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DEvIANT : Discovering significant exceptional (dis)agreement within groups

We consider any type of data featuring individuals (e.g., parliamentarians, customers) performing observable actions (e.g., votes, ratings) on entities (e.g., legislative procedures, movies). In such data, we aim to find contexts (i.e. subgroup of entities) for which an exceptional (dis)agreement is observed among a group of individuals. To this end, we introduce the novel problem of discovering statistically significant exceptional contextual intra-group agreement patterns. To handle the data sparsity, we use the Krippendorff's Alpha measure to assess the agreement among individuals. We devise a branch-and-bound algorithm, named DEvIANT, to discover such patterns. DEvIANT exploits both closure operators and tight optimistic estimates. We derive analytic approximations for the confidence intervals (CIs) associated to patterns for a computationally efficient significance assessment. We prove that these approximate CIs are nested along specialization of patterns. This makes it possible to incorporate pruning properties in the algorithm to early discard non-significant patterns. Empirical study on several datasets demonstrates the efficiency and the usefulness of DEvIANT.

Introduction

Consider data describing the organization and votes of the European Parliament (EP). Such dataset records the votes of each member (MEP) in voting sessions held in the parliament, as well as the information on the parliamentarians (e.g., gender, national party, European party alliance) and the sessions (e.g., topic, date). This data offers interesting opportunities to study the agreement or disagreement of coherent subgroups, especially to highlight some unexpected ones. It is to be expected that on the majority of voting sessions, MEPs will vote along the lines of their European party alliance. However, when matters are of interest to a specific nation within Europe, alignments may change and agreements can be formed or dissolved. For instance, when a ballot on fishing rights is put before the MEPs, the island nation of the UK can be expected to agree on a specific course of action regardless of their party alliance, fostering an exceptional agreement where strong polarization exists otherwise.

We aim to discover such exceptional (dis)agreements. This is not limited to just EP or voting data: members of the US congress also votes on bills while Amazon-like customers post ratings or reviews of products. A challenge with this approach when considering voting or rating data, however, is to effectively handle the absence of outcomes (sparsity) which is high in such datasets. For instance, in the European parliament data, MEPs votes on average on only a three-quarter of all sessions. These outcomes are not missing at random: special workgroups are often formed of MEPs who are tasked with properly studying a specific topic, and members of these workgroups are more likely to vote on their topic of study. Hence, present values are likely associated with more pressing votes, which means that missing values need to be treated carefully. This problem becomes much worse when looking at Amazon or Yelp rating data: the vast majority of customers will not have rated the vast majority of products/places.

In this paper, we introduce the problem of discovering significantly exceptional contextual intra-group agreement patterns, rooted in the Subgroup Discovey (SD) [START_REF] Wrobel | An algorithm for multi-relational discovery of subgroups[END_REF]/ Exceptional Model Mining (EMM) [START_REF] Duivesteijn | Exceptional model mining[END_REF] framework. To tackle the data sparsity issue, we measure the agreement among groups with Krippendorff 's alpha [START_REF] Krippendorff | Estimating the reliability, systemic error and random error of interval data[END_REF], a measure developed in the context of content analysis [START_REF] Krippendorff | Content analysis, an introduction to its methodology[END_REF] which is well-known to handle missing outcomes elegantly. We develop a branchand-bound algorithm to automatically find subgroups featuring statistically significant exceptional (dis)agreement among groups. This algorithm enables to early discard non significant subgroups by pruning unpromising branches of the search space. Fig. 1 illustrates this. Suppose, we are interested by subgroups of entities (e.g. voting sessions) whose sizes are greater than a support threshold σ. For a given subgroup of size X ≥ σ, we gauge its exceptionality by its pvalue, i.e. the probability of observing a quality (i.e. Krippendorff's alpha) for a random subset of entities is at least as extreme as the one observed for the subgroup. Hence avoiding to report subgroups which observe a high quality that appears due to chance only (i.e. accepting the null hypothesis). For this task to be achieved, we can estimate the empirical distribution of the quality of random Fig. 1: Main DEvIANT properties for safe sub-search space pruning. A subgroup is reported as significant if its related Krippendorff's Alpha falls in the critical region of the corresponding empirical distribution of random subsets (DFD). When traversing the search space downward (decreasing support size) the approximate confidence intervals are nested . If the optimistic estimates region falls into the confidence interval computed on the related DFD, the sub-search space can be safely pruned.

subsets (DFD: Distribution of False Discoveries, cf. [START_REF] Duivesteijn | Exploiting false discoveries-statistical validation of patterns and quality measures in subgroup discovery[END_REF][START_REF] Lemmerich | Mining subgroups with exceptional transition behavior[END_REF]) and establish, for a certain critical value α, a confidence interval CI 1-α X over the corresponding distribution under the null hypothesis. If the subgroup quality is outside CI 1-α X , this means that the subgroup is statistically significant (p-value ≤ α), otherwise the subgroup is a spurious finding. We prove by approximation that the confidence intervals are nested:

σ ≤ Y ≤ X ⇒ CI 1-α X ⊆ CI 1-α Y
. Moreover, we compute a tight optimistic estimate (OE) [START_REF] Grosskreutz | Tight optimistic estimates for fast subgroup discovery[END_REF] to have a lower-bound and an upper bound of the quality of any specialization of a subgroup having its size greater than σ. Combining this two properties, if the OE region falls into the corresponding CI, we can safely prune large parts of the sub-search space that do not contain significant subgroups. In summary, the main contributions are:

-We introduce the novel problem of discovering statistically significant exceptional contextual intra-group agreement patterns (Section 3). -We derive an analytical approximation of the confidence intervals associated to subgroups. This allows a computationally efficient assessment of the statistical significance of the findings. Furthermore, we show that approximate confidence intervals are nested (Section 4). Particular attention is also paid to the variability of outcomes among raters (Section 5). -We devise a branch-and-bound algorithm to discover exceptional contextual intra-group agreement patterns (Section 6). It exploits tight optimistic estimates on Krippendorff's alpha and nested approximate CIs property to early discard non significant patterns. -We report an empirical evaluation (Section 7) which studies the performance and the potential of the proposed approach.

Background and Related Work

Measuring Agreement. Several measures of agreement focus on two targets (Pearson's correlation coefficient, Spearman's ρ, Kendall's τ , Association) and cannot handle missing values well. As pointed out by Krippendorff [28,p.244], using association and correlation measures to assess agreement leads to particularly misleading conclusions. When all data falls along a line Y = aX + b, correlation is perfect, but agreement requires that Y = X. Cohen's κ [START_REF] Cohen | A coefficient of agreement for nominal scales[END_REF] is a seminal measure of agreement between two raters who classify items into a fixed number of mutually exclusive categories. The Fleiss κ [START_REF] Fleiss | Measuring nominal scale agreement among many raters[END_REF] extends this notion to multiple raters and requires that each item receives the exact same number of ratings. Krippendorff's alpha generalizes these measures while handling multiple raters, missing outcomes and several metrics [28, p.232]. Discovering Significant Patterns. The statistical assessment of patterns have received a considerable attention for a decade [START_REF] Webb | Discovering significant patterns[END_REF][START_REF] Hämäläinen | Statistically sound pattern discovery[END_REF][START_REF] Hämäläinen | A tutorial on statistically sound pattern discovery[END_REF], especially for association rules [START_REF] Hämäläinen | Statapriori: an efficient algorithm for searching statistically significant association rules[END_REF][START_REF] Terada | Statistical significance of combinatorial regulations[END_REF][START_REF] Minato | A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration[END_REF]. Some works focused on the statistical significance of results in Subgroup Discovery/Exceptional Model Mining during enumeration [START_REF] Duivesteijn | Exploiting false discoveries-statistical validation of patterns and quality measures in subgroup discovery[END_REF][START_REF] Lemmerich | Mining subgroups with exceptional transition behavior[END_REF] or a posteriori [START_REF] Duivesteijn | Subgroup discovery meets bayesian networks -an exceptional model mining approach[END_REF] for statistical validation of the found subgroups.

