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Abstract 

Vibration energy harvesters based on piezoelectric resonators are promising for 

powering Wireless Sensors Nodes (WSNs). Yet, any mismatch between the 

resonant frequency of traditional harvesters and the vibration frequency can 

drastically decrease the scavenged power and make them ineffective. Electrical 

techniques able to tune the resonant frequency of piezoelectric harvesters has been 

proposed as a solution and opens up new perspectives. To be fully competitive, 

this approach requires energy harvesters with very strong global 

electromechanical coupling coefficients k² (>10%), whose design remains a 

challenge today. This work reports on a method to design strongly coupled 

piezoelectric cantilevers thanks to an analytical approach based on the Rayleigh-

Ritz method and a two degrees-of-freedom model, which considers the proof mass 

inertia effects. Through an expression of the coupling coefficient, we provide 

design guidelines, which are experimentally validated. We show that a long proof 

mass is a very effective configuration to maximize the global electromechanical 

coupling coefficient and consequently the frequency bandwidth of the system. 

Three proposed prototypes exhibit some of the strongest squared global 

electromechanical coupling coefficients k² of the state-of-the-art of piezoelectric 

harvesters (16.6% for the PMN-PT cantilever, 11.3% and 16.4% for the narrow 

and wide PZT-5A cantilevers respectively) and demonstrate a wide bandwidth 

behavior (10.1%, 7.8% and 11.3% of the central frequency respectively). Using a 

strongly coupled prototype based on PZT-5A leveraged by a dedicated integrated 

circuit, we experimentally show that it can harvest enough power (more than 

100µW) to supply a WSN over a frequency bandwidth as large as 21%. 

 

1. Introduction 

 

Ambient energy harvesting appears as a relevant technology to supply sensors where batteries cannot be used 

or need to be complemented [1]. In environments with no obvious light or thermal sources, vibration energy 

harvesting is an interesting strategy for which piezoelectric-based resonators are attractive for their high power 

density at small scale [2]. However, because a mismatch between the harvester resonant frequency and the 

vibration frequency of the host structure makes them inefficient, the narrow frequency bandwidth of vibration 

energy harvesters is still an important issue [3]. This mismatch can be caused by the variation of the dominant 

frequency of the vibration source while the resonant frequency of the harvester remains constant. This situation is 

encountered in many applications as shown by Rantz and Roundy [5]: one third of the vehicle vibration signals 

presented in the NiPS Laboratory “Real Vibration” database [4] exhibit a dominant vibration frequency that varies. 

This mismatch can also occur when the resonant frequency of the harvester drifts due to the aging of materials and 

assemblies [6] or temperature variations of the environment [7,8]. In response to these frequency mismatches a 

new trend has recently emerged with the development of electrical techniques [9,10] and power management 
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circuits [11,12] able to tune the resonant frequency of piezoelectric cantilevers thanks to the coupling effect 

between the mechanical dynamics and the electrical circuit. For that purpose, the design and the fabrication of 

piezoelectric harvesters exhibiting a very strong global electromechanical coupling coefficient 𝑘 are mandatory 

and open up promising perspectives for broadband vibration energy harvesting, but a systematic model for 

optimizing piezoelectric cantilevers with a long proof mass is missing in the state of the art [13]. This paper 

proposes an analytical study corroborated by experimental results to give general guidelines on the geometrical 

and material parameters that influence the cantilever’s 𝑘2 in order to maximize it. 

Although nonlinear or bistable mechanical harvesters are effective in overcoming the narrow bandwidth 

limitation of classical resonator-based vibration energy harvester, they are dependent on the input amplitude 

[14,15], and multi-degree of freedom harvesters suffer from low power densities [16]. Only a small tuning range 

could be achieved in the early stages of resonant frequency tuning by electrical methods [17], but recent works in 

the field make them increasingly interesting for broadband vibration energy harvesting. In 2018, Cai and Manoli 

[11] from IMTEK managed to achieve a bandwidth of 9.0% with an enhanced Synchronous Electric Charge 

Extraction (SECE) electrical interface and, in 2019, Zhao et al. [18] reached a bandwidth of 6.9% with a non-

linear electrical technique coupled to a PZT-5H based cantilever (𝑘2 = 6.5%). Despite their interesting 

achievements, the two above-mentioned works used commercial cantilevers that have moderate electromechanical 

coupling coefficients and low quality factors. They did not present any optimized prototype and, even though the 

presented electrical methods have a substantial influence, their remarkable bandwidths are partly due to the low 

quality factor of the harvesters, which leads to low power density solutions.  

Strongly coupled energy harvesters have been considered as a solution to further extend the frequency 

bandwidth. Ahmed-Seddik et al. [19] proposed a tapered cantilever (𝑘² = 49.3%) using the 33-mode of the PZN-

PT material associated to a resonant frequency tuning technique based on tunable resistances and capacitances, to 

reach 32.7% of frequency bandwidth [20]. However, no modeling was proposed and compared to experiments. In 

addition, the structure showed a low quality factor and its complex assembly procedure made it inadequate for 

industrial processes. Later on, Badel and Lefeuvre [21] introduced a strongly coupled PZN-PT-based cantilever 

with a long proof mass that could theoretically reach a bandwidth of 45% when associated with the Frequency 

Tunable SECE (FT-SECE) technique. Their device exhibited interesting performances (𝑘² = 53%) while it was 

based on a very simple mechanical configuration. Despite the absence of an optimization method, this outstanding 

result places the cantilevers with a long proof mass as a competitive structure for designing strongly coupled 

harvesters. This statement was partially explained by Kim et al. [22], which showed that using long proof masses 

tends to homogenize the strain distribution along the beam, but no optimization method nor obvious explanation 

regarding the global electromechanical coupling coefficient and the bandwidth were mentioned. It is also worth 

noting that the aforementioned wide bandwidths were obtain with relaxor-based ferroelectric single crystals having 

very low temperature resistance compared to piezoelectric ceramics and being difficult and expensive to produce 

industrially at the moment [23]. In this paper, we provide an analysis concerning both single crystal-based 

harvesters and ceramic-based harvesters. 

To date, a few works have studied the optimization of cantilevers with a proof mass. In 2014, Xiong et al. [24] 

discussed the optimization of their electromechanical coupling coefficient using a model associated with FEM 

simulations. Though they limited their analysis to cubic proof masses, they revealed that piezoelectric patches 

must cover the entire length of the beam when a proof mass is used. Under this condition, the proof mass could 

increase the squared global electromechanical coupling 𝑘² by more than 10% compared to the case without proof 

mass. In 2016, Jia et al. [25] analyzed the influence of the proof mass length on the harvested power thanks to a 

model associated with FEM simulations and 4 prototypes. They conclude that, within the linear response, the 

generated power is maximal for proof masses occupying 60%-70% of the total cantilever length. More recently, 

in 2019, Pradeesh and Udhayakumar [13] revealed, through FEM simulations of unimorph cantilevers with 

moderate proof mass sizes, that the shape of the proof mass has a minimal effect on the power harvested relative 

to its mass. Although these works provide interesting results, none of them is based on a comprehensive analytical 

study corroborated by experiments.  

