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Hilbert valued fractionally integrated autoregressive moving

average processes with long memory operators

Amaury Durand ∗† François Roueff ∗

October 8, 2020

Abstract

Fractionally integrated autoregressive moving average processes have been widely and
successfully used to model univariate time series exhibiting long range dependence. Vector
and functional extensions of these processes have also been considered more recently. Here
we rely on a spectral domain approach to extend this class of models in the form of a general
Hilbert valued processes. In this framework, the usual univariate long memory parameter d is
replaced by a long memory operator D acting on the Hilbert space. Our approach is compared
to processes defined in the time domain that were previously introduced for modeling long
range dependence in the context of functional time series.
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1 Introduction

The study of weakly-stationary time series valued in a separable Hilbert space has been an
active field of research in the past decades. For example, ARMA processes have been discussed
in [3, 24, 16], a spectral theory is constructed in [20, 21, 25] and several estimation methods
have been studied in [11, 13, 12, 14, 17, 2, 18, 7]. However, the literature mainly focuses on
short-memory processes and the study of long-memory processes valued in a separable Hilbert
space is a more recent topic, see [23, 4, 5, 9, 19]. In particular, in [19, Section 4], the authors
propose a generalization of the fractionally integrated autoregressive moving average (often
shortened as ARFIMA but we prefer to use the abbreviation FIARMA for reasons that will
be made explicit in Remark 3.1) processes to the case of curve (or functional) time series.
In short, they consider the functional case in which the Hilbert space is an L2 space of real
valued functions defined on some compact subset C of R, and they introduce the time series
(Xt)t∈Z valued in this Hilbert space defined by

(1−B)dXt(v) = Yt(v) , t ∈ Z, v ∈ C , (1.1)

where −1/2 < d < 1/2, B is the backshift operator on R
Z, and Yt is a functional ARMA

process. As pointed out in [19, Remark 9], taking the same d for all v ∈ C in (1.1) is very
restrictive compared to other long memory processes recently introduced, for instance in [4, 5],
where they consider long-memory processes of the form

Xt(v) =
∞∑

k=0

(1 + k)−n(v) ǫt−k(v) , t ∈ Z , v ∈ V ,

where (V,V, ξ) is a σ-finite measured space and (ǫt)t∈Z is a white noise valued in L2(V,V, ξ).
A formulation not restricted to an L2 space was proposed in [9] where the author considers
long-memory processes of the form

Xt =

∞∑

k=0

(1 + k)−N ǫt−k , t ∈ Z , (1.2)

where (ǫt)t∈Z is a white noise valued in a separable Hilbert space H0 and N is a bounded
normal operator on H0. This suggests to define FIARMA processes in (1.1) with d replaced
by a a function d(v), or in the case where it is valued in an arbitrary separable Hilbert space
H0, by a bounded normal operator D acting on this space.

In this contribution, we fill this gap by providing a definition of FIARMA processes valued
in a separable Hilbert space H0 with a long memory operator D, taken as a bounded linear
operator on H0. If D is normal, then we can rely on its singular value decomposition and find
necessary and sufficient conditions to ensure that the FIARMA process with long memory
operator D is well defined. This allows us to compare FIARMA processes with the processes
defined by (1.2) as in [9]. Our definition relies on linear filtering in the spectral domain. It
is a well known fact that linear filtering of (i.e. shift-invariant linear transforms on) real
valued time series in the time domain is equivalent to pointwise multiplication by a transfer
function in the frequency domain. This duality also applies to Hilbert valued time series using
a proper spectral representation for them. In this context pointwise multiplication becomes
pointwise application of an operator valued transfer function defined on the set of frequencies.
A complete account on this topic is provided in the survey paper [8]. We recall in Section 2 the
necessary definitions and facts needed for our purpose about operator theory, linear filtering
in the spectral domain and some specific tools for functional time series. The construction of
FIARMA processes is introduced and discussed in Section 3, where the case of a normal long
memory operator is detailed. Proofs are postponed to Section 4 for convenience.

2 Preliminaries and useful notation

2.1 Integration of functions valued in a Banach space

We introduce some notation for useful spaces of functions defined on a measurable space
(Λ,A) and valued in a separable Banach space (E, ‖·‖E). In this context a function is said
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to be measurable if it is Borel-measurable, i.e. f−1(A) ∈ A for all A ∈ B(E), the Borel
σ-field on E. We denote by F(Λ,A, E) the space of measurable functions from Λ to E. For
a non-negative measure µ on (Λ,A) and p ∈ [1,∞], we denote by Lp(Λ,A, E, µ) the space
of functions f ∈ F(Λ,A, E) such that

∫
‖f‖pE dµ (or µ-essup ‖f‖E for p = ∞) is finite and

by Lp(Λ,A, E, µ) its quotient space with respect to µ-a.e. equality. When E = C, we simply
omit E in the notation of the Lp and Lp spaces. The corresponding norms are denoted by
‖·‖Lp(Λ,A,E,µ). For a simple function f ∈ Span (1Ax : A ∈ A, µ(A) < ∞, x ∈ E) with range
{α1, · · · , αn}, the integral (often referred to as the Bochner integral) of the E-valued function
f with respect to µ is defined by

∫
f dµ =

n∑

k=1

αk µ
(
f−1({αk})

)
∈ E . (2.1)

This integral is extended to L1(Λ,A, E, µ) by continuity (and thus also to Lp if µ is finite).

2.2 Banach space valued measure

An E-valued measure is a mapping µ : A → E such that for any sequence (An)n∈N ∈ AN of
pairwise disjoint sets then µ

(⋃
n∈N

An

)
=
∑

n∈N
µ(An) where the series converges in E, that

is

lim
N→+∞

∥∥∥∥∥µ
(⋃

n∈N

An

)
−

N∑

n=0

µ(An)

∥∥∥∥∥
E

= 0 .

We denote by M(Λ,A, E) the set of E-valued measures. For such a measure µ, the mapping

‖µ‖E : A 7→ sup

{∑

i∈N

‖µ(Ai)‖E : (Ai)i∈N ∈ AN is a countable partition of A

}

defines a non-negative measure on (Λ,A) called the variation measure of µ. The notation
‖µ‖E will be adapted to the notation chosen for the norm in E. If µ ∈ M(Λ,A, E) has finite
variation, then for a simple function f : Λ 7→ C with range {α1, . . . , αn}, the integral of f
with respect to µ is defined by the same formula as in (2.1) (but this time the αk’s are scalar
and the µ’s are E-valued). This definition is extended to L1(Λ,A, ‖µ‖E) by continuity.

2.3 Operator theory

LetH0 and G0 be two separable Hilbert spaces. The inner product and norm, e.g. associated to
H0, are denoted by 〈·, ·〉H0

and ‖·‖H0
. Let Lb(H0,G0) denote the set of all H0 → G0 continuous

operators. We also denote by K(H0,G0) the set of all compact operators in Lb(H0,G0) and
for all p ∈ [1,∞), Sp(H0,G0) the Schatten-p class. The space Lb(H0,G0) and the Schatten-p
classes are Banach spaces when respectively endowed with the norms

‖P‖Lb(H0,G0)
:= sup

‖x‖H0
≤1

‖Px‖G0
and ‖P‖p :=


 ∑

σ∈sing(P)

σp




1/p

where sing(P) is the set of singular values of P. Following these definitions, we have, for all
1 ≤ p ≤ p′

Sp(H0,G0) ⊂ Sp′(H0,G0) ⊂ K(H0,G0) ⊂ Lb(H0,G0) . (2.2)

The space K(H0, G0) is endowed with the operator norm and the three inclusions in (2.2) are
continuous embeddings. If G0 = H0, we omit the G0 in the notations above.

An operator P ∈ Lb(H0), is said to be positive if for all x ∈ H0, 〈Px, x〉H0
≥ 0 and we

will use the notations L+
b (H0), K

+(H0), S
+
p (H0) for positive, positive compact and positive

Schatten-p operators. If P ∈ L+
b (H0) then there exists a unique operator of L+

b (H0), denoted

by P1/2, which satisfies P =
(
P1/2

)2
. For any P ∈ Lb(H0,G0) we denote its adjoint by PH

and for P ∈ S1(H0), we denote its trace by Tr(P). Schatten-1 and Schatten-2 operators are
usually referred to as trace-class and Hilbert-Schmidt operators respectively.

We conclude this section with the singular value decomposition of a bounded normal
operator (see [6, Theorem 9.4.6, Proposition 9.4.7]). Let N ∈ Lb(H0) be a normal operator,
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i.e. NNH = NHN , then, there exists a σ-finite measure space (V,V, ξ), a unitary operator
U : H0 → L2(V,V, ξ) and n ∈ L∞(V,V, ξ), such that

UNUH = Mn , (2.3)

where Mn denotes the pointwise multiplicative operator on L2(V,V, ξ) associated to n, that is
Mn : f 7→ n×f . We say thatN has singular value function n on L2(V,V, ξ) with decomposition
operator U .

2.4 Integration of functions valued in an operator space

Let H0 and G0 be two separable Hilbert spaces and (Λ,A, µ) be a measured space. Then, since
all the operator spaces displayed in (2.2) are Banach spaces, the integration theory presented
in Section 2.1 applies. However, we introduce hereafter a weaker notion of measurability.

Definition 2.1 (Simple measurability). A function Φ : Λ → Lb(H0,G0) is said to be simply
measurable if for all x ∈ H0, λ 7→ Φ(λ)x is measurable as a G0-valued function. The set of
such functions is denoted by Fs (Λ,A,H0,G0) or simply Fs (Λ,A,H0) if G0 = H0.

Note that for a Banach space E which is continuously embedded in Lb(H0,G0) (e.g.
Sp(H0,G0) for p ≥ 1 or K(H0,G0)), we have the inclusion F(Λ,A, E) ⊂ Fs (Λ,A,H0,G0).
The reciprocal inclusion holds for E = K(H0,G0) and for E = Sp(H0,G0) with p ∈ {1, 2} (see
[8, Lemma 2.1]). From this observation, we derive the following useful result.

Lemma 2.1. Let Φ ∈ L1(Λ,A,S+
1 (H0), µ) and define the function Φ1/2 : λ 7→ Φ(λ)1/2. Then

Φ1/2 ∈ L2(Λ,A,S2(H0), µ).

Proof. Simple measurability of Φ1/2 is given by [15, Lemma 3.4.2] and therefore, by [8,
Lemma 2.1], Φ1/2 ∈ F(Λ,A,S2(H0)). The fact that Φ1/2 ∈ L2(Λ,A,S2(H0), µ) then fol-

lows from the identity
∥∥∥Φ1/2(λ)

∥∥∥
2

2
= ‖Φ(λ)‖1.

2.5 Useful normal Hilbert modules

In this section, we briefly recall the notion of normal Hilbert modules and give some useful
examples, see [8, Section 2.3] for details. In short, a normal Hilbert module is a Hilbert space
endowed with a module action and whose scalar product is inherited from a gramian. As
mentioned in [8, Example 2.1(3)] the space S2(H0,G0) is a normal Hilbert Lb(G0)-module with
module action being the composition of operators, F•P = FP, and gramian [P,Q]S2(H0,G0)

:=

PQH. In particular we have, for all P,Q ∈ S2(H0,G0) and F ∈ Lb(G0), FP ∈ S2(H0,G0) and
PQH ∈ S1(G0), and S2(H0,G0) is a Hilbert space when endowed with the scalar product

〈P,Q〉S2(H0,G0)
:= Tr[P,Q]S2(H0,G0)

= Tr(PQH) .