Voting and Rating data Analysis. In a previous work [START_REF] Belfodil | Flash points: Discovering exceptional pairwise behaviors in vote or rating data[END_REF], we proposed a method to discover exceptional inter-group agreement in voting or rating data.

This method does not allow to discover intra-group agreement. Several works in the litterature addressed the problem of uncovering groups in rating datasets whose members exhibit an agreement or discord [START_REF] Das | Mri: Meaningful interpretations of collaborative ratings[END_REF][START_REF] Omidvar-Tehrani | Multiobjective group discovery on the social web[END_REF] or a specific rating distribution [START_REF] Amer-Yahia | Exploring rated datasets with rating maps[END_REF] (e.g. polarized, homogoneous) given upfront by the end-user. This is done by aggregating the ratings by using an arithmetic mean or a rating distribution. However, none of these methods allow to discover automatically exceptional (dis)agreement within groups. Moreover, these methods may output misleading hypotheses over the intra-group agreement. This is due to two main factors: aggregating ratings in a distribution is (i) highly affected by the data sparsity (e.g. two reviewees may have significantly different number of expressed ratings) and (ii) may conceal the true nature of the underlying intra-group agreement. For instance, a rating distribution computed for a collection of movies may highlight a polarized distribution of ratings (interpreted as a disagreement) while ratings over each movie may describe a consensus between raters (movies are either highly or lowly rated or by the majority of the group). These two issues are addressed by Krippendorff's alpha.

Problem Definition

The data we are interested in consists of a set of individuals (e.g. social network users, parliamentarians) who give outcomes (e.g. ratings, votes) on entities (e.g. movies, ballots ). This type of data is called behavioral dataset (e.g. Tab. 1). The elements from G I (resp. G E ) are augmented with descriptive attributes A I (resp. A E ). Attributes a ∈ A I (resp. A E ) may be Boolean, numerical or categorical attributes potentially organized among a taxonomy. Subgroups (subsets) of G I (resp. G E ) can be defined using descriptions from D I (resp. D E ). These descriptions are formalized by conjunctions of conditions on the values of the attributes. Descriptions of D I are called groups, denoted g. (iv) it takes into consideration the agreement expected by chance [START_REF] Krippendorff | Content analysis, an introduction to its methodology[END_REF]. In its most general form, A is defined by:

Definition 1 (Behavioral Dataset

A = 1 - D o D e (1) 
where D o (resp. D e ) is a measure of the disagreement observed (resp. by chance). Hence, when A = 1, the agreement is as large as it can possibly be (given the class prior), and when A = 0, the agreement is indistinguishable to agreement by chance. We can also have A < 0, where disagreement is larger than expected by chance and which corresponds to systematic disagreement. Given a behavioral dataset B, we want to measure Krippendorff's alpha for a given context c ∈ D E characterizing a subset of entities G c E ⊆ G E , which indicates to what extent the individuals who comprise some selected group are in agreement g ∈ D I . From Eq. (1), we have A(S) = 1 -Do(S) De for any S ⊆ G E . Note that the measure takes into consideration only entities where at least two individuals expressed an outcome. We assume that the entities that do not fulfil this requirement are removed in preprocessing.

D o (S) = 1

e∈S n e c,k∈O 2

δ ck • e∈S n ec • n ek n e -1 ( 2 
)
n e is the number of expressed outcomes for the entity e and n ec (resp. n ek ) represents the number of outcomes equal to c (resp. k) expressed for the entity e. δ ck is a distance measure between outcomes, which can be defined according to the domain of the outcomes (e.g. δ ck can correspond to the Kronecker delta for categorical outcomes or distance between ordinal values for ratings. Choices for the distance measure are discussed in [START_REF] Krippendorff | Computing krippendorff's alpha-reliability[END_REF]). We define below D e that represents the disagreement expected by chance in Krippendorff's alpha:

D e = 1 e∈G E n e • ( e∈G E n e -1) c,k∈O 2 δ ck • n c • n k (3) 
With n c (resp. n k ) the number of expressed outcomes equal to c (resp. k) observed in the entire behavioral data. This corresponds to the disagreement by chance observed on the overall marginal distribution of outcomes.

[F]or [A]gainst e 1 e 2 e 3 e 4 e 5 e 6 i 1 ) leads to the following statement: "while parliamentarians are slightly in agreement in overall terms, judicial cooperation related questions create systematic disagreement among the parliamentarians".
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Mining Significant Patterns with Krippendorff 's Alpha

Considering a selected group of individuals g ∈ D I , we are interested in finding contexts c ∈ D E where the observed intra-agreement, denoted A g (c), significantly differs from the expected intra-agreement (i.e. that appear due to chance alone). In the same spirit as [START_REF] Duivesteijn | Exploiting false discoveries-statistical validation of patterns and quality measures in subgroup discovery[END_REF][START_REF] Lemmerich | Mining subgroups with exceptional transition behavior[END_REF][START_REF] Webb | Discovering significant patterns[END_REF], we evaluate the quality of patterns by statistical significance of the contextual intra-agreement. This choice is motivated by: (i) the desire to not specify to the algorithm an arbitrary threshold on the distance from the overall intra-agreement observed (fixing the critical value α is more intuitive), (ii) the recommendations of Krippendorff [START_REF] Hayes | Answering the call for a standard reliability measure for coding data[END_REF] to provide a confidence interval on the alpha metric rather than a point-value.

In this work, we are interested in finding patterns of the form (g, c) ∈ D I ×D E highlighting an exceptional intra-agreement between members of a group of individuals g over a context c. To perform such task, we formalize the problem using the well-established framework of SD/EMM [START_REF] Duivesteijn | Exceptional model mining[END_REF], while giving particular attention to the statistical significance and soundness of the discovered patterns [START_REF] Hämäläinen | A tutorial on statistically sound pattern discovery[END_REF].

Problem Statement. (Discovering Exceptional Contextual Intra-group Agreement patterns). Given a behavioral dataset B = G I , G E , O, o , a minimum group support threshold σ I , a minimum context support threshold σ E , a significance critical value α ∈]0, 1] and the null hypothesis H 0 corresponding to that the observed Krippendorff's alpha is generated by a distribution of false discoveries (cf. [START_REF] Duivesteijn | Exploiting false discoveries-statistical validation of patterns and quality measures in subgroup discovery[END_REF]). The goal is to find the pattern set P ⊆ D I × D E such that: ∀(g, c) ∈ P :

|G g I | ≥ σ I ∧ |G c E | ≥ σ E we have: p-value g (c) ≤ α

Exceptional Contexts: Evaluation and Pruning

From now and on, to avoid overloading notation and for the sake of simplicity, we omit the exponent g if no confusion can arise, while keeping in mind a selected group of individual g ∈ D I related to a subset G g I ⊆ G I .