So far, some works have analytically optimized the electromechanical coupling coefficients of piezoelectric 

cantilevers without proof mass using the Single Degree of Freedom (SDOF) model [18,26]. Though the SDOF 

model is commonly-used for cantilevers using a localized tip proof mass [27], it proved to be inaccurate for a 

bulky proof mass [28,29]. Other analytical attempts to better account for the effects induced by the proof mass 

either do not consider the rotary inertia [30] or still show significant discrepancies when compared to 2D Finite 

Element Method (FEM) simulations [31]. To the authors knowledge, analytical results detailing the impact of the 

proof mass on 𝑘², and thus on the frequency bandwidth, have never been proposed in the state of the art.  
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In this paper, we present a method based on an analytical modeling approach to design strongly coupled 

piezoelectric cantilevers with large proof masses in the purpose of frequency tuning for vibration energy 

harvesting. In the first section, we underline the interest of increasing the global coupling coefficient of a 

piezoelectric harvester to improve the frequency bandwidth using a classical single degree of freedom model. 

Then, by using the Rayleigh-Ritz energy method and determining the cantilever modes shapes from a two degree 

of freedom (2-DOF) model, we propose a novel analytical expression of the alternative electromechanical coupling 

coefficient 𝑘𝑒
2 = 𝑘2/(1 − 𝑘2). We then use this expression in section 3 to analyze the geometrical and material 

parameters effects on 𝑘𝑒
2. As a result, we design three different strongly coupled harvesters integrating long proof 

masses and involving two types of piezoelectric materials: PMN-PT single crystal and PZT ceramic. For the PZT 

material, a narrow and a wide cantilever are evaluated to analyze the evolution of 𝑘2 with respect to the beam 

geometry. Experiments and results are detailed and discussed in section 4. In particular, we discuss the validation 

of the proposed model and the comparison of the performance of the prototypes with the state of the art. Finally, 

we experimentally demonstrate that we can dynamically track the ambient vibration central frequency thanks to a 

strongly coupled piezoelectric harvester whose resonant frequency is tuned thanks to a previously developed 

integrated circuit that embeds a self-powered maximum power point tracking algorithm [12].  

 

 

2. Analytical modeling 

 
2.1. Advantages of a strong global coupling coefficient 

 

Around one of its resonant frequency, a piezoelectric cantilever can be accurately modeled by a SDOF system 

as expressed in (1) [22].  

 

{
𝑀�̈� + 𝐶�̇� + 𝐾𝑟 − Θ𝑣 = −𝐵𝑓𝑤�̈�

Θ�̇� + 𝐶𝑝�̇� + 𝑖 = 0
 (1) 

 

In which 𝑀,𝐾, 𝐶 are the system’s equivalent inertial mass, stiffness and viscous damping coefficient. 𝛩, 𝐶𝑝, and 

𝐵𝑓 are the coupling term, the piezoelectric clamped capacitance and the forcing term respectively. 𝑟, 𝑣 and 𝑖 are 

the generalized spatial coordinate, the output voltage and current respectively.  𝑤𝑏̈  is the acceleration of the base 

(clamped-end) of the beam. 

The short circuit and open circuit resonant angular frequencies 𝜔1
𝑠𝑐 and 𝜔1

𝑜𝑐 are expressed by (2) and (3) where 

𝑘𝑒 is the alternative electromechanical coupling coefficient of the system and is given in (4). 𝑘𝑒
2 can be directly 

calculated from the square of the global electromechanical coupling coefficient 𝑘2. The viscous damping term can 

be expressed as a function of the mechanical damping ratio 𝜁𝑚 or the mechanical quality factor 𝑄𝑚 (5). 

 

𝜔1
𝑠𝑐 = √

𝐾

𝑀
   (2) 𝜔1

𝑜𝑐 = 𝜔1
𝑠𝑐√1 + 𝑘𝑒

2 (3) 

𝑘𝑒
2 =

𝑘2

1 − 𝑘2
=

Θ2

𝐾𝐶𝑝
 (4) 𝐶 = 2𝜁𝑚𝑀𝜔1

𝑠𝑐 =
𝑀𝜔1

𝑠𝑐

𝑄𝑚
 (5) 

 

The expression of the RMS output power 𝑃 can be found in [32] as a function the equivalent parameters and 

the angular frequency. Using the normalization given in [33] (expressed in (6)), the Figure 1 shows the normalized 

power 𝑃′ when considering an optimal resistive load, as a function of the normalized pulsation Ω (see equation 

(7) where 𝜔 is the excitation pulsation). The normalized power 𝑃′ allows us to study the harvesters’ performance 

independently of their resonant frequencies, inertial masses and forcing acceleration magnitude.  

 

𝑃′ = 𝑃
8𝑀𝜔1

𝑠𝑐

𝐵𝑓
2|𝑤�̈�|

2
≤ 𝑄𝑚 (6) Ω =

𝜔

𝜔1
𝑠𝑐 (7) 

 

For the systems that have sufficiently large 𝑘𝑒
2 and 𝑄𝑚 (𝑘𝑒

2𝑄𝑚 ≥ 2), 𝑃’ shows, for optimal resistive loads (R), 

two maxima (𝑃𝑚𝑎𝑥
′ = 𝑄𝑚) separated by a less interesting low in the curve which can be raised thanks to optimal 

combinations of resistance and capacitance loads (R and C) [34] (Figure 1). Because banks of capacitors cannot 
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be easily integrated in a circuit, strategies that involve non-linear electrical techniques [35] have recently been 

developed to optimize the harvested power in the [𝜔1
𝑠𝑐, 𝜔1

𝑜𝑐] bandwidth and even beyond with the SC-SECE [10] 

and the FT-SECE [9] techniques. Consequently, we define the target bandwidth of a strongly coupled harvester 

as: 

∆𝛺

𝛺𝑐
=
𝛺𝐻 − 𝛺𝐿
𝛺𝑐

 (8) 

 

Where Ω𝐿  and Ω𝐻 are defined at half of the maximal power (Figure 1) and Ω𝑐 is the normalized central pulsation 

given by (Ω𝐿 + Ω𝐻)/2. 

Figure 2 shows the maximal normalized power 𝑃𝑚𝑎𝑥
′  and the frequency bandwidth as a function of 𝑘2 for various 

quality factors. It can be deduced that increasing 𝑘2 beyond a certain value does not show any interest for 

increasing the maximal power. Though, higher 𝑘2 significantly improves the bandwidth. Optimizing the global 

coupling coefficient is thus an effective solution to broaden the harvesting frequency bandwidth. In this way, this 

work proposes the development of a generic model aiming at the maximization of the global electromechanical 

coupling coefficient of piezoelectric cantilevers well suited for frequency tuning applications. 

 

 

    

Figure 1: Normalized power as a function of the 

normalized pulsation for 𝑘2 = 15% and 𝑄𝑚 = 100. 
 

