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Abstract

Two mathematical models of the COVID-19 dynamics are considered as the health
system in some country consists in a network of regional hospital centers. The first
macroscopic model for the virus dynamics at the level of the general population of
the country is derived from a standard SIR model. The second local model refers to
a single node of the health system network, i.e. it models the flows of patients with a
smaller granularity at the level of a regional hospital care center for COVID-19 infected
patients. Daily (low cost) data are easily collected at this level, and are worked out for
a fast evaluation of the local health status thanks to control systems methods.

Precisely, the identifiability of the parameters of the hospital model is proven and
thanks to the availability of clinical data, essential characteristics of the local health sta-
tus are identified. Those parameters are meaningful not only to alert on some increase
of the infection, but also to assess the efficiency of the therapy and health policy.

Keywords: Epidemiology, Covid-19, identifiability, observability, identification.

1. Introduction

COVID-19 is an aerial virus which strickens humans through a respiratory infec-
tion, see Zhu et al. [2020]. It belongs to the Coronavirus family which was discovered
in the 60’s and has already infected humans through SARS and MERS. SARS is an
atypical pneumonia which appeared for the first time in 202 in China as described in
Ksiazek et al. [2003]. MERS which appeared in 2012 in China too (see Zaki et al.
[2012]), is very similar to SARS but with a higher mortality. COVID-19 was declared
to WHO (the World Health Organization) at the end of 2019 from cases in Wuhan,
China, see Zhu et al. [2020]. On the 20th of February 2020 the declared positive cases
were 76,000 with almost 2,500 deaths, mainly in China. At the same time, there were
about 50 declared positive cases in Northern Italy, while in France there were less than
30 declared positive cases. The health status was far from being homogeneous in those
or other countries. The WHO declared on March 11th, 2020, that COVID-19 was a
pandemic on the website WHO [2020]. On June 1st, 2020, the declared positive cases
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around the world were 6.15 million with 375,000 deaths, with almost 233,000 posi-
tive cases and 33,000 deaths in Italy and 152,091 positive cases and 28,833 deaths in
France. On September 21st 2020, the confirmed cases globally amount to 30,909,405
with 958,754 deaths communicated to WHO by national authorities. The total number
of cases in France on September 21st is 420,855 with 31,109 deaths, while in Italy the
total number of cases is 296,569 with 35,692 deaths (website WHO [2020b]).

Mathematical models are fundamental to understand and to predict the mechanisms
of the spread of an epidemic. The most popular and widely used is the SIR model in
Kermack and McKendrick [1927] for human-to-human transmission. For the Covid-19
pandemic, many models have been built to explore the epidemic at the scale of a coun-
try like the SIDARTHE model which is an upgrade of the SIR model ans is found in
Giordano et al. [2020]. Recall that SIDARTHE stands for a Susceptible, Infected, Di-
agnosed, Ailing, Recognized, Threatened, Healed and Extinct model. The SIDARTHE
model has highlighted that restrictive social-distancing measures need to be combined
with widespread testing and contact tracing in Giordano et al. [2020]. Gervetz et al.
[2020] incorporate explicit social distancing via separate compartments for suscepti-
ble and asymptomatic individuals in the SIR model, while in Di Giamberardino et al.
[2020] infected people are split into infected with low viral load, undiagnosed ones,
diagnosed ones and in quarantine ones. Alternatively the SARS-CoV-2 dynamics is
also described at a within-host level in Hernandez-Vargas et al. [2020].

In this paper, a new continuous-time macroscopic model, valid at the scale of a
country, is introduced and it is argued that suitable delays are mandatory to reflect the
dynamics of the infection while maintaining a certain simplicity in the modelling. An
observability analysis is processed for further insight of this model.

Since the health status is far from being homogeneous over a full country and since
the health system consists in a network of major regional hospitals, it is worth to take
advantage of the availability and agility of local hospital data rather than just merging
them in some centralized information system.