Gauging Exceptionality of a Subgroup

To evaluate to what extent our findings are exceptional, we follow the significant pattern mining paradigm. That is, we consider each context c as a hypothesis test which returns a p-value. The p-value is the probability of obtaining an intra-agreement at least as extreme as the one observed over the current context A (G c E ), assuming the truth of the null hypothesis H 0 . The pattern is accepted if H 0 is rejected. This happens if the p-value is under a critical significance value α which amounts to test if the observed intra-agreement A (G c E ) is outside the confidence interval CI 1-α established using the distribution assumed under H 0 .

H 0 corresponds to a baseline finding. i.e. the observed contextual intraagreement is generated by the distribution of random subsets equally likely to occur, a.k.a: Distribution of False Discoveries (DFD, c.f. [START_REF] Duivesteijn | Exploiting false discoveries-statistical validation of patterns and quality measures in subgroup discovery[END_REF]). We resolve to evaluate the p-value of the observed A against the distribution of random subsets of a cardinality equal to the size of the observed subgroup G c E . The subsets are issued by a uniform sampling without replacement from the entire entities collection. The rationale behind using sampling without replacement is that the observed subgroup does not contain multiple instances of the same entity. Moreover, drawing samples only from the collection of subsets of size equal to |G c E | allows to drive more judicious conclusions: the variability of the statistic A is impacted by the size of the considered subgroups, since smaller subgroups are more likely to observe low/high values of A. The same reasoning was followed in [START_REF] Lemmerich | Mining subgroups with exceptional transition behavior[END_REF] We define θ k : F k → R as the random variable corresponding to the observed intra-agreement A of k-sized subsets S ∈ G E . i.e. for any k ∈

[1, n] with n = |G E | we have θ k (S) = A(S) and F k = {S ∈ G E s.t. |S| = k}. F k is
then the set of possible subsets which are equally likely to occur under the null hypothesis H 0 . That is P(S ∈ F k ) = n k -1 . We denote by CI 1-α k the (1 -α) confidence interval related to the probability distribution of θ k under the null hypothesis H 0 . To easily manipulate θ k , we reformulate A using equations ( 1), ( 2) and (3) as such:

A(S) = e∈S v e e∈S w e
with w e = n e and v e = n e -

1 D e c,k∈O 2 δ ck • n ec • n ek (n e -1) (4) 
Considering the null hypothesis H 0 and under the assumption that the underlying distribution of intra-agreements is a normal distribution

4 N (µ k , σ 2 k ), one can define CI 1-α k by computing µ k = E[θ k ] and σ 2 k = Var[θ k ]
. Doing so, requires either calculating estimator of such moments empirically by drawing a large number r of uniformly generated samples from F k or deriving analytically the formula of E[θ k ] and Var[θ k ]. In the former case, the confidence interval CI 1-α k endpoints are given by [17, p.9]:

µ k ± t 1-α 2 ,r-1 σ k 1 + (1/r
) with µ k and σ k being estimated empirically on the r samples and t 1-α 2 ,r-1 the (1 -α 2 ) percentile of Student's t-distribution with r -1 degrees of freedom. In the latter case (µ k and σ k are known/derived analytically), the (1 -α) confidence interval can be computed in its most basic form, that is

CI 1-α k = [µ k -z (1-α 2 ) σ k , µ k + z (1-α 2 ) σ k ] with z (1-α 2 ) the (1 -α 2 ) percentile of N (0, 1)
. However, on one hand, due to the problem setting, establishing the confidence interval empirically is computationally expensive since it need to be calculated for each enumerated context which can become quickly unfeasible even for relatively small behavioral datasets. In the other hand, deriving analytically a computationally efficient form of

E(θ k ) is notoriously difficult, given that E[θ k ] = 1 ( n k ) S∈F k e∈S ve e∈S we and Var[θ k ] = 1 ( n k ) S∈F k e∈S ve e∈S we -E[θ k ] 2 .
Since θ k can be seen as a weighted arithmetic mean, one can model the random variable θ k as the ratio

V k W k . With V k , W k two random variables V k : F k → R and W k : F k → R with V k (S) = 1 k e∈S v e and W k (S) = 1 k e∈S w e .
An elegant way to deal with a ratio of two random variables is to approximate its moments using the Taylor series following the line of reasoning of [START_REF] Duris | Mean and variance of ratios of proportions from categories of a multinomial distribution[END_REF] and [25, p.351], since no easy analytic expression of E[θ k ] and Var[θ k ] can be derived. For the sake of brevity, the detailed computation of the formulas presented next are omitted. For more details, please refer to Appendix A.

Proposition 1 (An approximate Confidence Interval

CI 1-α k for θ k ). Given k ∈ [1, n] and a significance critical value α ∈]0, 1], CI 1-α k is given by: CI 1-α k = E[θ k ] -z 1-α 2 Var[θ k ], E[θ k ] + z 1-α 2 Var[θ k ] (5) 
with:

E[θ k ] a Taylor approximation for the expectation E[θ k ] expanded around (µ V k , µ W k ) and Var[θ k ] a Taylor approximation for Var[θ k ]
given by:

E[θ k ] = n k -1 µv µw βw + µv µw Var[θ k ] = n k -1 µ 2 v µ 2 w (βv + βw) (6) 
with:

µ v = 1 n e∈G E v e µ v 2 = 1 n e∈G E v 2 e µ w = 1 n e∈G E w e µ w 2 = 1 n e∈G E w 2 e n = |G E | µ vw = 1 n e∈G E v e w e
and:

β v = 1 n -1 µ v 2 µ 2 v - µ vw µ v µ w β w = 1 n -1 µ w 2 µ 2 w - µ vw µ v µ w
It is worth mentioning that, the complexity of the computation of the approx-

imate confidence interval CI 1-α k is O(n) with n the size of entities collection G E .

Pruning the Search Space

Optimistic Estimate on Krippendorff 's Alpha: to quickly prune unpromising areas of the search space, we define a tight optimistic estimate [START_REF] Grosskreutz | Tight optimistic estimates for fast subgroup discovery[END_REF] on Krippendorff's alpha. We leverage results of Eppstein and Hirschberg [START_REF] Eppstein | Choosing subsets with maximum weighted average[END_REF] who propose an elegant linear algorithm Random-SMWA 5 to find subsets with maximum weighted average. Remind that A can be seen as a weighted average from Eq. ( 4). In a nutshell, Random-SMWA seeks to remove k values to find a subset of S having |S| -k values with maximum weighted average. The authors model the problem as such: given |S| values decreasing linearly with time, find the time at which the |S| -k maximum values add to zero. In the scope of this work and given σ E a user defined support threshold on the minimum allowed size of context extents, k is fixed to |S| -σ E . The obtained subset correspond to the smallest allowed subset having its support ≥ σ E maximizing the weighted average quantity A. The Random-SMWA algorithm can be tweaked 6 to retrieve the smallest subset of size ≥ σ E having analogously the minimum possible weighted average quantity A. We refer to the algorithm returning the maximum (resp. minimum) possible weighted average by RandomSMWA max (resp. RandomSMWA min ).

