνX as in Proposition 4.1.

We can now state a first result on the convergence of the periodogram quadratic functional,
in the case where the left and right operator functions’ arrival spaces are finite-dimensional.

Theorem 4.2. Let H0 be a separable Hilbert space and G0 be a finite dimensional space. Let
X = (Xt)t∈Z be a process defined on (Ω,F , P) and valued in H0 satisfying (A-1) and (A-2)
and let (Θ,∆) be a compact metric space. Let L and R in C (Θ× T,Lb(H0,G0)). Then, we
have

lim
n→∞

Q̃(L,R)

I
Xc

n
n

= Q̃(L,R)
νX uniformly in C (Θ,S1 (G0)) , P-a.s. (4.7)

We now consider the case where G0 = H0 and H0 is an infinite-dimensional separable
Hilbert space. In order to obtain the convergence in S1(H0), we will rely on an additional
assumption in this case. To this end, for any sequence s = (sk)k∈N ∈ [1,∞)N and any
orthonormal sequence (φk)k∈N

of H0, we set

Hs
0 =

{
x ∈ Span

H0 (φk, k ∈ N) :
∑

k∈N

s2k

∣∣∣〈x, φk〉H0

∣∣∣
2

< ∞
}

. (4.8)
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A typical example of such spaces are the Sobolev spaces with index α > 0 where (φk)k∈N
is

a well chosen Hilbert basis (i.e. orthonormal and complete in H0) and sk = (1 + k)α. The
space Hs

0 is a subspace of H0 and is itself a separable Hilbert space endowed with the inner
product

〈x, y〉Hs
0
=
∑

k∈N

s2k 〈x,φk〉H0
〈y, φk〉H0

. (4.9)

Setting ξk = s−1
k φk for all k ∈ N, we note that (ξk)k∈N

is a Hilbert basis of Hs
0.

Using the space Hs
0 that we have just introduced, we have the following result for the

infinite-dimensional case.

Theorem 4.3. Let H0 be an infinite-dimensional separable Hilbert space. Let X = (Xt)t∈Z

be a process defined on (Ω,F ,P) and valued in H0 satisfying (A-1) and (A-2) and let (Θ,∆)
be a compact metric space. Let L and R in C (Θ× T,Lb(H0)). Let s = (sk)k∈N ∈ [1,∞)N and
(φk)k∈N be an orthonormal sequence of H0. Define the Hilbert space Hs

0 by (4.8) and (4.9).
We suppose that the three following assertions hold.

(i) The sequence s = (sk)k∈N ∈ [1,∞)N is non-decreasing and goes to ∞.

(ii) We have X0 ∈ Hs
0 P-a.s. with E

[
‖X0‖2Hs

0

]
< ∞.

(iii) Defining Ls and Rs by Ls(θ, λ) = L(θ, λ)|Hs
0
and Rs(θ, λ) = R(θ, λ)|Hs

0
for all (θ, λ) ∈

Θ× T, we have Ls and Rs in C (Θ× T,Lb(Hs
0)).

Then, the following convergence holds.

lim
n→∞

Q̃(L,R)

I
Xc

n
n

= Q̃(L,R)
νX uniformly in C (Θ,S1 (H0)) , P-a.s. (4.10)

In fact, as shown by Lemma 5.7 in Section 5.3, Assumptions (A-1) and (A-2) imply
Conditions (i) and (ii) of Theorem 4.3 for a well chosen s. This fact is useful to prove in
Theorem 1.1, by applying Theorem 4.3 for a specific choice of L and R, for which (iii) holds
for any sequence s, see the proof of Theorem 1.1 in Section 5.4.

4.2 FIARMA prediction and estimation

A common tool for M -estimation for finite dimensional time series is the Whittle contrast,
which relies on a Gaussian approximation of dXn as n → ∞, hence suggesting to use a Gaussian
likelihood contrast for dXn , based on its asymptotic covariance operator. We still have such an
approximation for time series valued in a Hilbert space, see [3, Theorem 1]. However, using
the Whittle approach directly in infinite dimension does not seem to be directly applicable.
Indeed, Gaussian distributions are generally singular to each other in infinite dimension. In
particular, the log determinant term of the noise covariance matrix appearing in the Whittle
contrast (for example, see the first term in L̄N on Page 344 of [10]), is not well defined when
this matrix is replaced by an infinite dimensional covariance operator.

There are two possible ways of circumventing this issue. The first one is to project the
data on some finite-dimensional subspace for statistical inference and then study the behavior
of estimators as the dimension of this subspace diverges. The second one is to work on a least
square criterion, which does not include the optimization of the noise covariance operator.
Here we investigate this second approach. We first derive the best one-step ahead predictor
of a FIARMA process (see Theorem 4.4). We then show that, under some condition, such a
predictor can be estimated from the data (see Theorem 4.6).

Recall that, for any integer d ∈ N, Pd(H0) denotes the set of polynomials p of degree d
with coefficients in Lb(H0), and such that p(0) = IdH0 . In the following, we further denote
by P†

d(H0), the set of all p ∈ Pd(H0), which are invertible on the closed unit disk D.

Theorem 4.4. Let H0 be a separable Hilbert space and p, q be two non-negative integers.
Let Y be an H0-valued FIARMA process, as in Definition 3.2, with long-memory operator
D ∈ N (H0), MA polynomial θ ∈ P†

q (H0), AR polynomial φ ∈ P†
p(H0) and an H0-valued

centered white noise Z. Define, for all z ∈ C \ [1,∞),

Φ†
θ,φ,D (z) = IdH0 − {θ(z)}−1

φ(z) (1− z)D . (4.11)
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Then, λ 7→ Φ†
θ,φ,D

(
e-iλ
)
belongs to ĤY , and, for all t ∈ Z, the best linear predictor of Yt given

its past {Ys : s ≤ t− 1} is given by

proj
(
Yt|HY

t−1

)
=

∫

T

eiλt Φ†
θ,φ,D

(
e−iλ

)
Ŷ (dλ) , (4.12)

where proj
(
Yt| HY

t−1

)
denotes the orthogonal projection of Yt onto the closed space

HY
t−1 = Span

M(Ω,F,H0,P) (PYs , s = t− 1, t− 2, . . . , P ∈ Lb(H0)) .

We now derive the best predictor among a collection of FIARMA predictors from a finite
sample X1, . . . , Xn. We will consider ARMA predictors or positive long memory FIARMA
predictors. More precisely, Define

N †(H0) := {D ∈ N (H0) : ℜ(D) is invertible} , (4.13)

where ℜ(D) = (D + DH)/2 denote the real part of D. As a subset of Lb(H0), we endow
N †(H0) with the topology inherited from the operator norm ‖·‖∞. Our main assumption on
the FIARMA parameters is the following.

(A-3) The FIARMA parameters ℵ = (Dθ , φθ, θθ)θ∈Θ are valued in N (H0)×P†
p(H0)×P†

q (H0)
for some p, q ∈ N

2 and indexed by a compact metric space (Θ,∆). Moreover, the
mappings (θ, λ) 7→ φθ

(
e−iλ

)
and (θ, λ) 7→ θθ

(
e−iλ

)
belong to C (Θ× T,Lb(H0)) and one

of the following two assertions hold.

(i) For all θ ∈ Θ, Dθ = 0.

(ii) The mapping θ 7→ Dθ belongs to C
(
Θ,N †(H0)

)
.

In (A-3), Condition (i) corresponds to using an ARMA predictor. Therefore, we will call
ℵ an ARMA predictor model in this case. Condition (ii) corresponds to using a FIARMA
predictor with positive long-memory. Therefore, we will call ℵ a positive FIARMA predictor
model in this case.

Our goal is now to derive, based on a finite sample X1, . . . , Xn, an approximation of
the best possible ℵ-prediction of a weakly stationary process X taken among the ARMA or
FIARMA predictors defined by a collection ℵ satisfying (A-3). We precise what we mean by
this best prediction in the following result, for a centered weakly stationary process Y . We
treat both the case where the model is well specified and the case where it is not. Recall that
we say that the model ℵ of (A-3) is well-specified for Y when Y is indeed a FIARMA process
with a FIARMA parameter (θ, φ, D) among ℵ.
Proposition 4.5 (Definition of ℵ-best prediction). Let H0 be an infinite-dimensional sepa-
rable Hilbert space and p, q be two non-negative integers. Let Y = (Yt)t∈Z be a centered weakly
stationary process defined on (Ω,F , P) and valued in H0 and let ℵ be a model satisfying (A-3).
Then, we have the following facts and definitions.

(i) For all θ ∈ Θ, there exists an absolutely summable Lb(H0)-valued sequence
(
P†

k (θ)
)
k≥1

such that, for all λ ∈ T \ {0},

F†(θ, λ) := IdH0 −
∞∑

k=1

P†
k (θ) e

−iλk =
[
θθ(e

−iλ)
]−1

φθ(e
−iλ)

(
1− e−iλ

)Dθ

. (4.14)

(ii) For all t ∈ Z and θ ∈ Θ, we can define

Ŷt(θ) :=
∞∑

k=1

P†
k (θ) Yt−k ∈ HY

t−1 . (4.15)

(iii) The best ℵ-prediction quadratic risk of Y is defined as

E
2 (Y,ℵ) = inf

θ∈Θ
E

[∥∥∥Yt − Ŷt(θ)
∥∥∥
2

H0

]
. (4.16)

which does not depend on t by weak stationarity of Y .
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(iv) The inf in (4.16) is attained in Θ (hence is a minimum) and we call the argmin set the
set of best ℵ-predictors for Y , denoted by

Θ∗
Y :=

{
θ ∈ Θ : E

[∥∥∥Yt − Ŷt(θ)
∥∥∥
2

H0

]
= E

2 (Y,ℵ)
}

(4.17)

Then, Θ∗
Y is a compact subset of Θ.

(v) If there exists Ŷ ∗
t ∈ HY

t−1 such that the subset
{
Ŷt(θ) : θ ∈ Θ∗

Y

}
of HY

t−1 reduces to

the singleton Ŷ ∗
t , we call Ŷ ∗

t the best ℵ-predictor of Yt. Otherwise we say that the best
ℵ-predictor of Yt is not well defined.

(vi) When the best ℵ-predictor of Yt is well defined for one t it is well defined for all t.
Moreover, in this case, there exists a set of probability one on which, for all t ∈ Z and
θ ∈ Θ∗

Y , Ŷ ∗
t = Ŷt(θ).

(vii) In the well-specified case, the best ℵ-predictor Ŷ ∗
t is always well defined and coincides

with the best predictor in HY
t−1, that is,

E
2 (Y,ℵ) = inf

V ∈HY
t−1

E

[
‖Yt − V ‖2H0

]
, (4.18)

Ŷ ∗
t = proj

(
Yt|HY

t−1

)
. (4.19)

The next results shows how to estimate a predictor which converges to the best predictor
that we have just introduced. We now introduce our estimation procedure.

Using F†
θ defined by (4.14) and the periodogram I

Xc
n

n defined in Section 4.1, we consider

a sequence of estimators (θ̂n)n∈N satisfying

lim sup
n→∞

(
Λn(θ̂n)− inf

θ∈Θ
Λn(θ)

)
= 0 , (4.20)

where, for all n ∈ N and θ ∈ Θ,

Λn(θ) := Tr

(
Q̃

(F†,F†)

I
Xc

n
n

(θ)

)
= Tr

(∫
F†(θ, λ) I

Xc
n

n (λ)
(
F†(θ, λ)

)H
dLebT

)
. (4.21)

Let Y be the centered version of X, Y = X −E [X0]. Using that I
Xc

n
n approximates νX = νY ,

with (4.14) and (4.15), Λn(θ) can be seen as an approximation of E

[∥∥∥Yt − Ŷt(θ)
∥∥∥
2

H0

]
, and

θ̂n as an attempt to minimize this risk in θ, mimicking what is done in (4.16). Then, to take
onto account the unknown mean of X and since we can only use the observations X1, . . . , Xn

to predict Xn+1, we truncate the series defining the predictor in (4.15) to keep its n first
terms only, apply it to the empirically centered observations

(
Xc

n,n+1−k

)
1≤k≤n

and add the

empirical mean to approximate E [X0]. This lead us to define the predictor of Xn+1 from the
sample X1, . . . , Xn associated to the estimator θ̂n by

X̂n+1,n =
1

n

n∑

k=1

Xk +

n∑

k=1

P†
k

(
θ̂n
)

Xc
n,n+1−k , (4.22)

where P†
k (θ) is defined in Proposition 4.5. Note that the predictor X̂n+1,n can be written as

m+
n∑

k=1

P†
k (θ) (Xn+1−k −m) (4.23)

by taking m ∈ H0 and θ ∈ Θ equal to 1
n

∑n
k=1 Xk and θ̂n, respectively. In the following

theorem, defining, for all n ≥ 1, m ∈ H0 and θ ∈ Θ, the quadratic prediction risk of a
predictor of this form by

E
2
X,n (m,θ) = E



∥∥∥∥∥Xn+1 −

(
m+

n∑

k=1

P†
k (θ) (Xn+1−k −m)

)∥∥∥∥∥

2

H0


 , (4.24)

we show that, as a predictor of Xn+1, X̂n+1,n asymptotically achieves the same prediction
risk as the optimal risk for predicting the centered process Y = X − E [X0] from its past.
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Theorem 4.6. Let H0 be an infinite-dimensional separable Hilbert space and p, q be two
non-negative integers. Let X = (Xt)t∈Z be a process defined on (Ω,F ,P) and valued in H0

satisfying (A-1) and (A-2). Let ℵ be a model satisfying (A-3) with compact parameter metric
space (Θ,∆). Let s = (sk)k∈N ∈ [1,∞)N and (φk)k∈N be an orthonormal sequence of H0.
Define the Hilbert space Hs

0 by (4.8) and (4.9). We suppose that (i) and (ii) of Theorem 4.3
hold as well as the following condition.

(iii) Defining, for all z ∈ C, φθ,s(z) = φθ(z)|Hs
0
and θθ,s(z) = θθ(z)|Hs

0
, we have that (θ, λ) 7→

φθ,s
(
e−iλ

)
and (θ, λ) 7→ θθ,s

(
e−iλ

)
belong to D (Θ× T,Lb(Hs

0)). Under (A-3)(ii), defin-

ing Dθ,s = Dθ|Hs
0
, assume, in addition, that θ 7→ Dθ,s belongs to C

(
Θ,N †(Hs

0)
)
.

Finally, let (θ̂n)n∈N be a sequence of estimators satisfying (4.20). Then, we have

lim
n→∞

∆
(
θ̂n,Θ

∗
Y

)
= 0 , P-a.s. , (4.25)

lim
n→∞

E
2
X,n

(
1

n

n∑

k=1

Xk, θ̂n

)
= E

2 (Y,ℵ) , P-a.s. . (4.26)

where Y = (Yt)t∈Z denotes the centered process defined by Yt = Xt − E [Xt], Θ
∗
Y is defined

in (4.17), E2
X,n in (4.24), and E

2 (Y,ℵ) in (4.16).

Moreover, if Ŷ ∗
t is well defined (as in Proposition 4.5 (v)), we further have

lim sup
n→∞

E

[∥∥∥Xn+1 − X̂n+1,n

∥∥∥
2

H0

]
≤ E

2 (Y,ℵ) , (4.27)

where is X̂n+1,n defined by (4.22).