Figure 2: Maximal normalized power and 

bandwidth (BW) as a function of 𝑘² 
for optimal R and C loads. 

 

2.2. Problem definition and modeling strategy 

 

The proposed harvester design relies on a bimorph cantilever with a bulky proof mass at tip end (Figure 3.a) 

and for which the two piezoelectric layers (PL) share the same length as the substrate (central layer). As it will be 

detailed in the following, a proof mass having a high rotary inertia favors the homogenization of the strain 

distribution within the PL. For that reason, it is optimal to choose a same length for the substrate and the PL. The 

PL have the same thicknesses (ℎ𝑝) and are entirely covered by electrodes at the bottom and the top surfaces, which 

are connected in parallel (Figure 4). Figure 3.b depicts the proposed cantilever during bending. A proof mass of 

any shape can be considered since we can model it with an equivalent point mass defined by a mass 𝑀𝑡 and a 

rotary inertia 𝐼𝑡 at a distance 𝐷𝑡  from the “free” end of the beam on the neutral axis. Without loss of generality, in 

the following, we consider a symmetric proof mass with respect to the neutral axis of the beam that has the same 

width B as the beam. If the center of gravity of the mass is not on the neutral axis along the 𝑧-axis, the related 

distance would have to be taken into account in 𝐼𝑡 as detailed in appendix A. 

a)   b)   

Ω𝑐Ω𝐿 Ω𝐻

𝑃𝑚𝑎𝑥
′

2

∆Ω

𝑃𝑚𝑎𝑥
′

Ω1
𝑠𝑐 = 1 Ω1

𝑜𝑐

x x

 𝑚

 𝑚

 𝑏

Piezoelectric
Substrate

Proof mass

 (1)

𝑧(3)

 (2)

Center of gravity

 

 

 𝐿 

𝑀 , 𝐼 

 

𝐷𝑡

𝑤𝐿 

  
�̈�𝑏
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Figure 3: a) Cantilever with a proof mass and b) cantilever during bending. 

 

Here, we use the Rayleigh-Ritz method associated to a 2-DOF analytical model. The Rayleigh-Ritz method is 

commonly used for modeling vibrating structures and its application on piezoelectric devices has been firstly 

presented in [36] and has lately been detailed in [22] and [32] for piezoelectric cantilevers with a proof mass. Such 

an approach allows to reduce the analysis to a multi-degree of freedom system around the resonant frequencies of 

the device. However, in these former works, the electric field was considered constant according to the z-direction 

in the piezoelectric material, which leads to non-negligible errors for strongly coupled structures [37]. Therefore, 

an improvement of the modeling method is proposed in section 2.3, considering a variable electric field through 

the thickness of the piezoelectric patches.  

As the expressions of the vibration mode shapes are required for the Rayleigh-Ritz method, we determine 

(section 2.4) the analytical expressions of the two first bending mode shapes considering a 2-DOF model. Then, 

we deduce (section 2.5) the equivalent parameters of a 2-DOF system based on the Rayleigh-Ritz method from 

these resulting vibration mode shapes. Reducing the analysis to the first resonant mode, we are then able to 

determine an analytical expression for the square of the alternative electromechanical coupling coefficient 𝑘𝑒
2. 

 

2.3. Rayleigh-Ritz method 

 

The Hamilton principle [36] is applied to the structure (9). The virtual variations of the kinetic energy  𝑘, the 

internal electrical energy 𝑊𝑒 , the potential energy 𝑈 and the external work 𝑊 are null between times  1 and  2. In 

equations (12) to (15), the energy terms and the external work are deduced from the linear constitutive relations 

of piezoelectricity (10) and the Hooke law (11) ([38,39]). 

 

∫ [𝛿( 𝑘 − 𝑈 +𝑊𝑒) + 𝛿𝑊)]𝑑 
𝑡2

𝑡1

= 0 (9) 

(
𝑻
𝑫
) = [𝒄

𝑬 −𝒆𝒕

𝒆 𝜺𝑺
] (
𝑺
𝑬
) (10) 𝑻 = 𝒄𝒔𝑺 (11) 

 𝑘 =
1

2
[𝑚∫ (�⃗� �̇�)𝑡(�⃗� �̇�)

𝐿 

0

𝑑 + 𝑀𝑡 (�⃗� (�̇�𝐿 +𝐷𝑡�̇�𝐿 
′ ))

𝑡
(�⃗� (�̇�𝐿 + 𝐷𝑡�̇�𝐿 

′ )) + 𝐼𝑡(�⃗⃗� �̇�𝐿 
′ )

𝑡
(�⃗⃗� �̇�𝐿 

′ )] (12) 

𝑈 =
1

2
[∫ 𝑺𝑡𝒄𝒔𝑺𝑑𝒱𝑠
𝒱𝑠

+∫ 𝑺𝑡𝒄𝑬𝑺𝑑𝒱𝑝
𝒱𝑝

−∫ 𝑺𝑡𝒆𝒕𝑬𝑑𝒱𝑝
𝒱𝑝

] (13) 

𝑊𝑒 =
1

2
[∫ 𝑬𝑡𝒆𝑺𝑑𝒱𝑝
𝒱𝑝

+∫ 𝑬𝑡𝜺𝑺𝑬𝑑𝒱𝑝
𝒱𝑝

] (14) 

𝛿𝑊 = ∫ (�⃗� 𝛿𝑤). (−𝑚�⃗� �̈�𝐵)𝑑 
𝐿 

0

+ (�⃗� 𝛿(𝑤𝐿 + 𝐷𝑡𝑤𝐿 
′ )) . (−𝑀𝑡�⃗� �̈�𝐵) + 𝑣. 𝑞 (15) 

𝑚 = 𝐵(ℎ𝑠𝜌𝑠 + 2ℎ𝑝𝜌𝑝) (16) 

 

Where 𝑬, 𝑺, 𝑫 and 𝑻 are the components of the electric field, strain, electric displacement and stress 

respectively. In equations (12) to (15) the superscript ( )𝑡 denotes transpose. 

𝒆 is the piezoelectric constant matrix, 𝝐𝑺 is the dielectric matrix at constant strain, 𝒄𝑬 is the elastic stiffness 

matrix of the piezoelectric material at null electric field and 𝒄𝒔 is the elastic stiffness matrix of the substrate 

material. 𝑚 is the mass per unit of length of the beam (substrate and piezoelectric layers) defined in (16) where 𝜌𝑝 

and 𝜌𝑠 are densities of the piezoelectric material and the substrate respectively. 

      
Figure 4: Beam layers and electrodes connection in parallel 

0
Neutral axis

Patch 1

Patch 2

ℎ 

ℎ 

ℎ Substrate

  

  

Electrode
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�⃗�  and �⃗⃗�  are unitary vectors in the 𝑂𝑧 and 𝑂𝑦 directions respectively (�⃗� = [0; 0; 1] and �⃗⃗� = [0; 1; 0]).  