Given a measured space (Λ,A, µ) where µ is finite and non-negative, we can use the gramian
structure of S2(H0, G0) to endow the space L2(Λ,A,S2(H0,G0), µ) with a gramian (see [8,
Example 2.1(5)]). Namely, L2(Λ,A,S2(H0, G0), µ) is a normal Hilbert Lb(G0)-module with
module action defined for all P ∈ Lb(G0) and Φ ∈ L2(Λ,A,S2(H0,G0), µ) by P • Φ : λ 7→
PΦ(λ), and gramian defined for all Φ,Ψ ∈ L2(Λ,A,S2(H0,G0), µ) by

[Φ,Ψ]L2(Λ,A,S2(H0,G0),µ)
:=

∫
ΦΨH dµ .

In particular we have, for all Φ,Ψ ∈ L2(Λ,A,S2(H0,G0), µ) and P ∈ Lb(G0),

P

∫
ΦΨH dµ = P[Φ,Ψ]L2(Λ,A,S2(H0,G0),µ)

= [P • Φ,Ψ]L2(Λ,A,S2(H0,G0),µ)
=

∫
PΦΨH dµ ,

and L2(Λ,A,S2(H0,G0), µ) endowed with the scalar product

〈Φ,Ψ〉L2(Λ,A,S2(H0,G0),µ)
:= Tr[Φ,Ψ]µ =

∫
Tr
(
ΦΨH

)
dµ

is a Hilbert space, whose associated squared norm takes the form

‖Φ‖2L2(Λ,A,S2(H0,G0),µ)
=

∫
Tr
(
ΦΦH

)
dµ =

∫ ∥∥∥ΦΦH

∥∥∥
1
dµ =

∫
‖Φ‖2 dµ . (2.4)

We extend hereafter such module to the case where µ is replaced by a positive operator valued
measure µ.
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2.6 Positive Operator Valued Measures (p.o.v.m.)

The notion of Positive Operator Valued Measures is widely used in Quantum Mechanics and
a good study of such measures can be found in [1]. Here we provide useful definitions and
results for our purpose. See [8, Section 2.2] for details.

Definition 2.2 (Trace-class Positive Operator Valued Measures). Let (Λ,A) be a measurable
space and H0 be a separable Hilbert space. A trace-class Positive Operator Valued Measure
(p.o.v.m.) on (Λ,A,H0) is an S1(H0)-valued measure (in the sense of Section 2.2) such that
for all A ∈ A, ν(A) ∈ S+

1 (H0). In this cas, ν has a finite variation measure denoted by ‖ν‖1.

Trace class p.o.v.m.’s satisfy the Radon-Nikodym’s property which provides a simple rep-
resentation of the p.o.v.m. through the integral of an operator-valued density function with
respect to a finite non-negative measure. The following result, which corresponds to [8, The-
orem 2.4], applies for instance with µ = ‖ν‖1. It will be used repeatedly in this contribution.

Theorem 2.2. Let (Λ,A) be a measure space, H0 a separable Hilbert space and ν a trace-class
p.o.v.m. on (Λ,A,H0). Let µ be a finite non-negative measure on (Λ,A). Then ‖ν‖1 ≪ µ (i.e.
for all A ∈ A, µ(A) = 0 ⇒ ‖ν‖1(A) = 0), if and only if there exists g ∈ L1(Λ,A,S1(H0), µ)
such that dν = g dµ, i.e. for all A ∈ A,

ν(A) =

∫

A

g dµ . (2.5)

In this case, g is unique and is called the density of ν with respect to µ and denoted as g = dν
dµ

.

The theorem above implies the existence of some operator-valued density function of a
trace-class p.o.v.m. ν with respect to its total variation measure ‖ν‖1 thus allowing us to use
the results of Section 2.1 to define left and right integration of operator valued functions with
respect to (the operator valued) ν.

Definition 2.3 (Left/right integration of operator valued functions with respect to a
p.o.v.m.). Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space, ν a trace-class
p.o.v.m. on (Λ,A,H0) with density f = dν

d‖ν‖1
. Let Φ,Ψ ∈ Fs (Λ,A,H0,G0), then the pair

(Φ,Ψ) is said to be ν-integrable if ΦfΨH ∈ L1(Λ,A,S1(G0), ‖ν‖1) and in this case we define

∫
ΦdνΨH :=

∫
ΦfΨH d‖ν‖1 ∈ S1(G0) . (2.6)

If (Φ,Φ) is ν-integrable we say that Φ is square ν-integrable and we denote by
L

2(Λ,A,Lb(H0, G0), ν) the space of functions in Fs (Λ,A,H0,G0) which are square ν-
integrable.

Following Definition 2.3, the quotient space

L
2(Λ,A,Lb(H0,G0), ν) := L

2(Λ,A,Lb(H0,G0), ν)
/{

Φ : Φf1/2 = 0 ‖ν‖1-a.e.
}

. (2.7)

is a normal pre-Hilbert Lb(G0)-module endowed with the gramian

[Φ,Ψ]
L2(Λ,A,Lb(H0,G0),ν)

:=

∫
ΦdνΨH .

We refer to [8, Definition 2.4 and Proposition 2.8] for details. Here we will principally use that
the trace of gramian defines a scalar product on the (pre-Hilbert) space L2(Λ,A,Lb(H0,G0), ν)
that will be denoted in the following by

〈Φ,Ψ〉
L2(Λ,A,Lb(H0,G0),ν)

:= Tr[Φ,Ψ]
L2(Λ,A,Lb(H0,G0),ν)

with associated norm

‖Φ‖
L2(Λ,A,Lb(H0,G0),ν)

:=
(
〈Φ,Φ〉

L2(Λ,A,Lb(H0,G0),ν)

)1/2
.

To check that some Φ ∈ Fs (Λ,A,H0,G0) is square ν-integrable in the sense of Definition 2.3,
we can replace ‖ν‖1 by an arbitrary dominating measure µ (often taken as Lebesgue’s measure,
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as in [25]). Namely, by [8, Proposition 2.7], if µ is a finite non-negative measure on (Λ,A)
which dominates ‖ν‖1 and g = dν

dµ
, then, for all Φ ∈ Fs (Λ,A,H0,G0), we have

Φ ∈ L
2(Λ,A,Lb(H0,G0), ν) ⇔ ΦgΦH ∈ L1(Λ,A,S1(G0), µ) ⇔ Φg1/2 ∈ L2(Λ,A,S2(H0,G0), µ) ,

(2.8)
and, if Φ,Ψ ∈ L

2(Λ,A,Lb(H0,G0), ν), then (Φ,Ψ) is ν-integrable and

[Φ,Ψ]
L2(Λ,A,Lb(H0,G0),ν)

=

∫
ΦdνΨH =

∫
ΦgΨH dµ =

∫
(Φg1/2)(Ψg1/2)H dµ . (2.9)

In other words, Φ 7→ Φg1/2 is gramian-isometric from the quotient space
L
2(Λ,A,Lb(H0,G0), ν) defined in (2.7) to L2(Λ,A,S2(H0,G0), µ). By (2.4), the squared norm

of Φ ∈ L
2(Λ,A,Lb(H0, G0), ν) can thus be computed as

‖Φ‖2
L2(Λ,A,Lb(H0,G0),ν)

=

∫ ∥∥∥ΦgΦH

∥∥∥
1
dµ =

∫ ∥∥∥Φg1/2
∥∥∥
2

2
dµ . (2.10)

2.7 Linear filtering of Hilbert valued time series in the spectral
domain

In the following we denote by T the set R/2πZ (which can be represented by an interval
such as [0, 2π) or [−π, π)). Let (Ω,F , P) be a probability space and H0 a separable Hilbert
space. We recall that the expectation of X ∈ L2(Ω,F ,H0,P) is the unique vector E [X] ∈ H0

satisfying

〈E [X] , x〉H0
= E

[
〈X,x〉H0

]
, for all x ∈ H0 .

We denote by M(Ω,F ,H0,P) the space of all centered random variables in L2(Ω,F ,H0, P).
The covariance operator between X,Y ∈ L2(Ω,F ,H0,P) is the unique linear operator
Cov (X,Y ) ∈ Lb(H0), satisfying

〈Cov (X,Y ) y, x〉H0
= Cov

(
〈X,x〉H0

, 〈Y, y〉H0

)
, for all x, y ∈ H0 .

Let H = M(Ω,F ,H0,P). Then H is a normal Hilbert Lb(H0)-module for the action P •X =
PX, defined for all P ∈ Lb(H0) and X ∈ H, and the gramian [X,Y ]H = Cov (X,Y ). See [8,
Section 2.3] for details.

A process X := (Xt)t∈Z is said to be an H0-valued, weakly-stationary process if

(i) For all t ∈ Z, Xt ∈ L2(Ω,F ,H0,P).

(ii) For all t ∈ Z, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ Z, Cov (Xt+h, Xt) = Cov (Xh, X0).

This corresponds to [8, Definition 1.3] in the case G = Z.
Let X = (Xt)t∈Z ∈ HZ be a centered, weakly-stationary, H0-valued time series. By

analogy to the univariate case, and taking into account the module structure of H, let us
define the modular time domain of X as the submodule of H generated by the Xt’s, that is

HX := Span
H
(PXt : P ∈ Lb(H0), t ∈ Z) .

Similarly, given another separable Hilbert space G0, we define

HX,G0 := Span
G
(PXt : P ∈ Lb(H0,G0), t ∈ Z)

which is a submodule of G := M(Ω,F ,G0, P).
As explained in [8, Section 3], a spectral representation for X amounts to define a random

countably additive gramian orthogonally scattered measure (c.a.g.o.s.) X̂ on (T,B(T)) such
that

Xt =

∫
eiλ t X̂(dλ) for all t ∈ Z . (2.11)

The intensity measure νX of X̂ is a trace-class p.o.v.m. and is called the spectral operator
measure of X. It is the unique regular p.o.v.m. satisfying

ΓX(h) =

∫
eiλh νX(dλ) for all h ∈ Z . (2.12)
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Moreover, for any separable Hilbert space G0, one can define a a normal Hilbert Lb(G0)-module

ĤX,G0 of H0 → G0-operator valued functions defined on T, called the spectral domain, which
is gramian-isomorphic with the time domain HX,G0 through the mapping Φ 7→

∫
Φ dX̂. The

gramian isomorphism between ĤX,G0 and HX,G0 reads

[Φ,Ψ]ĤX,G0 :=

∫
ΦdνΨH = Cov

(∫
Φ dX̂,

∫
Ψ dX̂

)
, Φ,Ψ ∈ ĤX,G0 .

A time-shift invariant linear filter with H0-valued input and G0-valued output can be defined
through its transfer operator function, which is a H0 → G0–operator valued function Φ defined
on T. Applying the filter to the input X ∈ HZ to produce the output Y ∈ GZ can then be
written as

Yt =

∫
eitλΦ X̂(dλ) , t ∈ Z . (2.13)

Note that Φ is the spectral representant of Y0, which is well defined if and only if Y0 ∈ HX,G0 ,
or, equivalently Φ ∈ ĤX,G0 .

In the following, we only consider the case where Φ ∈ Fs (T,B(T),H0,G0). For such a Φ,
we have

Φ ∈ ĤX,G0 if and only if Φ ∈ L
2(T,B(T),Lb(H0,G0), νX) . (2.14)

For convenience, in the following, we write

X ∈ SΦ(Ω,F , P) and Y = FΦ(X) (or Ŷ (dλ) = Φ(λ)X̂(dλ)) , (2.15)

for the assertions Φ ∈ L
2(T,B(T),Lb(H0,G0), νX) and Y = (Yt)t∈Z with Yt defined by (2.13).

In this case, the spectral operator measure of Y is related to the one of X by the following
lemma.