Let us briefly comment the conclusions of Theorem 4.6. Equation (4.25) says that θ̂n
is consistent for estimating the optimal θ up to the equivalence relationship θ ∼ θ′ defined

by E

[∥∥∥Yt − Ŷt(θ)
∥∥∥
2

H0

]
= E

[∥∥∥Yt − Ŷt(θ
′)
∥∥∥
2

H0

]
. Equation (4.26) says that the rsik of an

estimator of the form (4.23) for predicting Xn+1 is asymptotically minimal with m and θ
replaced by the empirical mean and θ̂n. Finally , while (4.25) and (4.26) hold in the P-a.s.
sense, Equation (4.27) says that the prediction risk directly defined with the predictor X̂n+1,n,
that is, in contrast to (4.26), with the empirical mean and θ̂n inside the expectation, is indeed
asymptotically optimal.

5 Postponed proofs

5.1 Proofs of Section 3.2

5.1.1 Proofs of Lemma 3.2 and Theorem 3.3

Lemma 3.2 is used to introduce the definition of joint kernels as in Definition 3.3.

Proof of Lemma 3.2. Let (φi)0≤i<N denote a Hilbert basis of L2(V,V, ξ), assumed to be
of dimension N ∈ {1, 2, . . . ,∞}. Define Kn : (v, v′;λ) 7→∑

0≤i,j≤n φH

i K(λ)φj φi(v)φ̄j(v
′) on

V
2×T and, for all ǫ > 0, Nǫ : λ 7→ inf

{
n < N :

∑
i or j>n

∣∣φH

i K(λ)φj

∣∣2 ≤ ǫ
}
on T. Note that,

for all λ ∈ T, Nǫ(λ) is well defined and finite since
∑

0≤i,j<N

∣∣φH

i K(λ)φj

∣∣2 = ‖K(λ)‖2 < ∞.

Now let us define, for all v, v′ ∈ V and λ ∈ T, K(v, v′;λ) := limn→∞ KN
2−n (λ)(v, v

′;λ) when-

ever this limit exists in C and set K(v, v′; λ) = 0 otherwise. Since (φk ⊗ φ̄k′)0≤k,k′<N is a
Hilbert basis of L2(V2,V⊗2, ξ⊗2), we immediately have that, for any λ ∈ Λ, KN

2−n (λ)(·, ·; λ)
converges in the sense of this L2 space to

∑
0≤i,j<N φH

i K(λ)φj φi ⊗ φ̄j , and thus, this limit

must be equal to K(·, ·;λ), ξ⊗2-a.e. It follows that, that for any λ ∈ Λ, for all i, j ∈ N,∫
K(v, v′;λ)φ̄i(v)φj(v

′) ξ(dv)ξ(dv′) = φH

i K(λ)φj , which gives that K(λ) is an integral op-
erator associated to the kernel K(·, ·; λ). Since (v, v′, λ) 7→ K(v, v′;λ) is measurable by
definition, this concludes the proof of the existence of the Λ-joint kernel of K. If, moreover,
K ∈ L2(Λ,A,S2(H0), µ), then Kn converges in L2(V2 × Λ,V⊗2 ⊗ A, ξ⊗2 ⊗ µ) and the limit
must be equal to K, ξ⊗2 ⊗ µ-a.e. since for each λ ∈ Λ, Kn(·, ·; λ) converges to K(·, ·;λ) in
L2(V2,V⊗2, ξ⊗2). Hence, we get that K ∈ L2(V2 × Λ,V⊗2 ⊗A, ξ⊗2 ⊗ µ).
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We now prove Theorem 3.3.

Proof of Theorem 3.3. We assume without loss of generality that µ({0}) = 0 (since it
affects none of the given assertions). By Proposition 2.1, Assertion (i) is equivalent to

∫

T

∥∥∥∥(1− e−iλ)−DgX(λ)
[
(1− e−iλ)−D

]H∥∥∥∥
1

µ(dλ) < ∞ . (5.1)

Using the singular values decomposition (3.5), and since U is unitary from H0 to

L2(V,V, ξ), we get that, for all λ ∈ T \ {0},
∥∥∥(1− e−iλ)−DgX(λ)

[
(1− e−iλ)−D

]H∥∥∥
1

=
∥∥∥UHM(1−e−iλ)−dUgX(λ)UHMH

(1−e−iλ)−dU
∥∥∥
1
=
∥∥M(1−e−iλ)−dh(λ)

∥∥2
2
. Hence (5.1) holds if and

only if

∫

T

∥∥M(1−e−iλ)−dh(λ)
∥∥2
2
µ(dλ) < ∞, which, using the T-joint kernel h of h, reads

∫ ∣∣∣(1− e−iλ)−d(v)
h(v, v′; λ)

∣∣∣
2

ξ(dv)ξ(dv′)µ(dλ) < ∞. Applying Lemma A.1 to z = −d(v),

since d is a µ-essentially bounded function, we get that Assertion (i) is equivalent to

∫

V2×(−π,π]

|λ|−2ℜ(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ . (5.2)

Using that |λ|2ℜ−(d(v)) is bounded over λ ∈ (−π, π] and that

∫ ∣∣h(v, v′;λ)
∣∣2 ξ(dv)ξ(dv′)µ(dλ) =

∫
‖h(λ)‖22 µ(dλ) < ∞ ,

Condition (5.2) is equivalent to Assertion (iii). Using that, for any η ∈ (0, π), |λ|−2ℜ(d(v))

is bounded independently of v on λ ∈ (−π, π] \ (−η, η), we also get that Condition (5.2) is
equivalent to Assertion (ii).

5.1.2 Proof of Theorem 3.4

We start with a useful result on ARMA processes.

Lemma 5.1. Let H0 be a separable Hilbert space and X be an ARMA(p, q) process defined
by X̂(dλ) = [φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) with θ ∈ Pq(H0), φ ∈ P∗

p (H0) and Z an H0-valued white
noise with covariance operator Σ. Then, there exists η ∈ (0, π) such that

∑

n∈N

ηn

n!
‖Pn (φ, θ)‖∞ < ∞ , (5.3)

where Pn (φ, θ) is defined in (3.8). Moreover, for Leb-a.e. λ ∈ (−η, η), we have

gX(λ) = h(λ) [h(λ)]H with h(λ) =
∑

n∈N

(−iλ)n

n!
Pn (φ, θ) Σ1/2 , (5.4)

where h can be seen as a power series valued in S2(H0) with a convergence radius at least
equal to η.

Proof. Since z 7→ [φ(z)]−1 θ(z) is holomorphic in an open ring containing U and the exponen-
tial function is holomorphic on C, by [13, Theorem 1.8.5], there exists η > 0 such that (5.3)
holds and [φ(ez)]−1 θ(ez) coincides with the Lb(H0)-valued power series

∑∞
n=0 Pn (φ, θ) zn/n!

on the set {z ∈ C : |z| ≤ η}.
Finally, we observe that gX = hhH with h(λ) = [φ(e−iλ)]−1 θ(e−iλ) Σ1/2 and the given

expression of h in (5.4) follows from (5.3) and the usual bound

∥∥∥Pn (φ, θ) Σ1/2
∥∥∥
2
≤ ‖Pn (φ, θ)‖∞

∥∥∥Σ1/2
∥∥∥
2
= ‖Pn (φ, θ)‖∞ ‖Σ‖1/21 .

This concludes the proof.
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Proof of Theorem 3.4. Before proving the claimed implications, we start with some pre-
liminary facts that follow from Lemma 5.1, Lemma B.2 and Theorem 3.3. First ob-
serve that the process UX = (UXt)t∈Z is the G0-valued ARMA(p, q) process defined by

ÛX(dλ) = [φ̃(e−iλ)]−1 θ̃(e−iλ) ÛZ(dλ), where θ̃ := UθUH ∈ Pq(G0) and φ̃ := UφUH ∈ P∗
p (G0),

and UZ = (UZt)t∈Z is a G0-valued white noise. Then, applying Lemma 5.1 with µ as the
Lebesgue measure, we get that, for some η > 0, νUX has density h(λ)[h(λ)]H on (−η, η) with
h a power series valued in S2(G0) with radius of convergence at least η > 0,

h(λ) =
∑

n∈N

(−iλ)n

n!
U Pn (φ, θ) Σ1/2 UH . (5.5)

Now, define, for any η′ ∈ (0, η),

I(η′) :=

∫

V2×(−η′,η′)

|λ|−2ℜ(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)
dλ

2π
,

where h is the T-joint kernel of h in (5.5). By Theorem 3.3, Assertion (i) holds if, and only
if, there exists η′ ∈ (0, η) such that I(η′) < ∞ which is itself equivalent to having I(η′) < ∞
for all η′ ∈ (0, η). Using (5.5), we have

I(η′) =

∫

V2×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣
∑

n∈N

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣

2

ξ(dv)ξ(dv′)
dλ

2π
, (5.6)

where kn denotes the kernel of U Pn (φ, θ) Σ1/2 UH ∈ S2(G0). In particular we have by
Lemma B.2 that

σn(v) =
(
E
[
|Wn(v, ·)|2

])1/2
= ‖kn(v, ·)‖G0

. (5.7)

Denote

In(η
′) :=

∫

V2×(−η′,η′)

|λ|2n−2ℜ(d(v))
∣∣kn(v, v

′)
∣∣2 ξ(dv)ξ(dv′)

dλ

2π
, (5.8)

d = sup(ℜ(d)) and m := inf
{
m ∈ N : m > d− 1/2

}
.

Note that d and m are finite since d is bounded. Defining, moreover,

I(η′) :=

∫

V2×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

0≤n<m

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣∣

2

ξ(dv)ξ(dv′)
dλ

2π

and R(η′) :=
∞∑

n=m

I
1/2
n (η′)

n!
,

and applying the Minkowski inequality in (5.6), for any η′ ∈ (0, η), we have that, if R(η′) < ∞,

I(η′) < ∞ ⇔ I(η′) < ∞ .

Let us pick η′ ∈ (0, 1 ∧ η). Then, for all λ ∈ (−η′, η′) and n ∈ N, we have |λ|2n−2ℜ(d(v)) ≤
|λ|2n−2d and thus, for all n ≥ m,

In(η
′) ≤ η′(1+2n−2d)

π(1 + 2n− 2d)

∫

V2

∣∣kn(v, v
′)
∣∣2 ξ(dv)ξ(dv′)

=
η′(1+2n−2d)

π(1 + 2n− 2d)

∥∥∥Pn (φ, θ) Σ1/2
∥∥∥
2

2
.

Using that
∥∥∥Pn (φ, θ) Σ1/2

∥∥∥
2
≤ ‖Pn (φ, θ)‖∞‖Σ‖1/21 and the bound (5.3) of Lemma 5.1, we

get that R(η′) < ∞. We thus conclude that Assertion (i) is equivalent to have, for some
η′ ∈ (0, 1 ∧ η),

I(η′) < ∞ . (5.9)

Next, we show that, for any η′ ∈ (0, 1), Condition (ii) is, in fact, equivalent to have

In(η
′) < ∞ for all n ∈ N . (5.10)
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Indeed, integrating w.r.t. v′ and λ in the definition of In(η
′) in (5.8), we have that, for all

n ∈ N,

In(η
′) =

∫

{ℜ(d)<n+1/2}

η′ (1+2n−2ℜ(d(v))) σ2
n(v)

1 + 2n− 2ℜ(d(v))
ξ(dv)

π
,

if ℜ(d) < n + 1/2 ξ-a.e. on {σn > 0}, or is equal to ∞ otherwise. Since d is bounded on V,
so is η′ (1+2n−2ℜ(d(v))) on v ∈ V and we conclude that Condition (ii) is equivalent to (5.10).

We are now ready to prove each implication of the claimed equivalence successively.
Proof of (i)⇐(ii). This is now trivial, since applying the Minkowski inequality in the integral
defining I in (5.9) and the definition of In in (5.8), we immediately see that Condition (5.9)
is implied by (5.10).
Proof of (i)⇒(ii). The proof of this implication is a bit more complex. The first step is to
prove that Assertion (i) implies

for all n ∈ N, ℜ(d) < n+ 1/2 ξ-a.e. on {σn > 0} . (5.11)

Then, we show that it must also imply (3.9) for all n ∈ N in a second and last step.
Step 1. Suppose that (5.11) does not hold; let us show that Assertion (i) cannot hold. Since
it is equivalent to (5.9), it is sufficient to show that I(η′) = ∞ for any arbitrary η′ > 0. Let
m be the smallest n ∈ N for which ξ ({ℜ(d) ≥ n+ 1/2} ∩ {σn > 0}) > 0. Note that by their
mere definitions, we have m < m. In addition, for all 0 ≤ n < m, we have

ξ ({ℜ(d) ≥ m+ 1/2} ∩ {σn > 0}) ≤ ξ({ℜ(d) ≥ n+ 1/2} ∩ {σn > 0}) = 0 .

Hence, kn(v, v
′) = 0 for ξ⊗2-a.e. (v, v′) ∈ {ℜ(d) ≥ m+ 1/2} × V. Now we have, using the

definition of I(η′) in (5.9) and what we just deduced,

I(η′) ≥
∫

{ℜ(d)≥m+1/2}×V×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

0≤n<m

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣∣

2

ξ(dv)ξ(dv′)
dλ

2π

=

∫

{ℜ(d)≥m+1/2}×V×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m≤n<m

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣∣

2

ξ(dv)ξ(dv′)
dλ

2π
.

Note that, for all (v, v′) ∈ V
2 and λ ∈ R, we have

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m≤n<m

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣∣

2

= |λ|2m−2ℜ(d(v))

(
|km(v, v′)|2

(m!)2
+ o(1)

)
,

where o-term tends to 0 as λ → 0. We get that, for all (v, v′) ∈ ({ℜ(d) ≥ m+ 1/2} × V) ∩{
|km|2 > 0

}
and η′ > 0,

∫

(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m≤n<m

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣∣

2

dλ

2π
= ∞ .

With the previous lower bound on I(η′), we deduce that I(η′) = ∞ if

ξ⊗2 (({ℜ(d) ≥ m+ 1/2} × V) ∩
{
|km|2 > 0

})
> 0 .

By definition of σn in (5.7), we have, for all v ∈ V,

g(v) :=

∫

V

1{

|km(v,v′)|2>0
} ξ(dv′) > 0 ⇔ σm(v) > 0 .

Hence,

ξ⊗2
(
({ℜ(d) ≥ m+ 1/2} × V) ∩

{
|km|2 > 0

})
=

∫

{ℜ(d)≥m+1/2}

g dξ

is positive if and only if ξ ({ℜ(d) ≥ m+ 1/2} ∩ {σm > 0}) > 0, which is true by definition of
m. This concludes the first step.
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Step 2. Suppose now that (5.11) does hold but (3.9) does not hold for all n ∈ N and let
us show again that Assertion (i) cannot hold. Let us define m̃ as the smallest n ∈ N such
that (3.9) does not hold. Again by definition of m, we must have m̃ < m, since (3.9) holds
for n = m by definition of m. Take now an arbitrary η′ ∈ (0, 1 ∧ η). We have shown in the
preamble of the proof that if (5.11) is satisfied, then (3.9) is equivalent to In(η

′) < ∞. Hence,
we can also see m̃ as the smallest n ∈ N such that In(η

′) = ∞. Thus, we have Ik(η
′) < ∞ for

all 0 ≤ k < m̃ and Im̃(η′) = ∞. It follows that Assertion (i) is not only equivalent to having
I(η′) < ∞ as in (5.9) but also to the condition

Ĩ(η′) :=

∫

V2×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m̃≤n<m

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣∣

2

ξ(dv)ξ(dv′)
dλ

2π
< ∞ . (5.12)

Now, we observe that

Ĩ(η′) ≥
∫

{ℜ(d)<m̃+1/2}×V×(−η′,η′)

|λ|−2ℜ(d(v))

∣∣∣∣∣∣
∑

m̃≤n<m

(−iλ)n

n!
kn(v, v

′)

∣∣∣∣∣∣

2

ξ(dv)ξ(dv′)
dλ

2π
.