As only the bending of the beam is considered, the relative displacement is reduced to the transverse (z direction) 

deflection of the beam relative to its base: 𝑤( ,  ). 𝑤𝐿 ( ) is the displacement at the end of the beam 𝑤( 𝑏 ,  ). The 

apostrophes represent the spatial derivative. Since small deformations are considered, 𝑤𝐿 
′ ( ) is then the rotation 

at the end of the beam. 

The external work 𝑊 is due to the applied mechanical excitation and the electrical charge extraction. The 

mechanical work comes from the inertial load due to the base excitation 𝑤𝑏̈ ( ). 

As the bimorph is symmetric and the electrodes are connected in parallel, the voltage 𝑣 is equal for both patches 

and the total charge 𝑞 is equal to the sum of the charge extracted from each patch. We define 𝑣 as the generalized 

electrical voltage coordinate. 

 

Using the Rayleigh–Ritz approach, 𝑤( ,  ) can be expressed as the sum of 𝑛𝑟 individual modes shapes 𝜙𝑖( ) 

multiplied by a generalized mechanical coordinate 𝑟𝑖( ) as given in (17). 𝝓𝒓( ) is a row vector of mode shapes 

[𝜙1( ), 𝜙2( ), . . ] and 𝒓( ) is the column vector of the 𝑟𝑖( ). 
 

𝑤( ,  ) = ∑𝜙𝑖( )𝑟𝑖( )

𝑛𝑟

𝑖=1

= 𝝓𝒓( )𝒓( ) (17) 

 

As the beam length is much larger compared to its thickness ( 𝑏 > 10 (2ℎ𝑝 + ℎ𝑠)), the Euler-Bernoulli theory 

can be used. Therefore, the axial strain components are only related to bending. The axial strain at the distance 𝑧 

from the neutral axis is then proportional to its curvature at that position  , as written in (18). 

 

𝑆1( ,  , 𝑧,  ) = −𝑧
𝜕2𝑤( ,  )

𝜕 2
 (18) 

 

For the 1D beam modeling, we assume no stress in the z direction in the structure and one of the two following 

assumptions has to be considered for the out-of-plane stress: 

i) plane stress assumption is used for narrow beams (𝐵/ 𝑏 < 0.2) as no stress is considered in the out-of-plane 

direction (𝑂𝑦), 

ii) plane strain assumption is used for wide beams (𝐵/ 𝑏 > 5) as no strain is considered in the out-of-plane 

direction. 

We thus express the strain-stress relations in the substrate beam and the piezoelectric materials thanks to the 

Hooke law (19) and the in-plane piezoelectric constitutive equations (20) and (21). Because of the electrodes 

architecture, the displacement field 𝑫 and the electric field E are only considered in the transverse direction (𝑫 =

𝐷3�⃗�  and 𝑬 = 𝐸3�⃗� ). 

 1
𝑆 = 𝑌𝑠

𝑒𝑓
𝑆1 (19) 

{
 1
𝑝
= 𝑐11

𝑒𝑓
𝑆1 − 𝑒31

𝑒𝑓
𝐸3

𝐷3 = 𝑒31
𝑒𝑓
𝑆1 + 𝜖33

𝑒𝑓
𝐸3

 
(20) 

(21) 

 

 1
𝑝
, 𝐷3, 𝐸3 are the longitudinal stress, the transverse displacement field and the transverse electric field 

respectively. 𝑐11
𝑒𝑓

, 𝑒31
𝑒𝑓

, 𝜖33
𝑒𝑓

 are the effective piezoelectric coefficients and 𝑌𝑠
𝑒𝑓

 is the effective Young modulus 

obtained according to the given plane stress or plane strain consideration. 𝑌𝑠
𝑒𝑓

 is obtained from the Young modulus 

𝑌𝑠 and the Poisson ratio 𝜈 for isotropic materials (22). The piezoelectric effective coefficients are deduced from 

the piezoelectric matrix 𝒅, the compliance matrix 𝒔𝑬 and the free dielectric matrix 𝝐𝑻 (with 𝒆 = 𝒅𝒔𝑬
−𝟏

 , 𝒄𝑬 =

𝒔𝑬
−𝟏

 and 𝝐𝑺 = 𝝐𝑻 − 𝒅𝒔𝑬
−𝟏
𝒅𝒕) in equations (23) to (25).  
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𝑌𝑠
𝑒𝑓
= {

𝑌𝑠
𝑌𝑠

1 − 𝜈2
 

plane stress 

(22) 𝜖33
𝑒𝑓
= {

𝜖33
𝑇 −

𝑑31
2

𝑠11
𝐸

𝜖33
𝑇 +

𝑠22
𝐸 𝑑31

2 − 2 𝑑31𝑑32𝑠12
𝐸 + 𝑠11

𝐸 𝑑32
2  

 𝑠12
𝐸 2

− 𝑠11
𝐸 𝑠22

𝐸

   
plane stress 

(23) 

 

plane strain 
plane strain 

 

       

𝑐11
𝑒𝑓
=

{
 
 

 
 

1

 11
𝐸

 22
𝐸

 22
𝐸  11

𝐸 −  12
𝐸 2

 

plane stress 

(24) 𝑒31
𝑒𝑓
= {

𝑑31

𝑠11
𝐸

𝑠22
𝐸 𝑑31−𝑑32𝑠12

𝐸

𝑠22
𝐸 𝑠11

𝐸 −𝑠12
𝐸 2

    

plane stress 

(25) 

 

plane strain plane strain 

 

 

By reusing the strategy proposed in [37] for piezoelectric actuators, here, we write the electric field and the 

longitudinal stress in equations (26) and (27) for a piezoelectric layer 𝑛 (with 𝑛 ∈ [1,2]). 
 

𝐸3
𝑛 = (−1)𝑛+1

𝑣( )

ℎ𝑝
+
𝑒31
𝑒𝑓

𝜖33
𝑒𝑓
(𝑧 − 𝑧𝑚𝑛)

𝜕2𝑤( ,  )

𝜕 2
 (26) 

 1
𝑃𝑛 = 𝑐11

𝑒𝑓
(−𝑧

𝜕2𝑤( ,  )

𝜕 2
− 𝑘31𝑒

2 (𝑧 − 𝑧𝑚𝑛)
𝜕2𝑤( ,  )

𝜕 2
) + (−1)𝑛𝑒31

𝑒𝑓 𝑣( )

ℎ𝑝
 (27) 

 

For a symmetric bimorph, 𝑧𝑚𝑛 is the center position of each piezoelectric patch along the z-axis (Figure 4): 

𝑧𝑚1 = −(ℎ𝑝 + ℎ𝑠)/2 and 𝑧𝑚2 = (ℎ𝑝 + ℎ𝑠)/2. 𝑘𝑒31
2 , defined in (28), is the squared expedient electromechanical 

coupling coefficient of the piezoelectric material. As both 𝑘31
2  and 𝑘𝑒31

2  depend on the effective piezoelectric 

coefficients, they vary according to the given plane stress or plane strain assumption. 

