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Abstract. We consider any type of data featuring individuals (e.g., par-
liamentarians, customers) performing observable actions (e.g., votes, rat-
ings) on entities (e.g., legislative procedures, movies). In such data, we
aim to find contexts (i.e. subgroup of entities) for which an exceptional
(dis)agreement is observed among a group of individuals. To this end,
we introduce the novel problem of discovering statistically significant
exceptional contextual intra-group agreement patterns. To handle the
data sparsity, we use the Krippendorff’s Alpha measure to assess the
agreement among individuals. We devise a branch-and-bound algorithm,
named DEvIANT, to discover such patterns. DEvIANT exploits both
closure operators and tight optimistic estimates. We derive analytic ap-
proximations for the confidence intervals (CIs) associated to patterns for
a computationally efficient significance assessment. We prove that these
approximate CIs are nested along specialization of patterns. This makes
it possible to incorporate pruning properties in the algorithm to early
discard non-significant patterns. Empirical study on several datasets
demonstrates the efficiency and the usefulness of DEvIANT.

1 Introduction

Consider data describing the organization and votes of the European Parliament
(EP). Such dataset records the votes of each member (MEP) in voting sessions
held in the parliament, as well as the information on the parliamentarians (e.g.,
gender, national party, European party alliance) and the sessions (e.g., topic,
date). This data offers interesting opportunities to study the agreement or dis-
agreement of coherent subgroups, especially to highlight some unexpected ones.
It is to be expected that on the majority of voting sessions, MEPs will vote along
the lines of their European party alliance. However, when matters are of inter-
est to a specific nation within Europe, alignments may change and agreements
can be formed or dissolved. For instance, when a ballot on fishing rights is put
before the MEPs, the island nation of the UK can be expected to agree on a spe-
cific course of action regardless of their party alliance, fostering an exceptional
agreement where strong polarization exists otherwise.

We aim to discover such exceptional (dis)agreements. This is not limited to
just EP or voting data: members of the US congress also votes on bills while
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Amazon-like customers post ratings or reviews of products. A challenge with this
approach when considering voting or rating data, however, is to effectively handle
the absence of outcomes (sparsity) which is high in such datasets. For instance,
in the European parliament data, MEPs votes on average on only a three-quarter
of all sessions. These outcomes are not missing at random: special workgroups
are often formed of MEPs who are tasked with properly studying a specific
topic, and members of these workgroups are more likely to vote on their topic of
study. Hence, present values are likely associated with more pressing votes, which
means that missing values need to be treated carefully. This problem becomes
much worse when looking at Amazon or Yelp rating data: the vast majority of
customers will not have rated the vast majority of products/places.

In this paper, we introduce the problem of discovering significantly excep-
tional contextual intra-group agreement patterns, rooted in the Subgroup Dis-
covey (SD) [42]/ Exceptional Model Mining (EMM) [8] framework. To tackle
the data sparsity issue, we measure the agreement among groups with Krippen-
dorff’s alpha [27], a measure developed in the context of content analysis [28]
which is well-known to handle missing outcomes elegantly. We develop a branch-
and-bound algorithm to automatically find subgroups featuring statistically sig-
nificant exceptional (dis)agreement among groups. This algorithm enables to
early discard non significant subgroups by pruning unpromising branches of the
search space. Fig. 1 illustrates this. Suppose, we are interested by subgroups of
entities (e.g. voting sessions) whose sizes are greater than a support threshold
σ. For a given subgroup of size X ≥ σ, we gauge its exceptionality by its p-
value, i.e. the probability of observing a quality (i.e. Krippendorff’s alpha) for
a random subset of entities is at least as extreme as the one observed for the
subgroup. Hence avoiding to report subgroups which observe a high quality that
appears due to chance only (i.e. accepting the null hypothesis). For this task to
be achieved, we can estimate the empirical distribution of the quality of random
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Fig. 1: Main DEvIANT properties for safe sub-search space pruning. A subgroup is
reported as significant if its related Krippendorff’s Alpha falls in the critical region of
the corresponding empirical distribution of random subsets (DFD). When traversing
the search space downward (decreasing support size) the approximate confidence in-
tervals are nested . If the optimistic estimates region falls into the confidence interval
computed on the related DFD, the sub-search space can be safely pruned.
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subsets (DFD: Distribution of False Discoveries, cf. [9,34]) and establish, for a
certain critical value α, a confidence interval CI1−α

X over the corresponding dis-
tribution under the null hypothesis. If the subgroup quality is outside CI1−α

X ,
this means that the subgroup is statistically significant (p-value ≤ α), other-
wise the subgroup is a spurious finding. We prove by approximation that the
confidence intervals are nested: σ ≤ Y ≤ X ⇒ CI1−α

X ⊆ CI1−α
Y . Moreover, we

compute a tight optimistic estimate (OE) [18] to have a lower-bound and an
upper bound of the quality of any specialization of a subgroup having its size
greater than σ. Combining this two properties, if the OE region falls into the
corresponding CI, we can safely prune large parts of the sub-search space that
do not contain significant subgroups. In summary, the main contributions are:

– We introduce the novel problem of discovering statistically significant excep-
tional contextual intra-group agreement patterns (Section 3).

– We derive an analytical approximation of the confidence intervals associated
to subgroups. This allows a computationally efficient assessment of the sta-
tistical significance of the findings. Furthermore, we show that approximate
confidence intervals are nested (Section 4). Particular attention is also paid
to the variability of outcomes among raters (Section 5).

– We devise a branch-and-bound algorithm to discover exceptional contextual
intra-group agreement patterns (Section 6). It exploits tight optimistic es-
timates on Krippendorff’s alpha and nested approximate CIs property to
early discard non significant patterns.

– We report an empirical evaluation (Section 7) which studies the performance
and the potential of the proposed approach.

2 Background and Related Work

Measuring Agreement. Several measures of agreement focus on two targets
(Pearson’s correlation coefficient, Spearman’s ρ, Kendall’s τ , Association) and
cannot handle missing values well. As pointed out by Krippendorff [28, p.244],
using association and correlation measures to assess agreement leads to partic-
ularly misleading conclusions. When all data falls along a line Y = aX + b,
correlation is perfect, but agreement requires that Y = X. Cohen’s κ [4] is a
seminal measure of agreement between two raters who classify items into a fixed
number of mutually exclusive categories. The Fleiss κ [14] extends this notion to
multiple raters and requires that each item receives the exact same number of
ratings. Krippendorff’s alpha generalizes these measures while handling multiple
raters, missing outcomes and several metrics [28, p.232].
Discovering Significant Patterns. The statistical assessment of patterns have
received a considerable attention for a decade [41,20,21], especially for association
rules [19,40,36]. Some works focused on the statistical significance of results in
Subgroup Discovery/Exceptional Model Mining during enumeration [9,34] or a
posteriori [10] for statistical validation of the found subgroups.
Voting and Rating data Analysis. In a previous work [2], we proposed a
method to discover exceptional inter-group agreement in voting or rating data.
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This method does not allow to discover intra-group agreement. Several works
in the litterature addressed the problem of uncovering groups in rating datasets
whose members exhibit an agreement or discord [6,38] or a specific rating distri-
bution [1] (e.g. polarized, homogoneous) given upfront by the end-user. This is
done by aggregating the ratings by using an arithmetic mean or a rating distribu-
tion. However, none of these methods allow to discover automatically exceptional
(dis)agreement within groups. Moreover, these methods may output misleading
hypotheses over the intra-group agreement. This is due to two main factors: ag-
gregating ratings in a distribution is (i) highly affected by the data sparsity (e.g.
two reviewees may have significantly different number of expressed ratings) and
(ii) may conceal the true nature of the underlying intra-group agreement. For
instance, a rating distribution computed for a collection of movies may high-
light a polarized distribution of ratings (interpreted as a disagreement) while
ratings over each movie may describe a consensus between raters (movies are
either highly or lowly rated or by the majority of the group). These two issues
are addressed by Krippendorff’s alpha.