Therefore, to conclude that Ĩ(η′) = ∞ (implying that Assertion (i) does not hold), by the
Minkowski inequality, it is sufficient to show that

Ĩm̃(η′) = ∞ and, for all n > m̃, Ĩn(η
′) < ∞ , (5.13)

where, for all n ∈ N, we denoted

Ĩn(η
′) :=

∫

{ℜ(d)<m̃+1/2}×V×(−η′,η′)

|λ|2n−2ℜ(d(v))
∣∣kn(v, v

′)
∣∣2 ξ(dv)ξ(dv′)

dλ

2π
.

For all n ≥ m̃ we have, as in the previous computation of In that

Ĩn(η
′) < ∞ ⇔

∫

{ℜ(d)<m̃+1/2}

σ2
n(v)

1 + 2n− 2ℜ(d(v)) ξ(dv) < ∞ .

For an integer n > m̃, we have 1 + 2n− 2ℜ(d(v)) ≥ 2 on {ℜ(d) < m̃+ 1/2}, hence the right-
hand side of (5.13) follows as a consequence of

∫
σ2
n dξ < ∞. For n = m̃, the left-hand side

of (5.13) follows as a consequence of (3.9) not being satisfied for n = m̃ by definition of m̃.

5.2 Proofs of Section 3.3

Proof of Lemma 3.5. Since ǫ is a white noise, as explained in Remark 3.2 (2), Assertion (ii)
of Theorem 3.4 only needs to be checked for n = 0. The result follows since this case precisely
corresponds to the conditions in (3.11) with D = IdH0 −N .

The proof of Proposition 3.6 relies on the following lemma where we recall that the open
and closed complex unit discs of C are denoted by D and D, respectively. This lemma will
also be useful in the proofs of Section 4.2.

Lemma 5.2. Let H0 be a separable Hilbert space and N be in N (H0). Let ̺ and ς such that

̺ ≤ inf
{
〈ℜ(N) x, x〉H0

: x ∈ H0 , ‖x‖H0
= 1
}
≤ ‖N‖∞ ≤ ς , (5.14)

where ℜ(N) = (NH +N)/2. Then, there exist Q ∈ Lb(H0) and (P∗
k)k∈N ∈ Lb(H0)

N such that,
for all z ∈ D,

(1− z)N−Id = Q

(
∞∑

k=0

(k + 1)−Nzk
)

+
∞∑

k=0

P∗
kz

k , (5.15)

where the two infinite sums on the right-hand side are Lb(H0)-valued power series with a
convergence radius at least equal to 1.

There further exist Cς , C̺ > 0 only depending on ς and ̺ respectively such that

‖Q‖∞ ≤ Cς and, for all k ≥ 0, ‖P∗
k‖∞ ≤ CςC̺ (k + 1)−1−̺ . (5.16)

Moreover, if ̺ > 0, then (5.15) continues to hold for all z ∈ D\{1} with the two infinite sums
converging in Lb(H0).
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Proof. In the following, we denote by n the singular value function of N , defined on G0 :=
L2(V,V, ξ) with decomposition operator U . Then, Condition (5.14) car be rewritten as

̺ ≤ ξ-essinf
v∈V

ℜ(n(v)) ≤ ξ-essup
v∈V

|n(v)| ≤ ς . (5.17)

We now proceed in three steps. We first show Relation (5.15) for all z ∈ D, then that the
bounds (5.16) hold, and, finally, we extend (5.15) to z ∈ D \ {1} when ̺ > 0.
Step 1. Let z ∈ D, then

(1− z)N−Id = Id +
∑

k≥1

Nkz
k with Nk =

k∏

j=1

(
Id− N

j

)
, for all k ≥ 1 . (5.18)

Define the integer k0 ≥ 1 by the condition ς < k0 ≤ ς + 1. Then, for all j ≥ k0, Id − N
j

=

exp
(
ln
(
Id− N

j

))
= exp

(
−∑ℓ≥1

Nℓ

ℓ jℓ

)
and therefore, for all k ≥ k0,

Nk =

k0−1∏

j=1

(
Id− N

j

)
exp


−

∑

ℓ≥1

Nℓ

ℓ

k∑

j=k0

1

jℓ




=

k0−1∏

j=1

(
Id− N

j

)
exp


−N

k∑

j=k0

1

j


 exp


−

∑

ℓ≥2

Nℓ

ℓ

k∑

j=k0

1

jℓ


 . (5.19)

Moreover, we have the following asymptotic expansions. For all k ≥ k0,

k∑

j=k0

1

j
=

k∑

j=1

1

j
−

k0−1∑

j=1

1

j
= ln(k + 1) + γe −

k0−1∑

j=1

1

j
+

αk

k
,

k∑

j=k0

1

jℓ
=

∞∑

j=k0

1

jℓ
−

∞∑

j=k+1

1

jℓ
=

βℓ

kℓ
0

+
ηk,ℓ

(ℓ− 1)kℓ−1
, for all ℓ ≥ 2 ,

where γe is Euler’s constant, βℓ :=
∑∞

k=k0

(
k0
k

)ℓ
, and (αk)k≥1 and (ηk,ℓ)k≥1,ℓ≥2 are some

universal constants satisfying

sup
k≥1

|αk| < ∞ and sup
k≥1,ℓ≥2

|ηk,ℓ| < ∞ . (5.20)

Also note that
sup
ℓ≥2

βℓ = β2 < ∞ . (5.21)

Using these definitions in (5.19), we obtain, for all k ≥ k0,

Nk = Q(k + 1)−N exp


−N

αk

k
−
∑

ℓ≥2

Nℓηk,ℓ
(ℓ− 1)kℓ−1




where

Q =

k0−1∏

j=1

(
Id− N

j

)
exp

(
−N

(
γe −

k0−1∑

t=1

1

t

))
exp


−

∑

ℓ≥2

(
N

k0

)ℓ
βℓ

ℓ


 . (5.22)

Using the previous equations in (5.18), for all z ∈ D, we can write (1− z)N−Id as

Id +

k0−1∑

k=1

k∏

j=1

(
Id− N

j

)
zk +Q

∑

k≥k0

(k + 1)−N exp


−N

αk

k
−
∑

ℓ≥2

Nℓηk,ℓ
(ℓ− 1)kℓ−1


 zk .
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Thus Relation (5.15) follows by setting

P∗
0 := Id−Q , (5.23)

P∗
k :=

k∏

j=1

(
Id− N

j

)
−Q (k + 1)−N , for 1 ≤ k ≤ k0 − 1, (5.24)

P∗
k := Q(k + 1)−N


exp


−N

αk

k
−
∑

ℓ≥2

Nℓηk,ℓ
(ℓ− 1)kℓ−1


− Id


 for k ≥ k0. (5.25)

Step 2. By (5.22), (5.14) and (5.21), first note that ‖Q‖∞ can be bounded by a constant
only depending on ς (since k0 only depends on ς as well). Hence, by (5.23) and (5.24), for
k < k0 ≤ ς +1 we can again bound ‖P∗

k‖ by a constant only depending on ς. Now let k ≥ k0,
defining

Φk := −N
αk

k
−
∑

ℓ≥2

Nℓηk,ℓ
(ℓ− 1)kℓ−1

,

Relation (5.25) yields

‖P∗
k‖∞ ≤ ‖Q‖∞

∥∥∥(k + 1)−N
∥∥∥
∞

∑

t≥1

‖Φk‖t∞
t!

.

Using the singular value function n with (5.17), we have
∥∥∥(k + 1)−N

∥∥∥
∞

=
∥∥∥(k + 1)−Mn

∥∥∥
∞

=
∥∥M(k+1)−n

∥∥
∞

= ξ-essup
v∈V

∣∣∣(k + 1)−n(v)
∣∣∣ ≤ (k + 1)−̺ .

Using the upper bound of operator norm of N in (5.14), we have

‖Φk‖∞ ≤ ς
|αk|
k

+
∑

ℓ≥2

ςℓηk,ℓ
(ℓ− 1)kℓ−1

=
ς

k


|αk|+

∑

ℓ≥1

ςℓ

ℓ
ηk,ℓ+1k

1−ℓ




≤ ς

k

(
|αk|+

(
sup

k≥1,ℓ≥2
|ηk,ℓ|

)
ς

(
1− ς

k0

)−1
)

.

By (5.20), this bound only depend on ς (since k0 does as well). Gathering the obtained bounds
we get (5.16).
Step 3. We now assume ̺ > 0 and extend (5.15) to D \ {1}, that is to the case z = e−iλ for
some λ ∈ T \ {0}. For such a λ, we already have, for all 0 < a < 1,

(1− ae−iλ)N−Id = Q
∑

k≥0

(k + 1)−Nake−iλk +
∑

k≥0

P∗
ka

ke−iλk .

Moreover, (1 − e−iλ)N−Id = lima↑1(1 − ae−iλ)N−Id by continuity of z 7→ (1 − z)N−Id in
D \ {1} and

∑
k≥0 P

∗
ke

−iλk = lima↑1

∑
k≥0 P

∗
ka

ke−iλk because
∑

k≥0 ‖P∗
k‖∞ < ∞. It remains

to show that
∑

k≥0(k+1)−Nz is well defined on U \ {1} and that, for λ ∈ T \ {0}, ∑k≥0(k+

1)−Nake−iλk converges to
∑

k≥0(k + 1)−Ne−iλk as a ↑ 1. We prove these facts at once by

applying Lemma A.3 with ak = (k+ 1)−N . We already used in Step 2 that, for all k ∈ N, we
have

∥∥(k + 1)−N
∥∥
∞

≤ (k + 1)−̺. Since ̺ > 0, we get that
∥∥(k + 1)−N

∥∥
∞

→ 0 as k → ∞.
Hence, to apply Lemma A.3 it only remains to show

∑

k∈N

∥∥∥(k + 1)−N − (k + 2)−N
∥∥∥
∞

< ∞ . (5.26)

Note that we have, for all k ∈ N,
∥∥∥(k + 1)−N − (k + 2)−N

∥∥∥
∞

= ξ-essup
v∈V

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ . (5.27)
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Moreover, for all k ∈ N, and ξ − a.e. v ∈ V, since ℜ(n(v)) ≥ ̺ > 0, we have

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ = |k + 1|−ℜ(n(v))

∣∣∣∣1− exp

(
− ln

(
1 +

1

k + 1

)
n(v)

)∣∣∣∣

≤ ς α(ς ln(2)) (k + 1)−̺ ln

(
1 +

1

k + 1

)
,

where, here, we set, for any r > 0, α(r) := sup
{∣∣∣ 1−e−z

z

∣∣∣ : z ∈ C 0 < |z| ≤ r
}
. This leads to

the asymptotic bound, as k → ∞, ξ-essupv∈V

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ = O

(
(k + 1)−̺−1

)
.

Hence, with (5.27) and the assumption ̺ > 0, we obtain (5.26).

Proof of Proposition 3.6. The first condition in (3.11) gives that (5.14) holds with ̺ ≥
1/2. Applying Lemma 5.2, there exists Q ∈ Lb(H0) and (P∗

k)k∈N ∈ Lb(H0)
N with ‖P∗

k‖∞ =

O(k−3/2) such that (1− e−iλ)N−Id = Q
∑∞

k=0(k + 1)−Ne−iλk +
∑∞

k=0 P
∗
ke

−iλk in Lb(H0) for
all λ ∈ T \ {0}, thus concluding the proof.

5.3 Proofs of Section 4.1

5.3.1 Preliminary results

In the following, for two separable Hilbert spaces H0 and I0 and a finite non-negative measure
µ on (T,B(T)), we denote by ‖·‖1,1 the natural norm of the Bochner space L1,1(H0, I0, µ) :=

L1 (T,B(T),S1(H0, I0), µ), that is,

‖g‖1,1 :=

∫
‖g(λ)‖1 dµ .

We use the notation

B1,1(r,H0, I0, µ) =
{
g ∈ L1 (T,B(T),S1(H0, I0), µ) : ‖g‖1,1 ≤ r

}
,

for the ball of radius r in the Banach space L1,1(H0, I0, µ). As usual, if I0 = H0, we drop I0

in the notation, thus writing L1,1(H0, µ) and B1,1(r,H0, µ) in this case. Also if µ = LebT we
drop the measure in the notation, thus writing L1,1(H0, I0) and B1,1(r,H0, I0), or L1,1(H0)
and B1,1(r,H0) if I0 = G0, in this case.

These definitions and those introduced in Section 4.1 (such as Q and Q̃) will be useful in
the following. Recall, in particular, that Fb (T,B(T), E) denotes the set of bounded measurable
functions from (T,B(T)) to (E ,B(E)). We will also need to define Fb,b ((H0, G0) , (I0,J0)) as
the product vector space Fb (T,B(T),Lb(I0,J0))×Fb (T,B(T),Lb(H0, G0)), endowed with the
max norm

‖(L,R)‖b,b := max(sup(L), sup(R)) for all (L,R) ∈ Fb,b ((H0, G0) , (I0,J0)) .

This simply extends the definition of Fb,b(H0,G0) already introduced in Section 4.1, which
can be seen as a short-hand notation for Fb,b ((H0,G0) , (H0,G0)).

We now derive a series of useful lemmas.

Lemma 5.3. Let µ be a finite non-negative measure on (T,B(T)) and H0, G0, I0 and J0 be
four separable Hilbert spaces and g ∈ L1,1(H0, I0, µ). Then the mapping Qg,µ defined by

Qg,µ(L,R) =

∫
Lg RH dµ (5.28)

is a continuous sesquilinear mapping from Fb,b ((H0,G0) , (I0,J0)) to S1 (G0,J0) satisfying

sup
{
‖Qg,µ(L,R)‖1 : ‖(L,R)‖b,b ≤ 1

}
≤ ‖g‖1,1 .

Consequently, for any positive radius r, the set {Qg,µ : g ∈ B1,1(r,H0, I0, µ)} is equicontin-
uous in C (Fb,b ((H0,G0) , (I0,J0)) ,S1 (G0, I0)).
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Proof. For all (L,R) ∈ Fb,b ((H0,G0) , (I0,J0)), g ∈ L1,1(H0, I0) and λ ∈ T, we have

∥∥∥L(λ) g(λ)R(λ)H
∥∥∥
1
≤ ‖L(λ)‖∞ ‖g(λ)‖1

∥∥∥R(λ)H
∥∥∥
∞

,

which is thus integrable with respect to µ. Moreover, we obtain that

‖Qg,µ(L,R)‖1 ≤ ‖g‖1,1 sup(L) sup(R) .

The given claim immediately follows as well as its consequence.

We also derive the following lemma, which will be useful in the following.

Lemma 5.4. Let H0, G0 and I0 be three separable Hilbert spaces, Θ be a compact metric space,
and let L and R be two continuous mappings from Θ × T into Lb(H0,G0) and Lb(H0, I0),

respectively. Then, for any positive radius r, the set R(r) :=
{
Q̃(L,R)

g : g ∈ B1,1(r,H0)
}

is

equicontinuous in C (Θ,S1 (I0,G0)).

Proof. Let r > 0. Since Θ×T is compact, R and L are uniformly continuous on Θ×T and we
get that θ 7→ (L(θ, ·), R(θ, ·)) ∈ C (Θ,Fb,b ((H0,G0) , (H0, I0))). By Lemma 5.3, we get that
R(r) is equicontinuous in C (Θ,S1 (I0,G0)).

We next provide four last preliminary lemmas, one about the non-centered periodogoram,
and two dealing with the centering term.

Lemma 5.5. Let H0 and I0 be two separable Hilbert spaces such that I0 is continuously

embedded in H0. Assume (A-1) and suppose moreover that X0 ∈ I0 P-a.s. with E

[
‖X0‖2I0

]
<

∞. Then, for all n ≥ 1, IXn ∈ L1,1(H0, I0) P-a.s. and we have

sup
n≥1

∥∥∥IXn
∥∥∥
1,1

< ∞ P-a.s.