At this point, the mathematical modelling of the local population flows at the level
of one single hospital appears to be definitely relevant. Such models may be intercon-
nected to include the transfer of COVID-19 patients from one hospital to an other to
distribute the pressure at some peaks of the infection, as done in Italy with transfers
from the north to the south, or in France with transfers from the east to the west and
even to Germany.

The identification of the parameters of the second local model is agile, fast and
relevant not only to alert on some increase of the infection, but also to evaluate the
flows of severely infected patients, and thus to assess the efficiency of the therapy and
the local health policy.

Data from Nantes University Hospital were collected on a daily basis for about
6 months from March 16th to September 17th 2020, and are used here to identify
essential characteristics of the local health conditions. These data include the daily
values of patients in conventional care, intensive care, patients which died for COVID-
19 and patients which were discharged from the hospital because completely recovered
or partially recovered but in the condition of continuing their treatment at home. The
originality of the data from Nantes university hospital lies in the fact that the lockdown
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Figure 1: Epidemiologic models for two different scales. (In dark grey : the map of France , in red : Nantes
University Hospital).

started early, the emergency services were not saturated and they focus in a population
of patients with mild or severe Covid-19 cases. The macroscopic and local models are
illustrated in Figure 1.

Control systems theoretic tools have shown their efficiency to give a new insight
for various biomedical systems including for instance HIV infection in Chang et al.
[2014]. It is argued that news solutions to cope with the COVID-19 pandemic may
also benefit of those engineering science tools.

The outline of the paper is as follows. A new infection model involving delays is
derived from the standard SIR model in Section 2. To fit to the mainstream of the cur-
rent literature, this model is described in continuous time. The observability analysis
of this continuous time-delay model is processed in Section 3. A subsystem, consist-
ing in a node of the global health system network, is extracted and further detailed in
Section 4 as it models the dynamics inside a hospital center. Since such a model is ob-
tained from the daily data available from a University hospital, this second local model
is directly designed in discrete-time. In Section 5 a discussion on the identification
of the parameters characterizing the local model and their interpretation is carried out.
Conclusions are pointed out in Section 6.

2. The dynamics in the general population

The evolution of the illness is described through the following dynamical model
which represents a modification of the well-known SIR model introduced in 1927 in
Kermack and McKendrick [1927] to describe the diffusion of an epidemic disease by
considering the evolution of three classes of people (compartments) the Susceptible
individuals, those who can become infected, the Infected, those who spread the disease
around, and the Recovered, those who recovered from the disease. With respect to the
SIR model, hereafter we split the Infected people into two compartments due to the
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specifity of the disease, and we consider also the compartment of dying people. In
particular apart the high transmission rate, other two aspects were immediately pointed
out by the physicians which did strongly influence the diffusion of the disease and the
medical resources: first it was estimated that a large delay of time (10 to 14 days) is
present between the moment in which a person becomes infected and can infect, and
the instant in which symptoms become evident and the person is isolated and sent to
quarantine. Secondly it took a long time for many patients to recover from the disease.
Some of them were in hospital and in intensive care for a big amount of time (many
more than one month) thus maintaining the resources unavailable to help other patients.
To highlight these two aspects we then refer in the following to a time delay system.
As it will be shown in the next section the delay introduced will have an important role
on the observability properties of the dynamics and thus cannot be neglected. Such a
dynamics can then be described by the following delay-differential equations:

İq = εβSIa−αIq− γqIq +ηIa(t− τ)
Ṙ = γqIq(t− `qτ)+ γaIa(t− `aτ)

Ḋq = αIq
Ṡ = −βSIa
İa = (1− ε)βSIa− γaIa−ηIa(t− τ)

(1)

• Iq are the infected patients aware of their disease and who are thus in quarantine.
They include all hospitalized patients, but not only.

• R is the sub-population which has recovered from the infection.

• Dq denotes the cumulative number of patients who deceased from the infection
and were already identified so they are part of the Iq population.

• S is the amount of naive individuals among a given population which are sus-
ceptible to become infected. The S population is infected by the Ia infected
individuals which are not in quarantine.