Proposition 2 (Upper and Lower bounds for A). Given S ⊆ G E , minimum context support threshold σ E , and the following functions:

U B(S) = A (RandomSMWA max (S, σ E )) LB(S) = A RandomSMWA min (S, σ E )
we know that LB (resp. U B) is a lower (resp. upper) bound for A, i.e.:

∀c, d ∈ D E : c d ∧ |G c E | ≥ |G d E | ≥ σ E ⇒ LB(G c E ) ≤ A(G d E ) ≤ U B(G c E )
Using these results, we define the optimistic estimate for A as an interval bounded by the minimum and the maximum A measure that one can observe from the subsets of a given subset S ⊆ G E , that is: OE(S, σ E ) = [LB(S), U B(S)]. Nested Confidence intervals for A: the desired property between two confidence intervals of the same significance level α related to respectively

k 1 , k 2 with k 1 ≤ k 2 is that CI 1-α k1 encompasses the CI 1-α k2 .
Colloquially speaking, larger samples lead to "narrower" confidence intervals. This property is intuitively plausible since the dispersion of the observed intra-agreement for smaller samples is likely to be higher than the dispersion for larger samples. Having such property allows to prune sub-search space related to a context c when traversing the search space downward if the optimistic estimate

OE(G c E , σ E ) ⊆ CI 1-α |G c E | . Proving CI 1-α k2 ⊆ CI 1-α k1
for k 1 ≤ k 2 for the exact confidence interval is an uneasy task, since it requires to derive analytically E[θ k ] and Var[θ k ] for any 1 ≤ k ≤ n. It is worth mentioning that the expected value E[θ k ] varies when k varies. We study such property for the approximate confidence interval CI 1-α k . 5 Random-SMWA: Randomized algorithm -Subset with Maximum Weighted Average. 6 Finding the subset having the minimum weighted average is a dual problem to finding the subset having the maximum weighted average. To solve the former problem using Random-SMWA, we modify the values of vi to -vi and keep the same weights wi.

Proposition 3 (Minimum cardinality constraint for nested approximate confidence intervals). Given a context support threshold σ E and α:

if σ E ≥ C α = 4nβ 2 w z 2 1-α 2 (β v + β w ) + 4β 2 w then: ∀k 1 , k 2 ∈ N : σ E ≤ k 1 ≤ k 2 ⇒ CI 1-α k2 ⊆ CI 1-α k1
Combining Properties (1), ( 2) and ( 3), we formalize the pruning region property which answers to: when to prune the sub-search space under a context c? Corollary 1 (Pruning regions). Given a behavioral dataset B, a context sup-

port threshold σ E ≥ C α , a significance critical value α ∈]0, 1], For any c, d ∈ D E such that c d with |G c E | ≥ |G d E | ≥ σ E , we have: OE(G c E , σ E ) ⊆ CI 1-α |G c E | ⇒ A(G d E ) ∈ CI 1-α |G d E | ⇒ p-value(d) > α
Proofs: all proofs of propositions and properties can be found in Appendix A.

On handling variability of outcomes among raters

In Section 4, we defined the confidence interval CI 1-α established over the DFD. By taking into consideration the variability induced by the selection of a subset of entities, Such confidence interval enables to avoid reporting subgroups indicating an intra-agreement likely (w.r.t. the critical value α) to be observed by a random subset of entities. For a more statistically sound results, one should not only take into account the variability induced by the selection of subsets of entities, but also the variability induced by the outcomes of the selected group of individuals. This is well summarized by Hayes and Krippendorff [START_REF] Hayes | Answering the call for a standard reliability measure for coding data[END_REF] "The obtained value of A is subject to random sampling variability-specifically variability attributable to the selection of units (i.e. entities) in the reliability data (i.e. behavioral data) and the variability of their judgments". To address these two questions, they recommend to employ a standard Efron & Tibshirani bootstrapping approach [START_REF] Efron | An introduction to the bootstrap[END_REF] to empirically generate the sampling distribution of A and produce an empirical confidence interval CI 1-α bootstrap . Recall that we consider here a behavioral dataset B reduced to the outcomes of a selected group of individual g. Following the bootstrapping scheme proposed by Krippendorff [START_REF] Krippendorff | Bootstrapping distributions for krippendorff's alpha[END_REF][START_REF] Hayes | Answering the call for a standard reliability measure for coding data[END_REF][START_REF] Zapf | Measuring inter-rater reliability for nominal data-which coefficients and confidence intervals are appropriate[END_REF] , the empirical confidence interval is computed by repeatedly performing the following steps: (1) resample n entities from G E with replacement; (2) for each sampled entity, draw uniformly n e •(n e -1) pairs of outcomes according to the distribution of the observed pairs of outcomes; (3) compute the disagreement observed and calculate the Krippendorff alpha quantity on the resulting resample. This process, repeated b times leads to a vector of bootstrap estimates (sorted in ascending order) B = [ Â1 , ..., Âb ]. Given the empirical distribution B, the empirical confidence interval CI 1-α bootstrap is defined by the percentiles of B. i.e. CI 1-α 

bootstrap = [ B α 2 •b , B(1-α 2 )•b ]. We denote by MCI 1-α (Merged CI) the confidence interval that takes into consideration both CI 1-α = [le 1 , re 1 ] and CI 1-α bootstrap = [le 2 , re 2 ]. We have MCI 1-α = [min(le 1 , le 2 ), max(re 1 , re 2 )].
6 A Branch-and-bound solution: Algorithm DEvIANT Subgroup Enumeration. In order to detect exceptional contextual intra-group agreement patterns, we need to enumerate candidate p = (g, c) ∈ (D I , D E ). For this task, different enumeration algorithms exist in the literature ranging from heuristic (e.g. beam-search [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF]) to exhaustive techniques (e.g. GP-growth [START_REF] Lemmerich | Generic pattern trees for exhaustive exceptional model mining[END_REF]).

In this paper, we choose to exhaustively enumerate all candidate subgroups while leveraging closure operators [START_REF] Ganter | Pattern structures and their projections[END_REF] (since A computation only depends on the extent of a pattern). This makes it possible to avoid redundancy and to substantially reduce the number of visited patterns. With this aim in mind, and since the data we deal with are of the same format as those handled in our previous work [START_REF] Belfodil | Flash points: Discovering exceptional pairwise behaviors in vote or rating data[END_REF], we apply EnumCC (Enumerate Closed Candidates) [START_REF] Belfodil | Flash points: Discovering exceptional pairwise behaviors in vote or rating data[END_REF] to enumerate subgroups g (resp. c) in D I ( resp. D E ). EnumCC goes in the same line of CloseByOne algorithm [START_REF] Kuznetsov | Comparing performance of algorithms for generating concept lattices[END_REF]. Given G a collection of records (which can be either G E or G I ), EnumCC traverses the search space in a DFS fashion and enumerates once and only once all the closed descriptions that fulfill the minimum support constraint σ. For more details, see Appendix B.

DEvIANT (Algorithm 1) implements an efficient branch-and-bound algorithm to Discover statistically significant Exceptional Intra-group Agreement paTterns while leveraging closure, tight optimistic estimates and pruning properties. DEvIANT starts by selecting a group g of individual. Next, the corresponding behavioral dataset B g is established by reducing the original behavioral dataset B to elements concerning solely the individuals comprising G g I . Subsequently, the bootstrap confidence interval CI 1-α bootstrap is calculated. Algorithm 1: DEvIANT(B, σ E , σ I , α)

Inputs : B = G I , G E , O, o is a behavioral dataset,
σE (resp. σI ) minimum support threshold of a context (resp. group), α is a critical significance value (fixed to 0.05 in default setting). Output: P is the set of exceptional intra-group agreement patterns c) is significant and should be kept in the final result set P . Eventually, to reduce the number of reported patterns, we choose to keep only the most general patterns while ensuring that each significant pattern in P is represented by a pattern in P . This formally translates to: ∀p = (g , c ) ∈ P \P : p-value g (c ) ≤ α ⇒ ∃p = (g, c) ∈ P s.t. ext(q) ⊆ ext(p), with ext (q = (g , c )) ⊆ ext (p = (g, c)) defined by G g I ⊆ G g I and G c E ⊆ G c E . This is based on the following postulate: the end-user is more interested by exceptional (dis)agreement within larger groups and/or for larger contexts rather than local exceptional (dis)agreement. Moreover, the end-user can always refine her analysis to obtain more fine-grained results by re-launching the algorithm starting from a specific context or group.