 

𝑘𝑒31
2 =

𝑘31
2

1 − 𝑘31
2 =

𝑒31
𝑒𝑓2

𝑐11
𝑒𝑓
𝜖33
𝑒𝑓

 (28) 

  

By substituting the displacement (17), the strain (18) and the electric field expressions (26) in the energy 

conservation equation (10) and by integrating by parts, we can deduce the multiple degree of freedom equilibrium 

equations for the cantilever (29).  

 

{
𝑴�̈� + 𝑲𝒓 − 𝚯𝑣 = −𝑩𝒇𝑤�̈�

𝚯𝐭𝒓 + 𝐶𝑝𝑣 + 𝑞 = 0
 (29) 

 

Where 𝑴, 𝑲 are the equivalent mass and stiffness matrix, 𝜣, 𝑩𝒇 the coupling and forcing vectors and 𝐶𝑝 the 

piezoelectric material clamped capacitance. Their expressions for parallel electrical connection are given in 

equations (30) to (34). 

 

𝑲 = [∫ 𝝓𝒓
′′𝒕𝑐11

𝑒𝑓
(𝑧2 + 𝑘𝑒31

2 (𝑧2 − 𝑧𝑚1
2 ))𝝓𝒓

′′

𝒱𝑝1

𝑑𝑉𝑝 +∫ 𝝓𝒓
′′𝒕𝑐11

𝑒𝑓
(𝑧2 + 𝑘𝑒31

2 (𝑧2 − 𝑧𝑚2
2 ))

𝒱𝑝2

𝝓𝒓
′′𝑑𝑉𝑝 +∫ 𝝓𝒓

′′𝒕𝑌𝑠
𝑒𝑓

𝒱𝑠

𝑧²𝝓𝒓
′′𝑑𝑉𝑠] (30) 

𝑴 = ∫ 𝑚𝝓𝒓
𝑡𝝓𝒓𝑑 

𝐿 

0

+𝑀𝑡(𝝓𝒓( 𝑏))
𝑡
𝝓𝒓( 𝑏) + 𝑀𝑡𝐷𝑡(𝝓𝒓

′ ( 𝑏))
𝑡
𝝓𝒓( 𝑏) + 𝑀𝑡𝐷𝑡(𝝓𝒓( 𝑏))

𝑡
𝝓𝒓
′ ( 𝑏)

+ (𝐼𝑡 +𝑀𝑡𝐷𝑡
2)(𝝓𝒓

′ ( 𝑏))
𝑡
𝝓𝒓
′ ( 𝑝) 

(31) 

𝜣 = 𝐵𝑒31
𝑒𝑓
(ℎ𝑝 + ℎ𝑠)𝝓𝒓

′ ( 𝑏) (32) 

𝐶𝑝 = 𝐵
2 𝑏𝜖33

𝑒𝑓

ℎ𝑝
 (33) 
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𝑩𝒇 = ∫ 𝑚𝝓𝒓
𝑡𝑑 

𝐿 

0

+𝑀𝑡(𝝓𝒓( 𝑏))
𝑡
+ 𝐷𝑡𝑀𝑡(𝝓𝒓

′ ( 𝑏))
𝑡
 (34) 

It is worth noting that 𝑲 depends on 𝑘𝑒31
2

 which is a new relevant result compared to the expression proposed 

in [22] for which the electric field was supposed to be constant through the thickness of the piezoelectric layers. 

As 𝑘𝑒31
2  is no longer negligible for strongly coupled materials, this new expression of the stiffness matrix allows 

better consideration of the electromechanical interactions. 

 

2.4. Mode shapes determination 

 

In order to evaluate equation (29), we determine the analytical expressions for the mode shapes 𝜙𝑖( ) from a 

2-DOF model assuming that the beam mass is negligible compared to the mass of the proof mass. Consequently, 

the bending moment 𝑀𝑦 at any time and at each position of the neutral axis is related to the torque   and the force 

  applied by the proof mass at the end of the beam ( =  𝑏) and written as (35).   

 

𝑀𝑦( ,  ) =  ( ) +  ( )[ 𝑏 −  ] (35) 

 

 

 

The bending stiffness 𝑌𝐼 and the moment 𝑀𝑦 for a symmetric bimorph in short circuit condition are obtained 

from (27) and given in (36) and (37) [40]. By integrating equation (37) twice and considering the boundary 

conditions at the clamped end (𝑤(0,  ) = 0 and 𝑤′(0,  ) = 0), we obtain the expression of the stiffness matrix 

𝐾2𝐷𝑂𝐹  given in (38). Where the rotation  𝐿 ( ) is the slope 𝑤′( 𝑏 ,  ). The force and the torque due to the translation 

and rotation accelerations of the proof mass are expressed in (39) and (40) from [32].  

 

𝑌𝐼 = 𝐵 [𝑌𝑠
𝑒𝑓 ℎ𝑠

3

12
+ 𝑐11

𝑒𝑓
(
2

3
(ℎ𝑝 +

ℎ𝑠
2
)
3

−
ℎ𝑠
3

12
+ 𝑘𝑒31

2
ℎ𝑝
3

6
) ] (36) 

𝑀𝑦( ,  ) = 𝑌𝐼
𝜕2𝑤( ,  )

𝜕 2
 (37) 

(
 
 
) = [𝐾2𝐷𝑂𝐹] (

𝑤𝐿  

 𝐿 
) =

𝑌𝐼

 𝑏
2 [

12 

 𝑏
−6

−6 4 𝑏

] (
𝑤𝐿  

 𝐿 
) (38) 

 = 𝑌𝐼
𝜕3𝑤( 𝑏 ,  )

𝜕 3
= 𝑀𝑡�̈�𝐿 +𝑀𝑡𝐷𝑡 ̈𝐿  (39) 

 = 𝑌𝐼
𝜕2𝑤( 𝑏 ,  )

𝜕 2
= 𝐼𝑡 ̈𝐿  + 𝑀𝑡𝐷𝑡

2 ̈𝐿 + 𝐷𝑡𝑀𝑡�̈�𝐿  (40) 

 

 

Finally, equations (38) to (40) and the force and moment equilibrium analysis at the end of the beam lead to the 

2-DOF coupled equation system (41) when no external excitation is considered. 

 

[
𝑀𝑡 𝑀𝑡𝐷𝑡
𝐷𝑡𝑀𝑡 𝐼𝑡 + 𝐷𝑡

2𝑀𝑡
] (
�̈�𝐿 
 ̈𝐿 

) + [𝐾2𝐷𝑂𝐹] (
𝑤𝐿 
 𝐿 

) = [
0
0
] 

 

(41) 

 

If we assume the deflection 𝑤𝐿  and the rotation  𝐿  to be sinusoidal, defined by their angular frequency 𝜔 and 

their amplitudes W and O respectively, we can determine the first and second short circuit resonant frequencies of 
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the 2-DOF system (41) by solving (42). The resulting resonant frequencies (or pulsations) of the cantilever are 

expressed in appendix B. 