• Ia are asymptomatic infected people which represent the main source of infection
and who spread out the infection among the general population.

• βSIa is the amount of newly infected individuals per time unit. This term splits
into two parts, a smaller part of very sensitive people which affects the dynamics
of Iq and the majority of newly infected individuals will increase the number Ia.

• α denotes the death rate due to the infection and mainly affects the Iq population.

• γqIq(t− `qτ) is the amount of patients in quarantine who recover from the dis-
ease.

• γaIa(t− `aτ) is the amount of other infected individuals among the general pop-
ulation who recover from the disease.
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• ηIa(t− τ) is the amount of unaware infected individuals who become aware of
their infection and go into quarantine. This phenomenon occurs with some delay
τ which is typically evaluated from 2 to 3 weeks.

Remark. As already highlighted, Dq represents the COVID deaths from the infected
and in quarantine compartment. There may be of course unknown COVID deaths
which can be described by an additional dynamics of the form

Ḋa = αaIa

so that the total number of deaths due to COVID is actually given by D = Da +Dq.
Da cannot be measured, and had an important role essentially at the beginning

of the pandemic when the number of detected COVID cases was much lower than
the real one. Due to the high mortality caused by COVID in that period, a rough
estimation could be obtained by comparing the month death rate of a single region
with the corresponding one in the current year. �

Remark. As already underlined, the dynamics (1) is affected by two different kind of
delays: the first one characterizes the amount of time that passes between the moment
a person is infected and can infect, and the moment the person becomes aware of the
illness and is put to quarantine. This delay is intrinsic of the disease and can only be
marginally affected. The second delay which characterizes the dynamics (1) is instead
linked to the time infected people recover from the disease. This delay instead has
drastically changed from the starting of the pandemic and is mainly due to a better
knowledge of the disease and the therapies needed by the patients which allows now to
recover faster from the disease. �

Figure 2: Flow Diagram associated to the evolution of the disease in a population described by eq. (1)

In Figure 2 a representation of the propagation of the disease is given. Susceptible
people (S) remain susceptible in time or become infected. Once infected they will move
to the compartment of people in quarantine (Iq) or infected asymptomatic people (Ia),
depending whether they have symptoms or not. From the compartment Ia people will
become symptomatic and move to Iq or recover and move to R. Those in quarantine
will recover and move to R or die due to the disease (Dq). Finally as it has been recently
put in evidence people who recover may be infected again, so they should be counted in
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the susceptible people. The model described by equation (1) has from this point of view
a short term validity. It is possible to take into account the possibility of reinfection of
recovered people. in this case, the dynamics (1) would be modified by setting

Ṡ =−βSIa +νR

The coefficient ν seems however to be very small at this stage, and is neglected in this
study.

In the next Section, the dynamics (1) is further analyzed with respect to its ob-
servability properties since this kind of study allows to have an estimation of the state
variables. The subsystem (2) consisting by Iq, R and Dq is then further discussed in
Section 4: a group of people who are aware of their infection define the flow of ad-
missions in a local hospital and are split into two populations, the patients admitted in
conventional hospitalization and the patients admitted in intensive care.

3. Analysis of observability

The health status of a given population has to be assessed from its number Iq of at-
tested COVID-19 cases. It is important to guess the real number of infected individuals,
and this is the purpose of observability from the measurement of Iq.

Considering then as output of the dynamics (1), y = Iq we will see hereafter that
successive time differentiations of the measurement y will involve Iq, Ia and S. Thus,
the dynamics (1) with the only output y = Iq is not fully observable and at most Ia
and S can be estimated in addition to the measurement Iq. On the other hand also the
number of deaths due to COVID-19 in the Iq population can be measured, while the
number of recovered people cannot clearly be estimated. In the present section we
will thus investigate the observability properties of the given system starting from the
measurement of y = Iq, and we will show that given the fact that Dq is measured and
R cannot be estimated, the problem reduces to the study of the observability properties
of a subsystem of order 3.