Lemma 2.3. Let H0,G0 be two separable Hilbert spaces and Φ ∈ Fs (T,B(T),H0,G0). Assume
that X ∈ SΦ(Ω,F , P) and let Y = FΦ(X). Then Y has spectral operator measure defined by
dνY = ΦdνXΦH. Consequently, if νX has operator density gX with respect to some non-
negative measure µ on (T,B(T)), then νY has density ΦgXΦH with respect to µ.

The following result is a simplified version of [8, Proposition 3.3] specified to the case
where the transfer operators are bounded and G = Z. It will be sufficient for our purpose.

Proposition 2.4 (Composition of filters on weakly stationary time series). Let H0, G0 and
I0 be three separable Hilbert spaces and pick two transfer bounded operator function Φ ∈
Fs (T,B(T),H0,G0) and Ψ ∈ Fs (T,B(T),G0, I0). Let X be a centered weakly stationary H0-
valued process defined on (Ω,F , P) with spectral operator measure νX . Suppose that X ∈
SΦ(Ω,F , P). Then, we have X ∈ SΨΦ(Ω,F , P) if and only if FΦ(X) ∈ SΨ(Ω,F , P), and in
this case, we have

FΨ ◦ FΦ(X) = FΨΦ(X). (2.16)

2.8 Functional time series

In this section, we consider H0 = L2(V,V, ξ) for some measure space (V,V, ξ), and we assume
that ξ is non-negative and σ-finite and that H0 is separable. We will denote by (φn)n∈N

an arbitrary Hilbert basis of H0. This framework is known as functional (or curve) data
analysis. In this case, it is common to consider an H0-valued random variable Y defined on a
probability space (Ω,F , P) as the realization of some continuous time process {Y (v) : v ∈ V}.
This representation holds in the sense that there always exists a version of Y which is jointly
measurable in V × Ω as will be stated in Proposition 2.7. This allows us to define a cross-
spectral density function containing the spectral information of the functional time series
evaluated at two points v, v′ ∈ V. In order to get to this point, we need some results on
Hilbert-Schmidt integral operators.

2.8.1 Hilbert-Schmidt integral operators

For K ∈ L2(V2,V⊗2, ξ⊗2), we define the integral operator with kernel K as the unique
operator K on H0 satisfying

Kf : v 7→

∫

V

K(v, v′)f(v′) ξ(dv′) , for all f ∈ H0 .
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In this case, K ∈ S2(H0) with ‖K‖22 =
∫
V2 |K|2 dξ⊗2 and, through this relation, the spaces

L2(V2,V⊗2, ξ⊗2) and S2(H0) are isometrically isomorphic. In particular, any Hilbert-Schmidt
operator on H0 is an integral operator and is associated to a unique kernel in L2(V2,V⊗2, ξ⊗2).
It is easy to check that the kernel associated to KH is the adjoint kernel (v, v′) 7→ K(v′, v)
and that K ∈ L2(V2,V⊗2, ξ⊗2) is the kernel of a Hilbert-Schmidt operator K if and only if

φH

i Kφj =

∫
K(v, v′)φi(v)φj(v

′) ξ(dv)ξ(dv′) , for all i, j ∈ N .

A special case of interest is when we consider an operator G ∈ S+
1 (H0). In this case,

G is also a Hilbert-Schmidt operator and therefore is also associated to a kernel, say G ∈
L2(V2,V⊗2, ξ⊗2). However, because we can write G = HHH for some well (non-uniquely)
chosen H ∈ S2(H0), we can be more precise in describing the kernel, as stated in the following
lemma, in which, for instance, one can choose H = HH = G1/2.

Lemma 2.5. Let H0 = L2(V,V, ξ) be a separable Hilbert space, G ∈ S+
1 (H0) and H ∈ S2(H0)

such that G = HHH. Let G,ℋ ∈ L2(V2,V⊗2, ξ⊗2) be the kernels of G and H respectively.
Then for ξ⊗2 − a.e. (v, v′) ∈ V

2,

G(v, v′) =

∫
ℋ(v, v′′)ℋ(v′, v′′) ξ(dv′′) . (2.17)

Let us now consider an S2(H0)-valued function K defined on a measurable space (Λ,A).
As explained previously, for any λ ∈ Λ, K(λ) can be seen as an integral operator associated to
a kernel K(·; λ) ∈ L2(V2,V⊗2, ξ⊗2). However it is useful to consider the mapping (v, v′, λ) 7→
K(v, v′;λ) and to make this mapping measurable on (V2 ×Λ,V⊗2 ⊗A). For convenience, we
introduce the following definition to refer to such a measurable mapping.

Definition 2.4 (Joint kernel function). Let H0 = L2(V,V, ξ) be a separable Hilbert space,
with (V,V, ξ) a σ-finite measured space. Let K be a measurable function from (Λ,A) to
(S2(H0),B(S2(H0))) and K : (v, v′, λ) 7→ K(v, v′;λ) be measurable from (V2 × Λ,V⊗2 ⊗ A)
to (C,B(C)) such that, for all λ ∈ Λ and f ∈ H0,

K(λ)f : v 7→

∫
K(v, v′;λ) f(v′) ξ(dv′) . (2.18)

Then we call K the Λ-joint kernel function of K.

In Definition 2.4, the Λ-joint kernel function of K is unique in the sense two Λ-joint kernel
functions K and K̃ of the same S2(H0)-valued function K must satisfy that, for all λ ∈ Λ,
K(·; λ) = K̃(·; λ), ξ⊗2 − a.e. The following lemma asserts that a Λ-joint kernel function of K
always exists and provides additional properties in two special cases that will be of interest.

Proposition 2.6. Let H0 and K be as in Definition 2.4. Then K admits a Λ-joint kernel
function K. Moreover the two following assertions hold for any non-negative measure µ on
(Λ,A).

(i) If K ∈ L2(Λ,A,S2(H0), µ), then K ∈ L2(V2 × Λ,V⊗2 ⊗A, ξ⊗2 ⊗ µ).

(ii) If K ∈ L1(Λ,A,S+
1 (H0), µ), then K satisfies

∫ (∫ ∣∣K(v, v′;λ)
∣∣2 ξ(dv)ξ(dv′)

)1/2

µ(dλ) < +∞ . (2.19)

2.8.2 L2(V,V , ξ)-valued weakly stationary time series

We first show that we can always find a version of an H0-valued random variable which is
jointly measurable on V× Ω.

Proposition 2.7. Let Y be an H0-valued random variable defined on (Ω,F ,P). Then Y
admits a version (v, ω) 7→ Ỹ (v, ω) jointly measurable on (V× Ω,V ⊗ F).

Hence, in the following an H0-valued random variable Y will always be assumed to be
represented by a V×Ω → C-measurable function Ỹ . If, moreover, Y ∈ L2(Ω,F ,H0,P), then,
by Fubini’s theorem, we can see Ỹ as an element of L2(V×Ω,V ⊗F , ξ⊗P), and we can write

Ỹ (v, ω) =
∑

k∈N

〈Y (ω), φk〉φk(v) ,
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where the convergence holds in L2(V×Ω,V⊗F , ξ⊗P). As expected, in this case, the covariance

operator Cov(Y ) is an integral operator with kernel (v, v′) 7→ Cov
(
Ỹ (v, ·), Ỹ (v′, ·)

)
. It is then

tempting to write that Var
(
Ỹ (v, ·)

)
is equal to the kernel of the integral operator Cov(Y )

on the diagonal
{
v = v′ : (v, v′) ∈ V

2
}
. However, because this diagonal set has null ξ⊗2-

measure, this “equality” is meaningless in the framework of Hilbert-Schmidt operators. In
the following lemma we make this statement rigorous by relying on a decomposition of the
form Cov(Y ) = KKH for some K ∈ S2(H0).

Lemma 2.8. Let Y be a random variable valued in a separable Hilbert space H0 = L2(V,V, ξ),
with ξ a σ-finite measure on (V,V). Let K ∈ S2(H0) and denote by K its kernel in
L2(V2,V⊗2, ξ⊗2). Suppose that Cov(Y ) = KKH. Then, we have, for ξ − a.e. v ∈ V,

E

[∣∣∣Ỹ (v, ·)
∣∣∣
2
]
=

∫ ∣∣K(v, v′)
∣∣2 ξ(dv′) = ‖K(v, ·)‖2H0

, (2.20)

where Ỹ is a version of Y in L2(V× Ω,V ⊗ F , ξ ⊗ P).

Let now X = (Xt)t∈Z be an H0-valued weakly stationary time series defined on (Ω,F , P)
with spectral operator measure νX and, for each t ∈ Z, denote by X̃t a version of Xt in
L2(V × Ω,V ⊗ F , ξ ⊗ P). Note that, for all n ∈ N,

(∑n
k=1 〈Xt, φk〉φk(v)

)
t∈Z

are C-valued
sequences which are (v ∈ V)-jointly weakly stationary. Hence, from what precedes, we get
that there exists a ξ-full measure set V0 ∈ V such that (X̃t(v, ·))t∈Z are C-valued sequences
which are (v ∈ V0)-jointly weakly stationary. The next proposition shows that these time
series admit spectral densities with respect to any non-negative measure that dominates the
spectral measure of X.

Proposition 2.9. Let H0 = L2(V,V, ξ) be a separable Hilbert space, with ξ a σ-finite mea-
sure on (V,V). Let X = (Xt)t∈Z be an H0-valued weakly stationary time series defined on
(Ω,F , P) with spectral operator measure νX . Suppose that µ is a finite non-negative measure
on (T,B(T)) that dominates νX . Let gX = dνX

dµ
and ℊX : (v, v′, λ) 7→ ℊX(v, v′;λ) be its T-

joint kernel function as in Definition 2.4. Then for ξ⊗2 − a.e. (v, v′) ∈ V
2, the cross spectral

measure of the time series (X̃t(v, ·))t∈Z and (X̃t(v
′, ·))t∈Z admits the density λ 7→ ℊX(v, v′;λ)

with respect to µ.

Proposition 2.9 leads to the following.

Definition 2.5 (Cross-spectral density function). Under the assumptions of Proposition 2.9,
we call ℊX the cross-spectral density function and with respect to µ.

3 Hilbert valued FIARMA processes

In this section, we propose a definition of FIARMA processes valued in a separable Hilbert
space extending the definition of [19, Section 4] to an operator long memory parameter.
First we recall known results on the existence of ARMA processes, then study filtering by
a fractional integration operator transfer function. This naturally leads to the definition of
FIARMA processes which we compare to the processes introduced in [9].

3.1 ARMA processes

Let p be a positive integer and consider the p-order linear recursive equation

Yt =

p∑

k=1

AkYt−k + ǫt , t ∈ Z , (3.1)

where ǫ = (ǫt)t∈Z is an input sequence valued in H0 and A1, . . . , Ap ∈ Lb(H0). If ǫ is a white
noise (that is, it is centered and weakly stationary with a constant spectral density operator),
then Equation (3.1) is called a (functional) p-order auto-regressive (AR(p)) equation. If ǫ can
be written for some positive integer q as

ǫt = Zt +

q∑

k=1

BkZt−k , t ∈ Z , (3.2)
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where Z = (Zt)t∈Z is a centered white noise valued in H0 and B1, . . . , Bp ∈ Lb(H0), then ǫ is
called a (functional) moving average process of order q (MA(q)) and Eq. (3.1) is called a (func-
tional) (p, q)-order auto-regressive moving average (ARMA(p, q)) equation. Note that (3.2)
can be written as the spectral domain filtering

ǫ(dλ) = θ(e−iλ)Ẑ(dλ) with θ(z) = IdH0
+

p∑

k=1

Bkz
k . (3.3)

Weakly stationary solutions of AR(p) or ARMA(p, q) equations are called AR(p) or
ARMA(p, q) processes. The existence (and uniqueness) of a weakly stationary solution to
Eq. (3.1) is given by the following result where U = {z ∈ C : |z| = 1} is the complex unit
circle.