Proof. Note that, for all n ≥ 1, we have, using the definition of IXn , and then that of dXn ,

∥∥∥IXn
∥∥∥
1,1

=

∫ ∥∥∥IXn
∥∥∥
1
dLebT

≤
∫ ∥∥∥dXn (λ)

∥∥∥
I0

∥∥∥dXn (λ)
∥∥∥
H0

dLebT

≤
(∫ ∥∥∥dXn (λ)

∥∥∥
2

I0

dLebT

)1/2 (∫ ∥∥∥dXn (λ)
∥∥∥
2

H0

dLebT

)1/2

=

(
1

n

n∑

k=1

‖Xk‖2I0

)1/2 (
1

n

n∑

k=1

‖Xk‖2H0

)1/2

,

where in the right-hand side of the first line ‖·‖1 denotes the S1(H0, I0)-norm. By (A-1),
with the Birkhoff ergodic theorem, we get that the right-hand of the previous bound converges

P-a.s. The claim P-a.s.uniform bound of
(∥∥IXn

∥∥
1,1

)
n≥1

follows.

Lemma 5.6. Recall that IXn and I
Xc

n
n denote the periodograms respectively computed from

X1, . . . , Xn and from Xc
n,1, . . . , X

c
n,n, as defined in (1.3). Suppose that X1, . . . , Xn ∈ H0.

Then, IXn and I
Xc

n
n belong to S1(H0) and we have, for all λ ∈ T,

∥∥∥IXn (λ)− I
Xc

n
n (λ)

∥∥∥
1
≤
∥∥∥∥∥
1

n

n∑

j=1

Xj

∥∥∥∥∥

2

H0

Fn(λ) + 2

∥∥∥∥∥
1

n

n∑

j=1

Xj

∥∥∥∥∥
H0

∥∥∥dXn (λ)
∥∥∥
H0

(Fn(λ))
1/2 ,

where Fn denotes the Fejér kernel defined by

Fn(λ) =
1

n

∣∣∣∣∣
n∑

k=1

e−i λk

∣∣∣∣∣

2

. (5.29)
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Proof. By (1.3) and (4.1), we have, for all λ ∈ T,

d
Xc

n
n (λ) = dXn (λ)−

(
1

n

n∑

j=1

Xj

) (
1√
n

n∑

k=1

e−iλ k

)
.

Computing I
Xc

n
n (λ) = d

Xc
n

n (λ)⊗ d
Xc

n
n (λ) and using that ‖x⊗ y‖1 = ‖x‖H0

‖y‖H0
for all x, y ∈

H0, we easily get the result.

We have the following result on the process X.

Lemma 5.7. Let H0 be a separable Hilbert space. Assume (A-1) and (A-2). Then, the
process X is valued in a finite-dimensional space G0 ⊂ H0 or, if it is not the case, there
always exists an orthonormal sequence (φk)k∈N of H0 and a sequence s = (sk)k∈N ∈ [1,∞)N

such that Conditions (i) and (ii) in Theorem 4.3 hold.

Proof. Define Σ = E [X0 ⊗X0]. Since Σ ∈ S+
1 (H0), there exists a finite or countable non-

increasing sequence (σk)0≤k<K ∈ (0,∞)N and an orthonormal sequence (φk)0≤k<K ∈ HN
0 such

that
Σ =

∑

0≤k<K

σ2
k φk ⊗ φk and

∑

0≤k<K

σ2
k < ∞ .

In particular, we have that P-a.s., X0 is valued in Span
H0 (φk , 0 ≤ k < K). If K is finite,

then X0 is valued in the finite-dimensional space G0 = Span (φk , 0 ≤ k < K).
From now on, we take K = ∞. By Lemma A.4, we can find s = (sk)k∈N ∈ [1,∞)N,

non-decreasing and going to ∞ (hence, satisfying Condition (i) in Theorem 4.3), such that∑
k∈N

s2kσ
2
k < ∞. Defining Hs

0 by (4.8) and its inner product by (4.9), we get that

E

[
‖X0‖2Hs

0

]
=
∑

k∈N

s2kσ
2
k < ∞ .

We thus have Condition (ii) in Theorem 4.3.

The following lemma is used to treat the centering term in the next result, and also to
prove Theorem 1.1.

Lemma 5.8. Let H0 be a separable Hilbert space. Assume (A-1) and (A-2). Then,

lim
n→∞

1

n

n∑

j=1

Xj = E [X0] in H0 , P-a.s. (5.30)

Proof. If we can find a finite-dimensional space G0 ⊂ H0 such that X is valued in G0,
then (5.30) follows straightforwardly from the Birkhoff ergodic theorem. If not, by Lemma 5.7,
we can find an orthonormal sequence (φk)k∈N of H0 such that Conditions (i) and (ii) in The-
orem 4.3 hold. As a consequence, by the Birkhoff ergodic theorem, we get that

lim
n→∞

1

n

n∑

j=1

‖Xj‖Hs
0
= E

[
‖X0‖Hs

0

]
P-a.s.

Since
∥∥∥ 1

n

∑n
j=1 Xj

∥∥∥
Hs

0

≤ 1
n

∑n
j=1 ‖Xj‖Hs

0
for all n ≥ 1, we get that, P-a.s., there exists r > 0

such that supn≥1

∥∥∥ 1
n

∑n
j=1 Xj

∥∥∥
Hs

0

≤ r. Using that (sk)k∈N is going to infinity, we get that

the operator
∑

k∈N
s−1
k φk ⊗ φk belongs to S∞(H0). Since the image by this operator of the

unit H0-ball is the unit Hs
0-ball, we get that all Hs

0-balls are compact in H0. In particular,

we have that
(

1
n

∑n
j=1 Xj

)
n≥1

is P-a.s. valued in a compact subset of H0. Therefore, it only

remains to show that, P-a.s., the only possible accumulation point of this sequence is E [X0].
This fact follows by using the Birkhoff ergodic theorem again, which gives us, for all x ∈ H0,

lim
n→∞

〈
1

n

n∑

j=1

Xj , x

〉

H0

= lim
n→∞

1

n

n∑

j=1

〈Xj , x〉H0
= E

[
〈X0, x〉H0

]
= 〈E [X0] , x〉H0

P-a.s.

Hence we get the convergence (5.30).
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We can now state a result which applies both in the context of Theorem 4.2 and Theo-
rem 4.3.

Theorem 5.9. Let H0 and G0 be two separable Hilbert spaces. Assume (A-1) and (A-2),
and suppose that (Θ,∆) is a compact metric space. Let L and R in C (Θ× T,Lb(H0,G0)).
Moreover, suppose that, P-a.s., there exists, for all θ ∈ Θ, a compact subset B ⊂ S1 (G0) such

that, for all n ≥ 1 Q̃(L,R)

IXn
(θ) ∈ B. Then, we have

lim
n→∞

Q̃(L,R)

I
Xc

n
n

= Q̃(L,R)
νX uniformly in C (Θ,S1 (G0)) , P-a.s. (5.31)

Proof. Thanks to the centering (1.3), we can replace all Xk’s byXk−E [X0] without modifying
Xc

n,k for any n, k ≥ 1. Hence, without loss of generality, from now on in this proof, we assume
that E [X0] is zero, that is, the process X is centered.

By Lemma 5.6 and using that
∫
Fn dLebT = 1, first note that for all θ ∈ Θ we have, for

all n ≥ 1,

∥∥∥Q̃
I
Xc

n
n

(θ)− Q̃IXn
(θ)
∥∥∥
1
≤ An (An +Bn) sup

θ∈Θ
λ∈T

‖L(θ, λ)‖∞ sup
θ∈Θ
λ∈T

‖R(θ, λ)‖∞ ,

where we set

An :=

∥∥∥∥∥
1

n

n∑

j=1

Xj

∥∥∥∥∥
H0

and Bn = 2

∫ ∥∥∥dXn
∥∥∥
H0

(Fn)
1/2 dLebT .

By the Cauchy-Schwartz inequality and then the Parseval identity, we have

Bn ≤ 2

(∫ ∥∥∥dXn
∥∥∥
2

H0

dLebT

)1/2

= 2

(
1

n

n∑

k=1

‖Xk‖2H0

)1/2

,

which, by the Birkhoff ergodic theorem and (A-2), converges P-a.s.. On the other hand, using
Lemma 5.8, we have that, P-a.s., limn→∞ An = 0. Hence, we finally get that

lim
n→∞

sup
θ∈Θ

∥∥∥Q̃
I
Xc

n
n

(θ)− Q̃IXn
(θ)
∥∥∥
1
= 0 P-a.s.

Therefore, to prove (5.31), we can replace I
Xc

n
n by IXn , that is, it only remains to prove that

lim
n→∞

Q̃(L,R)

IXn
= Q̃(L,R)

νX
uniformly in C (Θ,S1 (G0)) , P-a.s. (5.32)

We immediately have from Proposition 4.1 that Q̃(L,R)

IXn
and Q̃(L,R)

νX belong to C (Θ,S1 (G0)).

The rest of the proof is now in three steps. First, we show that, P-a.s., every sequence valued in{
Q̃(L,R)

IXn
: n ≥ 1

}
admits a subsequence which converges uniformly in C (Θ,S1 (G0)). Second,

we show that, for all x, y ∈ G0 and θ ∈ Θ, we have

lim
n→∞

xHQ̃(L,R)

IXn
(θ)y = xHQ̃(L,R)

νX (θ)y , P-a.s. (5.33)

We then conclude in Step 3 from these two results.

Step 1. By (A-2), we have E

[
‖X0‖2H0

]
< ∞, and we can apply Lemma 5.5 with I0 = H0

and get that, P-a.s., there exists C such that, for all n ∈ N,
∥∥IXn

∥∥
1,1

≤ C, where here ‖·‖1,1
denotes the norm in L1,1(H0). We conclude with Lemma 5.4 that, P-a.s.,

{
Q̃(L,R)

IXn
: n ≥ 1

}
is

equicontinuous in C (Θ,S1(G0)). Using the last assumption of the theorem, we also have that,

P-a.s., for all θ ∈ Θ, there is a compact subset B of S1(G0) such that
{
Q̃(L,R)

IXn
(θ) : n ≥ 1

}
is

included in B. Thus, P-a.s., the Ascoli-Arzelà theorem (see [28, Section 7.10]) applies and any

sequence in
{
Q̃(L,R)

IXn
: n ≥ 1

}
admits a uniformly convergent subsequence in C (Θ,S1(G0)),

which concludes the proof of Step 1.
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Step 2. This step is similar to the scalar case and we follow the ideas of [14]. Let x, y ∈ G0,
θ ∈ Θ, and denote x = xHL(θ, ·) and y = yHR(θ, ·), so that x and y are continuous functions
from T to HH

0 = Lb(H0,C), and (5.33) can be written as

lim
n→∞

QIXn
(x,y) = QνX (x,y) , P-a.s. (5.34)

We can write, for any N ∈ N
∗,

x = FN ⋆ x+ (x− FN ⋆ x) ,

where ⋆ denotes the convolution of locally integrable 2π-periodic functions,

f ⋆ g(λ) =

∫
f(λ′) g(λ− λ′) LebT(dλ

′) , λ ∈ T ,

and FN is the Fejér kernel defined by (5.29). Using standard properties of Fejér’s kernel and
the fact that λ 7→ x(λ) is continuous on R, we have, denoting eℓ(λ) = eiλℓ so that (eℓ)ℓ∈Z is
a Hilbert basis of L0 := L2 (T,B(T),LebT),

FN ⋆ x =

N∑

ℓ=−N

αℓ(N) cℓ(x) eℓ , (5.35)

with αℓ(N) = 1− |ℓ|
N

and cℓ(x) =

∫
x(λ)e−iℓλ LebT(dλ) ,

lim
N→∞

sup
λ∈R

‖x(λ)− FN ⋆ x(λ)‖∞ = 0 . (5.36)

Eq (5.36) can be interpreted as saying that FN ⋆ x converges to x in Fb (T,B(T),Lb(H0,C)).
The same holds with y replacing x and, applying Lemma 5.3 with I0 = H0 and G0 = J0 = C

and µ = LebT, since by Step 1,
{
IXn : n ≥ 1

}
remains in a ball of L1,1

P-a.s., we have, P-a.s.,

lim
N→∞

sup
g∈{IXn : n≥1}

|Qg(FN ⋆ x, FN ⋆ y)−Qg(x,y)| . (5.37)

Similarly by the continuity of QνX = QfX ,µ (with fX the density of νX with respect to
µ = ‖νX‖1) established in Lemma 5.3, we have

lim
N→∞

QνX (FN ⋆ x, FN ⋆ y) = QνX (x,y) . (5.38)

Next, using (5.35), we have

QIXn
(FN ⋆ x, FN ⋆ y) =

N∑

ℓ,ℓ′=−N

αℓ(N)αℓ′(N) cℓ(x)QIXn
(eℓ, eℓ′) cℓ′(y)

H

=
N∑

ℓ,ℓ′=−N

αℓ(N)αℓ′(N) cℓ(x) Γ̃n(ℓ− ℓ′) cℓ′(y)
H , (5.39)

where Γ̃n denotes the empirical covariance defined as in (4.2), but with Xc
n replaced by X,

that is,

Γ̃n(s− t) =

∫
IXn (λ) ei (s−t) λ LebT(dλ) =

1

n

∑

1≤k,k′≤n

k−k′=(s−t)

Xk ⊗Xk′ .

In particular, we have for any ℓ, ℓ′ ∈ {−N, . . . , N},

cℓ(x) Γ̃n(ℓ− ℓ′) cℓ′(y)
H =

1

n

∑

1∨(1+ℓ−ℓ′)≤k≤n∧(n+ℓ−ℓ′)

cℓ(x)Xk X
H

k−(ℓ−ℓ′) cℓ′(y)
H

By (A-1), with the Birkhoff ergodic theorem, we get, for any ℓ, ℓ′ ∈ {−N, . . . , N}, P-a.s.,

lim
n→∞

cℓ(x) Γ̃n(ℓ− ℓ′) cℓ′(y)
H = E

[
cℓ(x)Xℓ−ℓ′ X

H

0 cℓ′(y)
H

]

= cℓ(x)Cov (Xℓ−ℓ′ , X0) cℓ′(y)
H

= cℓ(x)QνX (eℓ, eℓ′) cℓ′(y)
H .
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where we used that X is centered and that νX is the spectral operator measure of X.
From (5.39), using (5.35) again, we get that, P-a.s., for any N ≥ 1,

lim
n→∞

QIXn
(FN ⋆ x, FN ⋆ y) = QνX (FN ⋆ x, FN ⋆ y) .

This, with (5.37) and (5.38), concludes Step 2.
Step 3. From Step 1, there exists Ω′ ∈ F with probability 1 such that on Ω′, any sequence

valued in
{
Q̃(L,R)

IXn
: n ≥ 1

}
admits a subsequence uniformly converging in C (Θ,S1(H0)). To

obtain (5.32), we will exhibit Ω′′ ⊂ Ω′ with probability one such that, on Ω′′, Q̃(L,R)
νX is the

only possible accumulation point of the sequence
(
Q̃(L,R)

IXn

)
n≥1

. Let E0 be a countable linearly

dense subset of G0 and let (θj)j∈N be a dense sequence in Θ, which exists since Θ is compact.
Then, from Step 2, we have, P-a.s.,

∀j ∈ N ,∀x, y ∈ E0 , lim
n→N

xHQ̃(L,R)

IXn
y = xH Q̃(L,R)

νX y .