Now, due to the presence of delays, which in this context are considered con-
stant, we can take the differential representation of the dynamics in order to study
its behaviour, using the approach introduced in Califano et al. [2020]. To take into
account the link between the delayed variables, the backward shift operator δ has
to be considered, see Xia et al. [2002]. Let us denote by K the field of causal
meromorphic functions f (x(t), · · · ,x(t − sτ),u(t), · · · ,u(t − sτ)), with s ∈ IN. Given
a function γ(x(t), · · · ,x(t− jτ)) ∈K , γ(−1) denotes the function shifted by τ , that is
γ(−1) := γ(x(t− τ), · · · ,x(t− jτ − τ)). Let dx(t) denote the differential of x. Then,
thanks to the back shift operator δ , dx(t− sτ) = δ sdx. Accordingly, given the function

y(t) = h(x(t), · · · ,x(t− sτ))

its differential form dy(t) =
s
∑
j=0

∂h
∂x(t− jτ)dx(t− jτ) can be written in concise form as

dy =
[

∂h
∂x(t)

+ · · ·+ ∂h
∂x(t− sτ)

δ
s
]

dx.
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Given a(·), f (·)) ∈K :

δ [a(·)d f (·)] = a(−1) d f (−1).

Finally K (δ ] is the (left) ring of non commutative polynomials in δ with coefficients
in K . A general module spanned by the differentials of functions in K is then de-
fined over the ring K (δ ], as in Xia et al. [2002]. Then, in this framework setting
(x1,x2,x3,x4,x5) = (Iq,R,Dq,S, Ia), and assuming without loss of generalities `1 and `2
integers, our system is characterized by the differential representation

dẋ =


−(α + γq) 0 0 εβx5 εβx4 +ηδ

γqδ `q 0 0 0 γaδ `a

α 0 0 0 0
0 0 0 −βx5 −βx4
0 0 0 (1− ε)βx5 −(γa +ηδ )+(1− ε)βx4

dx

dy =
(
1 0 0 0 0

)
dx.

Compute the observability matrix ∂ (y,ẏ,ÿ)
∂x which is given bydy

dẏ
dÿ

=

 1 0 0 0 0
−(α + γq) 0 0 εβx5 εβx4 +ηδ

(α + γq)
2 0 0 L1 +η(1− ε)βx5(−1)δ L20−L21δ −η2δ 2

dx

with
L1 = εβx5[−βx5−α− γq− γa +2(1− ε)βx4]− εβηx5(−1)

and
L20 = ((1− ε)βx4− γa−2βx5−α− γq)εβx4

L21 = [α + γq + εβx4− (1− ε)βx4(−1)+ γa]η

Clearly dy(2+ j), for any j ≥ 0 does not depend on dx2 and dx3 which proves that the
whole system cannot be weakly, regularly or strongly observable. We may however
be interested in studying the reduced system defined by the variables (x1,x4,x5) =
(Iq,S, Ia) and given by ẋ1 = εβx4x5−αx1− γqx1 +ηx5(t− τ)

ẋ4 = −βx4x5
ẋ5 = (1− ε)βx4x5− γax5−ηx5(t− τ)

(2)

Using the previous computations, one gets that the associated observability matrix
is

Ô(x,δ ) =

 1 0 0
−(α + γq) εβx5 εβx4 +ηδ

(α + γq)
2 L1 +η(1− ε)βx5(−1)δ L20−L21δ −η2δ 2

 .

This subsystem will then be weakly observable if Ô(x,δ ) has full rank over K (δ ). It
will be strongly observable if it is also unimodular. If it is weakly observable but not
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strongly we will have to check if it is regularly observable, see Califano et al. [2020],
that is if it is possible to reconstruct the state of the system by using also derivatives of
higher order of the output function1.

We may essentially distinguish three cases based on the values of the parameters ε

and η which are discussed hereafter and are represented in Table 1.

• First Case ε = 0.