Theorem 3.1. Let ǫ = (ǫt)t∈Z be a centered weakly stationary process valued in H0 and
A1, . . . , Ap ∈ Lb(H0) satisfying the condition

φ(z) = IdH0
−

p∑

k=1

Akz
k is invertible in Lb(H0) for all z ∈ U. (3.4)

Then, setting Φ(λ) = φ(e−iλ) for all λ ∈ R, the processes Y = FΦ−1(ǫ) is well defined and is
the unique weakly stationary solution Y = (Yt)t∈Z satisfying (3.1). Moreover, the process Y
admits the linear representation

Yt =
∑

k∈Z

Pkǫt−k , t ∈ Z , (3.5)

where (Pk)k∈Z is a sequence valued in Lb(H0) whose operator norms have exponential decays
at ±∞.

Theorem 3.1 is usually proven in the Banach space valued case by constructing the explicit
expansion (3.5) from algebraic arguments (see [24, Corollary 2.2] and the references in the
proof). In Section 4 we provide a very short proof relying on linear filtering in the spectral
domain.

Let us introduce some notation which will be useful in the following.

Definition 3.1 (Polynomial sets Pd(H0) and P∗
d (H0)). For any integer d ∈ N, let Pd(H0)

denote the set of polynomials p of degree d with coefficients in Lb(H0) and such that p(0) =
IdH0

. Further denote by P∗
d (H0) the subset of all p ∈ Pd(H0) which are invertible on U (as

φ in (3.4)).

An H0-valued ARMA(p, q) process X can thus be concisely defined as follows.

Definition 3.2 (Hilbert valued ARMA process). Let H0 be a separable Hilbert space, p, q be
non-negative integers, θ ∈ Pq(H0), φ ∈ P∗

p (H0) and Z be a (centered) H0-valued white noise.
The H0-valued weakly stationary time series with spectral representation given by

X̂(dλ) = [φ(e−iλ)]−1
θ(e−iλ)Ẑ(dλ) ,

where Ẑ is the spectral representation of Z, is called an ARMA(p, q) process.

By Lemma 2.3, in this case, if Σ denotes the covariance operator of Z, then X admits the
spectral density

gX(λ) = [φ(e−iλ)]−1
θ(e−iλ)Σ[φ−1(e−iλ)θ(e−iλ)]H

with respect to the Lebesgue measure. The following results will be useful.

Proposition 3.2. Let H0 be a separable Hilbert space and X be an ARMA(p, q) process
defined by X̂(dλ) = [φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) with θ ∈ Pq(H0), φ ∈ P∗

p (H0) and Z an H0-
valued white noise with covariance operator Σ. Then there exists η ∈ (0, π) and k : (−η, η) →
S2(H0) continuous and bounded such that, for Leb− a.e. λ ∈ (−η, η), we have

gX(λ) = h(λ) [h(λ)]H with h(λ) = [φ(1)]−1
θ(1)Σ1/2 + λk(λ) . (3.6)

In the case where H0 = L2(V,V, ξ) for some σ-finite measure space (V,V), then the (−η, η)-
joint kernel function k in L2(V2 × (−η, η),V⊗2 ⊗ B(−η, η), ξ⊗2 ⊗ Leb) associated to k also
satisfies ∫

V2

Leb-essup
λ∈(−η,η)

∣∣k(v, v′;λ)
∣∣2 ξ(dv) ξ(dv′) < +∞ . (3.7)
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The following lemma indicates that an invertible linear transform of an ARMA process
is still an ARMA process. It will be useful in particular in the case where U is an isometry
mapping H0 to a space of the form G0 = L2(V,V, ξ).

Lemma 3.3. Let ξ be a σ-finite measure on (V,V), H0 and G0 be two separable Hilbert
spaces. Let X be an ARMA(p, q) process defined by X̂(dλ) = [φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ) with
θ ∈ Pq(H0), φ ∈ P∗

p (H0) and Z an H0-valued white noise. Then, for any invertible operator
U ∈ Lb(H0,G0), the process UX = (UXt)t∈Z is the G0-valued ARMA(p, q) process defined

by ÛX(dλ) = [φ̃(e−iλ)]−1 θ̃(e−iλ) ÛZ(dλ), where θ̃ := UθU−1 ∈ Pq(G0) and φ̃ := UφU−1 ∈
P∗

p (G0), and UZ = (UZt)t∈Z is a G0-valued white noise.

3.2 Fractional operator integration of weakly stationary pro-
cesses

In the following, we use the notation (1− z)D for some D ∈ Lb(H0) and z ∈ C \ [1,∞). This
must be understood as

(1− z)D = exp(D ln(1− z)) =

∞∑

k=0

1

k!
(D ln(1− z))k ,

where ln denotes the principal complex logarithm, so that z 7→ ln(1 − z) is holomorphic on
C \ [1,∞), and so is z 7→ (1 − z)D, as a Lb(H0)-valued function, see [10, Chapter 1] for an
introduction on this subject.

Definition 3.3 (Fractional integration operator transfer function). Let H0 be a separable
Hilbert space and D ∈ Lb(H0). We define the D-order fractional integration operator transfer
function FID by

FID(λ) =

{(
1− e−iλ

)−D
if λ 6= 0,

0 otherwise.

Using the properties of z 7→ (1−z)D recalled previously, we get that FID is a mapping from
T to Lb(H0), continuous on T \ {0}. Then we have FID ∈ Fs (T,B(T),H0) and we can define
the filter FFID as in (2.15) whose domain of definition are the centered weakly stationary
H0-valued processes X ∈ SFID (Ω,F , P). Then a fractionaly integrated autoregressive moving
average (FIARMA) process is simply the output of the filter in the case where X is an ARMA
process, as defined in the following.

Definition 3.4 (FIARMA processes). Let H0 be a separable Hilbert space and p, q be two non-
negative integers. Let D ∈ Lb(H0), θ ∈ Pq(H0), φ ∈ P∗

p (H0) and Z be an H0-valued centered

white noise. Let X be the ARMA(p, q) process defined by X̂(dλ) = [φ(e−iλ)]−1θ(e−iλ)Ẑ(dλ)
and suppose that X ∈ SFID (Ω,F , P). Then the process defined by Y = FFID (X), or, in the
spectral domain, by

Ŷ (dλ) = FID(λ)φ−1(e−iλ)θ(e−iλ)Ẑ(dλ) , (3.8)

is called a FIARMA process of order (p, q) with long memory operator D, shortened as
FIARMA(D,p, q).

Remark 3.1. Definition 3.4 extends the usual definition of univariate (C or R-valued)
ARFIMA(p, d, q) processes to the Hilbert-valued case. In the general case we use the acronym
FIARMA to indicate the order of the operators in the definition (3.8), where the fractional in-
tegration operator appears on the left of the autoregressive operator, itself appearing on the left
of the moving average operator. We also respected this order in the list of parameters (D, p, q).
Of course, one can also define an ARFIMA(p,D, q) process as the solution of (3.1) with ǫ de-
fined as a FIARMA(0, D, q) process but the ARFIMA(p,D, q) process do not coincide with the
FIARMA(p,D, q) process (this is already the case in finite dimension larger than 1). Observe
that in the univariate case all the operators commute and FIARMA and ARFIMA boils down
to the same definition. Note also that Definition 3.4 extends the definition of ARFIMA curve
time series proposed in [19] in the case where H0 is an L2(C,B(C),Leb) for some compact set
C ⊂ R and where D is a scalar operator, that is D = Md for some constant function d ≡ d
with −1/2 < d < 1/2. We will see below that, in this case, we have X ∈ SFID (Ω,F , P) for
any ARMA process X, see Remark 3.2 below.
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Since FID has a singularity at the null frequency, we want to provide conditions to ensure
that, given a weakly stationary process X, the filter with transfer function FID applies to
X, or, as explained in Section 2.7, we look for conditions implying that X ∈ SFID (Ω,F , P).
For instance in the scalar case, it is well known that if X has a positive and continuous
spectral density at the null frequency, then FFId(X) is well defined if and only if d < 1/2.
The Hilbert valued case relies on the singular value decomposition of D, which we will assume
to be normal. Based on the spectral decomposition of a normal operator, we derive, in the
following result, a necessary and sufficient condition involving the spectral operator density
of X and the spectral decomposition of D.

Theorem 3.4. Let H0 be a separable Hilbert space, D ∈ Lb(H0) and X = (Xt)t∈Z be an
H0-valued weakly stationary time series defined on (Ω,F ,P) with spectral operator measure
νX . Suppose that D is normal, with singular value function d on G0 := L2(V,V, ξ) and
decomposition operator U . Let µ be a nonnegative measure on (T,B(T)) which dominates νX
and let h ∈ L2(T,B(T),S2(G0), µ) such that λ 7→ h(λ)[h(λ)]H is the spectral operator density
function of UX = (UXt)t∈Z with respect to µ, that is,

h(λ)[h(λ)]H = U gX(λ)UH for µ− a.e. λ ∈ T ,

where gX = dνX
dµ

. Let h denote the T-joint kernel function of h. Then the three following
assertions are equivalent.

(i) We have X ∈ SFID (Ω,F , P).

(ii) There exists η ∈ (0, π) arbitrarily small such that

∫

V2×(−η,η)

|λ|−2ℜ(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ . (3.9)

(iii) Equation (3.9) holds for all η ∈ (0, π).

Remark 3.2. If the dominating measure µ is the Lebesgue measure and if d is a constant
function, d ≡ d for some d < 1/2 then the integral in (3.9) is bounded from above by

2η1−2d

1− 2d
Leb-essup
λ∈(−η,η)

∫

V2

∣∣h(v, v′;λ)
∣∣2 ξ(dv)ξ(dv′) =

2η1−2d

1− 2d
Leb-essup
λ∈(−η,η)

‖gX(λ)‖1 .

Thus, in this case, a sufficient condition for X ∈ SFID (Ω,F ,P) is to have that ‖gX‖1 is locally
bounded around the null frequency. This is always the case if X is an ARMA process as in
Definition 3.2.

Theorem 3.5. Let H0 be a separable Hilbert space and D ∈ Lb(H0). Suppose that X is

an H0-valued ARMA(p, q) process defined by X̂(dλ) =
[
φ(e−iλ)

]−1
θ(e−iλ)Ẑ(dλ) with θ ∈

Pq(H0), φ ∈ P∗
p (H0) and Z a white noise with covariance operator Σ. Suppose that D is

normal, with singular value function d on G0 := L2(V,V, ξ) and decomposition operator U .

Let σW : v 7→

(
E

[∣∣∣W̃ (v, ·)
∣∣∣
2
])1/2

where W̃ is a jointly measurable version of the L2 G0-

valued variable W = U [φ(1)]−1θ(1)Z0. Consider the following assertions.

(i) We have X ∈ SFID (Ω,F , P).

(ii) We have ℜ(d) < 1/2, ξ − a.e. on {σW > 0}.

(iii) We have

∫

{ℜ(d)<1/2}

σ2
W (v)

1− 2ℜ(d(v))
ξ(dv) < +∞.

(iv) We have ℜ(d) < 1, ξ − a.e.

(v) We have φ(z) = θ(z) = Id for all z ∈ C (i.e. X = Z).

Then (i) implies (ii) and (iii). Conversely, if (iv) or (v) hold, then (i) is implied by (ii)
and (iii).