3 Problem Definition

The data we are interested in consists of a set of individuals (e.g. social network
users, parliamentarians) who give outcomes (e.g. ratings, votes) on entities (e.g.
movies, ballots ). This type of data is called behavioral dataset (e.g. Tab. 1).

Definition 1 (Behavioral Dataset). A behavioral dataset B = 〈GI , GE , O, o〉
is defined by (i) a finite collection of Individuals GI , (ii) a finite collection of
Entities GE, (iii) a domain of possible Outcomes O, and (iv) a function o :
GI ×GE → O that gives the outcome of an individual i over an entity e.

The elements from GI (resp. GE) are augmented with descriptive attributes
AI (resp. AE). Attributes a ∈ AI (resp. AE) may be Boolean, numerical or cate-
gorical attributes potentially organized among a taxonomy. Subgroups (subsets)
of GI (resp. GE) can be defined using descriptions from DI (resp. DE). These
descriptions are formalized by conjunctions of conditions on the values of the
attributes. Descriptions of DI are called groups, denoted g. Descriptions of DE
are called contexts, denoted c. From now on, G (resp. D) denotes both collections
GI (resp. DI) and GE (resp. DE) if no confusion can arise. We denote by Gd

the subset of records characterized by the description d ∈ D. Descriptions from

ide themes date

e1 1.20 Citizen’s rights 20/04/16
e2 5.05 Economic growth 16/05/16
e3 1.20 Citizen’s rights;

7.30 Judicial Coop 04/06/16
e4 7 Security and Justice 11/06/16
e5 7.30 Judicial Coop 03/07/16
e6 7.30 Judicial Coop 29/07/16

(a) Entities

idi country group age

i1 France S&D 26

i2 France PPE 30

i3 Germany S&D 40

i4 Germany ALDE 45

(b) Individuals

idi ide o(i,e) idi ide o(i,e)

i1 e2 Against i3 e1 For
i1 e5 For i3 e2 Against
i1 e6 Against i3 e3 For
i2 e1 For i3 e5 Against
i2 e3 Against i4 e1 For
i2 e4 For i4 e4 For
i2 e5 For i4 e6 Against

(c) Outcomes

Table 1: Example of behavioral dataset - European Parliament Voting dataset
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D are partially ordered by a specialization operator denoted v. A description
d1 is a specialization of d2, denoted d1 v d2, iff d2 ⇒ d1 from a logical point of
view. It follows that Gd2 ⊆ Gd1 .

3.1 Krippendorff’s Alpha

Krippendorff’s Alpha (A) measures the agreement among raters. This measure
has several properties that make it attractive in our setting, namely: (i) it is ap-
plicable to any number of observers; (ii) it handles various domains of outcomes
(ordinal, numerical, categorical, time series); (iii) it handles behavioral data with
missing values; (iv) it takes into consideration the agreement expected by chance
[28]. In its most general form, A is defined by:

A = 1− Do

De
(1)

where Do (resp. De) is a measure of the disagreement observed (resp. by chance).
Hence, when A = 1, the agreement is as large as it can possibly be (given the
class prior), and when A = 0, the agreement is indistinguishable to agreement
by chance. We can also have A < 0, where disagreement is larger than expected
by chance and which corresponds to systematic disagreement.

Given a behavioral dataset B, we want to measure Krippendorff’s alpha for
a given context c ∈ DE characterizing a subset of entities GcE ⊆ GE , which
indicates to what extent the individuals who comprise some selected group are

in agreement g ∈ DI . From Eq. (1), we have A(S) = 1− Do(S)
De

for any S ⊆ GE .
Note that the measure takes into consideration only entities where at least two
individuals expressed an outcome. We assume that the entities that do not fulfil
this requirement are removed in preprocessing.

Do(S) =
1∑

e∈S ne

∑
c,k∈O2

δck ·
∑
e∈S

nec · nek
ne − 1

(2)

ne is the number of expressed outcomes for the entity e and nec (resp. nek)
represents the number of outcomes equal to c (resp. k) expressed for the entity e.
δck is a distance measure between outcomes, which can be defined according to
the domain of the outcomes (e.g. δck can correspond to the Kronecker delta for
categorical outcomes or distance between ordinal values for ratings. Choices for
the distance measure are discussed in [30]). We define below De that represents
the disagreement expected by chance in Krippendorff’s alpha:

De =
1∑

e∈GE
ne · (

∑
e∈GE

ne − 1)

∑
c,k∈O2

δck · nc · nk (3)

With nc (resp. nk) the number of expressed outcomes equal to c (resp. k) ob-
served in the entire behavioral data. This corresponds to the disagreement by
chance observed on the overall marginal distribution of outcomes.
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[F]or [A]gainst
e1 e2 e3 e4 e5 e6

i1 A F A
i2 F A F F
i3 F A F A
i4 F F A

ne 3 2 2 2 3 2
Do(e) 0 0 1 0 2

3 0

Table 2: Summarized Be-
havioral Data Do(e) =∑
c,k∈O2 δck

nec · nek
ne · (ne − 1)

Example: Tab. 2 summarizes the behavioral data
given in Tab. 1. The disagreement expected by chance
is equal to (given: nb(F ) = 8, nb(A) = 6): De =

1
13×14 × ((8× 6) + (6× 8)) = 48/91. If we want to
evaluate the intra-agreement between the four indi-
viduals in the global context (considering all entities),
we need to compute, first, the observed disagreement
Do(GE). Simply put, Do(GE) is the weighted aver-
age of the two last lines by considering the quanti-
ties ne as the weights: Do(GE) = 4

14 .Hence,for the
global context, A(GE) = 1− 4

14/
48
91 = 0.46. Consider

the context c = 〈themes ⊇ {7.30 Judicial Coop.}〉,
having as support: GcE = {e3, e5, e6}. The observed
disagreement is obtained by computing the weighted
average, only considering the entities belonging to the context: Do(G

c
E) = 4

7 .
Hence, the contextual intra-agreement is: A(GcE) = 1− 4

7/
48
91 = −0.08.

Comparing A(GcE) and A(G∗E) leads to the following statement: “while par-
liamentarians are slightly in agreement in overall terms, judicial cooperation
related questions create systematic disagreement among the parliamentarians”.

3.2 Mining Significant Patterns with Krippendorff’s Alpha

Considering a selected group of individuals g ∈ DI , we are interested in finding
contexts c ∈ DE where the observed intra-agreement, denotedAg(c), significantly
differs from the expected intra-agreement (i.e. that appear due to chance alone).
In the same spirit as [9,34,41], we evaluate the quality of patterns by statistical
significance of the contextual intra-agreement. This choice is motivated by: (i)
the desire to not specify to the algorithm an arbitrary threshold on the distance
from the overall intra-agreement observed (fixing the critical value α is more
intuitive), (ii) the recommendations of Krippendorff [22] to provide a confidence
interval on the alpha metric rather than a point-value.

In this work, we are interested in finding patterns of the form (g, c) ∈ DI×DE
highlighting an exceptional intra-agreement between members of a group of indi-
viduals g over a context c. To perform such task, we formalize the problem using
the well-established framework of SD/EMM [8], while giving particular attention
to the statistical significance and soundness of the discovered patterns [21].