This case corresponds to the situation in which there is an important delay be-
tween the time people get infected and the time they become aware and get into
quarantine. As a consequence, necessarily η 6= 0 and the observability matrix
associated to the third order subsystem (2) will be

Ô(x,δ ) =

 1 0 0
−α− γq 0 ηδ

(α + γq)
2 ηβx5(−1)δ −(α + γq + γa−βx4(−1))ηδ −η2δ 2


The subsystem (2) will be then weakly observable for η 6= 0, β 6= 0, x5(−1) 6= 0.

It is easily verified that it will neither be strongly nor regularly observable.

• Second Case ε 6= 0 and η = 0.

In this case there is no structural delay between the two classes Iq and Ia. People
get infected and after a negligible time are moved to quarantine. The delay char-
acterizes only the large amount of time that ill people need to get recovered. In
this situation, for the subsystem (2) one gets

Ô(x,δ ) =

 1 0 0
−α− γq εβx5 εβx4
(α + γq)

2 εβx5(−εβx5−α− γq− γa +2(1− ε)βx4) L20


No delay affects the observability matrix. The subsystem (2) will be strongly
observable if and only if the matrix has full rank, which happens if and only if

ε
2
β

2x4x5 {(ε−2)βx5− (1− ε)βx4} 6= 0

1The different notions of observability are peculiar of time delay systems. Strong observability can be
tested by verifying the unimodularity of the observability matrix and allows to express the state of the system
at time t as a function of the input and output and their derivatives up to order n− 1 eventually delayed.
Weak and regular observability are much weaker notions and have different implications. To have a flavour
of these implications we give hereafter two examples to highlight the differences: Regular Observability:
Consider the dynamics ẋ(t) = x(t − τ)u(t) with output y(t) = x(t) + x(t − τ). The observability matrix
is O(x,δ ) = 1+ δ , which has full rank over K (δ ] but is not unimodular. Nevertheless, the state of the
system at time t can still be written as a function of the input and output and their derivatives, but requires
higher order derivatives. In case of the example, we get x(t) = y(t)− ẏ(t)−y(t−τ)

u(t)−u(t−τ) , which is valid whenever
u(t) 6= u(t−τ). Weak Observability: Consider the dynamics ẋ(t) = u(t) with output y(t) = x(t)+x(t−τ).
The observability matrix is still O(x,δ ) = 1+ δ . In this case however the system is neither strongly nor
regularly observable, but is said to be weakly observable. In this case only an implicit relation can be written
down involving different delayed values of the state, of the derivatives of the input and of the output.
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weakly observable regularly observable strongly observable
ε = 0 for ηβx5(−1) 6= 0 × ×

ε 6= 0, η = 0 for βx4x5 6= 0 for βx4x5 6= 0 for βx4x5 6= 0
ε 6= 0, η 6= 0 for βx5 6= 0 × ×

Table 1: Observability properties of subsystem (2)

that is whenever β 6= 0, x4 6= 0, x5 6= 0. The last condition in fact

x5 6=
1− ε

ε−2
x4

is always satisfied since x5 ≥ 0.

• Third Case ε 6= 0 and η 6= 0.

To check it let us use Smith decomposition. We have that

Ô(x,δ ) = T−1
1 (x,δ )S(x,δ )T−1

2 (x,δ )

where

T1(x,δ ) =

1 0 0
0 1 0
0 T11− η

ε
δ 1

1 0 0
0 1 0
0 ηδ 1

 1 0 0
α + γq 1 0

0 α + γq 1


T2(x,δ ) =

0 1 0
1 0 0
0 0 1


S(x,δ ) =

1 0 0
0 εβx5 εβx4 +ηδ

0 0 S33(x,δ )


with

T11 = εβx5 + γa−2(1− ε)βx4 +η
x5(−1)

x3

S33(x,δ ) =

(
η

x5(−1)
x5

− (1− ε)βx4−βx5

)
εβx4

+

(
εβx5− (2− ε)βx4 +η

x5(−1)
x5

)
ηδ − η2

ε
δ

2.