1 P ← {} 2 foreach (g, G g I , contg) ∈ EnumCC(G I , * , σI , 0, True) do 3 G E (g) = {e ∈ E s.t. n g e ≥ e} 4 B g = G E (g), G g I , O, o 5 CI 1-α bootstrap = [ B α 2 •b , B(1-α 2 )•b ] With B = [ Âg 1 , ..., Âg b ] computed on 6 σ g E = max (C α (g) , σE) respectively b resamples of B g 7 foreach (c, G c E , contc) ∈ EnumCC(G E (g), * , σ g E , 0, True) do 8 MCI 1-α |G c E | = merge CI 1-α |G c E | , CI 1-α bootstrap 9 if OE(G c E , σ g E ) ⊆ MCI 1-α |G c E | then 10 contc ← False Prune the unpromising search subspace under c 11 else if A g (G c E ) / ∈ MCI 1-α |G c E | then 12 pnew ← (g, c)
(G c E , σ g E ) is inside MCI 1-α |G c E | the sub-search space under c can be pruned. Otherwise, A g (G c E ) is com- puted and evaluated against MCI 1-α |G c E | . If it is outside MCI 1-α |G c E | , this means that (g,

Empirical Evaluation

We report on both quantitative and qualitative experiments over the implemented algorithms. For reproducibility purposes, the source code and the data are made available in our companion page 7 . The following experiments aim to answer the following questions: (Q 1 ) How well the Taylor approximate CI approaches the empirical CI? (Q 2 ) How efficient is the Taylor approximate CI and the pruning properties? (Q 3 ) Does DEvIANT provide interpretable patterns? Datasets: experiments were carried on four real-world behavioral datasets (see Tab. 3). Two voting datasets (EPD8 and CHUS) and two rating datasets (Movielens and Yelp). Each dataset features entities and individuals that are described by categorical (C), numerical (N) attributes, or categorical attributes augmented with a taxonomy (H). We report also the equivalent number of items (in an itemset language) corresponding to the descriptive attributes (ordinal scaling [START_REF] Ganter | Formal concept analysis -mathematical foundations[END_REF]). . Once both CIs are computed, we measure the distance between them by using the Jaccard index, i.e. dist(ECI

|G E | A E (Items-Scaling) |G I | A I (Items-
1-α k , CI 1-α k ) = 1 - (min(b E ,b T )-max(a E ,a T )) (max(b E ,b T )-min(a E ,a T ))
. We report in Tab. 4, the average µ err and the standard deviation σ err of the observed distances (coverage error) over the 1000 experiments. We notice that the difference between the analytic Taylor approximation and the empirical approximation is negligible (µ err is less than 10 -2). Therefore, the CIs approximated by the two methods are so close, that it does not matter which method is used. Hence, the choice is guided by the computational efficiency. Q 2 -In order to evaluate how efficient are the proposed properties ((i) Taylor approximate CI, (ii) optimistic estimates and (iii) nested approximates CIs), we choose to compare DEvIANT against a Naive approach where the three aforementioned properties are disabled. For a fair comparison, Naive pushes monotonic constraints (minimum support threshold) and employs closure operators while estimating empirically the confidence interval by successive random trials from F k . For this study, we choose to run both algorithms while disabling the bootstrap CI 1-α bootstrap computation since the overhead induced by the computation of CI 1-α bootstrap is the same for both algorithms. We vary the size of the descriptions space related to groups of individuals D I while considering the whole description space of entities. Results of this experiment are reported in Fig. 2. We observe that DEvIANT outperforms Naive in terms of runtime by nearly two orders of magnitude while outputting the same number of the desired patterns.

Furthermore, we report in Fig. 3 the performance of DEvIANT in terms of runtime and the number of outputted patterns. We observe that when varying the descriptions space sizes, DEvIANT requires more time to finish. It is worth mentioning that the size of individuals search space D I substantially affects the runtime of DEvIANT. This is mainly due to the fact that larger D I leads to more candidate group of individuals g which require: (i) DEvIANT to generate the bootstrapping confidence interval CI 1-α bootstrap and (ii) to mine for exceptional contexts c concerning the candidate group g. Finally, we observe that when α decreases, the execution time required for DEvIANT to finish increases while returning more patterns. This may at first, seem counter-intuitive since less patterns are naturally considered significant when alpha decreases, but this is supported by the fact that DEvIANT considers in the resulting pattern set only the most general patterns. Hence, when α decreases, DEvIANT goes deeper in the contexts search space, implying thus much more candidate patterns to be tested and thus a larger results set. The same conclusions can be drawn as well from experiments performed on Yelp, Movielens and CHUS (see Appendix. C). Q 3 -We illustrate a number of examples of the outputted exceptional contextual intra-group agreement patterns in the benchmark datasets. Table 5 reports the exceptional contexts observed among the republicans party during the 115 th congress. For instance, Pattern p 1 illustrated in Fig. 4, highlights a collection of voting sessions addressing Government and Administrative issues where a clear polarization is observed between two clusters of House republicans. Notable roll call vote of this context in which a significant disagreement was observed between republicans is "House Vote 417" 12 which was closely watched by the media 13 .

Table 6 depicts some patterns returned by DEvIANT when carried on Movielens Datasets. For instance, pattern p 2 reports that "Middle-aged Men" group observe a significantly higher intra-group agreement compared to the overall intra-group agreement for movies labeled with both adventure and musical genres (e.g. The Wizard of Oz (1939)). 

Conclusion and Future Directions

In this paper we introduced the novel problem of discovering statistically significant exceptional contextual intra-group agreement patterns. We devised a branch-and-bound algorithm, named DEvIANT, which efficiently search for the desired patterns while leveraging closure operators, approximate confidence intervals (CIs), tight optimistic estimates on Krippendorff's Alpha measure and the property of nested CIs. The empirical experiments demonstrated both the efficiency and the usefulness of DEvIANT over multiple behavioral datasets relevant to various domains ranging from political analysis to rating data analysis. In future research, we plan (i) to incorporate FDR (False Discovery Rate) control to tackle the multiple comparison problem [START_REF] Hämäläinen | A tutorial on statistically sound pattern discovery[END_REF] (ii) to investigate exceptional intragroup agreement compared to the one observed between all individuals over the same context and (iii) to integrate the option of choosing which kind of exceptional consensus the end-user want, i.e. is the exceptional consensus is observed because the group members "liked/voted for" (or "disliked/voted against") the context related entities? All this being done within the perspective to provide a comprehensive framework and tool 14 ) for behavioral data analysis alongside exceptional inter-group agreement pattern discovery implemented in [START_REF] Belfodil | Flash points: Discovering exceptional pairwise behaviors in vote or rating data[END_REF].