Remark 3.3. If ℜ(d) < 1/2, ξ − a.e. then both (ii) and (iv) hold, and (iii) simplifies to∫
σ2
W (v)

1− 2ℜ(d(v))
ξ(dv) < +∞. Hence, applying our result, we get that (i) is implied by
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(vi) ℜ(d) < 1/2, ξ − a.e. and

∫
σ2
W (v)

1− 2ℜ(d(v))
ξ(dv) < +∞,

which we think is the most useful consequence of this theorem. However it is important to note
that (vi) is not necessary as our result says that, under assertion (v) (X is a white noise),
only the sufficient conditions (ii) and (iii) are necessary (and it is easy to find D and Σ such
that (ii) and (iii) holds but (vi) does not). Observe also that since

∫
σ2
W (v) ξ(dv) = E

[
‖W ‖2G0

]
≤
∥∥φ(1)]−1

θ(1)
∥∥
Lb(H0)

E

[
‖Z0‖

2
H0

]
< +∞ ,

Condition (ii) is immediately satisfied if ℜ(d) uniformly stay away from 1/2 on {σW > 0},
that is, ℜ(d) ≤ 1/2− η ξ− a.e. on {σW > 0} for some η > 0. In the n-dimensional case with
n finite, we have V = {1, . . . , n}, ξ is the counting measure on V and U can be interpreted as
a n×n unitary matrix, and d and σW as n-dimensional vectors. Condition (ii) then says that
ℜ(d(k)) < 1/2 on the components k ∈ {1, . . . , n} such that σW (k) > 0, and Condition (iii)
always follows from (ii). For the real univariate case (n = 1, D = d ∈ R), Condition (ii) says
that d < 1/2 or σW = 0 and the latter happens if and only if Σ = 0 (Z is the null process)
or θ(1) = 0 (the MA operator contains a difference operator of order larger than or equal to
1). In particular we find the usual d < 1/2 condition for the existence of a weakly stationary
ARFIMA(p, d, q) model in the case where the underlying ARMA(p, q) process is invertible (θ
does not vanish on the unit circle).

3.3 Other long-memory processes

Several non-equivalent definitions of long rang dependence or long memory are available in
the literature for time series. Some approaches focus on the behavior of the auto-covariance
function at large lags, others on the spectral density at low frequencies, see [22, Section 2.1]
and the references therein. Separating short range from long range dependence is often made
more natural within a particular class of models. For instance, for a Hilbert-valued process
Y = (Yt)t∈Z, one may rely on a causal linear representation, namely

Yt =
∞∑

k=0

Pkǫt−k , t ∈ Z i.e. Ŷ (dλ) =

(
∞∑

k=0

Pke
−iλk

)
ǫ̂(dλ) , (3.10)

where ǫ = (ǫt)t∈Z is a centered white noise valued in the separable Hilbert space H0

and (Pk)k∈Z is a sequence of Lb(H0) operators. Then, by isometry, the first infinite
sum appearing in (3.10) converges in M(Ω,F ,H0, P) if and only if the second one con-
verges in L

2(T,B(T),Lb(H0), νǫ). A sufficient condition for these convergences to hold is∑∞
k=0 ‖Pk‖Lb(H0)

< +∞, and this assumption is referred to as the short-range dependence
(or short memory) case (for example ARMA processes), in contrast to long range depen-
dence (long-memory) case, for which

∑∞
k=0 ‖Pk‖Lb(H0)

= +∞, under which the convergences

in (3.10) are no longer granted. In [9], the case where Pk = (k + 1)−N for some normal
operator N ∈ Lb(H0) is investigated and the following result is obtained.

Lemma 3.6. Let H0 be a separable Hilbert space, N ∈ Lb(H0) be a normal operator with
singular value function n on G0 := L2(V,V, ξ) and decomposition operator U . Let h : v 7→

ℜ(n(v)). Let ǫ := (ǫt)t∈Z be a white noise in M(Ω,F ,H0,P) and σ2
W : s 7→ E

[∣∣∣W̃ (v, ·)
∣∣∣
2
]
,

where W̃ is a jointly measurable version of W = Uǫ0. Suppose that

h >
1

2
ξ-a.e. and

∫

V

σ2
W (v)

2h(v)− 1
ξ(dv) < +∞ . (3.11)

Then, for all t ∈ Z,

Yt =

+∞∑

k=0

(k + 1)−N ǫt−k (3.12)

converges in M(Ω,F ,H0,P). If, moreover, (ǫk)k∈Z is an i.i.d. sequence, then the convergence
also holds a.s.
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In [9, Theorem 2.1], the author also studies the partial sums of the process (3.12) and
exhibits asymptotic properties which naturally extend the usual behavior observed for uni-
variate long-memory processes. In the following, we explain how the process (3.12) can be
related to a FIARMA(D,0,0) process. First we prove the analogous of Lemma 3.6, namely,
that that Condition (3.11) implies the existence of this FIARMA process.

Lemma 3.7. Let N , ǫ, h and σW be as in Lemma 3.6. Set D = IdH0
− N . Then Condi-

tion (3.11) implies ǫ ∈ SFID (Ω,F , P).

We can now state a result which shows that the two process defined by Lemmas 3.6 and 3.7
(3.12) are closely related up to a bounded operator C and to an additive short-memory process.

Proposition 3.8. Under the assumptions of Lemma 3.6, defining Y = (Yt)t∈Z by (3.12),
there exists C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)

N with
∑+∞

k=0 ‖∆k‖Lb(H0)
< +∞ such that

FFID (ǫ) = C Y + Z ,

where Z is the short-memory process defined, for all t ∈ Z, by Zt =
∑∞

k=0 ∆kǫt−k.

4 Postponed proofs

4.1 Proofs of Section 2.8.1

Proof of Lemma 2.5. We first prove that (v, v′) 7→
∫
ℋ(v, v′′)ℋ(v′, v′′) ξ(dv′′) is in

L2(V2,V⊗2, ξ⊗2). By the Cauchy-Schwartz inequality, we have, for all (v, v′) ∈ V
2,

(∫ ∣∣∣ℋ(v, v′′)ℋ(v′, v′′)
∣∣∣ ξ(dv′′)

)2

≤

(∫ ∣∣ℋ(v, v′′)
∣∣2 ξ(dv′′)

)(∫ ∣∣ℋ(v′, v′′)
∣∣2 ξ(dv′′)

)

and, integrating the right-hand side with respect to ξ(dv) and ξ(dv′) and using the fact that∫
|ℋ|2 dξ⊗2 = ‖h‖22 we get that

∫ (∫ ∣∣∣ℋ(v, v′′)ℋ(v′, v′′)
∣∣∣ ξ(dv′′)

)2

ξ(dv′) ξ(dv) ≤ ‖h‖42 < +∞ . (4.1)

Hence (v, v′) 7→
∫
ℋ(v, v′′)ℋ(v′, v′′) ξ(dv′′) is well defined and is in L2(V2,V⊗2, ξ⊗2).

Now, for all f ∈ H0 and v ∈ V,

(∫ ∣∣∣ℋ(v, v′′)ℋ(v′, v′′) f(v′)
∣∣∣ ξ(dv′′)ξ(dv′)

)2

≤ ‖f‖2H0

∫ (∫ ∣∣∣ℋ(v, v′′)ℋ(v′, v′′)
∣∣∣ ξ(dv′′)

)2

ξ(dv′)

which is is finite for ξ − a.e. v ∈ V by (4.1). Hence, by Fubini’s theorem, for ξ − a.e. v ∈ V,

Gf(v) = HHHf(v) =

∫
ℋ(v, v′′)

(∫
ℋ(v′, v′′)f(v′) ξ(dv′)

)
ξ(dv′′)

=

∫ (∫
ℋ(v, v′′)ℋ(v′, v′′) ξ(dv′′)

)
f(v′) ξ(dv′)

which implies (2.17) by uniqueness of the kernel associated to G.

Proof of Proposition 2.6. Define, for all v, v′ ∈ V and λ ∈ T,

Kn(v, v
′;λ) :=

∑

0≤i,j≤n

φH

i K(λ)φj φi(v)φ̄j(v
′) ,

and, for all ǫ > 0,

Nǫ(λ) = inf

{
n ∈ N :

∑

i or j>n

∣∣∣φH

i K(λ)φj

∣∣∣
2

≤ ǫ

}
.
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Note that since
∑

i,j∈N

∣∣φH

i K(λ)φj

∣∣2 = ‖K(λ)‖2 < ∞, Nǫ(λ) is well defined and finite. Now

let us define, for all v, v′ ∈ V and λ ∈ T,

K(v, v′;λ) := lim
n→∞

KN
2−n (λ)(v, v

′; λ) , (4.2)

whenever this limit exists in C and set K(v, v′;λ) = 0 otherwise. Since (φk ⊗ φ̄k′)k,k′∈N is a
Hilbert basis of L2(V2,V⊗2, ξ⊗2), we immediately have that, for any λ ∈ Λ, KN

2−n (λ)(·; λ)

converges in the sense of this L2 space to
∑

i,j∈N
φH

i K(λ)φj φi ⊗ φ̄j , and so this limit must be

equal to K(·; λ) ξ⊗2 − a.e.. It follows that, that for any λ ∈ Λ, for all i, j ∈ N,
∫

K(v, v′;λ)φ̄i(v)φj(v
′) ξ(dv)ξ(dv′) = φH

i K(λ)φj ,

which gives that K(λ) is an integral operator associated to the kernel K(·; λ). Since
(v, v′, λ) 7→ K(v, v′;λ) is measurable by definition, we get that it is the Λ-joint kernel of
K as in Definition 2.4. Assertion (i) follows by observing that, if K ∈ L2(Λ,A,S2(H0), µ),
then (v, v′, λ) 7→ Kn(v, v

′;λ) converges in L2(V2 × Λ,V⊗2 ⊗ A, ξ⊗2 ⊗ µ) and the limit must
be equal to K ξ⊗2 ⊗ µ− a.e. since for each λ ∈ Λ, (v, v′) 7→ Kn(v, v

′;λ) converges to K(·; λ)
in L2(V2,V⊗2, ξ⊗2).
It only remains to prove Assertion (ii). Assume that K ∈ L1(Λ,A,S+

1 (H0), µ) as in this
assertion and let H ∈ L2(Λ,A,S2(H0), µ) be such that for all λ ∈ Λ, K(λ) = H(λ)H(λ)H (for
example, by Lemma 2.1, we can takeH(λ) = K(λ)1/2) . Then by Assertion (i), the Λ-joint ker-
nel ofH satisfiesℋ ∈ L2(V2×Λ,V⊗2⊗A, ξ⊗2⊗µ). Using Lemma 2.5 and the Cauchy-Schwartz
inequality the integral in (2.19) is bounded from above by

∫
|ℋ(v, v′;λ)|

2
ξ(dv)ξ(dv′)µ(dλ)

which is finite.

4.2 Proofs of Section 2.8.2

Proof of Proposition 2.7. Decomposing Y on (φn)n∈N, we can define Ỹ on V× Ω by

Ỹ (v, ω) =

{
lim

n→∞
SY
NY

2−n
(ω)(v, ω) if the limit exists in C ,

0 otherwise,

where we set, for all n ∈ N, ω ∈ Ω, v ∈ V and ǫ > 0,

SY
n (v, ω) =

n∑

k=0

〈Y (ω), φk〉φk(v) and

NY
ǫ (ω) = inf

{
n ∈ N :

∥∥∥SY
n (·, ω)− Y (ω)

∥∥∥
2

H0

≤ ǫ

}
.

It is easy to show that the following assertions hold for all ω ∈ Ω:

(i) NY
ǫ (ω) is well defined in N for all ǫ > 0,

(ii) (NY
2−n (ω))n is a non-decreasing sequence,

(iii) as n → ∞, SY
NY

2−n
(ω)

(·, ω) converges to Y in H0;

(iv) SY
NY

2−n
(ω)

(v, ω) converges to Ỹ (v, ω) for ξ − a.e. v ∈ V,

(v) Ỹ (·, ω) = Y (ω) (as elements of H0).