Problem Statement. (Discovering Exceptional Contextual Intra-group Agree-
ment patterns). Given a behavioral dataset B = 〈GI , GE , O, o〉, a minimum
group support threshold σI , a minimum context support threshold σE , a sig-
nificance critical value α ∈]0, 1] and the null hypothesis H0 corresponding to
that the observed Krippendorff’s alpha is generated by a distribution of false
discoveries (cf. [9]). The goal is to find the pattern set P ⊆ DI ×DE such that:

∀(g, c) ∈ P : |GgI | ≥ σI ∧ |GcE | ≥ σE we have: p-valueg(c) ≤ α
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4 Exceptional Contexts: Evaluation and Pruning

From now and on, to avoid overloading notation and for the sake of simplicity, we
omit the exponent g if no confusion can arise, while keeping in mind a selected
group of individual g ∈ DI related to a subset GgI ⊆ GI .

4.1 Gauging Exceptionality of a Subgroup

To evaluate to what extent our findings are exceptional, we follow the significant
pattern mining paradigm. That is, we consider each context c as a hypothesis
test which returns a p-value. The p-value is the probability of obtaining an
intra-agreement at least as extreme as the one observed over the current context
A (GcE), assuming the truth of the null hypothesis H0. The pattern is accepted if
H0 is rejected. This happens if the p-value is under a critical significance value
α which amounts to test if the observed intra-agreement A (GcE) is outside the
confidence interval CI1−α established using the distribution assumed under H0.

H0 corresponds to a baseline finding. i.e. the observed contextual intra-
agreement is generated by the distribution of random subsets equally likely to
occur, a.k.a: Distribution of False Discoveries (DFD, c.f. [9]). We resolve to eval-
uate the p-value of the observed A against the distribution of random subsets of a
cardinality equal to the size of the observed subgroup GcE . The subsets are issued
by a uniform sampling without replacement from the entire entities collection.
The rationale behind using sampling without replacement is that the observed
subgroup does not contain multiple instances of the same entity. Moreover, draw-
ing samples only from the collection of subsets of size equal to |GcE | allows to
drive more judicious conclusions: the variability of the statistic A is impacted
by the size of the considered subgroups, since smaller subgroups are more likely
to observe low/high values of A. The same reasoning was followed in [34]

We define θk : Fk → R as the random variable corresponding to the observed
intra-agreement A of k-sized subsets S ∈ GE . i.e. for any k ∈ [1, n] with n = |GE |
we have θk(S) = A(S) and Fk = {S ∈ GE s.t. |S| = k}. Fk is then the set of
possible subsets which are equally likely to occur under the null hypothesis H0.

That is P(S ∈ Fk) =
(
n
k

)−1
. We denote by CI1−α

k the (1−α) confidence interval
related to the probability distribution of θk under the null hypothesis H0. To
easily manipulate θk, we reformulate A using equations (1), (2) and (3) as such:

A(S) =

∑
e∈S ve∑
e∈S we

with we = ne and ve = ne −
1

De

∑
c,k∈O2

δck ·
nec · nek
(ne − 1) (4)

Considering the null hypothesis H0 and under the assumption that the under-
lying distribution of intra-agreements is a normal distribution4 N (µk, σ

2
k), one

4 In the same line of reasoning of [7,35], one can assume that the underlying distribu-
tion can be derived from what prior beliefs the end-user may have on such distribution.
If only the observed expectation µ and variance σ2 are given as constraints which must
hold for the underlying distribution, the maximum entropy distribution (the one that
takes into account no other prior information than the given constraints) is known to
be the normal distribution N (µ, σ2) [5, p.413]
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can define CI1−α
k by computing µk = E[θk] and σ2

k = Var[θk]. Doing so, requires
either calculating estimator of such moments empirically by drawing a large
number r of uniformly generated samples from Fk or deriving analytically the
formula of E[θk] and Var[θk]. In the former case, the confidence interval CI1−α

k

endpoints are given by [17, p.9]: µk± t1−α2 ,r−1σk
√

1 + (1/r) with µk and σk be-
ing estimated empirically on the r samples and t1−α2 ,r−1 the (1− α

2 ) percentile
of Student’s t-distribution with r − 1 degrees of freedom. In the latter case (µk
and σk are known/derived analytically), the (1 − α) confidence interval can be
computed in its most basic form, that is CI1−α

k = [µk−z(1−α2 )σk, µk+z(1−α2 )σk]
with z(1−α2 ) the (1− α

2 ) percentile of N (0, 1).
However, on one hand, due to the problem setting, establishing the con-

fidence interval empirically is computationally expensive since it need to be
calculated for each enumerated context which can become quickly unfeasible
even for relatively small behavioral datasets. In the other hand, deriving ana-
lytically a computationally efficient form of E(θk) is notoriously difficult, given

that E[θk] = 1

(nk)

∑
S∈Fk

∑
e∈S ve∑
e∈S we

and Var[θk] = 1

(nk)

∑
S∈Fk

(∑
e∈S ve∑
e∈S we

− E[θk]
)2

.

Since θk can be seen as a weighted arithmetic mean, one can model the
random variable θk as the ratio Vk

Wk
. With Vk, Wk two random variables Vk :

Fk → R and Wk : Fk → R with Vk(S) = 1
k

∑
e∈S ve and Wk(S) = 1

k

∑
e∈S we.

An elegant way to deal with a ratio of two random variables is to approximate
its moments using the Taylor series following the line of reasoning of [11] and
[25, p.351], since no easy analytic expression of E[θk] and Var[θk] can be derived.
For the sake of brevity, the detailed computation of the formulas presented next
are omitted. For more details, please refer to Appendix A.

Proposition 1 (An approximate Confidence Interval ĈI
1−α
k for θk).

Given k ∈ [1, n] and a significance critical value α ∈]0, 1], ĈI
1−α
k is given by:

ĈI
1−α
k =

[
Ê[θk]− z1−α

2

√
V̂ar[θk], Ê[θk] + z1−α

2

√
V̂ar[θk]

]
(5)

with: Ê[θk] a Taylor approximation for the expectation E[θk] expanded around

(µVk , µWk
) and V̂ar[θk] a Taylor approximation for Var[θk] given by:

Ê[θk] =
(n
k
− 1
) µv
µw

βw +
µv
µw

V̂ar[θk] =
(n
k
− 1
) µ2

v

µ2
w

(βv + βw) (6)

with:

µv =
1

n

∑
e∈GE

ve

µv2 =
1

n

∑
e∈GE

v2
e

µw =
1

n

∑
e∈GE

we

µw2 =
1

n

∑
e∈GE

w2
e

n = |GE |

µvw =
1

n

∑
e∈GE

vewe

and: βv =
1

n− 1

(
µv2

µ2
v

− µvw
µvµw

)
βw =

1

n− 1

(
µw2

µ2
w

− µvw
µvµw

)
It is worth mentioning that, the complexity of the computation of the approx-

imate confidence interval ĈI
1−α
k is O(n) with n the size of entities collection GE .
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4.2 Pruning the Search Space

Optimistic Estimate on Krippendorff’s Alpha: to quickly prune unpromis-
ing areas of the search space, we define a tight optimistic estimate [18] on Krip-
pendorff’s alpha. We leverage results of Eppstein and Hirschberg [13] who pro-
pose an elegant linear algorithm Random-SMWA5 to find subsets with maximum
weighted average. Remind that A can be seen as a weighted average from Eq. (4).

In a nutshell, Random-SMWA seeks to remove k values to find a subset of S
having |S| − k values with maximum weighted average. The authors model the
problem as such: given |S| values decreasing linearly with time, find the time
at which the |S| − k maximum values add to zero. In the scope of this work
and given σE a user defined support threshold on the minimum allowed size
of context extents, k is fixed to |S| − σE . The obtained subset correspond to
the smallest allowed subset having its support ≥ σE maximizing the weighted
average quantity A. The Random-SMWA algorithm can be tweaked6 to retrieve the
smallest subset of size ≥ σE having analogously the minimum possible weighted
average quantity A. We refer to the algorithm returning the maximum (resp.
minimum) possible weighted average by RandomSMWAmax (resp. RandomSMWAmin).