A Appendix: Proofs

Recall that θ k : F k → R is the random variable corresponding to the observed intra-agreement A (Krippendorff's alpha) of subsets S ∈ G E of size k. i.e. for any k ∈

[1, n] with n = |G E | we have θ k (S ∈ F k ) = A(S) and F k = {S ∈ G E s.t. |S| = k}.
F k is then the set of possible outcomes which are equally likely to occur under the null hypothesis H 0 . G E contains n records (i.e.

|G E | = n).
Each record e ∈ G E is associated to a value v e and w e . θ k can be expressed as a ratio of two random variable

V k W k . With V k , W k two random variables V k : F k → R and W k : F k → R with V k (S) = 1 k e∈S v e and W k (S) = 1 k e∈S w e .
Proof (Proposition 1). For any f (x, y), the bivariate second order Taylor expansion about any λ = (λ x ; λ y ) is (a concise lecture note 15 follows the same reasoning and explains the derivations) :

f (x, y) = f (λ) + f x (λ)(x -λx) + f y (λ)(y -λy) + 1 2 f xx (λ)(x -λx) 2 + f xy (λ)(x -λx)(y -λy) + f yy (λ)(y -λy) 2 + (7)
with is a remainder of smaller order than the term of the equation.

An approximation of the expectation E[f (x, y)] expanded around λ = (λ x ; λ y ) is:

E[f (x, y)] ≈ f (λ) + 1 2 f xx (λ)Var[X] + f xy (λ)Cov[X, Y ] + f yy (λ)Var[Y ] (8) 
Given that f (x, y) = x y and using the fact that E[X -µ x ] = 0 (This is valid for both V and W ). We have: Var

[X] = E[(X -µ x ) 2 ] and Cov[X, Y ] = (X -µ x )(Y -µ y ). We can derive an approximation of E[θ k ] = E[ V k W k ] around (µ V k , µ W k ). E[θ k ] = E[ V k W k ] = E[f (V k , W k )] ≈ µ V k µ W k - Cov[V k , W k ] µ 2 W k + Var[W k ]µ V k µ 3 V k (9) 
The formulas of

E[V k ] (resp. E[W k ]) and Var[V k ] (resp. V [W k ]
) can be derived analytically. We denote by µ v (resp. µ w ) the arithmetic mean of the values (resp. weights) corresponding to each entity e ∈ G E . i.e:

µ v = 1 n e∈G E v e and µ w = 1 n e∈G E w e with n = |G E |. E[V k ] = 1 n k S∈F k 1 k e∈S ve = 1 n e∈G E ve = µv (10) Var[V k ] = 1 n k S∈F k 1 k e∈S ve -E[V k ] 2 = 1 n k S∈F k 1 k e∈S ve -µv 2 = 1 k n n -1 µ v 2 -µ 2 v - 1 n -1 µ 2 v -µ v 2 with µ v 2 = 1 n e∈G E v 2 e ( 11 
)
15 see http://www.stat.cmu.edu/ ~hseltman/files/ratio.pdf

Same reasoning applies to compute the expected value and the variance related to W k :

E[W k ] = 1 n e∈G E we = µw (12) 
Var

[W k ] = 1 n k S∈F k 1 k e∈S we -E[W k ] 2 = 1 k n n -1 µ w 2 -µ 2 w - 1 n -1 µ 2 w -µ w 2 with µ w 2 = 1 n e∈G E w 2 e ( 13 
)
We derive now the formula for Cov(V k , W k ). The same line of reasoning for the computation of the variance of V k and W k applies. We obtain:

Cov[V k , W k ] = 1 n k S∈F k 1 k e∈S ve -E[V k ] 1 k e∈S we -E[W k ] = 1 k n n -1 (µvw -µvµw) - 1 n -1 (µvµw -µvw) with µvw = 1 n e∈G E weve (14) 
Using equations (10), ( 11), ( 12), ( 13), ( 14), we derive the approximation of E[θ k ] after simplifications of (9).

E[θ k ] ≈ E[θ k ] = n k -1 µv µw βw + µv µw with βw = 1 n -1 µ w 2 µ 2 w - µvw µvµw (15) 
The same reasoning applies to approximate Var[θ k ] using Taylor expansion. We will confine ourselves to a first order Taylor expansion around (µ v , µ w ) to make the analytic derivation of the approximation of Var[θ k ] feasible. Same observation have been made by [START_REF] Van Kempen | Mean and variance of ratio estimators used in fluorescence ratio imaging[END_REF][START_REF] Duris | Mean and variance of ratios of proportions from categories of a multinomial distribution[END_REF] and [25, p.351] to approximate the variance for a ratio random variable. We obtain:

Var[θ k ] = Var[f (V k , W k )] ≈ Var[V k ] µ 2 W k -2 µV k Cov[V k , W k ] µ 3 W k + µ 2 V k Var[W k ] µ 4 W k (16) 
After simplifications and by using the same line of reasoning when deriving the expected value approximation reported in equation ( 15), we obtain:

Var[θ k ] ≈ Var[θ k ] = n k -1 µ 2 v µ 2 w (βv + βw) with βw = 1 n -1 µ w 2 µ 2 w - µvw µvµw and βv = 1 n -1 µ v 2 µ 2 v - µvw µvµw (17) 
We denote by CI 1-α k the approximate confidence interval calculated using the approximations of the expected value E[θ k ] (15) and the variance Var[θ k ] (17) that is:

CI 1-α k = E[θ k ] -z 1-α 2 Var[θ k ], E[θ k ] + z 1-α 2 Var[θ k ] (18) 
It is worth mentioning that, the complexity of the computation of the approximate confidence interval ( 18) is linear to the size n.

Proof (Proposition 2). To alleviate the text, we will omit σ E as a parameter in the proof and keep in mind that we consider the minimum support threshold σ E . Given that c d, with c, d two descriptions from D, we have

G d E ⊆ G c E .
The proposition stems from the fact that:

1. A(G c E ) ≤ U B(G c E )
since RandomSMWA max computes the subset S c max having the maximum weighted average A as proven by Epstein and Hirschberg [START_REF] Eppstein | Choosing subsets with maximum weighted average[END_REF]. 2. U B is monotonic w.r.t. the partial order ⊆ between sets. That is:

∀S, S ⊆ G E : S ⊆ S ⇒ U B(S ) ≤ U B(S)
This can be proven by reduction to absurdity. We denote by S max ⊂ S (resp. S max ⊂ S) the optimal subset of S (resp. S) having its size ≥ σ E and the maximum possible weighted average A. Suppose that ∃S, S ⊆ G E : S ⊆ S ∧ U B(S ) > U B(S) (A(S max ) > A(S max )). Since S ⊆ S, this means that there is another subset, namely S max , in S that observes a greater weighted average A than the actual optimal subset S max , which is absurd.

From (1) and (2) we have:

A(G d E ) ≤ U B(G d E ) ≤ U B(G c E )
. Same reasoning hold to prove that LB is a lower bound.