Since SY
n is jointly measurable on V × Ω for all n ∈ N and NY

ǫ is measurable on Ω for all
ǫ > 0, we get the result.

Proof of Lemma 2.8. As explained before the statement of the lemma, we have that

(v, ω) 7→ ỸN(v, ω) :=
N∑

n=0

〈Y (ω), φn〉H0
φn(v)

converges to Ỹ as N → ∞ in L2(V× Ω,V ⊗ F , ξ ⊗ P). Let us define, for all v, v′ ∈ V,

KN (v, v′) =
N∑

n=0

〈
K(·, v′), φn

〉
H0

φn(v)
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Using that K ∈ L2(V2,V⊗2, ξ⊗2), it is easy to show that KN converges to K in
L2(V2,V⊗2, ξ⊗2) as N → +∞.

By the Cauchy-Schwartz inequality, the mappings (g, h) 7→ [v 7→ E

[
g(v, ·)h(v, ·)

]
] and

(g, h) 7→ [v 7→ 〈g(v, ·), h(v, ·)〉H0
] sesquilinear continuous from L2(V × Ω,V ⊗ F , ξ ⊗ P) to

L1(V,V, ξ) and from L2(V2,V⊗2, ξ⊗2) to L1(V,V, ξ), respectively. This, with the two previous

convergence result shows that [v 7→ E

[∣∣∣ỸN (v, ·)
∣∣∣
2
]
] and [v 7→ ‖KN (v, ·)‖2H0

] both converge in

L1(V,V, ξ), to E

[∣∣∣Ỹ (v, ·)
∣∣∣
2
]
] and ‖K(v, ·)‖2H0

, respectively, that is to the left-hand side and

right-hand side of (2.20).
Hence to conclude we only have to show that, for all v ∈ V,

E

[∣∣∣ỸN(v, ·)
∣∣∣
2
]
= ‖KN (v, ·)‖2H0

. (4.3)

Indeed we can write

E

[∣∣∣ỸN (v, ·)
∣∣∣
2
]
= E

[
N∑

n,m=0

〈Y, φn〉H0
〈φm, Y 〉H0

φn(v)φm(v)

]

=

N∑

n,m=0

φH

n Cov(Y )φm φn(v)φm(v) .

Using Cov(Y ) = KKH and Fubini’s theorem leads to

φH

n Cov(Y )φm =

∫ 〈
K(·, v′′), φn

〉
H0

〈K(·, v′′), φm〉H0
ξ(dv′′) .

Inserting this in the previous display, the double sum, put inside the integral in ξ(dv′′),
separates into a product of two conjugate terms and we get

E

[∣∣∣ỸN(v, ·)
∣∣∣
2
]
=

∫ ∣∣∣∣∣
N∑

n=0

〈
K(·, v′′), φn

〉
H0

φn(v)

∣∣∣∣∣

2

ξ(dv′′) .

so that (4.3) is proven, which concludes the proof.

Proof of Proposition 2.9. For all n, n′ ∈ N and λ ∈ T, by the Cauchy-Schwartz inequality
and since ‖φn‖H0

= ‖φn′‖H0
= 1, we have

∫ ∣∣ℊX(v, v′;λ)φ̄n(v)φn′(v′)
∣∣ ξ(dv)ξ(dv′) ≤

(∫ ∣∣ℊX(v, v′;λ)
∣∣2 ξ(dv)ξ(dv′)

)1/2

.

By Proposition 2.6(ii), we get that

∫ ∣∣ℊX (v, v′;λ)φ̄n(v)φn′(v′)
∣∣ ξ(dv)ξ(dv′) µ(dλ) < ∞ . (4.4)

Therefore we can apply Fubini’s theorem which gives, for all n, n′ ∈ N, and s, t ∈ Z,
∫

eiλ(s−t)
ℊX(v, v′; λ)φ̄n(v)φn′(v′) ξ(dv)ξ(dv′) µ(dλ) =

∫
eiλ(s−t) φH

ngX(λ)φn′ µ(dλ)

= Cov
(
φH

nXs, φ
H

n′Xt

)
.

On the other hand, by Fubini’s theorem, we have that, for all n, n′ ∈ N, and s, t ∈ Z,

Cov
(
φH

nXs, φ
H

n′Xt

)
=

∫
Cov

(
X̃s(v, ·), X̃t(v

′, ·)
)
φ̄n(v)φn′(v′) ξ(dv)ξ(dv′) .

This is also φH

nCov (Xs, Xt)φn′ and since Cov (Xs, Xt) is a trace class hence Hilbert Schmidt
operator the previous display says that this operator is associated with the L2(V2,V⊗2, ξ⊗2)

kernel (v, v′) 7→ Cov
(
X̃s(v, ·), X̃t(v

′, ·)
)
.
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The last two displays now imply that, for all n, n′ ∈ N, and s, t ∈ Z,

∫
Cov

(
X̃s(v, ·), X̃t(v

′, ·)
)
φ̄n(v)φn′(v′) ξ(dv)ξ(dv′)

=

∫
eiλ(s−t)

ℊX(v, v′, λ) φ̄n(v)φn′(v′) ξ(dv)ξ(dv′)µ(dλ)

=

∫ (∫
eiλ(s−t)

ℊX(v, v′, λ) µ(dλ)

)
φ̄n(v)φn′(v′) ξ(dv)ξ(dv′) ,

where we used Fubini’s theorem (justified by (4.4) as above). Since the kernel (v, v′) 7→

Cov
(
X̃s(v, ·), X̃t(v

′, ·)
)
is in L2(V2,V⊗2, ξ⊗2) of which (φk⊗ φ̄k′)k,k′∈N is a Hilbert basis, the

last display shows that, for all s, t ∈ Z,

Cov
(
X̃s(v, ·), X̃t(v

′, ·)
)
=

∫
eiλ(s−t)

ℊX(v, v′;λ) µ(dλ) for ξ⊗2 − a.e. (v, v′),

which concludes the proof.

4.3 Proofs of Section 3.1

Proof of Theorem 3.1. Denote Φ(λ) = φ(e−iλ) for all λ ∈ R. As a trigonometric poly-
nomial with Lb(H0)-valued coefficients, Φ belongs to Fb(T,B(T),Lb(H0)). Moreover, (3.4)
directly implies that Φ−1 ∈ Fb(T,B(T),Lb(H0)). By Proposition 2.4, it follows that

(i) Y = FΦ−1(ǫ) satisfies FΦ(Y ) = ǫ, and thus is a solution of (3.1);

(ii) for any centered weakly stationary process Y such that FΦ(Y ) = ǫ, we have Y =
FΦ−1 ◦ FΦ(Y ) = FΦ−1(ǫ).

We thus conclude that Y = FΦ−1(ǫ) is the unique weakly stationary solution of (3.1).
Then the representation (3.5) holds as an immediate consequence of the fact that z 7→

φ(z)−1 is Lb(H0)-valued holomorhic on a ring containing the unit circle, so that

[Φ(λ)]−1 = [φ(e−iλ)]−1 =
∑

k∈Z

Pke
−iλk ,

where (Pk)k∈Z are the Laurent series coefficients of φ−1 (see [10, Theorem 1.9.1], hence the
series in the displayed equation converges absolutely in Lb(H0)) and it can be shown that they
have exponential decay at ±∞ (as a consequence of Eq. (1.9.4) in [10, Theorem 1.9.1]).

Proof of Proposition 3.2. Since z 7→ [φ(z)]−1 θ(z) is holomorphic in an open ring con-
taining U, by [10, Theorem 1.8.5], there exists ρ > 0 and (Pn)n∈N ∈ Lb(H0) such that∑∞

n=0 ρ
n‖Pn‖Lb(H0)

< ∞ and [φ(z)]−1 θ(z) coincides with the Lb(H0)-valued power series∑∞
n=0(z−1)nPn on the set {z ∈ C : |z − 1| ≤ ρ}. Let η > 0 such that

{
e−iλ : λ ∈ (−η, η)

}
⊂

{z ∈ C : |z − 1| ≤ ρ}. Then we have, for all λ ∈ (−η, η),

∞∑

n=0

∣∣∣e−iλ − 1
∣∣∣
n

‖Pn‖Lb(H0)
≤

∞∑

n=0

ρn‖Pn‖Lb(H0)
< ∞ . (4.5)

Thus we can write [φ(e−iλ)]−1 θ(e−iλ) = P0 + λ Ψ(λ) by setting Ψ(0) = 0 and, for all λ ∈
(−η, η),

Ψ(λ) =
e−iλ − 1

λ

∞∑

n=1

(e−iλ − 1)n−1Pn ,

where the sum is absolutely convergent in Lb(H0) and where we used the standard convention
(e−iλ−1)/λ = 1 for λ = 0 (hence Ψ(0) = 0). Since P0 = [φ(1)]−1θ(1), it follows by Lemma 2.3
that (3.6) holds with k(λ) := Ψ(λ)Σ1/2. Since Ψ is Lb(G0)-valued, continuous and bounded
on (−η, η), we get that k is continuous and bounded from (−η, η) to S2(H0).

Suppose now that H0 = L2(V,V, ξ). For all n ∈ N, let kn denote the kernel associated
to the operator kn := PnΣ

1/2 ∈ S2(H0). Let us introduce the following notation for all
V

2 × (−η, η) → C-measureable function f ,

‖f‖∗ =

(∫

V2

Leb-essup
λ∈(−η,η)

∣∣f(v, v′;λ)
∣∣2 ξ(dv)ξ(dv′)

)1/2

,
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which allows to define a Banach space L∗ endowed with ‖·‖∗ as a norm. Note that, for all n ∈

N, (
∫
|kn|

2dξ⊗2)1/2 =
∥∥∥PnΣ

1/2
∥∥∥
2
= ‖Pn‖Lb(H0)

‖Σ‖1/21 . By (4.5) and since λ 7→ (e−iλ−1)n/λ

is bounded by ρn−1 on (−η, η), we get that

∞∑

n=1

∥∥∥∥(v, v
′λ) 7→

(e−iλ − 1)n

λ
kn(v, v

′)

∥∥∥∥
∗

=
∞∑

n=1

Leb-essup
λ∈(−η,η)

∣∣∣∣
(e−iλ − 1)n

λ

∣∣∣∣
∥∥∥PnΣ

1/2
∥∥∥
2

≤ ‖Σ‖1/21

+∞∑

n=1

ρn−1‖Pn‖Lb(H0)
< ∞ .

To conclude the proof, we observe that L∗ is continuously embedded in L2(V2×(−η, η),V⊗2⊗
B(−η, η), ξ⊗2 ⊗ Leb), which gives that the above series also converges in the latter space to
the (−η, η)-joint kernel function k of k and satifies (3.7).

Proof of Lemma 3.3. For any P,Q ∈ Lb(H0) such that P is invertible, we have that
UP−1Q = [UPU−1]−1[UQU−1]U . Thus, we obtain, defining θ̃ and φ̃ as above,

ÛX(dλ) = U [φ(e−iλ)]−1
θ(e−iλ) Ẑ(dλ) = [φ̃(e−iλ)]−1

θ̃(e−iλ) ÛZ(dλ) .

It is then immediate to check that θ̃ ∈ Pq(G0) and φ̃ ∈ P∗
p (G0), and that UZ = (UZt)t∈Z is a

G0-valued white noise.

4.4 Proofs of Section 3.2

The proof of Theorem 3.4 relies on the following lemma.