We can thus take Ω′′ ⊂ Ω′ with probability one, on which the previous display holds. Let

ω ∈ Ω′′ and take an accumulation point Q̃∞ of
(
Q̃(L,R)

I
X(ω)
n

)
n≥1

in C (Θ,S1(G0)). Then, for all

j ∈ N, using the previous display and the fact that Q̃∞ must also be an accumulation point
for the weak operator topology, we get that, for all x, y ∈ E0, x

HQ̃∞(θj)y = xHQ̃(L,R)

νX (θj)y,

which implies Q̃∞(θj) = Q̃(L,R)

νX (θj). Since Q̃∞ and Q̃(L,R)

νX are continuous on Θ, and (θj)j∈N

is dense in Θ, we get that Q̃∞ and Q̃(L,R)

νX coincide, which concludes the proof.

5.3.2 Proof of Theorem 4.2

We can now prove Theorem 4.2 as a direct application of Theorem 5.9.

Proof of Theorem 4.2. Theorem 4.2 directly follows from Theorem 5.9, if we can prove
that, P-a.s., there exists B, a compact subset of S1(G0), such that Q̃(L,R)

IXn
(θ) ∈ B for all n ≥ 1

and θ ∈ Θ. Because G0 is finite-dimensional, so is S1(G0), and we only need to show that,

P-a.s., there exists C > 0 such that
∥∥∥Q̃(L,R)

IXn
(θ)
∥∥∥
1
≤ C for all n ≥ 1 and θ ∈ Θ. By Lemma 5.3,

this follows from the fact that, P-a.s., there exists r > 0 such that
∥∥IXn

∥∥
1
≤ r for all n ≥ 1,

which has already been used in the proof of Theorem 5.9 and is a consequence of Lemma 5.5
with (A-2) in the case H0 = I0. This concludes the proof.

5.3.3 Proof of Theorem 4.3

The proof of Theorem 4.3 essentially follows the same path as that of Theorem 4.2. However,
in the infinite-dimensional case, we will need an additional result (Proposition 5.11) to prove
the assumption involving the set B in Theorem 5.9. The result relies on the space Hs

0 intro-
duced in Section 4.1. In this section, we will make extensive use of partial isometries as (see
[7, Definition 3.8]). We recall that a partial isometry U on the Hilbert space H0 onto another
Hilbert space G0 is a bounded operator which is an isometry on (ker(U))⊥. The subspaces
(ker(U))⊥ and Im(U) are respectively called the initial space and final space of U . We recall
that, if U is a partial isometry, then UHU and UUH are the orthogonal projections onto the
initial and the final space of U respectively.

Let us start with the following lemma, whose proof is straightforward, but which contains
some important definitions

Lemma 5.10. Let H0 be a separable Hilbert space and let (φk)k∈N be an orthonormal sequence

in H0. Let s = (sk)k∈N ∈ [1,∞)N and define
(
Hs

0, 〈·, ·〉Hs
0

)
by (4.8) and (4.9). Denote by Js

the continuous Hs
0 →֒ H0-inclusion map defined on Hs

0 onto H0 by x 7→ x. Further denote

by Us the partial isometry with initial space Span
H0 (φk, k ∈ N) and final space Hs

0 such that,
for all k ∈ N, Usφk = s−1

k φk. Finally, let us set Js = Js Us ∈ Lb(H0). Then, for all x ∈ H0,
we have

Js =
∑

k∈N

s−1
k φk ⊗ φk . (5.40)

Moreover, suppose that s is non-decreasing and going to ∞. Then, we have Js ∈ S∞ (H0).
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We now have the following result.

Proposition 5.11. Let H0 be a separable Hilbert space and let (φk)k∈N be a an orthonormal
sequence in H0. Define Js as in Lemma 5.10 for s = (sk)k∈N ∈ [1,∞)N non-decreasing and

going to ∞. Define B1 =
{
P ∈ S1(H0) : ‖P‖1 ≤ 1 and (Js P)

H = Js P
}
. Then the set

B1 = {Js P : P ∈ B1} is compact in S1(H0).

Proof. Let (Pn)n∈N be a sequence valued in B1 and let us prove that it admits a subsequence
which converges in B1. By definition, we can write, for all n ∈ N, Pn = Js P̃n with P̃n ∈ B1.
We use that S1(H0) is isometric to the dual of the space S∞(H0) (see [7, Theorem 19.1].
Then, by the Banach-Alaoglu Theorem (see Theorem 3.1 in [6, Chapter V]), we get that the
unit ball of S1(H0) is compact for the weak-star topology, that is the topology generated by
the family of semi-norms {P 7→ |Tr(CP)| : C ∈ S∞(H0)}. This implies that (P̃n)n∈N admits
a subsequence (P̃an)n∈N converging to an element Q̃ in the unit ball of S1(H0) in the sense
of the weak-star topology, that is, for all C ∈ S∞(H0), we have

lim
n→∞

Tr
(
CP̃an

)
= Tr

(
CQ̃
)

.

Observe that for all x, y ∈ H0, the operator C = x⊗ yJs is a rank-one (hence compact) linear
operator on H0 onto H0. The last display thus gives that P̃an converges to Q̃ in weak operator

topology (that is, for all x, y ∈ H0,
〈
P̃anx, y

〉
H0

converges to 〈Q x, y〉H0
). Since Js P̃an is

hermitian for all n, we get that Js Q̃ is hermitian as well and we finally get that Q̃ must be
in B1. (In fact we have shown that B1 is compact for the weak-star topology).

Let us set Q = JsQ̃ ∈ B1 and for all n ∈ N, ∆n = Pan − Q = Js∆̃n with ∆̃n = P̃an − Q̃,
and let us summarize our findings so far. We already know that Pan and Q are in B1 (hence

are hermitian and so is ∆n), that
∥∥∥∆̃n

∥∥∥
1
≤ 2 and that

(
∆̃n

)
n→∞

converges to zero in S1(H0)

for the weak-star topology, which also implies the convergence in weak operator topology. To
conclude, we now proceed in two steps. First, we show that (∆n)n∈N converges to 0 for the
strong operator topology. Second, we use the first step to show that limn→+∞ ‖∆n‖1 = 0.
Step 1. Let x ∈ H0, then, for all n ∈ N, using (5.40), we have

‖∆n x‖2H0
=
∑

k∈N

∣∣∣〈∆n x, φk〉H0

∣∣∣
2

=
∑

k∈N

s−2
k

∣∣∣∣
〈
∆̃n x,φk

〉
H0

∣∣∣∣
2

.

Since
(
∆̃n

)
n∈N

converges to 0 for the weak operator topology, we have, for all m ≥ 1,

lim
n→∞

m−1∑

k=0

s−2
k

∣∣∣∣
〈
∆̃n x, φk

〉
H0

∣∣∣∣
2

= 0 .

On the other hand, for all m,n ≥ 1, using the fact that
∥∥∥∆̃n

∥∥∥
∞

≤
∥∥∥∆̃n

∥∥∥
1
≤ 2 and that s is

non-decreasing, we get that

∞∑

k=m

s−2
k

∣∣∣∣
〈
∆̃n x, φk

〉
H0

∣∣∣∣
2

≤ s−2
m

∞∑

k=0

∣∣∣∣
〈
∆̃n x, φk

〉
H0

∣∣∣∣
2

= s−2
m

∥∥∥∆̃n x
∥∥∥
2

Hs
0

≤ 4 s−2
m ‖x‖2H0

,

hence converges to 0 independently of n as m → ∞, by assumption on s. With the two
previous displays, we conclude that (∆n x)n∈N

converges to 0 inH0. Hence, (∆n)n∈N converges
to 0 for the strong operator topology.
Step 2. Let n ∈ N. Since ∆̃n ∈ S1(H0) and Js ∈ Lb(H0), we have ∆n ∈ S1(H0). Consider
the polar decomposition of ∆n, that is ∆n = Vn |∆n| where Vn is a partial isometry with
initial space ker(∆n)

⊥ = Im(|∆n|) and final space Im(∆n) (see §3.9 in [7]). Since ∆n is
autoadjoint we have ker(∆n)

⊥ = Im(∆n) and we get that Im(|∆n|) = Im(∆n) ⊂ Im(Js) =
Span (φk, k ∈ N). Hence

‖∆n‖ = Tr(|∆n|) =
∑

k∈N

〈|∆n|φk, φk〉H0
=
∑

k∈N

〈∆nφk, Vnφk〉H0
, (5.41)
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where the last equality comes from the fact that |∆n| = V H

n ∆n.
Now, note that for all m ≥ 1,

m−1∑

k=0

∣∣∣〈∆nφk, Vnφk〉H0

∣∣∣ ≤
m−1∑

k=0

‖∆nφk‖H0
,

which converges to zero by Step 1. Thus,

for all m ≥ 1, lim
n→∞

m−1∑

k=0

〈∆nφk, Vnφk〉H0
= 0 . (5.42)

On the other hand, using the fact that ∆n is hermitian and (5.40), we have, for all n, k ∈ N,

〈∆nφk, Vnφk〉H0
= 〈φk,∆nVnφk〉H0

=
〈
φk, Js∆̃nVnφk

〉
H0

= s−1
k

〈
φk, ∆̃nVnφk

〉
H0

= s−1
k

〈
∆̃nφk, Vnφk

〉
H0

.

It follows that, for all m ≥ 1,

∑

k≥m

∣∣∣〈∆nφk, Vnφk〉H0

∣∣∣ ≤ s−1
m

∑

k∈N

∣∣∣∣
〈
∆̃nφk, Vnφk

〉
H0

∣∣∣∣ ≤ s−1
m

∥∥∥∆̃n

∥∥∥
1
,

where we used [7, Corollary 18.12]. Since
∥∥∥∆̃n

∥∥∥
1
≤ 1 and s−1

m converges to 0, we obtain that

lim
m→∞

sup
n∈N

∑

k≥m

∣∣∣〈∆nφk, Vnφk〉H0

∣∣∣ = 0 .

This with (5.41) and (5.42) concludes the second and final step.

We can now prove Theorem 4.3.

Proof of Theorem 4.3. By the polarization formula we can write Q̃(L,R)

I
Xc

n
n

as a linear com-

bination of Q̃(W,W )

I
Xc

n
n

with W in {L+R,L−R,L+ iR,L− iR}. The same formula holds for

expressing Q̃(L,R)
νX using Q̃(W,W )

νX with the same W ’s. Hence, to obtain the claimed result, it
suffices to show that, for all W ∈ {L+R,L−R,L+ iR,L− iR}, we have

lim
n→∞

Q̃(W,W )

I
Xc

n
n

= Q̃(W,W )
νX uniformly in C (Θ,S1 (H0)) , P-a.s. (5.43)

So, take W ∈ {L+R,L−R,L+ iR,L− iR}, and let us show (5.43).
By assumption on L and R, we have W ∈ C (Θ× T,Lb(H0)) and, using Condition (iii),

Ws ∈ C (Θ× T,Lb(Hs
0)) where Ws(θ, λ) = W (θ, λ)|Hs

0
for all (θ, λ) ∈ Θ×T. By Condition (ii),

we can apply Lemma 5.5 with I0 = Hs
0, and obtain that, P-a.s.,

there exists r1 > 0 such that
{
I
Xc

n
n : n ≥ 1

}
⊂ B1,1(r1,H0,Hs

0) . (5.44)

Now let us define Js, Us and Js as in Lemma 5.10. Applying these definitions carefully and
using the fact that UUH is the orthogonal projection onto Im(Us) = Hs

0, it straightforwardly
yields that, for all (θ, λ) ∈ Θ× T, and x ∈ Hs

0,

Js U
H

s Ws(θ, λ)x = Js Ws(θ, λ)x = W (θ, λ) x .

Thus, for all n ∈ N, P-a.s., IXn ∈ L1,1 (H0,Hs
0), and for all θ ∈ Θ,

Q̃(W,W )

IXn
(θ) = Js Q̃(UH

s Ws,W )

IXn
(θ) . (5.45)

Observe that Ws ∈ C (Θ× T,Lb(Hs
0)) immediately implies that UH

s Ws(θ, ·) ∈ Fb (Hs
0,H0).

Thus, for all θ, we can apply Lemma 5.3 with I0 = Hs
0 and G0 = J0 = H0, L = UH

s Ws(θ, ·),
R = W , g = IXn and µ = LebT, which, with (5.44), gives us that, P-a.s.: for all θ ∈ Θ, there

exists r > 0 such that
∥∥∥Q̃(UH

s Ws,W )

IXn
(θ)
∥∥∥
1
≤ r, where, here, ‖·‖1 denotes the trace-class norm

in S1 (H0). With (5.45) and the fact that Q̃(W,W )

IXn
(θ) is an hermitian operator for all θ, we get

that, P-a.s.: for all θ ∈ Θ, there exists r > 0 such that Q̃(W,W )

IXn
(θ) belongs to the set B = r B1,

with B1 defined as in Proposition 5.11. Since B is compact by Proposition 5.11, we can apply
Theorem 5.9 with L = R := W and we obtain (5.43), which concludes the proof.
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5.4 Proof of Theorem 1.1

Hereafter we prove (1.4) by relying on Theorem 4.3. Of course the uniform convergence in θ
does not matter in this case and it could be proven by relying directly on Proposition 5.11, by

mimicking the argument used in the proof of Theorem 4.3 to show that
(
Γ̂n(h)

)
n∈N

remains

in a compact subset of S1(H0), P-a.s. (since the convergence of Γ̂n(h) to Γ(h) = Cov (Xh, X0)
in weak operator topology is obvious under the assumptions of Theorem 1.1).

Proof of Theorem 1.1. Let h be a given lag in Z. The claimed result follows from The-
orem 4.3 with L(θ, λ) = ei hλIdH0 and R(θ, λ) = IdH0 , with θ being an arbitrary point and
Θ the corresponding singleton. Indeed, with these definitions, the convergence (1.4) can be
rewritten as (5.31). Thus, we only to show that (Xt)t∈Z and the above defined L and R
satisfy the assumptions of Theorem 4.3. Obviously (A-1) and (A-2) are satisfied. As for
Conditions (i) and (ii), they follow from (A-1) and (A-2) by Lemma 5.7, for well chosen s
and (φk)k∈N

. Now, defining Ls and Rs as in Theorem 4.3 with L and R as above, we get

Ls(θ, λ) = ei hλIdHs
0
and Rs(θ, λ) = IdHs

0
, and L,R,Ls and Rs obviously satisfy the assump-

tions of the theorem (including Condition (iii)). Hence Theorem 4.3 applies and the proof is
finished.

5.5 Proofs of Section 4.2

5.5.1 Preliminary results

Lemma 5.12. Let H0 be a separable Hilbert space and p, q be two non-negative integers. Let
D ∈ Lb(H0), θ ∈ P†

q (H0) and φ ∈ P†
p(H0). Define Φ†

θ,φ,D : C \ [1,∞) → Lb(H0) by (4.11).

Then, θ−1 : z 7→ [θ(z)]−1, φ−1 : z 7→ [φ(z)]−1 and Φ†
θ,φ,D are all holomorphic functions on the

open unit disk D onto Lb(H0). Moreover θ−1 and φ−1 are continuous on the closed unit disk
D and Φ†

θ,φ,D is continuous over D \ {1}.
Proof. By holomorphic in Lemma 5.12 we mean the same as in [13, Definition 1.1.1]. Since
φ and θ are polynomials they are holomorphic in C. Because we assumed that they belong
to P†

p(H0), we further have that they are valued in the space of invertible operators on D

and so the inverted polynomials z 7→ [θ(z)]−1 and z 7→ [φ(z)]−1 are holomorphic on D and
continuous on D. Since the principal logarithmic function is holomorphic on C \ [1,∞), so is
z 7→ (1− z)D. The result follows.