The subsystem (2) is then weakly observable for βx5 6= 0. It cannot be strongly
observable. After some tedious computations, it appears that it is not regularly
observable either.
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4. Data from a regional university hospital

The originality of this section is to consider a smaller granularity with a subsystem
of the previous dynamics: a local hospital center in charge of Covid-19 patients. Its
input is the number A(k) of admissions in the hospital on day k. It is then in principle
less than or at most equal to Iq in model (1), and it is further split into the number
I(k) of patients admitted in intensive care and the number C(k) of patients admitted
in conventional hospitalization on day k. The model describes the evolution of the
dynamics defined by the hospitalized patients I(k) and C(k) as well as the number of
deaths D(k) in hospital and the number R(k) of patients who have recovered from the
disease (completely or partially and continue their treatment outside the hospital).

Figure 3: Flow Diagram associated to the management of the COVID–19 patients in the hospital described
by eq. (3)

In Figure 3 a representation of the management of the COVID–19 patients in the
hospital is highlighted. Each day k a set of (A) new patients arrive at the hospital admis-
sion centre. Depending on their health status they can be forwarded to the conventional
care section (C) or the intensive care one (I). Patients move from intensive care to
conventional care and then are released from the hospital (R) once their health allows.
Some of them instead do not survive (D) once their condition worsen.

As already underlined data from Nantes University Hospital were collected for
about 6 months from March 16th to September 17th, 2020. These data include the
daily values of C(k), I(k), R(k) and D(k) valid at day k.

Figures 4 and 5 depict the number D(k) of deaths and of recovered patients R(k) at
day k, respectively. The value k = 0 corresponds to March 16, 2020.

Due to the format of the daily data, a discrete time model with four parameters is
in order as follows.

C(k+1) = (1− γ−µ)C(k)+θA(k)+λ I(k)
I(k+1) = (1−α−λ )I(k)+(1−θ)A(k)+µC(k)

D(k+1) = D(k)+αI(k)
R(k+1) = R(k)+ γC(k)

(3)

Raw data from the Nantes University Hospital Covid-19 database [2020] include, on a
daily basis, the number I(k) of patients in intensive care, the number C(k) of patients
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in conventional hospitalization, the cumulative number of deaths and the cumulative
number of patients which have recovered since day 1. The daily Covid-19 admissions
are not directly measured but are computed as

A(k) =C(k+1)−C(k)+ I(k+1)− I(k)+D(k+1)−D(k)+R(k+1)−R(k).

Figure 4: Cumulative deaths over time from Nantes University Hospital Dataset

Figure 5: Cumulative number of recovered patients from Nantes University Hospital Dataset

Thus, all those state variables are considered to be measured and the input A(k) is
computed from the measurements over two days.
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The new admissions A(k) are split into θA(k) which increases the number of pa-
tients in conventional hospitalization and in (1− θ)A(k) which are directly entering
intensive care. A value of θ close to 1 is representative of a high level monitoring of
the disease by the health care outside hospital. When θ is closer to 0, then a major flow
of new admissions enter directly into intensive care and, the other way around, λ I(k) is
the amount of patients leaving intensive care and entering conventional hospitalization.

The number of patients γC(k) who recover from the disease is assumed to be pro-
portional to the number of patients in conventional hospitalization.

µC(k) denotes the amount of patients who are moved from conventional hospital-
ization to intensive care.

The number αI(k) of daily deaths is assumed to be proportional to the number I(k)
of patients in intensive care.

The daily number A(k) of new admissions highly depends on the social and medical
environment, as well as on some political lockdown regulations or meeting restrictions
(with some delay). Thus, A(k) may have a significant variability from one regional
hospital center to an other. It is proportional to the number of individuals which are
susceptible of becoming infected, in some standard SIR population model.
Remark. Note that the local scale model (3) models the dynamics of hospitalized
patients. Taking the sum of C(k) + I(k) in (3) over all regional hospitals allows to
get the hospitalized patients, nationwide. The latter is a part of the population Iq in
model (1), as not all detected patients are hospitalized. The sum of hospitalized patients
and non hospitalized infected people equals Iq + Ia in model (1). It will be argued
next that some parameters that characterize a single hospital may vary with respect
to time. These parameters may also differ consistently from one hospital/region to
another, depending on several sociological conditions and local regulations. �

Remark. While in the model (1) delays were considered to characterize the evolution
of the infection among the population, since they play a fundamental role in partic-
ular on the observability of the dynamics, in the local model (3) which refers to the
hospitalization of COVID-19 patients, delays could be avoided. On one hand, even if
data are available daily, the discrete nature of the model allows to work on a large time
window (namely 7 days as it will be discussed in the next section for the identification
of the parameters) which is comparable with the delays involved in (1). On the other
hand, the eventual presence of a large delay could be handled by splitting the patients
in intensive care or in conventional hospitalization in more compartments moving the
patients from one compartment to the successive one as the disease evolves, thus avoid-
ing again the use of delays. �

5. Discussion

Note that the infection dynamics described by a standard or modified SIR model,
such as the dynamics (1), are external to the hospital and feed the dynamics (3). Thus,
the input variable A(k) of (3), is a percentage of Iq. The parameters α , γ , θ µ and λ of
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model (3) can be identified over a short or longer period so that their evolution can be
tracked. The argument in this section is that these parameters are

• easy to derive from standard data from the hospital;

• are representative of the regional health status.

Identifiability of model (3) parameters
The death rate α and the recovery rate γ are easily obtained from the measured

state variables, since:

α =
D(k+1)−D(k)

I(k)
, γ =

R(k+1)−R(k)
C(k)

.

From Nantes University Hospital Covid-19 database [2020], it is not significant to
complete an identification on a daily basis. So, let us identify over an horizon of h
days, which is done rewriting the third and fourth equation of (3) for days k, k+ 1,...,
k+h. Standard computations lead to

α =
D(k+h)−D(k)

I(k)+ I(k+1)+ · · ·+ I(k+h−1)
(4)

and

γ =
R(k+h)−R(k)

C(k)+C(k+1)+ · · ·+C(k+h−1)
. (5)

Note that parameters α and γ are argued to be time-varying, so that equations (4)
and (5) rather compute an average value over h days.

The parameters θ and µ are not simultaneously identifiable in this model for con-
stant sequences of A(k) and C(k). Nevertheless, for some input sequence such that
A(k)C(k+1) 6≡ A(k+1)C(k), all parameters are identifiable. In other words, the sys-
tem is generically identifiable, or identifiable for almost all sequence of admissions and
for almost all flows of patients.

The identification of θ may be processed as follows. Rewrite the first equation of
(3) at three different time instants: C(k+1) = (1− γ−µ)C(k)+λ I(k)+θA(k)

C(k+ i−1) = (1− γ−µ)C(k+ i)+λ I(k+ i)+θA(k+ i)
C(k+ j+1) = (1− γ−µ)C(k+ j)+λ I(k+ j)+θA(k+ j)

(6)

From (6), one can easily eliminate the coefficients (1− γ − µ) and λ and after some
elementary but tedious computations, θ is computed as follows. Rename the following
quantities 

F1 = C(k+1)I(k+ j)−C(k+ i)I(k+ j)
F2 = C(k+ i)I(k+ j)−C(k+ j)I(k+ i)
F3 = C(k+ i+1)I(k+ j)−C(k+ j+1)I(k+ i)
F4 = C(k+ j)I(k)−CkI(k+ j)
F5 = A(k)I(k+ j)−A(k+ j)I(k)
F6 = A(k+ j)I(k+ j)−A(k+ j)I(k+1)

(7)
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so that
θ =

F1F2 +F3F4

F2F5 +F4F6
. (8)

Obviously, there exist some singular input sequences A(k) which cancel out the de-
nominator of the right-hand side of (8): for instance, when the sequences A(k) and I(k)
are constant, then formula (8) is inapplicable for the estimation of parameter θ .
Following a similar elimination process, it is possible to eliminate parameters λ and α

among (6). Thus µ is identifiable for almost all input sequences, though the explicit
expression becomes a bit more involved. The generic identifiability of λ is proven
following similar lines.