Lemma 4.1. For all z ∈ C and λ ∈ [−π, π], we have

(2/π)2[ℜ(z)]+ |λ|2ℜ(z) e−π|ℑ(z)| ≤
∣∣∣(1− e−iλ)z

∣∣∣
2

≤ (π/2)2[ℜ(z)]− |λ|2ℜ(z) eπ|ℑ(z)| . (4.6)

Proof. Let z ∈ C with ℜ(z), then it can be shown that, for all λ ∈ (−π, π] \ {0},

∣∣∣(1− e−iλ)z
∣∣∣
2

=
∣∣∣1− e−iλ

∣∣∣
2ℜ(z)

e−2ℑ(z)b(e−iλ) ,

where b(e−iλ) denotes the argument of 1− e−iλ that belongs to
(
−π

2
, π
2

)
. It follows that

e−π|ℑ(z)| ≤ e−2ℑ(z)b(e−iλ) ≤ eπ|ℑ(z)| .

Using that |λ|
π

≤ |sin(λ/2)| ≤ |λ|
2

for all λ ∈ (−π, π) and separating the cases where ℜ(z) ≥ 0
and where ℜ(z) < 0, we easily get (4.6).

Proof of Theorem 3.4. Recall that ξ is a σ-finite measure and L2(V,V, ξ) is separable since
H0 is by assumption and they are isomorphic. As defined in Section 2.7, X ∈ SFID (Ω,F , P)
if and only if FID ∈ L

2(T,B(T),Lb(H0), νX), which, by (2.8), is equivalent to have

∫

T

∥∥∥∥(1− e−iλ)−DgX(λ)
[
(1− e−iλ)−D

]H∥∥∥∥
1

µ(dλ) < +∞ . (4.7)

We have, for all λ ∈ T \ {0}, since U is unitary from H0 to L2(V,V, ξ),
∥∥∥∥(1− e−iλ)−DgX(λ)

[
(1− e−iλ)−D

]H∥∥∥∥
1

=
∥∥∥UHM(1−e−iλ)−dUgX(λ)UHMH

(1−e−iλ)−dU
∥∥∥
1

=
∥∥∥M(1−e−iλ)−dU gX(λ)UHMH

(1−e−iλ)−d

∥∥∥
1

=
∥∥∥M(1−e−iλ)−dgUX(λ)MH

(1−e−iλ)−d

∥∥∥
1

=
∥∥M(1−e−iλ)−dh(λ)

∥∥2
2
.

Hence (4.7) holds if and only if
∫

T

∥∥M(1−e−iλ)−dh(λ)
∥∥2
2
µ(dλ) < +∞ ,
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which, using the T-joint kernel h of h reads
∫ ∣∣∣(1− e−iλ)−d(v)

h(v, v′;λ)
∣∣∣
2

ξ(dv)ξ(dv′)µ(dλ) < +∞ .

Applying Lemma 4.1 to z = −d(v), since d is a µ-essentially bounded function, we get that
Assertion (i) is equivalent to

∫

V2×(−π,π]

|λ|−2ℜ(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)µ(dλ) < ∞ .

This of course implies Assertion (iii), which implies Assertion (ii). Now, if Assertion (ii) holds,
since |λ|−2ℜ(d(v)) is bounded independently of v on λ ∈ (−π, π] \ (−η, η) and

∫ ∣∣h(v, v′;λ)
∣∣2 ξ(dv)ξ(dv′)µ(dλ) =

∫
‖h(λ)‖22 µ(dλ) < ∞ ,

we get back the above condition involving an integration over V2 × (−π, π].

Proof of Theorem 3.5. Before proving the claimed implications, we start with some pre-
liminary facts that are obtained from Lemma 3.3, Proposition 3.2, Lemma 2.8 and Theo-
rem 3.4.

By Lemma 3.3, the process UX = (UXt)t∈Z is the G0-valued ARMA(p, q) process defined

by ÛX(dλ) = [φ̃(e−iλ)]−1 θ̃(e−iλ) ÛZ(dλ), where θ̃ := UθU−1 ∈ Pq(G0) and φ̃ := UφU−1 ∈
P∗

p (G0), and UZ = (UZt)t∈Z is a G0-valued white noise. Applying Proposition 3.2 with µ as
the Lebesgue measure, we get that, for some η > 0, νUX has density h(λ)[h(λ)]H on (−η, η)
with h valued in S2(G0) satisfying, for all λ ∈ (−η, η),

h(λ) = [φ̃(1)]−1
θ̃(1)(UΣUH)1/2 + λk(λ) , (4.8)

where k is continuous from (−η, η) to S2(G0). Moreover, since G0 = L2(V,V, ξ), Proposi-
tion 3.2 also gives that the joint kernel k of k satisfies (3.7), which implies

∫
s2(v)ξ(dv) ≤

∫
Leb-essup
λ∈(−η,η)

∣∣k(v, v′;λ)
∣∣2 ξ(dv′)ξ(dv) < +∞ , (4.9)

where we defined, for all v ∈ V,

s(v) = Leb-essup
λ∈(−η,η)

‖k(v, ·; λ)‖G0
.

Define, for any η′ ∈ (0, η),

I(η′) :=

∫

V2×(−η′,η′)

|λ|−2ℜ(d(v))
∣∣h(v, v′;λ)

∣∣2 ξ(dv)ξ(dv′)
dλ

2π
(4.10)

=

∫

V2×(−η′,η′)

|λ|−2ℜ(d(v))
∣∣k0(v, v

′) + λk(v, v′;λ)
∣∣2 ξ(dv)ξ(dv′)

dλ

2π
,

where h is the kernel of h in (4.8) and k0 is the kernel of k0 := U [φ(1)]−1θ(1)Σ1/2UH ∈ S2(G0).
Integrating w.r.t. v′, by the Minkowski inequality, we get that

I(η′) ≥

∫

V×(−η′,η′)

|λ|−2ℜ(d(v))
∣∣∣σW (v)− |λ| ‖k(v, ·;λ)‖G0

∣∣∣
2

ξ(dv)
dλ

2π
, (4.11)

where we used that σW (v) = ‖k0(v, ·)‖G0
for ξ − a.e. v ∈ V, which holds as a consequence of

Lemma 2.8 since Cov(W ) = k0k
H

0 . Similarly, using the definition of s above, we can upper
bound I(η′) by

I(η′) ≤ 2(I1(η
′) + I2(η

′)) , where

I1(η
′) =

∫

V×(−η′,η′)

|λ|−2ℜ(d(v))σ2
W (v) ξ(dv)

dλ

2π
, and

I2(η
′) =

∫

V×(−η′,η′)

|λ|2−2ℜ(d(v))s2(v) ξ(dv)
dλ

2π
.

(4.12)

To conclude these preliminaries, by Theorem 3.4, we have that Assertion (i) of Theorem 3.5
is equivalent to the two following assertions:
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(vii) for all η′ ∈ (0, η), we have I(η′) < ∞;

(viii) there exists η′ ∈ (0, η) such that I(η′) < ∞.

We are now ready to prove the claimed implications.
Proof of (i) ⇒(ii). Let us define, for any n ∈ N,

An =
{
σW > 2−n} ∩ {s ≤ 2n} .

Then, if η′ ∈ (0, 2−2n−1], we have, for Leb− a.e. λ ∈ (−η′, η′) and all v ∈ An,

|λ| ‖k(v, ·; λ)‖ ≤ η′s(v) < 2−n−1 < 2−n < σW (v) ,

which implies that σW (v)− |λ| ‖k(v, ·; λ)‖G0
≥ 2−n − 2−n−1 = 2−n−1 and thus, with (4.11),

I(η′) ≥ 2−2n−2

∫

An×(−η′,η′)

|λ|−2ℜ(d(v)) ξ(dv)
dλ

2π
. (4.13)

Suppose that (i) holds. Then so does (vii) and thus, for all n ∈ N, the integral in (4.13) must
be finite which implies ℜ(d) < 1/2, ξ− a.e. on An (since

∫
(−η′,η′)

|λ|−2ddλ = ∞ for d ≥ 1/2).

On the other hand, we have
⋃

n An = {σW > 0} ∪ {s < ∞} and, by (4.9), s < ∞ ξ − a.e.;
hence we get (ii).
Proof of (i) ⇒(iii). Note that, for all (v, λ) ∈ V × (−η, η),
∣∣∣σW (v)− |λ| ‖k(v, ·; λ)‖G0

∣∣∣
2

≥ σ2
W (v)− 2 |λ| σW (v) ‖k(v, ·; λ)‖G0

≥ σ2
W (v)− 2 |λ|σW (v) s(v) .

and thus, using (4.11), we get that, for all η′ ∈ (0, η),

I(η′) ≥

∫

{ℜ(d)<1/2}×(−η′,η′)

|λ|−2ℜ(d(v))
∣∣∣σW (v)− |λ| ‖k(v, ·; λ)‖G0

∣∣∣
2

ξ(dv)
dλ

2π

≥

∫

{ℜ(d)<1/2}×(−η′,η′)

|λ|−2ℜ(d(v))σ2
W (v) ξ(dv)

dλ

2π

− 2

∫

{ℜ(d)<1/2}×(−η′,η′)

|λ|1−2ℜ(d(v))σW (v) s(v) ξ(dv)
dλ

2π

=

∫

{ℜ(d)<1/2}

η′1−2ℜ(d(v))

2π

σ2
W (v)

1− 2ℜ(d(v))
ξ(dv) (4.14)

−

∫

{ℜ(d)<1/2}

η′2−2ℜ(d(v))

2π

σW (v) s(v)

1−ℜ(d(v))
ξ(dv) . (4.15)

Since d is bounded on V, we have that η′2−2ℜ(d(v))
is upper bounded on v ∈ V and since

(1 − ℜ(d(v)))−1 ≤ 1/2 on {ℜ(d) < 1/2}, we get that the integral in (4.15) is bounded from
above, up to a multiplicative constant, by

∫

{ℜ(d)<1/2}

σW (v) s(v) ξ(dv) ≤ ‖σW ‖G0
‖s‖G0

,

which is finite using (4.9) and ‖σW ‖2G0
= E

[
‖W ‖2G0

]
< ∞. Using again that d is bounded on

V, we have that η′1−2ℜ(d(v))
is lower bounded by a positive constant on V. Hence, we finally

get that, if (i) holds, then (vii) holds as well and what precedes yields Assertion (iii).
Proof of (ii) and (iii)⇒(i) under (iv) or (v). To obtain (i), it is sufficient to show that
Assertion (viii) holds, which, by (4.12), follows from I1(η

′) < ∞ and I2(η
′) < ∞. Under

Assertion (ii), we have, for all η′ ∈ (0, η),

I1(η
′) =

∫

{ℜ(d)<1/2}

η′1−2ℜ(d(v))

π

σ2
W (v)

1− 2ℜ(d(v))
ξ(dv) ,

and since d is bounded, this integral is finite under (iii). Thus (ii) and (iii) imply that
I1(η

′) < ∞ for all η′ ∈ (0, η). To conclude the proof it only remains to show that I2(η
′) < ∞

for some η′ ∈ (0, η) whenever (iv) or (v) holds. We have in fact I2(η
′) < ∞ for all η′ ∈ (0, η)

under (iv) by using (4.9) while under (v), we have I2(η
′) = 0 for all η′ ∈ (0, η) since in this

case h(λ) = h(0) so that, in (4.8), k(λ) = 0 for all λ ∈ (−η, η) (thus implying s = 0). This
concludes the proof.
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4.5 Proofs of Section 3.3

Proof of Lemma 3.6. The statement in i.i.d. case is exactly [9, Lemma A.1]. The conver-
gence in M(Ω,F ,H0,P) follows from the proof of [9, Lemma A.1], which continues to hold
under the weaker assumption that (ǫk)k∈Z is a white noise.