Lemma 5.13. Let H0 be a separable Hilbert space and p, q be two non-negative integers. Let
D ∈ N (H0) θ ∈ P†

q (H0) and φ ∈ Pp(H0). Define Φ†
θ,φ,D : C \ [1,∞) → Lb(H0) by (4.11).

Let moreover X ∈ SFID (Ω,F , P) and denote by gX its spectral operator density with respect
to a non-negative measure µ on (T,B(T)). We assume that µ has no mass at the origin,
µ ({0}) = 0. Then, we have

∫ π/3

−π/3

sup
0≤ρ≤1

∥∥∥Ψ(ρ, λ)gX(λ)ΨH(ρ, λ)
∥∥∥
1
µ(dλ) < ∞ , (5.46)

in the two following cases:

if Ψ(ρ, λ) :=
(
1− ρe−iλ

)−D

−
(
1− e−iλ

)−D

. (5.47)

or if Ψ(ρ, λ) :=
(
Φ†

θ,φ,D

(
ρe−iλ

)
− Φ†

θ,φ,D

(
e−iλ

)) (
1− e−iλ

)−D

. (5.48)

Proof. We first consider Ψ(ρ, λ) as in (5.47). In this case, for all 0 ≤ ρ ≤ 1 and λ 6= 0,

∥∥∥Ψ(ρ, λ)gX(λ)ΨH(ρ, λ)
∥∥∥
1
=
∥∥∥Ψ(ρ, λ) (gX(λ))1/2

∥∥∥
2

2
≤ 4 sup

0≤ρ≤1

∥∥∥∥
(
1− ρe−iλ

)−D

(gX(λ))1/2
∥∥∥∥
2

2

.

Thus, the bound (5.46) is implied by

∫ π/3

−π/3

sup
0≤ρ≤1

∥∥∥∥
(
1− ρe−iλ

)−D

(gX(λ))1/2
∥∥∥∥
2

2

µ(dλ) < ∞ , (5.49)
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Since D is assumed to be normal, we can proceed as in the proof of Theorem 3.3 and use its
singular value function d on G0 := L2(V,V, ξ) and decomposition operator U so that (5.49) is
implied by

∫

V2×(−π/3,π/3)

sup
0≤ρ≤1

∣∣∣∣
(
1− ρe−iλ

)−d(v)

h(v, v′;λ)

∣∣∣∣
2

ξ(dv)ξ(dv′)µ(dλ) < ∞ ,

where h denote the T-joint kernel function of h such that h(λ)[h(λ)]H =
U gX(λ)UH for µ-a.e. λ ∈ T . Now, by Lemma A.2, using that d is bounded over V, the
previous condition holds if

∫

V2×(−π/3,π/3)

|λ|−2ℜ+(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ . (5.50)

On the other hand, we assumed that X ∈ SFID (Ω,F , P), which, by Theorem 3.3 is equivalent
to have (3.7), which implies (5.50) (since µ({0}) = 0). We thus proved (5.46) for Ψ(ρ, λ) as
in (5.47).

We now consider Ψ(ρ, λ) as in (5.48). By (4.11), for all λ ∈ T \ {0} and 0 ≤ ρ ≤ 1, the
difference Φ†

θ,φ,D

(
ρe−iλ

)
− Φ†

θ,φ,D

(
e−iλ

)
can be written as

[
θ(e−iλ)

]−1

φ(e−iλ) (1− e−iλ)D −
[
θ(ρe−iλ)

]−1

φ(ρe−iλ) (1− ρe−iλ)D .

By Lemma 5.12, θ−1 and φ are continuous on D, hence have bounded operator norms over D.
Thus, to get (5.46), it is thus sufficient to show that

∫ π/3

−π/3

sup
0≤ρ≤1

∥∥∥Ψ̃(ρ, λ)gX(λ)Ψ̃H(ρ, λ)
∥∥∥
1
µ(dλ) < ∞ , (5.51)

where Ψ̃(ρ, λ) :=
(
1− ρe−iλ

)D (
1− e−iλ

)−D

. (5.52)

Since D is assumed to be normal, we can proceed as in the proof of Theorem 3.3 and use its
singular value function d on G0 := L2(V,V, ξ) and decomposition operator U so that (5.51) is
implied by

∫

V2×(−π/3,π/3)

sup
0≤ρ≤1

∣∣∣∣∣

(
1− ρe−iλ

1− e−iλ

)d(v)

h(v, v′;λ)

∣∣∣∣∣

2

ξ(dv)ξ(dv′)µ(dλ) < ∞ . (5.53)

Now, by Lemma A.1 and Lemma A.2, we have for all z ∈ C and λ ∈ [−π/3, π/3] \ {0},

sup
0≤ρ≤1

∣∣∣∣
(
1− ρe−iλ

1− e−iλ

)z∣∣∣∣ ≤
(
2π/(3

√
3)
)ℜ−(z)

(π/2)ℜ−(−z) |λ|−ℜ+(z) eπ|ℑ(z)| .

Plugging this bound in (5.53) and using that d is bounded on V, we get that (5.53) is again
implied by (5.50). Hence we proved (5.46) in the case given by (5.48).

In the following, for any positive integer p, we endow the set of polynomials of degree less
than of equal to p (or any of its subsets Pp(H0), P†

p(H0) or P∗
p (H0)) with the max of the

‖·‖∞-norms of its Lb(H0) coefficients. For instance if ψ(z) :=
∑p

k=0 Akz
k we denote

‖ψ‖ = max
{
‖Ak‖∞ : k = 1, . . . , p

}
.

It is straightforward to show that the convergence of a Pp(H0)-valued sequence in the obtained
Banach space is equivalent to the uniform convergence of this sequence in C (U,Lb(H0)). In
particular the continuity of (θ, λ) 7→ φθ

(
e−iλ

)
and (θ, λ) 7→ θθ

(
e−iλ

)
on Θ × T onto Lb(H0)

assumed in (A-3) imply the convergence of θ 7→ φθ and θ 7→ θθ on Θ onto Pp(H0).
We have the following lemma.

Lemma 5.14. Let H0 be a separable Hilbert space and p, q be two non-negative integers. Let
Φ†

θ,φ,D be defined by (4.11). Then, for all (θ, φ, D) ∈ P†
q (H0)×Pp(H0)×Lb(H0) and all k ∈ N,

P†
k (θ, φ, D) :=

1

2iπ

∫

z∈C,|z|=ρ

Φ†
θ,φ,D (z) z−k−1 dz (5.54)

is well defined as Lb(H0)-valued Bochner integral for any ρ ∈ (0, 1) and does not depend on
ρ. Moreover, the following assertions hold.
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(i) For all (θ, φ, D) ∈ P†
q (H0)× Pp(H0)× Lb(H0) and z ∈ D,

Φ†
θ,φ,D (z) =

∞∑

k=1

P†
k (θ, φ, D) zk . (5.55)

(ii) For any k ≥ 1, (θ, φ, D) 7→ P†
k (θ, φ, D) is continuous on P†

q (H0)×Pp(H0)×Lb(H0).

(iii) For all (θ, φ, D) ∈ P†
q (H0)× Pp(H0)×N †(H0) and z ∈ D \ {1},

Φ†
θ,φ,D (z) =

∞∑

k=1

P†
k (θ, φ, D) zk . (5.56)

(iv) For any compact subset K ⊂ P†
q (H0)× Pp(H0)×

(
{0} ∪ N †(H0)

)
, we have

∞∑

k=1

sup
(θ,φ,D)∈K

∥∥∥P†
k (θ, φ, D)

∥∥∥
∞

< ∞ . (5.57)

Proof. Recall that Φ†
θ,φ,D is defined for all (θ, φ, D) ∈ P†

q (H0)×Pp(H0)×Lb(H0) by (4.11) as a
holomorphic function defined on C\[1,∞) onto the Banach space Lb(H0). Using Lemma 5.12,
and [13, Theorem 1.8.5], we can expand Φ†

θ,φ,D as a power series on the open unit disk D, that

is (5.55) holds with P†
k (θ, φ, D) (well) defined by (5.54) for any ρ ∈ (0, 1). Note that the sum

in the right-hand side of (5.55) starts at k = 1 because P†
0 (θ, φ, D) = 0 since, by the Cauchy

Formula (see [13, Theorem 1.5.1]), we have P†
0 (θ, φ, D) = Φ†

θ,φ,D(0), which is the null operator

following (4.11) and φ(0) = φ(0) = 1D = IdH0 .
Assertion (ii) follows from (5.54) by dominated convergence, since (z, θ, φ, D) 7→ Φ†

θ,φ,D (z)

is continuous on D× P†
q (H0)×Pp(H0)×Lb(H0) by (4.11) and Lemma 5.12.

Let us now prove Assertions (iii) and (iv). In fact, Assertions (ii) and (iv) imply that
the right-hand side of (5.56) is continuous on D. Since, by Lemma 5.12, the left-hand side is
continuous on D\{1}, with Assertion (i), we conclude that we get both Assertions (iii) and (iv)
by proving the bound (5.57). Let K be a compact subset of P†

q (H0) × Pp(H0) × {0} or of
P†

q (H0)×Pp(H0)×N †(H0). Then, there exists r > 1 such that for all (θ, φ, D) ∈ K, θ does not
vanish over the open disk of radius r. It follows that for all (θ, φ, D) ∈ K, z 7→ [θ(z)]−1

φ(z) is
a power series with a radius of convergence at least equal to r and that, for any ρ1 ∈ (r−1, 1),
there exists c1 > 0 such that, for all (θ, φ, D) ∈ K and z ∈ rD,

[θ(z)]−1
φ(z) = IdH0 +

∞∑

k=1

Ck zk with ‖Ck‖∞ ≤ c1 ρ
k
1 (5.58)

If K ⊂ P†
q (H0)× Pp(H0)× {0}, we have P†

k (θ, φ, D) = −Ck and (5.57) follows.
We now consider the case whereK ⊂ P†

q (H0)×Pp(H0)×N †(H0). Let σ be an upper bound
of ‖D‖∞ and ρ a lower bound of the smallest eigenvalue of (D + DH)/2 over (θ, φ, D) ∈ K.
Then, we have ̺ > 0 by definition of N †(H0) in (4.13) and since K is compact. Then, setting
N = D+IdH0 , Condition (5.14) holds with ̺ = ρ+1 > 1. and ς = σ+1. Thus, by Lemma 5.2,
we have, for all z ∈ D \ {1} and D ∈ N †(H0),

(1− z)D =
∞∑

k=0

(
Q(k + 1)−IdH0

−D + P∗
k

)
zk ,

where ‖Q‖∞ ≤ C and ‖P∗
k‖ ≤ Ck−2−ρ for some constant C > 0 only depending on σ.

Moreover, note that
∥∥(k + 1)−IdH0

−D
∥∥
∞

≤ (k + 1)−1−ρ. By (4.11) and setting C0 = IdH0 ,

we obtain, for all z ∈ D \ {1},

Φ†
θ,φ,D (z) = −

∞∑

ℓ=1

(
ℓ∑

k=0

Cℓ−k

(
Q(k + 1)−IdH0

−D + P∗
k

))
zℓ .

By (4.11), we thus have, for all k ≥ 1,

P†
k (θ, φ, D) = −

(
ℓ∑

k=0

Cℓ−k

(
Q(k + 1)−IdH0

−D + P∗
k

))
,
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and the previous bounds further yield

sup
(θ,φ,D)∈K

∥∥∥P†
k (θ, φ, D)

∥∥∥
∞

≤ 2 c1 C

ℓ∑

k=0

ρℓ−k
1 (k + 1)−1−ρ .

Therefore, we obtain (5.57).

Finally, the following lemma will be useful.

Lemma 5.15. Let H0 be a separable Hilbert space and X = (Xt)t∈Z
be an ergodic stationary

process defined on (Ω,F , P) valued in H0 such that E
[
‖X‖2H0

]
< ∞. Then we have

lim
n→∞

E



∥∥∥∥∥
1

n

n∑

k=1

Xk − E [X]

∥∥∥∥∥

2

H0


 = 0 .

Proof. The assumptions imply that X is weakly stationary. Moreover, the space of shift-
invariant elements inHX (where the shift is defined byXt 7→ Xt−1) is the null set, otherwise X
would not be ergodic : take V shift-invariant in the sense of HX , then, for all x ∈ H0, 〈V, x〉H0

is shift-invariant in the PX -a.s. sense. See also Lemma A.5 for a more precise statement in the
centered case (which can be assumed here without loss of generality). Therefore, the result
simply follows from the von Neumann ergodic theorem (see [27, Theorem II.11]).

5.5.2 Proof of main results

Proof of Theorem 4.4. By Definition 3.2, denoting by Σ the covarariance operator of Z,
Y admits the spectral density

fY (λ) =
(
1− e−iλ

)−D

[φ(e−iλ)]−1
θ(e−iλ)Σ

((
1− e−iλ

)−D

[φ(e−iλ)]−1
θ(e−iλ)

)H

with respect to the normalized Lebesgue measure LebT. Let t ∈ Z. We first show that the
right-hand side of (4.12) is well defined, that is, that λ 7→ eiλt Φ†

θ,φ,D

(
e−iλ

)
belongs to ĤY .

Since this mapping is continuous on T\{0} onto Lb(H0), by Proposition 2.1, this is equivalent
to have ∫ ∥∥∥∥Φ

†
θ,φ,D

(
e−iλ

)
fY (λ)Φ†

θ,φ,D

(
e−iλ

)
H
∥∥∥∥
1

LebT(dλ) < ∞ .

By definition of fY , we thus have to show that

∫ ∥∥∥∥Φ
†
θ,φ,D

(
e−iλ

)(
1− e−iλ

)−D

[φ(e−iλ)]−1
θ(e−iλ)Σ1/2

∥∥∥∥
2

2

LebT(dλ) < ∞ . (5.59)

By definition of Φ†
θ,φ,D in (4.11), we have, for all λ ∈ T \ {0},

(
IdH0 − Φ†

θ,φ,D

(
e−iλ

))(
1− e−iλ

)−D

[φ(e−iλ)]−1
θ(e−iλ) = IdH0 .

We thus get that, for all λ ∈ T \ {0}, Φ†
θ,φ,D

(
e−iλ

) (
1− e−iλ

)−D
[φ(e−iλ)]−1θ(e−iλ)Σ1/2 can

be expressed as (
1− e−iλ

)−D

[φ(e−iλ)]−1
θ(e−iλ)Σ1/2 − Σ1/2 .

Thus, since
∥∥∥Σ1/2

∥∥∥
2

2
= ‖Σ‖1 < ∞, Condition (5.59) is implied by

∫ ∥∥∥∥
(
1− e−iλ

)−D

[φ(e−iλ)]−1
θ(e−iλ)Σ1/2

∥∥∥∥
2

2

LebT(dλ) < ∞ .

On the other hand, the square S2-norm inside the previous integral is equal to ‖fY ‖1 which
is LebT-integrable as a spectral density. We thus get that the right-hand side of (4.12) is well
defined and, in the following, we denote

Ŷt =

∫
eiλt Φ†

θ,φ,D

(
e−iλ

)
Ŷ (dλ) .

It only remains to show the two following assertions.
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(i) We have Ŷt ∈ HY
t−1.

(ii) We have Yt − Ŷt ⊥ HY
t−1.

Let us first prove Assertion (i). By Assertion (i) in Lemma 5.14, we immediately have that,
for all ρ ∈ (0, 1),

Ŷ
(ρ)
t =

∫
eiλt Φ†

θ,φ,D

(
ρe−iλ

)
Ŷ (dλ) ∈ HY

t−1 .