Proposition 2 (Upper and Lower bounds for A). Given S ⊆ GE, mini-
mum context support threshold σE, and the following functions:

UB(S) = A (RandomSMWAmax(S, σE)) LB(S) = A
(
RandomSMWAmin(S, σE)

)
we know that LB (resp. UB) is a lower (resp. upper) bound for A, i.e.:

∀c, d ∈ DE : c v d ∧ |GcE | ≥ |GdE | ≥ σE ⇒ LB(GcE) ≤ A(GdE) ≤ UB(GcE)

Using these results, we define the optimistic estimate for A as an interval
bounded by the minimum and the maximum A measure that one can observe
from the subsets of a given subset S ⊆ GE , that is:OE(S, σE) = [LB(S), UB(S)].

Nested Confidence intervals for A: the desired property between two con-
fidence intervals of the same significance level α related to respectively k1, k2

with k1 ≤ k2 is that CI1−α
k1

encompasses the CI1−α
k2

. Colloquially speaking,
larger samples lead to ”narrower” confidence intervals. This property is intu-
itively plausible since the dispersion of the observed intra-agreement for smaller
samples is likely to be higher than the dispersion for larger samples. Having such
property allows to prune sub-search space related to a context c when traversing
the search space downward if the optimistic estimate OE(GcE , σE) ⊆ CI1−α

|GcE |
.

Proving CI1−α
k2
⊆ CI1−α

k1
for k1 ≤ k2 for the exact confidence interval is an

uneasy task, since it requires to derive analytically E[θk] and Var[θk] for any
1 ≤ k ≤ n. It is worth mentioning that the expected value E[θk] varies when k

varies. We study such property for the approximate confidence interval ĈI
1−α
k .

5Random-SMWA: Randomized algorithm - Subset with Maximum Weighted Average.
6Finding the subset having the minimum weighted average is a dual problem to

finding the subset having the maximum weighted average. To solve the former problem
using Random-SMWA, we modify the values of vi to −vi and keep the same weights wi.
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Proposition 3 (Minimum cardinality constraint for nested approxi-
mate confidence intervals). Given a context support threshold σE and α:

if σE ≥ Cα =
4nβ2

w

z2
1−α2

(βv + βw) + 4β2
w

then:

∀k1, k2 ∈ N : σE ≤ k1 ≤ k2 ⇒ ĈI
1−α
k2 ⊆ ĈI

1−α
k1

Combining Properties (1), (2) and (3), we formalize the pruning region prop-
erty which answers to: when to prune the sub-search space under a context c?

Corollary 1 (Pruning regions). Given a behavioral dataset B, a context sup-
port threshold σE ≥ Cα, a significance critical value α ∈]0, 1], For any c, d ∈ DE
such that c v d with |GcE | ≥ |GdE | ≥ σE, we have:

OE(GcE , σE) ⊆ ĈI
1−α
|GcE |

⇒ A(GdE) ∈ ĈI
1−α
|GdE |

⇒ p-value(d) > α

Proofs: all proofs of propositions and properties can be found in Appendix A.

5 On handling variability of outcomes among raters

In Section 4, we defined the confidence interval CI1−α established over the DFD.
By taking into consideration the variability induced by the selection of a subset of
entities, Such confidence interval enables to avoid reporting subgroups indicating
an intra-agreement likely (w.r.t. the critical value α) to be observed by a random
subset of entities. For a more statistically sound results, one should not only take
into account the variability induced by the selection of subsets of entities, but
also the variability induced by the outcomes of the selected group of individuals.
This is well summarized by Hayes and Krippendorff [22] “The obtained value of
A is subject to random sampling variability—specifically variability attributable
to the selection of units (i.e. entities) in the reliability data (i.e. behavioral data)
and the variability of their judgments”. To address these two questions, they
recommend to employ a standard Efron & Tibshirani bootstrapping approach [12]
to empirically generate the sampling distribution of A and produce an empirical
confidence interval CI1−α

bootstrap.
Recall that we consider here a behavioral dataset B reduced to the outcomes

of a selected group of individual g. Following the bootstrapping scheme proposed
by Krippendorff [29,22,43] , the empirical confidence interval is computed by re-
peatedly performing the following steps: (1) resample n entities from GE with
replacement; (2) for each sampled entity, draw uniformly ne ·(ne−1) pairs of out-
comes according to the distribution of the observed pairs of outcomes; (3) com-
pute the disagreement observed and calculate the Krippendorff alpha quantity on
the resulting resample. This process, repeated b times leads to a vector of boot-
strap estimates (sorted in ascending order) B̂ = [Â1, ..., Âb]. Given the empirical
distribution B̂, the empirical confidence interval CI1−α

bootstrap is defined by the per-

centiles of B̂. i.e. CI1−α
bootstrap = [B̂α

2 ·b, B̂(1−α2 )·b]. We denote by MCI1−α (Merged

CI) the confidence interval that takes into consideration both CI1−α = [le1, re1]
and CI1−α

bootstrap = [le2, re2]. We have MCI1−α = [min(le1, le2),max(re1, re2)].
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6 A Branch-and-bound solution: Algorithm DEvIANT

Subgroup Enumeration. In order to detect exceptional contextual intra-group
agreement patterns, we need to enumerate candidate p = (g, c) ∈ (DI ,DE). For
this task, different enumeration algorithms exist in the literature ranging from
heuristic (e.g. beam-search [32]) to exhaustive techniques (e.g. GP-growth [33]).
In this paper, we choose to exhaustively enumerate all candidate subgroups
while leveraging closure operators [15] (since A computation only depends on
the extent of a pattern). This makes it possible to avoid redundancy and to
substantially reduce the number of visited patterns. With this aim in mind,
and since the data we deal with are of the same format as those handled in
our previous work [2], we apply EnumCC (Enumerate Closed Candidates) [2]
to enumerate subgroups g (resp. c) in DI ( resp. DE). EnumCC goes in the
same line of CloseByOne algorithm [31]. Given G a collection of records (which
can be either GE or GI), EnumCC traverses the search space in a DFS fashion
and enumerates once and only once all the closed descriptions that fulfill the
minimum support constraint σ. For more details, see Appendix B.
DEvIANT (Algorithm 1) implements an efficient branch-and-bound algo-
rithm to Discover statistically significant Exceptional Intra-group Agreement
paTterns while leveraging closure, tight optimistic estimates and pruning prop-
erties. DEvIANT starts by selecting a group g of individual. Next, the corre-
sponding behavioral dataset Bg is established by reducing the original behav-
ioral dataset B to elements concerning solely the individuals comprising GgI .
Subsequently, the bootstrap confidence interval CI1−α

bootstrap is calculated.

Algorithm 1: DEvIANT(B, σE , σI , α)

Inputs : B = 〈GI , GE , O, o〉 is a behavioral dataset,
σE (resp. σI) minimum support threshold of a context (resp. group),
α is a critical significance value (fixed to 0.05 in default setting).