Proof (Proposition 3). In order to prove the desired property for the approximate confidence intervals, we need to determine first if the variance decreases when k increases.

k1, k2 ∈ N : if k1 ≤ k2 ⇒ Var[θ k 1 ] ≥ Var[θ k 2 ] (19) 
From [START_REF] Geisser | Predictive Inference[END_REF], [START_REF] Hämäläinen | Statapriori: an efficient algorithm for searching statistically significant association rules[END_REF] requires that β v + β w is a positive quantity. This stems from the fact that the original formula of the approximate variance given in ( 16) is positive. This can be proved by a direct application of the Covariance inequality [37, p, 149],which itself is an application of the Cauchy-Schwarz inequality [START_REF] Steele | The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities[END_REF]. Since β v + β w is of the same sign of (17), we have β v + β w ≥ 0. For the sake of a self-contained proof of this assertion below:

Var[θ k ] = n k -1 µ 2 v µ 2 w (β v + β w ). Given that n k -1 is a decreasing function w.r.t. k, proving
We have, from ( 16) is of the same sign of:

Var[V k ] µ 2 V k -2 Cov[V k , W k ] µ V k µ W k + Var[W k ] µ 2 W k (20) 
From the Covariance inequality, we have Cov

[V k , W k ] ≤ σ[V k ]σ[W k ] with σ 2 [V k ] = Var[V k ] and σ 2 [W k ] = Var[W k ],
hence we have the quantity [START_REF] Hämäläinen | Statistically sound pattern discovery[END_REF] is greater than:

σ 2 [V k ] µ 2 V k -2 σ[V k ]σ[W k ] µ V k µ W k + σ 2 [W k ] µ 2 W k (21) 
This quantity can be rewritten as such:

σ[V k ] µ V k σ[V k ] µ V k - σ[W k ] µ W k - σ[W k ] µ W k σ[V k ] µ V k - σ[W k ] µ W k ( 22 
)
This quantity is clearly positive since ( 22) is equal to

σ[V k ] µ V k -σ[W k ] µ W k 2
≥ 0. Hence β v +β w ≥ 0 which confirms that the variance is deceasing w.r.t. increasing size k as stated in equation [START_REF] Hämäläinen | Statapriori: an efficient algorithm for searching statistically significant association rules[END_REF].

Recall that, we want to ensure by approximation that for σ E ≤ k 1 ≤ k 2 with σ E a threshold on the context support, we have CI

1-α k2 ⊆ CI 1-α k1
. Hence, we need to find the minimum σ E above which such property is valid. This amounts to find a lower bound for σ E such that:

z 1-α 2 Var[θ k 1 ] -z 1-α 2 Var[θ k 2 ] ≥ E[θ k 1 ] -E[θ k 2 ] (23) 
By using the definitions of Var[θ k ] and E[θ k ] from equations ( 15) and ( 17), the inequality ( 23) can be rewritten as such:

n k1 -1 + n k2 -1 ≤ z 1-α 2 βv + βw β 2 w ( 24 
)
And since σ E ≤ k 1 ≤ k 2 :

2 n σE -1 ≤ z 1-α 2 βv + βw β 2 w ( 25 
)
After simplifications, we obtain:

σ E ≥ C α = 4nβ 2 w z 2 1-α 2 (β v + β w ) + 4β 2 w ( 26 
)
Proof (Corollary 1). The proof is a straightforward. From proposition 2, we have that for any c, d

∈ D E s.t. c d, if G c ≥ G d ≥ σ E then: A(G d E ) ∈ OE(G c E , σ E ) (27) 
From proposition 3, if σ E ≥ C α we have:

CI 1-α |G c E | ⊆ CI 1-α |G d E | (28) 
From ( 27) and [START_REF] Krippendorff | Content analysis, an introduction to its methodology[END_REF] and given that

OE(G c E , σ E ) ⊆ CI 1-α |G c E | , it follows that A(G d E ) ∈ OE(G c E , σ E ) ⊆ CI 1-α |G c E | ⊆ CI 1-α |G d E | hence p-value(d) > α.

B Appendix: Enumeration Algorithm

Given a collection of records G which descriptive attributes are A = {a 1 , ..., a m } which can be boolean, numerical or categorical potentially organized among a taxonomy. Attributes A allow to structure the search space D by considering descriptions d ∈ D which are conjunction of conditions over the attributes domains of interpretation. A condition over a categorical attribute is an equality test while a condition over a numerical attributes is a membership test in an interval. G d denotes the set of records of G covered by the description d.

EnumCC algorithm enumerates once and only once all closed descriptions whose associated subgroups fullfill the minimum support constraint σ E . The algorithm follows the same reasoning of most common SD algorithms and goes in the same line of CloseByOne Algorithm (CbO) [START_REF] Kuznetsov | Comparing performance of algorithms for generating concept lattices[END_REF] and Divide-And-Conquer Algorithm [START_REF] Boley | Listing closed sets of strongly accessible set systems with applications to data mining[END_REF]. It traverses the search lattice D in a top-down (DFS) fashion starting from the most general description * whose support is the entire collection G. It proceeds by atomic refinements to progress, step by step, toward more specific descriptions. This is enabled by a refinement operator denoted η j for the j th attribute. η j keeps all conditions related to attributes a i for i = j intacts, and refines only the j th condition. If the condition is related to a numerical attribute a left or a right minimal change is performed [START_REF] Kaytoue | Mining gene expression data with pattern structures in formal concept analysis[END_REF]. If the condition is related to a categorical attribute, return an equality test for all possible values of the domain (if the condition was never refined before), otherwise no refinement is possible. If the attribute is an HMT (categorical attribute augmented with a taxonomy) only one tag is refined to its child or an additional tag is appended [START_REF] Belfodil | Flash points: Discovering exceptional pairwise behaviors in vote or rating data[END_REF]. In a nutshell, for each parameter description 

  ). A behavioral dataset B = G I , G E , O, o is defined by (i) a finite collection of Individuals G I , (ii) a finite collection of Entities G E , (iii) a domain of possible Outcomes O, and (iv) a function o : G I × G E → O that gives the outcome of an individual i over an entity e.

Q 1 -

 1 First, we evaluate to what extent the confidence interval computed empirically approximates the confidence interval computed by Taylor approximations. For this task, we run 1000 experiments for different subsets size k uniformly distributed in [1, n = |G E |]. For each k, we compute the corresponding Taylor approximate CI 1-α k = [a T , b T ] and empirical confidence interval ECI 1-α k = [a E , b E ]. The latter CI is calculated by running 10 4 samples of size k from G E , followed by the computation of the observed A on each sample which are used to estimates the moments of the empirical distribution required for the establishment ECI 1-α k

Fig. 2 :Fig. 3 :

 23 Fig. 2: Comparison between DEvIANT and Naive when varying the size of the description space DI . Lines correspond to the execution time and bars correspond to the number of outputted patterns. Parameters: σE = σI = 1% and α = 0.05.