 

(𝜔2 [
𝑀𝑡 𝐷𝑡𝑀𝑡

𝐷𝑀𝑡 𝐼𝑡 + 𝐷𝑡
2𝑀𝑡

] +
𝑌𝐼

 𝑝
2
[

12 

 𝑏
−6

−6 4 𝑏

]) (
𝑊

𝑂
) = [

0
0
] (42) 

 

 

When applying the Rayleigh-Ritz method to the proposed 2-DOF model, the transverse displacement 𝑤( ,  ) 

is reduced to the sum of two bending modes (𝑖 ∈ [1,2]). From the resolution of (42), we determine the eigenvectors 

for each resonant frequency, [𝑊1, 𝑂1] and [𝑊2, 𝑂2], that we use to express the modes shapes 𝜙1( ) and 𝜙2( ).  
 

According to equations (35) and (37), 𝜙1
′′( ) and 𝜙2

′′( ) are affine functions and can be expressed using two 

coefficients 𝑎𝑖 and  𝑖 as depicted in Figure 5 and equation (43). Therefore, as each mode shape satisfies the 

boundary conditions at the clamped end, only the eigenvectors values [𝑊1, 𝑂1] and [𝑊2, 𝑂2] are necessary to 

express the modes shapes, as 𝑊𝑖 = 𝜙𝑖( 𝑏) and 𝑂𝑖 = 𝜙𝑖
′( 𝑏). 

 

 
Figure 5: Representation of the mode shapes 𝜙𝑖( ) and their second derivatives 𝜙𝑖

′′( ) deduced from the  

2-DOF model for the first two bending resonant frequencies. 

 

𝜙𝑖
′′( ) =  𝑖 + 𝑎𝑖 (1 −

 

 𝑏
) (43) 

𝜙𝑖
′( ) =

 (2 𝑖 − 𝑎𝑖
 
 𝑏
  +  2𝑎𝑖)

2
 

(44) 

 

𝜙𝑖( ) =
 2 (3 𝑖 − 𝑎𝑖

 
 𝑏
  +  3𝑎𝑖)

6
 

(45) 

 

 

For the sake of simplicity, we define the rotation amplitude to deflection amplitude ratio 𝛽𝑖 = 𝑂𝑖/𝑊𝑖 that 

expresses the slope amplitudes at the end of the beam during bending for each mode. From equation (42), 𝛽1and 

𝛽2 are expressed as: 

𝛽1 = −
3 (2 𝐷𝑡 +  𝑏)

3 𝐽𝑡  − (9 𝐷𝑡
4 +  18 𝐷𝑡

3 𝑏  +  15 𝐷𝑡
2 𝑏

2 +  18 𝐷𝑡
2𝐽𝑡  +  6 𝐷𝑡  𝑏

3 +  18 𝐷𝑡  𝑏  𝐽𝑡  +   𝑏
4 +  3  𝑏

2 𝐽𝑡  +  9 𝐽𝑡
2)
1
2 +  3 𝐷𝑡

2 −  𝑏
2
 (46) 

𝛽2 = −
3 (2 𝐷𝑡 +  𝑏)

3 𝐽𝑡 + (9 𝐷𝑡
4 +  18 𝐷𝑡

3 𝑏  +  15 𝐷𝑡
2 𝑏

2 +  18 𝐷𝑡
2𝐽𝑡  +  6 𝐷𝑡  𝑏

3 +  18 𝐷𝑡  𝑏  𝐽𝑡  +  𝑏
4 +  3  𝑏

2 𝐽𝑡  +  9 𝐽𝑡
2)
1
2 +  3 𝐷𝑡

2 −  𝑏
2
 (47) 

 

 𝑏

 1  
0

𝜙1′′( )

 𝑏

 2

 
0

𝜙2′′( )

  

𝜙2( )𝜙1( )

(a) (b)

(c) (d)

𝑎1
𝑎2
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With Jt termed the rotary inertia to mass ratio defined as 𝐽𝑡 = 𝐼𝑡/𝑀𝑡, the rotary inertia of the proof mass 

normalized by its mass, which only depends on the proof mass shape. For a rectangular proof mass, the values of 

𝐽𝑡 and 𝐷𝑡  are given by ( 𝑚
2 +  𝑚

2 )/12 and  𝑚/2 respectively.  

From equations (43) to (45), we express 𝑎𝑖 and  𝑖 as a function of 𝑊𝑖 and 𝑂𝑖 . Normalizing the modes shapes 

such as 𝑊𝑖 = 1 and 𝑂𝑖 = 𝛽𝑖 , 𝑎𝑖 and  𝑖 are finally given in (48) and (49). 

 

𝑎𝑖 =
6 (2 −  𝑏𝛽𝑖)

 𝑏
2        (48)  𝑖 =

2 (2  𝑏 𝛽𝑖 −  3)

 𝑏
2  (49) 

 

2.5. Rayleigh-Ritz method applied with the mode shapes 

 

Once the mode shapes and their second derivatives are determined, we obtain the analytical expressions of the 

equivalent parameters of the system (29) by substituting them in (30) to (34). The coefficients of each matrix and 

vector are finally expressed in equations (50) to (53). 

 

𝑀𝑖𝑗 =
 𝑏
5𝑚 (66 𝑎𝑖𝑎𝑗 +  91 𝑎𝑖 𝑗 +  91 𝑎𝑗 𝑖 +  126  𝑖 𝑗)

2520

+
 𝑏
2 (𝑎𝑖 +  2  𝑖)(𝑎𝑗 +  2  𝑗)(𝑀𝑡𝐷𝑡

2 + 𝐼𝑡)

4
+
 𝑏
4𝑀𝑡(2 𝑎𝑖 +  3  𝑖)(2 𝑎𝑗 +  3  𝑗)

36

+
𝐷𝑡 𝑏

3𝑀𝑡(𝑎𝑖 +  2  𝑖)(2 𝑎𝑗 +  3  𝑗)

12
+
𝐷𝑡 𝑏

3𝑀𝑡(𝑎𝑗 +  2  𝑗)(2 𝑎𝑖 +  3  𝑖)

12
 

(50) 

𝐾𝑖𝑗 =
 𝑏(2 𝑎𝑖𝑎𝑗 +  3 𝑎𝑖 𝑗 +  3 𝑎𝑗 𝑖 +  6  𝑖 𝑗)

6
𝑌𝐼 (51) 

𝐵𝑓𝑖 =
 𝑏
2𝑀𝑡  (3  𝑖  +  2  𝑎𝑖)

6
+
 𝑏 
3 𝑚(4  𝑖  +  3  𝑎𝑖)

24
+
𝐷𝑡   𝑏 𝑀𝑡  (2  𝑖  +   𝑎𝑖)

2
 (52) 

𝛩𝑖 =
𝐵  𝑏 𝑒31

𝑒𝑓
 (2  𝑖  +   𝑎𝑖)(ℎ𝑝  +  ℎ𝑠)

2
 (53) 

 

As the first bending mode is the most coupled for this given structure [41], this paper focuses on the first 

resonant mode. We then approximate the behavior of the piezoelectric cantilever using its related model around 

the first resonant mode and we reduce the 2-DOF system to the SDOF system (1) (where 𝑀 = 𝑀11, 𝐾 = 𝐾11, 𝛩 =

𝛩1, 𝐵𝑓 = 𝐵𝑓1). However, the 2-DOF model could be useful to design a cantilever for which the second resonant 

frequency can be located at a chosen value (e.g. to avoid interaction between modes). 