Output: P is the set of exceptional intra-group agreement patterns
1 P ← {}
2 foreach (g,GgI , contg) ∈ EnumCC(GI , ∗, σI , 0,True) do
3 GE(g) = {e ∈ E s.t. nge ≥ e}
4 Bg = 〈GE(g), GgI , O, o〉
5 CI1−αbootstrap = [B̂α

2
·b, B̂(1−α

2
)·b] . With B̂ = [Âg1, ..., Â

g
b ] computed on

6 σgE = max (Cα (g) , σE) respectively b resamples of Bg
7 foreach (c,GcE , contc) ∈ EnumCC(GE(g), ∗, σgE , 0,True) do

8 MCI1−α|Gc
E
| = merge

(
ĈI

1−α
|Gc
E
|,CI1−αbootstrap

)
9 if OE(GcE , σ

g
E) ⊆ MCI1−α|Gc

E
| then

10 contc ← False . Prune the unpromising search subspace under c

11 else if Ag(GcE) /∈ MCI1−α|Gc
E
| then

12 pnew ← (g, c)
13 if @pold ∈ P s.t. ext(pnew) ⊆ ext(pold) then
14 P ← (P ∪ pnew) \ {pold ∈ P | ext(pold) ⊆ ext(pnew)}
15 contc ← False . Prune the sub search space, generality concept

16 return P
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Before searching for exceptional contexts, the minimum context support
threshold σE is adjusted to Cα(g) (see Prop.3) if it is lower than Cα(g). Note
that Cα(g) is, in practice, much smaller than σE . Still, we keep this correction
for algorithm soundness. Next, contexts are enumerated by EnumCC and for
each candidate context c, the algorithm evaluates the optimistic estimate inter-
val OE(GcE) (see Prop. 2). According to Corollary 1, if OE(GcE , σ

g
E) is inside

MCI1−α
|GcE |

the sub-search space under c can be pruned. Otherwise, Ag(GcE) is com-

puted and evaluated against MCI1−α
|GcE |

. If it is outside MCI1−α
|GcE |

, this means that

(g, c) is significant and should be kept in the final result set P . Eventually, to
reduce the number of reported patterns, we choose to keep only the most general
patterns while ensuring that each significant pattern in P is represented by a pat-

tern in P . This formally translates to: ∀p′ = (g′, c′) ∈ P\P : p-valueg
′
(c′) ≤ α⇒

∃p = (g, c) ∈ P s.t. ext(q) ⊆ ext(p), with ext (q = (g′, c′)) ⊆ ext (p = (g, c)) de-

fined by Gg
′

I ⊆ GgI and Gc
′

E ⊆ GcE . This is based on the following postulate: the
end-user is more interested by exceptional (dis)agreement within larger groups
and/or for larger contexts rather than local exceptional (dis)agreement. More-
over, the end-user can always refine her analysis to obtain more fine-grained
results by re-launching the algorithm starting from a specific context or group.

7 Empirical Evaluation

We report on both quantitative and qualitative experiments over the imple-
mented algorithms. For reproducibility purposes, the source code and the data
are made available in our companion page7. The following experiments aim to
answer the following questions: (Q1) How well the Taylor approximate CI ap-
proaches the empirical CI? (Q2) How efficient is the Taylor approximate CI and
the pruning properties? (Q3) Does DEvIANT provide interpretable patterns?
Datasets: experiments were carried on four real-world behavioral datasets (see
Tab. 3). Two voting datasets (EPD8 and CHUS) and two rating datasets (Movie-
lens and Yelp). Each dataset features entities and individuals that are described
by categorical (C), numerical (N) attributes, or categorical attributes augmented
with a taxonomy (H). We report also the equivalent number of items (in an item-
set language) corresponding to the descriptive attributes (ordinal scaling [16]).

|GE | AE (Items-Scaling) |GI | AI (Items-Scaling) Outcomes Sparsity C0.05

EPD88 4704 1H + 1N + 1C (437) 848 3C (82) 3.1M (C) 78.6% ' 10−7

CHUS9 17350 1H + 2N (307) 1373 2C (261) 3M (C) 31.2% ' 10−6

Movielens10 1681 1H + 1N (161) 943 3C (27) 100K (O) 06.3% ' 0.06
Yelp11 127K 1H + 1C (851) 1M 3C (6) 4.15M (O) 0.003% ' 1.73

Table 3: Main characteristics of the behavioral datasets. C0.05 represent the minimum
context support threshold over which we have nested approximate CI property.

7https://github.com/Adnene93/Deviant
8Eight European Parliament Voting Dataset.
9102nd-115th congresses of the US House of representatives (Period: 1991-2015).

10Movie review dataset - https://grouplens.org/datasets/movielens/100k/
11Social network dataset - https://www.yelp.com/dataset/challenge

https://github.com/Adnene93/Deviant
https://grouplens.org/datasets/movielens/100k/
https://www.yelp.com/dataset/challenge
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Q1- First, we evaluate to what extent the confidence interval computed empiri-
cally approximates the confidence interval computed by Taylor approximations.
For this task, we run 1000 experiments for different subsets size k uniformly
distributed in [1, n = |GE |]. For each k, we compute the corresponding Tay-

lor approximate ĈI
1−α
k = [aT , bT ] and empirical confidence interval ECI1−α

k =
[aE , bE ]. The latter CI is calculated by running 104 samples of size k fromGE , fol-
lowed by the computation of the observed A on each sample which are used to es-
timates the moments of the empirical distribution required for the establishment
ECI1−α

k . Once both CIs are computed, we measure the distance between them by

using the Jaccard index, i.e. dist(ECI1−α
k , ĈI

1−α
k ) = 1− (min(bE ,bT )−max(aE ,aT ))

(max(bE ,bT )−min(aE ,aT ))
.

We report in Tab. 4, the average µerr and the standard deviation σerr of the ob-
served distances (coverage error) over the 1000 experiments. We notice that the
difference between the analytic Taylor approximation and the empirical approx-
imation is negligible (µerr is less than 10−2). Therefore, the CIs approximated
by the two methods are so close, that it does not matter which method is used.
Hence, the choice is guided by the computational efficiency.

Q2- In order to evaluate how efficient are the proposed properties ((i) Taylor
approximate CI, (ii) optimistic estimates and (iii) nested approximates CIs),
we choose to compare DEvIANT against a Naive approach where the three
aforementioned properties are disabled. For a fair comparison, Naive pushes
monotonic constraints (minimum support threshold) and employs closure oper-
ators while estimating empirically the confidence interval by successive random

B µerr σerr B µerr σerr B µerr σerr B µerr σerr

CHUS 0.007 0.004 EPD8 0.007 0.004 Movielens 0.0075 0.0045 Yelp 0.008 0.007

Table 4: Coverage error between empirical CIs and Taylor CIs.
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Fig. 2: Comparison between DEvIANT and Naive when varying the size of the de-
scription space DI . Lines correspond to the execution time and bars correspond to the
number of outputted patterns. Parameters: σE = σI = 1% and α = 0.05.
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Fig. 3: Effectiveness of DEvIANT on EPD8 when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05.
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trials from Fk. For this study, we choose to run both algorithms while disabling
the bootstrap CI1−α

bootstrap computation since the overhead induced by the com-

putation of CI1−α
bootstrap is the same for both algorithms. We vary the size of the

descriptions space related to groups of individuals DI while considering the whole
description space of entities. Results of this experiment are reported in Fig.2. We
observe that DEvIANT outperforms Naive in terms of runtime by nearly two
orders of magnitude while outputting the same number of the desired patterns.

Furthermore, we report in Fig.3 the performance of DEvIANT in terms of
runtime and the number of outputted patterns. We observe that when varying
the descriptions space sizes, DEvIANT requires more time to finish. It is worth
mentioning that the size of individuals search space DI substantially affects the
runtime of DEvIANT. This is mainly due to the fact that larger DI leads to
more candidate group of individuals g which require: (i) DEvIANT to generate
the bootstrapping confidence interval CI1−α

bootstrap and (ii) to mine for exceptional
contexts c concerning the candidate group g. Finally, we observe that when α
decreases, the execution time required for DEvIANT to finish increases while
returning more patterns. This may at first, seem counter-intuitive since less
patterns are naturally considered significant when alpha decreases, but this is
supported by the fact that DEvIANT considers in the resulting pattern set only
the most general patterns. Hence, when α decreases, DEvIANT goes deeper in
the contexts search space, implying thus much more candidate patterns to be
tested and thus a larger results set. The same conclusions can be drawn as well
from experiments performed on Yelp, Movielens and CHUS (see Appendix. C).