Computation of the death rate α and the recovery rate γ from the hospital dataset

Data from Nantes University Hospital were collected from March 16th to Septem-
ber 17th, 2020 and are available in Nantes University Hospital Covid-19 database
[2020]. These data include the daily values of C(k), I(k), R(k) and D(k). In France the
lockdown took place from March 17, 2020 to May 11, 2020. When some data were
missing or inaccurate then the corresponding periods were skipped.

Figure 6: Time varying death rate α in model (3)

Since α is computed from the available data over 7 days, its evaluation displayed
in Figure 6 starts on the second week. The empty information, instead, from May 20th
to 28th corresponds to errors which are due to inaccurate data, such as the number of
admissions which were sometimes incorrectly estimated in the hospital data, thus not
allowing a correct estimation of α .

In Figure 6 it is shown that the death rate increased during the early days after the
lockdown. Two weeks later it was significantly decreasing and then it stabilized for
over two months.

Surprisingly, the death rate α seems to reach unprecedented levels weeks after the
end of the lockdown. A peak of the death rate α is noticed in early June, about one
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month after the end of the lockdown. This paradoxical result is easily interpreted as
the general younger population left (intensive care) hospitalization and only elderly
patients were remaining in intensive care, sometimes after several months of hospital-
ization with weak probability of health improvement.

Figure 7: Time varying recovery rate γ in model (3)

From mid-June to mid-August, no patient was in intensive care which yields a zero
death rate. This is due to a very low number of new Covid-19 patients admissions.
Since the end of July 2020, there are new conventional hospitalizations, followed by
intensive care hospitalizations at the beginning of August 2020. This indicates an in-
crease in the circulation of the virus and eventually the beginning of a second epidemic
wave. Parameter α requires a period of 7 days to be estimated, so that the increase in
mortality is confirmed on mid-August.

In Figure 7 a higher level of the recovery rate is noticed during the first month of
the lockdown, i.e. before the peak of the infection was reached. Once the spread out of
the infection was under control, the recovery rate was somehow stabilized.

Population levels were low in July 2020: no patients in intensive care and a de-
crease in the number of patients in conventional hospitalization from 23 patients at the
beginning of the month to 2 patients at the end of the month. Therefore the recovery of
one or two patients will have a significant impact on the recovery rate estimate.

Similarly in August 2020, there is an increase in the recovery rate due to a low
headcount. These results point to the suspicion of a better patient management by the
physicians in connection with an earlier treatment and to a massive screening. Sum-
marizing, a higher recovery rate in August/September is due to a better knowledge of
the disease by the physicians.
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6. Conclusion

The main message in this paper is certainly that fast, agile, decentralized and rele-
vant actions can be taken on some decentralized local level both to predict a new wave
of the COVID-19 pandemic and to assess the real-time efficiency of treatments or of
the health policy.

A local mathematical model of flows of patients will not stand in competition with
a standard or upgraded centralized SIR type model but it will give additional insights
to the dynamics to help decisions at the local level of a regional hospital.

The information provided by local data can be easily collected from any hospital.
This information is rich enough to capture essential indicators about the local health
status of the regional population. Not only this information is easy to obtain and does
not require the involvement of any national health agency, but it is also more precise
in the sense that it gives a smaller granularity picture of the health situation. It is well-
known that this situation can be dramatically different from one region to the other; for
instance, the Bergamo region in Italy had a very different status when compared with
the south of Italy as shown in Alicandro et al. [2020]. Similarly, the Mulhouse region
in France was one of the major clusters, see Kuteifan et al. [2020], with a much higher
infection rate than western french regions along the Atlantic coast.

Data were collected during and after the lockdown period from the Medical Infor-
mation Department of Nantes University Hospital Center. Such a low cost information
is able to provide an early alert about a second wave of the infection. In this sense,
it is an agile and precise tool able to complement official figures published by central
health agencies.
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