( a )Fig. 4 :

 a4 Fig. 4: Illustrating Pattern 1 from Tab. 5 with a similarity matrix between Republicans. Each cell represents the ratio of voting sessions in which both Rep. agreed. A green cell reports a strong agreement whereas a red cell highlights a strong disagreement. id group (g) context (c) A g ( * ) A g (c) p-value IA p1 Old 1.Action & 2.Adventure & 6.Crime Movies -0.06 -0.29 < 0.01 Conflict p2 Middle-aged Men 2.Adventure & 12.Musical Movies 0.05 0.21 < 0.01 Consensus p3 Old 4.Children & 12.Musical Movies -0.06 -0.21 < 0.01 Conflict

3 if d f closure d then 4 cnt c ← copy(cnt) cnt c value can be modified by a caller algorithm 5 yield 6 if cnt c then 7 foreach j ∈ [f, m] do 8 foreach d ∈ ηj(closure d) do 9 foreachFig. 5 :Fig. 6 :Fig. 7 :Fig. 8 :Fig. 9 :Fig. 10 :Fig. 11 :Fig. 12 :

 345678956789101112 Fig. 5: Effectiveness of DEvIANT on Movielens when varying sizes of both search spaces DE and DI , minimum context support threshold σE and the critical value α. Default parameters: full search spaces DE and DI , σE = 0.1%, σI = 1% and α = 0.05. Bootstrapping Confidence intervals for handling variability of outcomes is disabled

Table 1 :

 1 Descriptions of D E are called contexts, denoted c. From now on, G (resp. D) denotes both collections G I (resp. D I ) and G E (resp. D E ) if no confusion can arise. We denote by G d the subset of records characterized by the description d ∈ D. Descriptions from Example of behavioral dataset -European Parliament Voting dataset D are partially ordered by a specialization operator denoted . A description d 1 is a specialization of d 2 , denoted d 1 d 2 , iff d 2 ⇒ d 1 from a logical point of view. It follows that G d2 ⊆ G d1 .

	ide themes	date	idi country group age	idi ide o(i,e)	idi ide o(i,e)
	e1 1.20 Citizen's rights 20/04/16	i1 France	S&D 26	i1 e2 Against i3 e1 For
	e2 5.05 Economic growth 16/05/16			i1 e5 For	i3 e2 Against
	e3 1.20 Citizen's rights;		i2 France	PPE 30	i1 e6 Against i3 e3 For
	7.30 Judicial Coop	04/06/16			i2 e1 For	i3 e5 Against
	e4 7 Security and Justice 11/06/16	i3 Germany S&D 40	i2 e3 Against i4 e1 For
	e5 7.30 Judicial Coop	03/07/16			i2 e4 For	i4 e4 For
	e6 7.30 Judicial Coop	29/07/16	i4 Germany ALDE 45	i2 e5 For	i4 e6 Against
	(a) Entities		(b) Individuals	(c) Outcomes

Table 2 :

 2 Summarized

	Be-
	havioral Data Do(e) = nec • n ek c,k∈O 2 δ ck ne • (ne -1)

  Before searching for exceptional contexts, the minimum context support threshold σ E is adjusted to C α (g) (see Prop.3) if it is lower than C α (g). Note that C α (g) is, in practice, much smaller than σ E . Still, we keep this correction for algorithm soundness. Next, contexts are enumerated by EnumCC and for each candidate context c, the algorithm evaluates the optimistic estimate interval OE(G c E ) (see Prop. 2). According to Corollary 1, if OE

	15	contc ← False	Prune the sub search space, generality concept
	16 return P		

13 if p old ∈ P s.t. ext(pnew) ⊆ ext(p old ) then 14 P ← (P ∪ pnew) \ {p old ∈ P | ext(p old ) ⊆ ext(pnew)}

  Scaling) Outcomes Sparsity C 0.05

	EPD8 8	4704 1H + 1N + 1C (437) 848 3C (82)	3.1M (C) 78.6%	10 -7
	CHUS 9	17350 1H + 2N (307)	1373 2C (261)	3M (C)	31.2%	10 -6
	Movielens 10 1681 1H + 1N (161)	943 3C (27)	100K (O) 06.3%	0.06
	Yelp 11	127K 1H + 1C (851)	1M 3C (6)	4.15M (O) 0.003%	1.73

Table 3 :

 3 Main characteristics of the behavioral datasets. C 0.05 represent the minimum context support threshold over which we have nested approximate CI property.

	7 https://github.com/Adnene93/Deviant
	8 Eight European Parliament Voting Dataset.
	9 102 nd -115 th congresses of the US House of representatives (Period: 1991-2015).
	10 Movie review dataset -https://grouplens.org/datasets/movielens/100k/
	11 Social network dataset -https://www.yelp.com/dataset/challenge

Table 4 :

 4 Coverage error between empirical CIs and Taylor CIs.

	B	µerr	σerr	B	µerr	σerr	B	µerr	σerr	B	µerr	σerr
	CHUS 0.007 0.004	EPD8 0.007 0.004	Movielens 0.0075 0.0045	Yelp 0.008 0.007

Table 5 :

 5 Exceptional consensual/conflictual subjects among Republicans Party representatives in the 115 th congress of the US House of Representatives. α = 0.01

	id group (g)	context (c)	A g ( * ) A g (c) p-value	IA
	p1 Republicans 20.11 Government Branch Relations, Admin. 0.83 0.32 < .001	Conflict
		Issues, and Constitutional Reforms		
	p2 Republicans 5 Labor	0.83 0.63 < .01	Conflict
	p3 Republicans 20.05 Nominations and Appointments	0.83 0.92 < .001 Consensus

Table 6 :

 6 Top3-Exceptionally consensual/conflictual movies genres between Movielens' raters, α=0.01. Patterns are ranked by the absolute difference between A

g (c) and A g ( * ).

  C.2 Qualitative evaluation In this appendix, we report additional illustrative examples depicting the significant patterns discovered by DEvIANT when carried on the Eighth European Parliament (EPD8) dataset, US House of representatives (CHUS) dataset and Yelp dataset. Internal market, single market, 0.27 0.53 < 0.001 Consensus 4.15 Employment policy, act. combat unemployment p5 ALDE 1.20.09 Protection of privacy and data protection 0.73 0.48 < 0.001 Conflict 8 State and evolution of the Union

	id group (g) context (c)	A g ( * ) A g (c) p-value	IA
	p1 S&D	8.10 Revision of the Treaties and	0.81 0.44 < 0.001 Conflict
		intergovernmental conferences	
	p2 *	2 Internal market, single market	0.27 0.54 < 0.001 Consensus
		6 External relations of the Union	
	p3 S&D	8.30 Treaties in general	0.81 0.55 < 0.001 Conflict
	p4 *	2	

Table 7 :

 7 Top-5 Exceptional consensual/conflictual subjects among European Political Groups in the 8 th EU parliament. α = 0.01. Patterns are ranked by the absolute difference between A g (c) and A g ( * ).

	id group (g)	context (c)	A g ( * ) A g (c) p-value	IA
	p1 *	10 Health & Medical	0.05 -0.33 < 0.001 Conflict
	p2 *	03 Automotive	0.05 -0.29 < 0.001 Conflict
	p3 *	14 Local Services	0.05 -0.25 < 0.001 Conflict
	p4 newcommer 21.177 American (Traditional) and -0.06 0.24 < 0.01 Consensus
		21.24 Breakfast & Brunch		
	p5 *	11 Home Services	0.05 -0.25 < 0.01	Conflict

Table 8 :

 8 Top-5 Exceptional consensual/conflictual subjects among Yelp users. α = 0.01. Patterns are ranked by the absolute difference between A g (c) and A g ( * ).

In the same line of reasoning of[START_REF] Bie | An information theoretic framework for data mining[END_REF][START_REF] Lijffijt | Subjectively interesting subgroup discovery on real-valued targets[END_REF], one can assume that the underlying distribution can be derived from what prior beliefs the end-user may have on such distribution. If only the observed expectation µ and variance σ 2 are given as constraints which must hold for the underlying distribution, the maximum entropy distribution (the one that takes into account no other prior information than the given constraints) is known to be the normal distribution N (µ, σ 2 )[5, p.413] 

https://projects.propublica.org/represent/votes/115/house/1/417

Washington Post:https://wapo.st/2W32I9c; Reuters:https://reut.rs/2TF0dgV

A prototype is available online in http://contentcheck.liris.cnrs.fr