Q3- We illustrate a number of examples of the outputted exceptional contextual
intra-group agreement patterns in the benchmark datasets. Table 5 reports the
exceptional contexts observed among the republicans party during the 115th

congress. For instance, Pattern p1 illustrated in Fig. 4, highlights a collection of
voting sessions addressing Government and Administrative issues where a clear
polarization is observed between two clusters of House republicans. Notable roll
call vote of this context in which a significant disagreement was observed between
republicans is “House Vote 417”12 which was closely watched by the media13.

Table 6 depicts some patterns returned by DEvIANT when carried on Movie-
lens Datasets. For instance, pattern p2 reports that “Middle-aged Men” group
observe a significantly higher intra-group agreement compared to the overall
intra-group agreement for movies labeled with both adventure and musical gen-
res (e.g. The Wizard of Oz (1939)).

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Republicans 20.11 Government Branch Relations, Admin. 0.83 0.32 <.001 Conflict
Issues, and Constitutional Reforms

p2 Republicans 5 Labor 0.83 0.63 <.01 Conflict
p3 Republicans 20.05 Nominations and Appointments 0.83 0.92 <.001 Consensus

Table 5: Exceptional consensual/conflictual subjects among Republicans Party rep-
resentatives in the 115th congress of the US House of Representatives. α = 0.01

12https://projects.propublica.org/represent/votes/115/house/1/417
13Washington Post:https://wapo.st/2W32I9c; Reuters:https://reut.rs/2TF0dgV

https://projects.propublica.org/represent/votes/115/house/1/417
https://wapo.st/2W32I9c
https://reut.rs/2TF0dgV
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(a) Overall intra-agreement 
between Republicans

(b) intra-agreement between Republicans 
in Government and Administrative Issues 

related voting sessions 

Pro-Trump: Many rep. of 
this cluster endorsed

Donald Trump for the 2016 
presidential election 

Anti-Trump: Many rep. of 
this cluster opposed

Donald Trump for the 2016 
presidential election 

Fig. 4: Illustrating Pattern 1 from Tab. 5 with a similarity matrix between Republicans.
Each cell represents the ratio of voting sessions in which both Rep. agreed. A green
cell reports a strong agreement whereas a red cell highlights a strong disagreement.

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 Old 1.Action & 2.Adventure & 6.Crime Movies -0.06 -0.29 < 0.01 Conflict
p2 Middle-aged Men 2.Adventure & 12.Musical Movies 0.05 0.21 < 0.01 Consensus
p3 Old 4.Children & 12.Musical Movies -0.06 -0.21 < 0.01 Conflict

Table 6: Top3-Exceptionally consensual/conflictual movies genres between Movielens’
raters, α=0.01. Patterns are ranked by the absolute difference between Ag(c) and Ag(∗).

8 Conclusion and Future Directions

In this paper we introduced the novel problem of discovering statistically sig-
nificant exceptional contextual intra-group agreement patterns. We devised a
branch-and-bound algorithm, named DEvIANT, which efficiently search for the
desired patterns while leveraging closure operators, approximate confidence in-
tervals (CIs), tight optimistic estimates on Krippendorff’s Alpha measure and
the property of nested CIs. The empirical experiments demonstrated both the
efficiency and the usefulness of DEvIANT over multiple behavioral datasets rele-
vant to various domains ranging from political analysis to rating data analysis. In
future research, we plan (i) to incorporate FDR (False Discovery Rate) control to
tackle the multiple comparison problem [21] (ii) to investigate exceptional intra-
group agreement compared to the one observed between all individuals over the
same context and (iii) to integrate the option of choosing which kind of excep-
tional consensus the end-user want, i.e. is the exceptional consensus is observed
because the group members “liked/voted for” (or “disliked/voted against”) the
context related entities? All this being done within the perspective to provide
a comprehensive framework and tool14) for behavioral data analysis alongside
exceptional inter-group agreement pattern discovery implemented in [2].

14A prototype is available online in http://contentcheck.liris.cnrs.fr

http://contentcheck.liris.cnrs.fr
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A Appendix: Proofs

Recall that θk : Fk → R is the random variable corresponding to the observed
intra-agreement A (Krippendorff’s alpha) of subsets S ∈ GE of size k. i.e. for
any k ∈ [1, n] with n = |GE | we have θk(S ∈ Fk) = A(S) and Fk = {S ∈
GE s.t. |S| = k}. Fk is then the set of possible outcomes which are equally likely
to occur under the null hypothesis H0. GE contains n records (i.e. |GE | = n).
Each record e ∈ GE is associated to a value ve and we. θk can be expressed as a
ratio of two random variable Vk

Wk
. With Vk,Wk two random variables Vk : Fk → R

and Wk : Fk → R with Vk(S) = 1
k

∑
e∈S ve and Wk(S) = 1

k

∑
e∈S we.

Proof (Proposition 1). For any f(x, y), the bivariate second order Taylor ex-
pansion about any λ = (λx;λy) is (a concise lecture note15 follows the same
reasoning and explains the derivations) :

f(x, y) = f(λ) + f ′x(λ)(x− λx) + f ′y(λ)(y − λy)

+
1

2

(
f ′′xx(λ)(x− λx)2 + f ′′xy(λ)(x− λx)(y − λy) + f ′′yy(λ)(y − λy)2

)
+ ε

(7)

with ε is a remainder of smaller order than the term of the equation.
An approximation of the expectation E[f(x, y)] expanded around λ = (λx;λy) is:

E[f(x, y)] ≈ f(λ) +
1

2

[
f ′′xx(λ)Var[X] + f ′′xy(λ)Cov[X,Y ] + f ′′yy(λ)Var[Y ]

]
(8)

Given that f(x, y) = x
y and using the fact that E[X − µx] = 0 (This is

valid for both V and W ). We have: Var[X] = E[(X − µx)2] and Cov[X,Y ] =
(X − µx)(Y − µy). We can derive an approximation of E[θk] = E[ VkWk

] around

(µVk , µWk
).

E[θk] = E[
Vk
Wk

] = E[f(Vk,Wk)] ≈ µVk
µWk

− Cov[Vk,Wk]

µ2
Wk

+
Var[Wk]µVk

µ3
Vk

(9)

The formulas of E[Vk] (resp. E[Wk]) and Var[Vk] (resp. V [Wk]) can be derived
analytically. We denote by µv (resp. µw) the arithmetic mean of the values
(resp. weights) corresponding to each entity e ∈ GE . i.e: µv = 1

n

∑
e∈GE

ve and

µw = 1
n

∑
e∈GE

we with n = |GE |.

E[Vk] =
1(
n
k

) ∑
S∈Fk

1

k

∑
e∈S

ve =
1

n

∑
e∈G

E

ve = µv (10)

Var[Vk] =
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

ve − E[Vk]

)2

=
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

ve − µv

)2

=
1

k

(
n

n− 1

(
µv2 − µ

2
v

))
− 1

n− 1

(
µ2
v − µv2

)
with µv2 =

1

n

∑
e∈G

E

v2e

(11)

15see http://www.stat.cmu.edu/~hseltman/files/ratio.pdf

http://www.stat.cmu.edu/~hseltman/files/ratio.pdf
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Same reasoning applies to compute the expected value and the variance re-
lated to Wk:

E[Wk] =
1

n

∑
e∈G

E

we = µw (12)

Var[Wk] =
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

we − E[Wk]

)2

=
1

k

(
n

n− 1

(
µw2 − µ2

w

))
− 1

n− 1

(
µ2
w − µw2

)
with µw2 =

1

n

∑
e∈G

E

w2
e

(13)

We derive now the formula for Cov(Vk,Wk). The same line of reasoning for
the computation of the variance of Vk and Wk applies. We obtain:

Cov[Vk,Wk] =
1(
n
k

) ∑
S∈Fk

(
1

k

∑
e∈S

ve − E[Vk]

)(
1

k

∑
e∈S

we − E[Wk]

)

=
1

k

(
n

n− 1
(µvw − µvµw)

)
− 1

n− 1
(µvµw − µvw)

with µvw =
1

n

∑
e∈G

E

weve

(14)

Using equations (10), (11), (12), (13), (14), we derive the approximation of
E[θk] after simplifications of (9).