To conclude Assertion (i), it is thus sufficient to show that

lim
ρ↑1

Ŷ
(ρ)
t = Yt in M(Ω,F ,H0,P). (5.60)

By the Kolmogorov Gramian isometric theorem (see [11, Theorem 4.3]), setting

Ψ(ρ, λ) := Φ†
θ,φ,D

(
ρe−iλ

)
−Φ†

θ,φ,D

(
e−iλ

)
,

we can write, for any η ∈ (0, π) and ρ ∈ (0, 1),

E

[∥∥∥Ŷ (ρ)
t − Ŷt

∥∥∥
2

H0

]
=

∫ ∥∥∥Ψ(ρ, λ)fY (λ)ΨH(ρ, λ)
∥∥∥
1
LebT(dλ)

≤
(∫

‖fY ‖1dLebT

)
sup

λ∈T\[−η,η]

‖Ψ(ρ, λ)‖2∞

+

∫ η

−η

sup
0≤ρ≤1

∥∥∥Ψ(ρ, λ)fY (λ)ΨH(ρ, λ)
∥∥∥
1
LebT(dλ) .

By Lemma 5.12 the first term of this bound tends to zero as ρ ↑ 1 for all η ∈ (0, π). It thus
only remain to check that the second term can be made arbitrarily small as η ↓ 0, which
follows if there exists η > 0 such that

∫ η

−η

sup
0≤ρ≤1

∥∥∥Ψ(ρ, λ)fY (λ)ΨH(ρ, λ)
∥∥∥
1
LebT(dλ) < ∞ .

By definition of fY , setting X as the ARMA(p, q) process defined by

X̂(dλ) = [φ(e−iλ)]−1
θ(e−iλ)Ẑ(dλ) , (5.61)

denoting by fX the density of X with respect to LebT, the previous condition is equivalent to
∫ η

−η

sup
0≤ρ≤1

∥∥∥Ψ̃(ρ, λ)fX(λ)Ψ̃H(ρ, λ)
∥∥∥
1
LebT(dλ) < ∞ ,

where Ψ̃(ρ, λ) := Ψ(ρ, λ)
(
1− e−iλ

)−D

=
(
Φ†

θ,φ,D

(
ρe−iλ

)
−Φ†

θ,φ,D

(
e−iλ

)) (
1− e−iλ

)−D

.

Since X ∈ SFID (Ω,F ,P) by definition of Y , Lemma 5.13 gives us that the latter condition
holds, which concludes the proof of (5.60) and thus of Assertion (i).

We now prove Assertion (ii). By definition of Ŷt, (4.11) and (3.4), we have

Yt − Ŷt =

∫
eiλt

(
IdH0 − Φ†

θ,φ,D

(
e−iλ

))
Ŷ (dλ)

=

∫
eiλt

[
θ(e−iλ)

]−1

φ(e−iλ) (1− e−iλ)D Ŷ (dλ)

=

∫
eiλt Ẑ(dλ) = Zt .

Since Z is a white noise we have Zt⊥HZ
t−1. To prove Assertion (ii), it thus only remains to

show that HY
s is included in HZ

s for all s ∈ Z. Since we assumed φ ∈ P†
p(H0), we have that φ

−1

is holomorphic in an open domain that includes D and thus can be written as a power series
on the unit circle. It follows that the ARMA process X defined by (5.61) satisfies HX

s ⊂ HZ
s

for all s ∈ Z. To conclude, we now prove that HY
s ⊂ HX

s for all s ∈ Z. Observe that, for all
s ∈ Z,

Ys =

∫
eiλs

(
1− e−iλ

)−D

X̂(dλ) .
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Using that z 7→ (1− z)−D is holomorphic on C \ [1,∞), it can be expanded as a power series
on D and it follows that, for all s ∈ Z and ρ ∈ (0, 1),

Y (ρ)
s =

∫
eiλs

(
1− ρe−iλ

)−D

X̂(dλ) ∈ HX
s .

Using the same trick as for the proof of Assertion (i), we write, for any η ∈ (0, π) and ρ ∈ (0, 1),

E

[∥∥∥Ys − Y (ρ)
s

∥∥∥
2

H0

]
≤
(∫

‖fX‖1dLebT

)
sup

λ∈T\[−η,η]

∥∥∥∥
(
1− ρe−iλ

)−D

−
(
1− e−iλ

)−D
∥∥∥∥
2

∞

+

∫ η

−η

sup
0≤ρ≤1

∥∥∥Ψ(ρ, λ)fX(λ)ΨH(ρ, λ)
∥∥∥
1
LebT(dλ) ,

where, here, Ψ(ρ, λ) :=
(
1− ρe−iλ

)−D

−
(
1− e−iλ

)−D

.

By continuity of z 7→ (1− z)−D on C \ [1,∞), the first term in the upper bound tends to zero
for all η, while the second bound can be made arbitrarily small as η ↓ 0 as a consequence of
Lemma 5.13. We thus get the claim HY

s ⊂ HX
s and the proof is concluded.

Proof of Proposition 4.5. All the assertions follow straightforwardly from Lemma 5.14
and other previous results. Observe indeed that (4.14) immediately follows from the fact that
F†(θ, λ) = IdH0 − Φ†

Dθ ,φθ ,θθ
(e−iλ). As for the other claimed facts, here are some details.

Moreover, the continuity of (D, φ, θ) 7→ P†
k (θ, φ, D) (and thus with (A-3), that of θ 7→

P†
k (θ), and the bound (5.57) gives us that θ 7→ Ŷt(θ) is continuous on Θ onto HY

t−1, hence
the expectation in the right-hand side of (4.16) is continuous in θ, which shows that the inf
is attained on a compact subset of Θ.

When the best predictor Ŷ ∗
t is well defined for one t ∈ Z, by weak stationarity of Y it

must be well defined for all t. Then, for all t ∈ Z and all θ ∈ Θ∗
Y , we have Ŷ ∗

t = Ŷt(θ), P-a.s..
Of course, since since Z is countable, we can exchange the P-a.s. with the “for all t ∈ Z”.
We can also exchange the P-a.s. with the “for all θ ∈ Θ∗

Y ” as claimed in assertion (vi) of the
proposition because the arguments above also give that, P-a.s., θ 7→ Ŷt(θ) is continuous on
Θ onto H0, and consequently, is uniquely defined by its value on a dense countable subset of
(the compact set) Θ∗

Y .
Finally, in the well-specified case, we apply Theorem 4.4 and notice that, by Asser-

tion (5.56) of Lemma 5.14, Ŷt(θ) is the right-hand side of (4.12) with (θ, φ, D) replaced by
(Dθ , φθ, θθ), which gives (4.19) and, consequently, (4.18).

Proof of Theorem 4.6. By Lemma 5.14, we have that F† ∈ C(Θ × T,Lb(H0)) with F†

defined in (4.14). Similarly, using Assertion (iii) in Theorem 4.6, we also have F†
s ∈ C(Θ ×

T,Lb(Hs
0)), with F†

s(θ, λ) := F†(θ, λ)|Hs
0
. Hence Assertions (i), (ii) and (iii) of Theorem 4.3

hold with L = R = F†. Applying this theorem, with the fact that the trace is continuous on
S1(H0), we obtain that, P-a.s.,

lim
n→∞

Λn = Tr
(
Q̃(F†,F†)

νX

)
uniformly in C (Θ,R).

Now, observe that by (4.14) and (4.15), for all θ ∈ Θ,

Tr
(
Q̃(F†,F†)

νX (θ)
)
= E

[∥∥∥Y0 − Ŷ0(θ)
∥∥∥
2

H0

]
.

Therefore, with (4.20) and (4.16), we can write that, P-a.s.,

lim sup
n→∞

Λn(θ̂n) ≤ lim sup
n→∞

inf
θ∈Θ

Λn(θ) = E
2 (Y,ℵ) .

Thus, P-a.s., all accumulation points θ of the Θ-valued sequence (θ̂n)n≥1 satisfy

E

[∥∥∥Y0 − Ŷ0(θ)
∥∥∥
2

H0

]
≤ E

2 (Y,ℵ) , which implies θ ∈ Θ∗
Y .

Since Θ is compact, we obtain (4.25).

35



We now prove (4.26). Let us define, for all θ ∈ Θ,

E
2
Y,∞ (θ) = E



∥∥∥∥∥Y0 −

(
∞∑

k=1

P†
k (θ) Y−k

)∥∥∥∥∥

2

H0


 . (5.62)

By (4.24) and Minkowski’s inequality, we have, for all (m, θ) ∈ H0 ×Θ and n ≥ 1,

|EY,∞ (θ)− EX,n (m, θ)| ≤ |EY,∞ (θ)− EY,n (0, θ)|+
∥∥∥∥∥

(
IdH0 −

∞∑

k=1

P†
k (θ)

)
(E [X0]−m)

∥∥∥∥∥
H0

.

We further have, for all m ∈ H0 and n ≥ 1,

sup
θ∈Θ

|EY,∞ (θ)− EY,n (0, θ)| ≤ sup
θ∈Θ


E



∥∥∥∥∥

∞∑

k=n+1

P†
k (θ) Y−k

∥∥∥∥∥

2

H0






1/2

≤
(

∞∑

k=n+1

sup
θ∈Θ

∥∥∥P†
k (θ)

∥∥∥
∞

) (
E

[
‖Y0‖2H0

])1/2
,

which, by Lemma 5.14, converges to zero as n → ∞.
On the other hand, we have, for all m ∈ H0,

sup
θ∈Θ

∥∥∥∥∥

(
IdH0 −

∞∑

k=1

P†
k (θ)

)
(E [X0]−m)

∥∥∥∥∥
H0

≤
(
1 +

∞∑

k=1

sup
θ∈Θ

∥∥∥P†
k (θ)

∥∥∥
∞

)
(E [X0]−m) ,

which, by Lemma 5.14 again, converges to zero as m → E [X0]. Consequently, (4.26) follows
if we can show that

lim
n→∞

E
2
Y,∞(θ̂n) = E

2 (Y,ℵ) P-a.s. (5.63)

lim
n→∞

1

n

n∑

k=1

Xk = E [X0] P-a.s. (5.64)

Lemma 5.8 gives us (5.64). We now prove (5.63). Observe that, by (5.62) and by continuity
of θ 7→∑

k P
†
k (θ) (see Lemma 5.14), we have that θ 7→ E

2
Y,∞(θ) is continuous on Θ onto R+.

Now, since Θ is compact, we have that, P-a.s., (ℓn)n≥1 is a bounded sequence in R+, where we

set, for all n ≥ 1, ℓn := E
2
Y,∞(θ̂n). We now show that, P-a.s., all accumulation points of this

sequence is in fact equal to the right-hand side of (5.63). This follows from the fact that, by
compactness of Θ, from any increasing sequence (nj)j∈N of positive integers, we can extract
a subsequence (n′

j)j∈N such that θ̂n′
j
converges. Furthermore, by (4.25), P-a.s., the limit of

this sequence must belong to Θ∗
Y . With the continuity of θ 7→ E

2
Y,∞(θ) previously established,

we conclude that, P-a.s., all accumulation points of (ℓn)n≥1 is of the form E
2
Y,∞ (θ) for some

θ ∈ Θ∗
Y , hence is equal to E

2 (Y,ℵ) by (4.16) and definition of Θ∗
Y in (4.17).

Let us show the last assertion of the theorem. To this end, we suppose that Ŷ ∗
t is well

defined and show that (4.27) holds. We first observe that, since Xc
n,k = Y c

n,k,

Xn+1 − X̂n+1,n = Yn+1 −
n∑

k=1

P†
k

(
θ̂n
)

Yn+1−k −
(
IdH0 −

n∑

k=1

P†
k

(
θ̂n
)) ( 1

n

n∑

k=1

Yk

)
.

Therefore, to obtain (4.27), we only need to show that

lim sup
n→∞

E



∥∥∥∥∥Yn+1 −

n∑

k=1

P†
k

(
θ̂n
)

Yn+1−k

∥∥∥∥∥

2

H0


 ≤ E

2 (Y,ℵ) , (5.65)

lim
n→∞

E



∥∥∥∥∥

(
IdH0 −

n∑

k=1

P†
k

(
θ̂n
)) ( 1

n

n∑

k=1

Yk

)∥∥∥∥∥

2

H0


 = 0 . (5.66)
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Let us start with (5.66). By Lemma 5.14, we have

sup
n∈N

sup
θ∈Θ

∥∥∥∥∥IdH0 −
n∑

k=1

P†
k (θ)

∥∥∥∥∥
∞

≤ 1 +

∞∑

k=1

sup
θ∈Θ

∥∥∥P†
k (θ)

∥∥∥
∞

< ∞ .

Then, we get (5.66) by applying Lemma 5.15.
We now prove (5.65). For all n ≥ 1, the squared norm in the left-hand side’s expectation

of (5.65) can be written as

inf
θ∈Θ∗

Y

∥∥∥∥∥Yn+1 −
n∑

k=1

P†
k (θ) Yn+1−k +

n∑

k=1

(
P†

k (θ)− P†
k

(
θ̂n
))

Yn+1−k

∥∥∥∥∥

2

H0

.

We thus have, for all n ≥ 1,

E



∥∥∥∥∥Yn+1 −

n∑

k=1

P†
k

(
θ̂n
)

Yn+1−k

∥∥∥∥∥

2

H0


 ≤ E

[
(An +Bn)

2] , (5.67)

where we set

An := inf
θ∈Θ∗

Y

∥∥∥∥∥
n∑

k=1

(
P†

k (θ)− P†
k

(
θ̂n
))

Yn+1−k

∥∥∥∥∥
H0

,

Bn := sup
θ∈Θ∗

Y

∥∥∥∥∥Yn+1 −
n∑

k=1

P†
k (θ) Yn+1−k

∥∥∥∥∥
H0

.

We are going to show, successively that

lim
n→∞

E
[
A2

n

]
= 0 , (5.68)

lim
n→∞

E
[
B2

n

]
= E

2 (Y,ℵ) . (5.69)

These two facts with (5.67) indeed imply (5.65). First observe that Lemma 5.14 straightfor-
wardly yields

lim
n→∞

E


sup

θ∈Θ

∥∥∥∥∥
∞∑

k=n+1

P†
k (θ) Yn+1−k

∥∥∥∥∥

2

H0


 = 0 . (5.70)

Thus, to have (5.68) and (5.69), and by stationarity of Y , we can use

A′
n := inf

θ∈Θ∗
Y

∥∥∥∥∥
∞∑

k=1

(
P†

k (θ)− P†
k

(
θ̂n
))

Y−k

∥∥∥∥∥
H0

,

B′ := sup
θ∈Θ∗

Y

∥∥∥∥∥Y0 −
∞∑

k=1

P†
k (θ) Y−k

∥∥∥∥∥
H0

,

and prove instead

lim
n→∞

E
[
A′2

n

]
= 0 , (5.71)

E
[
B′2] = E

2 (Y,ℵ) . (5.72)

To get Relation (5.72), we observe that, with the assumption that the best ℵ-predictor is
well defined, Assertion (vi) in Proposition 4.5 and (4.15) give that, P-a.s., for all θ ∈ Θ∗

Y ,

Ŷ0(θ) =
∑∞

k=1 P
†
k (θ) Y−k = Ŷ ∗

0 . Hence, P-a.s., B′ =
∥∥∥Y0 − Ŷ ∗

0

∥∥∥. We thus have (5.72).