We eventually propose in (54) an analytical expression of 𝑘𝑒
2 the square of the alternative electromechanical 

coupling coefficient of a cantilever with a proof mass deduced from equations (4), (33), (52) and (53). 

 

𝑘𝑒
2 = 𝑘𝑒31

2 ℛ𝐿ℛ𝑇 (54) 

ℛ𝐿 = 
(
 
𝑎
)
2

+ (
 
𝑎
) +

1
4

 (
 
𝑎
)
2

+ (
 
𝑎
) +

1
3

 (55) 

ℛ𝑇 = 
(
ℎ𝑝
ℎ𝑠
)
3

+ 2(
ℎ𝑝
ℎ𝑠
)
2

+ (
ℎ𝑝
ℎ𝑠
)

1
6
(
𝑌𝑠
𝑒𝑓

𝑐11
𝑒𝑓) +

4 + 𝑘𝑒31
2

3
(
ℎ𝑝
ℎ𝑠
)
3

+ 2(
ℎ𝑝
ℎ𝑠
)
2

+ (
ℎ𝑝
ℎ𝑠
)

 (56) 
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ℛ𝐿 and ℛ𝑇 are two factors termed “length factor” and “thickness factor” respectively. ℛ𝐿 only depends on the 

strain distribution along the beam, as expressed in (55) while ℛ𝑇 is related to the stress distribution across the 

thickness of the beam (56). 

As we only consider the first resonant frequency, in the following, the coefficients 𝑎 and   represent 𝑎1 and  1. 

As the  /𝑎  ratio is related to the second derivative of the transverse deflection, it expresses the homogenization 

of the strain distribution along the beam (the higher  /𝑎, the better the homogenization). The  /𝑎 ratio is expressed 

thanks to (46), (48) and (49) in (57). 

 

 

𝑎
= −

3𝐽𝑡 − (9 𝐷𝑡
4 +  18 𝐷𝑡

3 𝑏 +  15 𝐷𝑡
2 𝑏

2 +  18 𝐷𝑡
2𝐽𝑡 +  6 𝐷𝑡 𝑏

3 +  18 𝐷𝑡 𝑏𝐽𝑡 +  𝑏
4 +  3  𝑏

2 𝐽𝑡 +  9 𝐽𝑡
2)
1
2 +  3 𝐷𝑡

2 +  𝑏
2 +  4 𝐷𝑡 𝑏

6 𝐽𝑡 −  2 (9 𝐷𝑡
4 +  18 𝐷𝑡

3 𝑏 +  15 𝐷𝑡
2 𝑏

2 +  18 𝐷𝑡
2𝐽𝑡 +  6 𝐷𝑡 𝑏

3 +  18 𝐷𝑡 𝑏𝐽𝑡 +  𝑏
4 +  3  𝑏

2 𝐽𝑡 +  9 𝐽𝑡
2)
1
2 +  6 𝐷𝑡

2 +  𝑏
2 +  6 𝐷𝑡 𝑏

 (57) 

 

To our knowledge, for the first time, an analytical expression of the alternative electromechanical coupling 

coefficient is provided for a piezoelectric cantilever with a full proof mass geometry taken into account and when 

a variable electric field across the piezoelectric patches is considered. This expression is used in the next section 

to propose design guidelines.  

 

3. Design guidelines for optimization 

 
Because 𝑘𝑒

2 depends both on the material coupling coefficient and the structure geometry, they have to be taken 

into account simultaneously: i) by using strongly coupled materials (e.g. PZT ceramics or relaxor-based 

ferroelectric single crystals such as PMN-PT and PZN-PT), ii) by optimizing the devices to direct the stress in the 

piezoelectric material and to make its distribution as uniform as possible.  

We have previously demonstrated that 𝑘𝑒
2 of our harvester can be optimized by maximizing the length factor 

ℛ𝐿 (§3.1), the thickness factor ℛ𝑇 (§3.2) and the squared material expedient electromechanical coupling 

coefficient 𝑘𝑒31
2  (§3.3). As 𝑘𝑒

2 cannot be higher than 𝑘𝑒31
2 , both ℛ𝐿 and ℛ𝑇 are lower than one and the purpose of 

the optimization process is to keep them as close to unity as possible. The optimization of the longitudinal stress 

distribution and the transverse stress distribution (i.e. optimization of ℛ𝐿 and ℛ𝑇) can be done separately as they 

do not depend on the same parameters. We discuss hereafter how these factors can be maximized. 

 

3.1. Optimization of 𝓡𝑳  

From equation (55) in section 2, Figure 6 plots the evolution of ℛ𝐿 as a function of the  /𝑎 ratio. 

ℛ𝐿 tends toward one as  /𝑎 tends toward infinity. It can also be seen that ℛ𝐿 = 0.75 when  /𝑎 = 0 (i.e. for the 

case of a cantilever with a point proof mass placed at the end of the beam (𝐽𝑡 = 0 and 𝐷𝑡 = 0)). As a conclusion, 

the optimal configuration of the longitudinal strain distribution would lead to an increase of 𝑘𝑒
2 by 33% compared 

to the point mass case. It can also be noted that even a moderate  /𝑎 ratio allows to achieve high values of ℛ𝐿 

(e.g. ℛ𝐿 = 0.964 for  /𝑎 = 1). 

Equation (57) shows that  /𝑎 depends on the proof mass geometric characteristics (𝐽𝑡 and 𝐷𝑡) and the beam 

length  𝑏. Figure 7 plots ℛ𝐿 as a function of 𝐽𝑡 and 𝐷𝑡  for a constant beam length. It highlights the interest of 

increasing both 𝐽𝑡 and 𝐷𝑡 . Even if ℛ𝐿 is theoretically maximal for a null value of 𝐷𝑡  when 𝐽𝑡 is very large (not 

perceptible on the figure), it is more convenient to design devices with a moderate to large value of 𝐽𝑡 and a 

moderate to large value of 𝐷𝑡 . 

Designs that involve a large 𝐽𝑡 and a low 𝐷𝑡  lead to harvesters with too large overall volumes that they would 

be difficult to fabricate. For instance, a height to length ratio of a rectangular proof mass  𝑚/ 𝑚 = 7 is necessary 

to reach ℛ𝐿= 0.943 with 𝐽𝑡 = 150mm² and 𝐷𝑡  = 3 mm ( 𝑏 = 20 mm,  𝑚 = 6 mm,  𝑚= 42 mm) while a long and 

thin proof mass (e.g  𝑚/ 𝑚 = 0.4) reaches roughly the same ℛ𝐿 (0.949) ( 𝑏 = 20 mm,  𝑚 = 25 mm,  𝑚 =10mm). 