E[θk] ≈ Ê[θk] =
(n
k
− 1
) µv
µw

βw +
µv
µw

with βw =
1

n− 1

(
µw2

µ2
w

− µvw
µvµw

)
(15)

The same reasoning applies to approximate Var[θk] using Taylor expansion.
We will confine ourselves to a first order Taylor expansion around (µv, µw) to
make the analytic derivation of the approximation of Var[θk] feasible. Same ob-
servation have been made by [24,11] and [25, p.351] to approximate the variance
for a ratio random variable. We obtain:

Var[θk] = Var[f(Vk,Wk)] ≈ Var[Vk]

µ2
Wk

− 2
µVkCov[Vk,Wk]

µ3
Wk

+
µ2
Vk

Var[Wk]

µ4
Wk

(16)

After simplifications and by using the same line of reasoning when deriving
the expected value approximation reported in equation (15), we obtain:

Var[θk] ≈ V̂ar[θk] =
(n
k
− 1
) µ2

v

µ2
w

(βv + βw)

with βw =
1

n− 1

(
µw2

µ2
w

− µvw
µvµw

)
and βv =

1

n− 1

(
µv2

µ2
v

− µvw
µvµw

) (17)
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We denote by ĈI
1−α
k the approximate confidence interval calculated using

the approximations of the expected value Ê[θk] (15) and the variance V̂ar[θk]
(17) that is:

ĈI
1−α
k =

[
Ê[θk]− z1−α

2

√
V̂ar[θk], Ê[θk] + z1−α

2

√
V̂ar[θk]

]
(18)

It is worth mentioning that, the complexity of the computation of the ap-
proximate confidence interval (18) is linear to the size n. ut

Proof (Proposition 2). To alleviate the text, we will omit σE as a parameter in
the proof and keep in mind that we consider the minimum support threshold
σE . Given that c v d, with c, d two descriptions from D, we have GdE ⊆ GcE .
The proposition stems from the fact that:

1. A(GcE) ≤ UB(GcE) since RandomSMWAmax computes the subset Scmax having
the maximum weighted average A as proven by Epstein and Hirschberg [13].

2. UB is monotonic w.r.t. the partial order ⊆ between sets. That is:

∀S, S′ ⊆ GE : S′ ⊆ S ⇒ UB(S′) ≤ UB(S)

This can be proven by reduction to absurdity. We denote by S′max ⊂ S′ (resp.
Smax ⊂ S) the optimal subset of S′ (resp. S) having its size ≥ σE and the
maximum possible weighted average A. Suppose that ∃S, S′ ⊆ GE : S′ ⊆
S ∧ UB(S′) > UB(S) (A(S′max) > A(Smax)). Since S′ ⊆ S, this means that
there is another subset, namely S′max, in S that observes a greater weighted
average A than the actual optimal subset Smax, which is absurd.

From (1) and (2) we have: A(GdE) ≤ UB(GdE) ≤ UB(GcE). Same reasoning
hold to prove that LB is a lower bound. �

Proof (Proposition 3). In order to prove the desired property for the approximate
confidence intervals, we need to determine first if the variance decreases when k
increases.

k1, k2 ∈ N : if k1 ≤ k2 ⇒ V̂ar[θk1 ] ≥ V̂ar[θk2 ] (19)

From (17), V̂ar[θk] =
(
n
k − 1

) µ2
v

µ2
w

(βv + βw). Given that n
k − 1 is a decreasing

function w.r.t. k, proving (19) requires that βv + βw is a positive quantity. This
stems from the fact that the original formula of the approximate variance given
in (16) is positive. This can be proved by a direct application of the Covariance
inequality [37, p, 149],which itself is an application of the Cauchy-Schwarz in-
equality [39]. Since βv +βw is of the same sign of (17), we have βv +βw ≥ 0. For
the sake of a self-contained proof of this assertion below:

We have, from (16) is of the same sign of:

Var[Vk]

µ2
Vk

− 2
Cov[Vk,Wk]

µVkµWk

+
Var[Wk]

µ2
Wk

(20)
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From the Covariance inequality, we have Cov[Vk,Wk] ≤ σ[Vk]σ[Wk] with σ2[Vk] =
Var[Vk] and σ2[Wk] = Var[Wk], hence we have the quantity (20) is greater than:

σ2[Vk]

µ2
Vk

− 2
σ[Vk]σ[Wk]

µVkµWk

+
σ2[Wk]

µ2
Wk

(21)

This quantity can be rewritten as such:

σ[Vk]

µVk

(
σ[Vk]

µVk
− σ[Wk]

µWk

)
− σ[Wk]

µWk

(
σ[Vk]

µVk
− σ[Wk]

µWk

)
(22)

This quantity is clearly positive since (22) is equal to
(
σ[Vk]
µVk
− σ[Wk]

µWk

)2

≥ 0.

Hence βv+βw ≥ 0 which confirms that the variance is deceasing w.r.t. increasing
size k as stated in equation (19).

Recall that, we want to ensure by approximation that for σE ≤ k1 ≤ k2 with

σE a threshold on the context support, we have ĈI
1−α
k2 ⊆ ĈI

1−α
k1 . Hence, we

need to find the minimum σE above which such property is valid. This amounts
to find a lower bound for σE such that:

z1−α
2

√
V̂ar[θk1 ]− z1−α

2

√
V̂ar[θk2 ] ≥

∣∣∣Ê[θk1 ]− Ê[θk2 ]
∣∣∣ (23)

By using the definitions of V̂ar[θk] and Ê[θk] from equations (15) and (17),
the inequality (23) can be rewritten as such:

(√
n

k1
− 1 +

√
n

k2
− 1

)
≤ z1−α

2

√
βv + βw
β2
w

(24)

And since σE ≤ k1 ≤ k2:

2

√
n

σE
− 1 ≤ z1−α

2

√
βv + βw
β2
w

(25)

After simplifications, we obtain:

σE ≥ Cα =
4nβ2

w

z2
1−α2

(βv + βw) + 4β2
w

(26)

ut

Proof (Corollary 1). The proof is a straightforward. From proposition 2, we have
that for any c, d ∈ DE s.t. c v d, if Gc ≥ Gd ≥ σE then:

A(GdE) ∈ OE(GcE , σE) (27)

From proposition 3, if σE ≥ Cα we have:

CI1−α
|GcE |

⊆ ĈI
1−α
|GdE |

(28)

From (27) and (28) and given that OE(GcE , σE) ⊆ ĈI
1−α
|GcE |

, it follows that

A(GdE) ∈ OE(GcE , σE) ⊆ ĈI
1−α
|GcE |

⊆ ĈI
1−α
|GdE |

hence p-value(d) > α. ut
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B Appendix: Enumeration Algorithm

Given a collection of records G which descriptive attributes are A = {a1, ..., am}
which can be boolean, numerical or categorical potentially organized among a
taxonomy. Attributes A allow to structure the search space D by considering
descriptions d ∈ D which are conjunction of conditions over the attributes do-
mains of interpretation. A condition over a categorical attribute is an equality
test while a condition over a numerical attributes is a membership test in an
interval. Gd denotes the set of records of G covered by the description d.