We conclude with the proof of (5.71). Note that

A′
n ≤ 2 sup

θ∈Θ∗
Y

∥∥∥∥∥
∞∑

k=1

P†
k (θ) Y−k

∥∥∥∥∥
H0

.
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Note that the L2-norm of this upper bound satisfies


E


 sup

θ∈Θ∗
Y

∥∥∥∥∥
∞∑

k=1

P†
k (θ) Y−k

∥∥∥∥∥

2

H0






1/2

≤
(

∞∑

k=1

sup
θ∈Θ∗

Y

∥∥∥P†
k (θ)

∥∥∥
∞

) (
E

[
‖Y0‖2H0

])1/2
,

which is finite by Lemma 5.14. Thus, we can apply the dominated convergence theorem,
and (5.71) follows from

lim
n→∞

A′
n = 0 P-a.s. ,

which we now prove by contradiction. Suppose that, with positive probability, we can find
η > 0 and an increasing sequence (nj)j∈N of integers such that A′

nj
≥ η for all j. Then,

by (4.25) and since Θ is compact, with positive probability, there also exists a subsequence
(n′

j)j∈N integers such that A′
n′
j
≥ η for all j and θ̂n′

j
converges to some θ ∈ Θ∗

Y as j → ∞. By

Lemma 5.14, this latter fact implies that, for this θ,

lim
j→∞

∥∥∥∥∥
∞∑

k=1

(
P†

k (θ)− P†
k

(
θ̂nj

))
Y−k

∥∥∥∥∥
H0

= 0 .

But since θ ∈ Θ∗
Y , this contradicts the assumption that yielded A′

n′
j
≥ η > 0 for all j. This

finishes the proof.

A Technical lemmas

We start with two lemmas on complex analysis.

Lemma A.1. For all z ∈ C and λ ∈ [−π, π] \ {0}, we have

(2/π)2ℜ+(z) |λ|2ℜ(z) e−π|ℑ(z)| ≤
∣∣∣(1− e−iλ)z

∣∣∣
2

≤ (π/2)2ℜ−(z) |λ|2ℜ(z) eπ|ℑ(z)| , (A.1)

where ℜ(z) = (z + z̄)/2, ℜ+(z) = max(ℜ(z), 0) and ℜ−(z) = max(−ℜ(z), 0).
Proof. Let z ∈ C and λ ∈ (−π, π] \ {0}. By definition of the principal logarithm, we have

for all y ∈ C \ R−, |yz|2 = |exp (z ln(y))|2 = |y|2ℜ(z) e−2ℑ(z)b(y) , (A.2)

where b(y) denotes the argument in the polar form of y in
(
−π

2
, π
2

)
. It follows that e−π|ℑ(z)| ≤

e−2ℑ(z)b(y) ≤ eπ|ℑ(z)|. Applying (A.2) with y = 1 − e−iλ, using that 2|λ|
π

≤ |2 sin(λ/2)| =∣∣1− e−iλ
∣∣ ≤ |λ| for all λ ∈ (−π, π) and separating the cases where ℜ(z) ≥ 0 and where

ℜ(z) < 0, we get (A.1).

Lemma A.2. For all z ∈ C and λ ∈ [−π/3, π/3] \ {0}, we have

sup
0≤ρ≤1

∣∣∣(1− ρ e−iλ)z
∣∣∣
2

≤
(
2π/(3

√
3)
)2ℜ−(z)

|λ|−2ℜ−(z) eπ|ℑ(z)| , (A.3)

where ℜ(z) = (z + z̄)/2, ℜ+(z) = max(ℜ(z), 0) and ℜ−(z) = max(−ℜ(z), 0).
Proof. Applying (A.2) with with y = 1− ρe−iλ and using that b(y) ∈

(
−π

2
, π
2

)
, we get that

sup
0≤ρ≤1

∣∣∣(1− ρ e−iλ)z
∣∣∣
2

≤ sup
0≤ρ≤1

∣∣∣1− ρe−iλ
∣∣∣
2ℜ(z)

eπ|ℑ(z)| .

Let now z ∈ C and λ ∈ [−π/3, π/3] \ {0}. It is straightforward to show that, in this case,

sin2(λ) = inf
0≤ρ≤1

∣∣∣(1− ρ e−iλ)
∣∣∣
2

≤ sup
0≤ρ≤1

∣∣∣(1− ρ e−iλ)
∣∣∣
2

= 1 .

Separating the cases where ℜ(z) ≥ 0 and where ℜ(z) < 0, and, in the latter case, using that
|sin(λ)| ≥ 3

√
3 |λ| /(2π) for |λ| ≤ π/3, we easily get (A.3).

The next two lemmas involve Banach-space-valued and non-negative series.
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Lemma A.3. Let E be a Banach space and (an)n∈N ∈ EN such that ‖an‖E −−−−→
n→∞

0 and the

series
∑ ‖an − an+1‖E converges. Then for all z0 ∈ D \ {1}, the series

∑∞
n=0 anz

n
0 converges

in E and the mapping z 7→∑∞
n=0 anz

n is uniformly continuous on [0, z0].

Proof. By assumption on (an),
∑

anz
n is a power series valued in E with a convergence

radius at least equal to 1, and hence is uniformly continuous on any compact subset of D.
When |z0| = 1, the result follows using Abel’s transform.

Lemma A.4. Let (uk)k∈N
be a non-negative non-increasing sequence such that

∑
k∈N

uk <
∞. Then there exists a non-decreasing sequence (vk)k∈N

, going to ∞ as k → ∞ such that∑
k∈N

ukvk < ∞.

Proof. Let k0 = 0, and for all n ≥ 1, define by induction

kn = min



j > kn−1 :

∞∑

k=j

uk ≤ 4−n



 .

Then (kn) is an increasing sequence of integers going to ∞ as n → ∞. Define, for all n ≥ 1,
and for all kn−1 ≤ k < kn, vk = 2n. Then (vk)k∈N is a non-decreasing sequence going to ∞
and we have, by definition of (vk), using that (uk) is non-negative and then, by definition of
(kn),

∑

k∈N

ukvk =
∞∑

n=0

2n


 ∑

kn−1≤k<kn

uk


 ≤

∞∑

n=0

2n




∞∑

k=kn−1

uk


 ≤ 4

∞∑

n=0

2−n < ∞ .

The proof is concluded.

We end this section with the following lemma which relates the ergodicity of a stationary
process valued in H0 with finite second moment to the behavior of its spectral measure at the
origin.

Lemma A.5. Let H0-valued be a separable Hilbert space and X := (Xt)t∈Z be a centered
H0-valued weakly stationary process. Denote by UX the shift operator defined on the modular
time domain HX by UX : Xt 7→ Xt+1 and let νX be the spectral operator measure of X. Then
the two following assertions are equivalent and they hold if X is an ergodic stationary process.

(i) For all Y ∈ HX , we have UXY = Y if and only if Y = 0.

(ii) We have νX({0}) = 0.

Proof. By the Kolmogorov isomorphism theorem (see [11, Theorem 4.3]), we can represent
any Y ∈ HX as Y =

∫
Φ dX̂ with Φ ∈ ĤX , Assertion (i) is thus equivalent to saying that for

all Φ ∈ ĤX , we have
∫
T

∣∣1− eiλ
∣∣2
∥∥∥Φf1/2

X

∥∥∥
2

2
d‖νX‖1 = 0 if and only if

∫
T

∥∥∥Φf1/2
X

∥∥∥
2

2
d‖νX‖1 =

0, where fX = dνX
d‖νX‖1

. Since ‖fX‖1 = 1 ‖νX‖1-a.e., νX({0}) 6= 0 is equivalent to have

‖νX‖1({0}) > 0 and we clearly obtain that Assertions (i) and (ii) are equivalent.
Suppose now that X is an ergodic stationary process and let us show that Assertion (i)

holds. The ergodicity of X means that (HZ
0 ,B(H0)

⊗Z,PX , T ) is an ergodic measure preserving
dynamical system, where PX is the distribution of X = (Xt)t∈Z defined on the canonical space
(HZ

0 ,B(H0)
⊗Z) and T is the shift operator on HZ

0 defined by (xt)t∈Z 7→ (xt+1)t∈Z. Now take
Y ∈ HX . Setting Ω = HZ

0 and F = B(H0)
⊗Z, Y can be seen as the equivalence class in

L2(Ω,F ,H0,P
X) of a measurable function h : Ω → H0. Then h◦T belongs to the equivalence

class UXY . To prove Assertion (i), let us suppose that Y = UXY (as elements of HX) and
show that Y = 0 (since the reverse implication is obvious). From what precedes, Y = UXY
implies h◦T = h, PX-a.s. Since (HZ

0 ,B(H0)
⊗Z, PX , T ) is ergodic, this implies that h is constant,

P
X-a.s., which in turn implies Y = 0, since all elements in HX have mean zero. The proof is

concluded.

39



B L2(V,V , ξ)-valued weakly stationary time series

Within this appendix, we set H0 = L2(V,V, ξ) for a σ-finite measured space (V,V, ξ) and we
assume that the Hilbert space H0 is separable with dimension N ∈ {1, 2, . . . ,∞}. This will
allow us to use a Hilbert basis (φi)0≤i<N of H0.

We first show that we can always find a version of an H0-valued random variable which is
jointly measurable on V× Ω.

Proposition B.1. Let (V,V, ξ) be a σ-finite measured space. Assume that H0 = L2(V,V, ξ)
is separable and let Y be an H0-valued random variable defined on (Ω,F ,P). Then Y admits
a version (v, ω) 7→ Ỹ (v, ω) jointly measurable on (V× Ω,V ⊗ F).

Proof. Let us define for all 0 ≤ n < N , ω ∈ Ω, v ∈ V and ǫ > 0, SY
n (v, ω) :=∑n

k=0 〈Y (ω), φk〉φk(v) and NY
ǫ (ω) := inf

{
n < N :

∥∥SY
n (·, ω)− Y (ω)

∥∥2
H0

≤ ǫ
}
. Then it

is straightforward to show that, for all ω ∈ Ω and ǫ > 0, NY
ǫ (ω) is well defined in

N and that (NY
2−n(ω))n is a non-decreasing sequence. We now defined Ỹ on V × Ω by

Ỹ (v, ω) = lim
n→∞

SY
NY

2−n
(ω)(v, ω) if the limit exists in C and 0 otherwise. It follows that, for all

ω ∈ Ω, SY
NY

2−n
(ω)

(·, ω) converges to Y in H0 and SY
NY

2−n
(ω)

(v, ω) converges to Ỹ (v, ω) for ξ-a.e.

v ∈ V as n → ∞ and that Ỹ (·, ω) = Y (ω) (as elements of H0). The result follows since SY
n is

jointly measurable on V× Ω for all n ∈ N and NY
ǫ is measurable on Ω for all ǫ > 0.

Hence, an H0-valued random variable Y can always be assumed to be represented by a
V × Ω → C-measurable function Ỹ . If, moreover, Y ∈ L2(Ω,F ,H0,P), then, by Fubini’s
theorem, we can see Ỹ as an element of L2(V×Ω,V ⊗F , ξ ⊗ P), and we can write Ỹ (v, ω) =∑

0≤k<N 〈Y (ω), φk〉φk(v), where the convergence holds in L2(V×Ω,V⊗F , ξ⊗P). As expected,

in this case, the covariance operator Cov(Y ) is an integral operator with kernel (v, v′) 7→
Cov

(
Ỹ (v, ·), Ỹ (v′, ·)

)
. It is tempting to write that Var

(
Ỹ (v, ·)

)
is equal to the kernel of

Cov(Y ) on the diagonal
{
v = v′ : (v, v′) ∈ V

2
}
. However, because this diagonal set has null

ξ⊗2-measure, this “equality” is meaningless. In the following lemma we make this statement
rigorous by relying on a decomposition of the form Cov(Y ) = KKH for some K ∈ S2(H0). In
particular, this can be used to give a rigorous definition of σW in Theorem 3.4 or (3.11).

Lemma B.2. Let (V,V, ξ) be a σ-finite measured space. Assume that H0 = L2(V,V, ξ) is
separable and let Y be an H0-valued random variable defined on (Ω,F ,P). Let K ∈ S2(H0)
and denote by K its kernel in L2(V2,V⊗2, ξ⊗2). Suppose that Cov(Y ) = KKH. Then, we
have, for ξ-a.e. v ∈ V,

E

[∣∣∣Ỹ (v, ·)
∣∣∣
2
]
=

∫ ∣∣K(v, v′)
∣∣2 ξ(dv′) = ‖K(v, ·)‖2H0

, (B.1)

where Ỹ is a version of Y in L2(V× Ω,V ⊗ F , ξ ⊗ P).

Proof. As explained before the lemma, we have that Ỹn : (v, ω) 7→∑
0≤k<n 〈Y (ω), φk〉H0

φk(v) converges to Ỹ as n → N in L2(V × Ω,V ⊗ F , ξ ⊗ P).

Let us define, for all v, v′ ∈ V and 0 ≤ n ≤ N , Kn(v, v
′) =

∑
0≤k<n 〈K(·, v′), φk〉H0

φk(v).

Then, using that K ∈ L2(V2,V⊗2, ξ⊗2), it is easy to show that Kn converges to K

in L2(V2,V⊗2, ξ⊗2) as n → N . By the Cauchy-Schwartz inequality, the mappings

(g, h) 7→ [v 7→ E

[
g(v, ·)h(v, ·)

]
] and (g, h) 7→ [v 7→ 〈g(v, ·), h(v, ·)〉H0

] sesquilinear continuous

from L2(V × Ω,V ⊗ F , ξ ⊗ P) to L1(V,V, ξ) and from L2(V2,V⊗2, ξ⊗2) to L1(V,V, ξ),
respectively. This, with the two previous convergence results, shows that v 7→ E

[∣∣∣Ỹn(v, ·)
∣∣∣
2
]

and v 7→ ‖Kn(v, ·)‖2H0
both converge in L1(V,V, ξ), to E

[∣∣∣Ỹ (v, ·)
∣∣∣
2
]

and ‖K(v, ·)‖2H0
,

respectively, that is to the left-hand side and right-hand side of (B.1). Hence, to conclude,

we only have to show that, for all v ∈ V and 0 ≤ n < N , E

[∣∣∣Ỹn(v, ·)
∣∣∣
2
]
= ‖Kn(v, ·)‖2H0

.

To this end, we write E

[∣∣∣Ỹn(v, ·)
∣∣∣
2
]

= E

[∑
0≤j,k<n 〈Y, φj〉H0

〈φk, Y 〉H0
φj(v)φk(v)

]
=

∑
0≤j,k<n φH

j Cov(Y )φk φj(v)φk(v). Using the fact that Cov(Y ) = KKH and Fubini’s
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theorem, we get φH

j Cov(Y )φk =
∫
〈K(·, v′′), φj〉H0

〈K(·, v′′), φk〉H0
ξ(dv′′). Inserting this in

the previous equation and moving the double sum inside the integral with respect to ξ(dv′′),
this double sum becomes a product of two conjugate sums. Namely, we get that

E

[∣∣∣Ỹn(v, ·)
∣∣∣
2
]
=

∫ ∣∣∣∣∣∣
∑

0≤k<n

〈
K(·, v′′), φk

〉
H0

φk(v)

∣∣∣∣∣∣

2

ξ(dv′′) = ‖Kn(v, ·)‖2H0
,

which concludes the proof.
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[5] V. Characiejus and A. Račkauskas. Operator self-similar processes and functional central
limit theorems. Stochastic Processes and their Applications, 124(8):2605–2627, 2014.

[6] J. B. Conway. A course in functional analysis, volume 96 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, second edition, 1990.

[7] J. B. Conway. A course in operator theory, volume 21 of Graduate Studies in Mathemat-
ics. American Mathematical Society, Providence, RI, 2000.

[8] J. Diestel and J. J. Uhl. Vector measures. American Mathematical Society, Providence,
R.I., 1977. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15.

[9] N. Dinculeanu. Vector integration and stochastic integration in Banach spaces, volume 48.
John Wiley & Sons, 2011.

[10] W. Dunsmuir and E. J. Hannan. Vector linear time series models. Advances in Applied
Probability, 8(2):339–364, 1976.

[11] A. Durand and F. Roueff. Weakly stationary stochastic processes valued in a separable
Hilbert space: Gramian-Cramér representations and applications. working paper or
preprint, Oct. 2022.
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