Proof of Lemma 3.7. Since ǫ is a white noise, Assertion (v) of Theorem 3.5 holds. The
result follows since the conditions in (3.11) imply Assertions (ii) and (iii) of Theorem 3.5 with
and D = IdH0

−N .

The proof of Proposition 3.8 relies on the two following lemmas where the open and closed
complex unit discs of C are denoted by D := {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1}
respectively.

Lemma 4.2. Let E be a Banach space and (an)n∈N ∈ EN such that ‖an‖E −−−−−→
n→+∞

0 and the

series
∑

‖an − an+1‖E converges. Then for all z0 ∈ D \ {1}, the series
∞∑

n=0

anz
n
0 converges in

E and the mapping z 7→
∞∑

n=0

anz
n is uniformly continuous on [0, z0].

Proof. By assumption on (an),
∑

anz
n is a power series valued in E with convergence radius

at least equal to 1, hence is uniformly continuous on the open disk with radius 1. When
|z0| = 1, the result follows using Abel’s transform.

Lemma 4.3. Let H0 be a separable Hilbert space, N ∈ Lb(H0) be a normal operator with
singular value function n on G0 := L2(V,V, ξ) and decomposition operator U . Define

̺ = ξ-essinf
v∈V

ℜ(n(v)) .

Then there exist C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)
N with ‖∆k‖Lb(H0)

= O
(
k−1−̺

)
such

that, for all z ∈ D,

(1− z)N−Id = C

(
∞∑

k=0

(k + 1)−Nzk
)

+

∞∑

k=0

∆kz
k , (4.16)

where the two infinite sums on the right-hand side are Lb(H0)-valued power series with con-
vergence radius at least equal to 1. Moreover, if ̺ > 0, then Eq. (4.16) continues to hold for
all z ∈ D \ {1} with the two infinite sums converging in Lb(H0).

Proof. The proof is three steps. We first show Relation (4.16) for all z ∈ D, then that
‖∆k‖Lb(H0)

= O
(
k−1−̺

)
and finally extend the relation to z ∈ D \ {1} when ̺ > 0.

Step 1. Let z ∈ D, then

(1− z)N−Id = Id +
∑

k≥1

Nkz
k ,

where for all k ≥ 1, Nk =
∏k

j=1

(
Id− N

j

)
. Let k0 ≥ 1, such that ‖N‖Lb(H0)

/k0 < 1 and take

k ≥ k0, then

Id−
N

k
= exp

(
ln

(
Id−

N

k

))
= exp


−

∑

j≥1

N j

kjj


 ,

and therefore,

Nk =

k0−1∏

j=1

(
Id−

N

j

)
exp


−

∑

j≥1

N j

j

k∑

t=k0

1

tj


 .

Moreover, we have the following asymptotic expansions,

k∑

t=k0

1

t
=

k∑

t=1

1

t
−

k0−1∑

t=1

1

t
= ln(k + 1) + γe −

k0−1∑

t=1

1

t
+

αk

k
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and for all j ≥ 2,
k∑

t=k0

1

tj
=

+∞∑

k=k0

1

tj
−

+∞∑

k=k+1

1

tj
=

βj

kj
0

+
ηk,j

(j − 1)kj−1

where γe is Euler’s constant and (αk)k≥1, (ηk,j)k≥1,j≥2 such that supk≥1 |αk| < +∞ and

supk≥1,j≥2 |ηk,j | < +∞ and βj =
∑+∞

t=k0

(
k0

t

)j
satisfies supj≥2 βj < +∞. This gives, for all

k ≥ k0,

Nk = C(k + 1)−N exp


−N

αk

k
−
∑

j≥2

N jηk,j
(j − 1)kj−1




where

C =

k0−1∏

j=1

(
Id−

N

j

)
exp

(
−N

(
γe −

k0−1∑

t=1

1

t

))
exp


−

∑

j≥2

(
N

k0

)j
βj

j


 .

Combining everything, we get

(1− z)N−Id = Id +

k0−1∑

k=1

k∏

j=1

(
Id−

N

j

)
zk

+ C
∑

k≥k0

(k + 1)−N exp


−N

αk

k
−
∑

j≥2

N jηk,j
(j − 1)kj−1


 zk

which leads to Relation (4.16) with

∆0 = Id− C ,

∆k =
k∏

j=1

(
Id−

N

j

)
− C(k + 1)−N , 1 ≤ k ≤ k0 − 1,

∆k = C(k + 1)−N


exp


−N

αk

k
−
∑

j≥2

N jηk,j
(j − 1)kj−1


− Id


 , k ≥ k0.

Step 2. For all k ≥ k0, denoting by Φk := −N αk

k
−
∑

j≥2

Njηk,j

(j−1)kj−1 , we get

‖∆k‖Lb(H0)
=
∥∥∥C(k + 1)−N

(
eΦk − Id

)∥∥∥
Lb(H0)

≤ ‖C‖Lb(H0)

∥∥∥(k + 1)−N
∥∥∥
Lb(H0)

∑

t≥1

‖Φk‖
t
Lb(H0)

t!
= O

(
k−1−̺

)
,

where we used that

‖Φk‖Lb(H0)
≤ ‖N‖Lb(H0)

|αk|

k
+
∑

j≥2

‖N‖jLb(H0)
ηk,j

(j − 1)kj−1

= ‖N‖Lb(H0)


 |αk|

k
+
∑

j≥1

‖N‖jLb(H0)

jkj
ηk,j+1


 = O

(
k−1) ,

and that
∥∥(k + 1)−N

∥∥
Lb(H0)

=
∥∥(k + 1)−Mn

∥∥
Lb(H0)

=
∥∥M(k+1)−n

∥∥
Lb(H0)

=

ξ-essupv∈V

∣∣∣(k + 1)−n(v)
∣∣∣ = (k + 1)−̺.

Step 3. We now assume ̺ > 0 and extend (4.16) to D \ {1}, that is to the case z = e−iλ for
some λ ∈ T \ {0}. For such a λ, we already have, for all 0 < a < 1,

(1− ae−iλ)N−Id = C
∑

k≥0

(k + 1)−Nake−iλk +
∑

k≥0

∆ka
ke−iλk .
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Moreover, (1 − e−iλ)N−Id = lima↑1(1 − ae−iλ)N−Id by continuity of z 7→ (1 − z)N−Id in
D \ {1} and

∑
k≥0 ∆ke

−iλk = lima↑1

∑
k≥0 ∆ka

ke−iλk because
∑

k≥0 ‖∆k‖Lb(H0)
< +∞. It

remains to show that
∑

k≥0(k + 1)−Nz is well defined on U \ {1} and that, for λ ∈ T \ {0},∑
k≥0(k + 1)−Nake−iλk converges to

∑
k≥0(k + 1)−Ne−iλk as a ↑ 1, which we prove at once

by applying Lemma 4.2. For all k ∈ N, we have
∥∥∥(k + 1)−N

∥∥∥
Lb(H0)

= ξ-essup
v∈V

∣∣∣(k + 1)−n(v)
∣∣∣ = (k + 1)−̺ ,

Since ̺ > 0, we get that
∥∥(k + 1)−N

∥∥
Lb(H0)

→ 0 as k → ∞. Hence, to apply Lemma 4.2 it

only remains to show

∑

k∈N

∥∥∥(k + 1)−N − (k + 2)−N
∥∥∥
Lb(H0)

< ∞ . (4.17)

Note that we have, for all k ∈ N,

∥∥∥(k + 1)−N − (k + 2)−N
∥∥∥
Lb(H0)

= ξ-essup
v∈V

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ . (4.18)

Moreover, for all k ∈ N, and ξ − a.e. v ∈ V, since ℜ(n(v)) ≥ ̺ > 0, we have

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ = |k + 1|−ℜ(n(v))

∣∣∣∣1− exp

(
− ln

(
1 +

1

k + 1

)
n(v)

)∣∣∣∣

≤ ς α(ς ln(2)) (k + 1)−̺ ln

(
1 +

1

k + 1

)
,

where we set ς := ξ-essup |n| and, for any r > 0,

α(r) := sup

{∣∣∣∣
1− e−z

z

∣∣∣∣ : z ∈ C 0 < |z| ≤ r

}
.

This leads to the asymptotic bound, as k → ∞,

ξ-essup
v∈V

∣∣∣(k + 1)−n(v) − (k + 2)−n(v)
∣∣∣ = O

(
(k + 1)−̺−1

)
.

Hence, with (4.18) and the assumption ̺ > 0, we obtain (4.17) and Step 3 is completed.

Proof of Proposition 3.8. The processes Y and FFID (ǫ) are well defined by Lemma 3.6
and Lemma 3.7 respectively. Moreover, the first condition in (3.11) gives ̺ ≥ 1/2 in
Lemma 4.3 which therefore implies that there exists C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)

N

with ‖∆k‖Lb(H0)
= O(k−3/2) (in particular

∑+∞
k=0 ‖∆k‖Lb(H0)

< +∞) such that

(1− e−iλ)N−Id = C
∞∑

k=0

(k+1)−Ne−iλk +
∞∑

k=0

∆ke
−iλk in Lb(H0) for all λ ∈ T \ {0} , (4.19)

thus concluding the proof.
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[2] István Berkes, Lajos Horváth, and Gregory Rice. On the asymp-
totic normality of kernel estimators of the long run covariance of func-
tional time series. Journal of Multivariate Analysis, 144:150 – 175, 2016.
ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2015.11.005. URL
http://www.sciencedirect.com/science/article/pii/S0047259X15002730 .

[3] D. Bosq. Linear processes in function spaces, volume 149 of Lecture Notes in Statistics.
Springer-Verlag, New York, 2000. ISBN 0-387-95052-4. doi: 10.1007/978-1-4612-1154-9.
URL https://doi.org/10.1007/978-1-4612-1154-9. Theory and applications.
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[16] J. Klepsch, C. Klüppelberg, and T. Wei. Prediction of functional ARMA pro-
cesses with an application to traffic data. Econometrics and Statistics, 1:128–
149, January 2017. ISSN 24523062. doi: 10.1016/j.ecosta.2016.10.009. URL
https://linkinghub.elsevier.com/retrieve/pii/S245230621630020X .

[17] Piotr Kokoszka. Dependent functional data. ISRN Probability and Statistics, 2012. doi:
doi:10.5402/2012/958254.

[18] Piotr Kokoszka and Neda Mohammadi Jouzdani. Frequency domain theory for functional
time series: Variance decomposition and an invariance principle. Bernoulli, 26(3):2383–
2399, 08 2020. doi: 10.3150/20-BEJ1199. URL https://doi.org/10.3150/20-BEJ1199.

[19] Degui Li, Peter M. Robinson, and Han Lin Shang. Long-range de-
pendent curve time series. Journal of the American Statistical Associa-
tion, 115(530):957–971, 2020. doi: 10.1080/01621459.2019.1604362. URL
https://doi.org/10.1080/01621459.2019.1604362.

[20] Victor M. Panaretos and Shahin Tavakoli. Fourier analysis of stationary time series
in function space. Ann. Statist., 41(2):568–603, 2013. ISSN 0090-5364. doi: 10.1214/
13-AOS1086. URL https://doi.org/10.1214/13-AOS1086.

[21] Victor M. Panaretos and Shahin Tavakoli. Cramer-karhunen-loeve representation and
harmonic principal component analysis of functional time series. Stochastic Processes
And Their Applications, 123(7):29. 2779–2807, 2013.

[22] Vladas Pipiras and Murad S. Taqqu. Long-Range Dependence and Self-Similarity. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2017. doi: 10.1017/CBO9781139600347.
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