EnumCC algorithm enumerates once and only once all closed descriptions
whose associated subgroups fullfill the minimum support constraint σE . The al-
gorithm follows the same reasoning of most common SD algorithms and goes
in the same line of CloseByOne Algorithm (CbO) [31] and Divide-And-Conquer
Algorithm [3]. It traverses the search lattice D in a top-down (DFS) fashion
starting from the most general description ∗ whose support is the entire collec-
tion G. It proceeds by atomic refinements to progress, step by step, toward more
specific descriptions. This is enabled by a refinement operator denoted ηj for the
jth attribute. ηj keeps all conditions related to attributes ai for i 6= j intacts,
and refines only the jth condition. If the condition is related to a numerical
attribute a left or a right minimal change is performed [23]. If the condition is
related to a categorical attribute, return an equality test for all possible values of
the domain (if the condition was never refined before), otherwise no refinement
is possible. If the attribute is an HMT (categorical attribute augmented with a
taxonomy) only one tag is refined to its child or an additional tag is appended
[2]. In a nutshell, for each parameter description d, EnumCC starts by assessing
if the subgroup Gd is valid (|Gd| ≥ σ) and. In this case, the closed description
closure d is computed and returned only if the canonicity test is passed (cf.
[16, p.66-68]). closure d corresponds to the tightest description of Gd (maxi-
mum in the sense of partial order v ordering descriptions in D) which is the

Algorithm 2: EnumCC(G, d, σG, f, cnt)

Inputs : G is the collection of records depicted each by m attributes,
d a description from D, σG a support threshold,
f ∈ [1,m] a refinement flag, cnt a boolean.

Output: yields all closed descriptions, i.e. clo[D] = {clo(d) s.t. d ∈ D}
1 if |Gd| ≥ σ then

2 closure d← δ(Gd) . compute the most specific description of Gd

3 if dlf closure d then
4 cnt c← copy(cnt) . cnt c value can be modified by a caller algorithm
5 yield (closure d, Gclosure d, cnt c) . yield results and wait for next call
6 if cnt c then
7 foreach j ∈ [f,m] do
8 foreach d′ ∈ ηj(closure d) do
9 foreach (nc, Gnc, cnt nc) ∈ EnumCC(G, d′, σG, j, cnt c) do

10 yield (nc, Gnc, cnt nc)
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conjunction of all descriptions (conjunction of conditions) related to the records
g ∈ Gd. Next, if the caller-algorithm allows the algorithm to continue (boolean
cnt c kept True), the description closure d is refined by starting from the last
refined attribute (pointed out by the flag f ∈ [1..m]), since refining preceding
attributes will certainly causes the next canonicity test to fail causing the algo-
rithm to backtrack. Eventually, a recursive call is done to explore the sub-search
space related to d (closure d).
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C Appendix: Additional Experiments

C.1 Performance evaluation

Additional experiments reporting the execution time and the number of reported
signficant pattern by DEvIANT on Movielens, Yelp, CHUS and EPD8. In this
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Fig. 5: Effectiveness of DEvIANT on Movielens when varying sizes of both search
spaces DE and DI , minimum context support threshold σE and the critical value α.
Default parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05.
Bootstrapping Confidence intervals for handling variability of outcomes is disabled
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Fig. 6: Effectiveness of DEvIANT on Movielens when varying sizes of both search
spaces DE and DI , minimum context support threshold σE and the critical value α.
Default parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05.
Bootstrapping Confidence intervals for handling variability of outcomes is enabled
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Fig. 7: Effectiveness of DEvIANT on Yelp when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled
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Fig. 8: Effectiveness of DEvIANT on Yelp when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is enabled
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experiments we study also the overhead induced by the computation of the
bootstrapping confidence interval required to handle the variability of outcomes
and evaluated for each generated group of individuals.
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Fig. 9: Effectiveness of DEvIANT on CHUS when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled

76 153 230 307
nb items entities

0
10
20
30
40
50
60
70

#
P

at
te

rn
s

102

103

E
xe

cu
ti

on
ti

m
e

(s
)

DEPICT

0 20 41 82
nb items individuals

0
50
100
150
200
250
300

#
P

at
te

rn
s

101

102

103

104

E
xe

cu
ti

on
ti

m
e

(s
)

DEPICT

0.001 0.01 0.05
σE

0
10
20
30
40
50
60
70
80

#
P

at
te

rn
s

102

103

E
xe

cu
ti

on
ti

m
e

(s
)

DEPICT

0.001 0.01 0.05
Critcial Value α

0
10
20
30
40
50
60
70
80

#
P

at
te

rn
s

102

103

104

E
xe

cu
ti

on
ti

m
e

(s
)

DEPICT

Fig. 10: Effectiveness of DEvIANT on CHUS when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is enabled
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Fig. 11: Effectiveness of DEvIANT on EPD8 when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is disabled.
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Fig. 12: Effectiveness of DEvIANT on EPD8 when varying sizes of both search spaces
DE and DI , minimum context support threshold σE and the critical value α. Default
parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Boot-
strapping Confidence intervals for handling variability of outcomes is enabled.



26

C.2 Qualitative evaluation

In this appendix, we report additional illustrative examples depicting the signif-
icant patterns discovered by DEvIANT when carried on the Eighth European
Parliament (EPD8) dataset, US House of representatives (CHUS) dataset and
Yelp dataset.

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 S&D 8.10 Revision of the Treaties and 0.81 0.44 < 0.001 Conflict
intergovernmental conferences

p2 * 2 Internal market, single market 0.27 0.54 < 0.001 Consensus
6 External relations of the Union

p3 S&D 8.30 Treaties in general 0.81 0.55 < 0.001 Conflict

p4 * 2 Internal market, single market, 0.27 0.53 < 0.001 Consensus
4.15 Employment policy, act. combat unemployment

p5 ALDE 1.20.09 Protection of privacy and data protection 0.73 0.48 < 0.001 Conflict
8 State and evolution of the Union

Table 7: Top-5 Exceptional consensual/conflictual subjects among European Political
Groups in the 8th EU parliament. α = 0.01. Patterns are ranked by the absolute
difference between Ag(c) and Ag(∗).

id group (g) context (c) Ag(∗) Ag(c) p-value IA

p1 * 10 Health & Medical 0.05 -0.33 < 0.001 Conflict

p2 * 03 Automotive 0.05 -0.29 < 0.001 Conflict

p3 * 14 Local Services 0.05 -0.25 < 0.001 Conflict

p4 newcommer 21.177 American (Traditional) and -0.06 0.24 < 0.01 Consensus
21.24 Breakfast & Brunch

p5 * 11 Home Services 0.05 -0.25 < 0.01 Conflict

Table 8: Top-5 Exceptional consensual/conflictual subjects among Yelp users. α =
0.01. Patterns are ranked by the absolute difference between Ag(c) and Ag(∗).


	DEvIANT : Discovering significant exceptional (dis)agreement within groups
	Introduction
	Background and Related Work
	Problem Definition
	Krippendorff's Alpha
	Mining Significant Patterns with Krippendorff's Alpha

	Exceptional Contexts: Evaluation and Pruning
	Gauging Exceptionality of a Subgroup
	Pruning the Search Space

	On handling variability of outcomes among raters
	A Branch-and-bound solution: Algorithm DEvIANT
	Empirical Evaluation
	Conclusion and Future Directions
	Appendix: Proofs
	Appendix: Enumeration Algorithm
	Appendix: Additional Experiments
	Performance evaluation
	Qualitative evaluation