These examples show that increasing the proof mass length  𝑚 is a simple and efficient solution to optimize ℛ𝐿 

since it both increases 𝐽𝑡 and 𝐷𝑡  while reducing the overall volume of the harvester. It is also interesting to note 

that only the beam length and the proof mass’s shape modify  /𝑎 and ℛ𝐿 whatever the material densities. 
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Figure 6: ℛ𝐿 as a function of  /𝑎.  

 /𝑎 is positive for the first resonant mode for 

𝐷𝑡 ≥ 0. 

 

Figure 7: Evolution of ℛ𝐿 factor with the distance 

𝐷𝑡  and rotary inertia to mass ratio 𝐽𝑡 for a beam 

length  𝑏 of 20mm. 

 

 

3.2. Optimization of 𝓡𝑻  

As depicted in Figure 8, ℛ𝑇 is maximal for an optimal thickness ratio (ℎ𝑝/ℎ𝑠)
𝑜𝑝𝑡

. This optimal ratio (58) only 

depends on the 𝜅 ratio as defined in (59).  

 

 
Figure 8: ℛ𝑇 as a function of the thickness ratio for PZT or PMN-PT patches and steel substrate (𝑌𝑠 =

200 GPa). Plane stress assumption and piezoelectric coefficients of Table 1 are considered. 

 

(
ℎ𝑝

ℎ𝑠
)
𝑜𝑝𝑡

 = {

1

2
𝜅
1

3  [(1 − √1 − 𝜅)
1

3 + (1 + √1 − 𝜅)
1

3]

√𝜅 cos (
arctan √𝜅−1

3
)

  

for 𝜅 ≤ 1 

(58) 

for 𝜅 > 1  

 

𝜅 =
𝑌𝑠
𝑒𝑓

𝑐11
𝑒𝑓

1

𝑘𝑒31
2 + 1

 (59) 

 

As the longitudinal strain increases linearly with the distance from the neutral axis (Euler-Bernoulli 

assumption), one might think that the configuration with thin patches located far away from the neutral axis (i.e. 

low ℎ𝑝/ℎ𝑠) is the best one. Nevertheless, this configuration also means that a lot more elastic energy is stored in 

the substrate than in the piezoelectric material. Thus, the optimal ratio (ℎ𝑝/ℎ𝑠)
𝑜𝑝𝑡

matches a trade-off between 

maximizing the elastic energy in the piezoelectric material and homogenizing the strain distribution.  

It is interesting to notice that 𝜅 not only depends on the piezoelectric stiffness 𝑐11
𝑒𝑓

 but also on the square of the 

material expedient coupling coefficient 𝑘𝑒31
2  as we considered a variable electric field across the patches’ 

thicknesses. This is a significant improvement compared to former works on global coupling optimization [18,42], 

since strongly coupled materials (e.g. PZN-PT or PZT) are used to improve the coupling coefficient of the global 

system.  
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By using (58) and (59), the maximal value of ℛ𝑡  can be determined for given materials and is limited by 𝜅 and 

𝑘𝑒31
2 . As an example, for PMN-PT and PZT materials in plane stress configuration associated to steel substrate, 

the optimal thicknesses ratio are 2.3 and 1.5 respectively and the maximal values of ℛ𝑡  are 0.74 and 0.82 

respectively. In comparison, the maximal value of ℛ𝑡 as well as its optimum are different in plane strain 

configuration: ℛ𝑡   = 0.65 and 0.81 at (ℎ𝑝/ℎ𝑠)
𝑜𝑝𝑡

= 1.6 and 1.4 for the PMN-PT and PZT respectively. 

Finally, as ℛ𝑇 and ℛ𝐿 do not depend on the total thickness of the beam nor on the material density of the proof 

mass, we can adjust them for the sole purpose of targeting to a desired frequency without hindering the coefficient 

𝑘². This result established from the proposed model simplifies the design of vibration harvesters for coupling 

optimization. 

 

3.3. Optimization of 𝒌𝒆𝟑𝟏
𝟐

  

In addition to the optimization of the ℛ𝑇 and ℛ𝐿 factors, we can increase 𝑘𝑒
2 by maximizing the piezoelectric 

material coupling coefficient. This can be done through the use of strongly coupled materials and by the 

optimization of the aspect ratio of the beam (width-to-length ratio 𝐵/ 𝑏). Indeed, the effective electromechanical 

coupling coefficient of piezoelectric materials shows a considerable difference between the plane stress and plane 

strain assumptions (Table 1). Some materials, such as PZT ceramics and [001] poled PMN-PT single crystals, 

present a larger coupling coefficient in the plane strain configuration, while other ones (e.g. [011] poled PZN-PT) 

exhibit larger coupling coefficient in plane stress configuration [43]. These inclinations depend on the crystal 

classes, the poling directions and the cut orientations. Therefore, we should design wide beams for the first 

category and narrow beams for the second one.  

Due to their symmetry, the PZT ceramics exhibit larger material coupling coefficients for wide beams than for 

narrow ones. However, wide systems could become an issue if small volume devices or low resonant frequencies 

are required. The sought 𝐵/ 𝑏 ratio is often higher than 5 in order to satisfy the plane strain assumption [37] and 

the length of the beam would be chosen as long as possible to lower the resonant frequency. Therefore, a tradeoff 

has to be found regarding to the width-to-length ratio of the device. 

 

Table 1: Properties of the piezoelectric materials chosen for the study 

(the material coupling coefficients expressions are extracted from [44]). 

 
d31 

(pm.V-1) 

 11
𝐸  

(×10-12Pa-1) 

𝜖33
𝑇  

(F.m-1) 

𝑘31
𝑙 ² 

plane stress 

𝑘31
𝑤 ² 

plane strain 

Curie 

Temperature 

(°C) 

𝜌𝑝 

(kg.m-3) 

TRS X2B [001] 

PMN-29PT [45] 
-699 52.1 5400 ϵ0 19.6% 68.1% 170 7750 

Noliac NCE51 

PZT-5A [46] 
-208 17 1900 ϵ0 15.1% 34.3% 360 7850 

 

3.4. Optimal designs proposals 
 

To validate the design guidelines, we hereafter propose three strongly coupled piezoelectric cantilevers 

involving two types of piezoelectric material: PMN-PT single crystal and PZT-5A ceramic. A targeted resonant 

frequency of 30Hz has been chosen as many applications for vibration harvesting are low frequency applications. 

The two first prototypes (one PMN-PT based and one PZT based) are designed with low width-to-length ratio 

corresponding to the plane stress assumption.  

The maximal theoretical power that can be harvested by a piezoelectric cantilever is given by the SDOF model 

(1) and is expressed as (60) for a sufficiently coupled device with moderate mechanical losses (𝑘𝑒
2𝑄𝑚 > 2). 

 

𝑃𝑚𝑎𝑥 =
𝐵𝑓
2

𝑀
 
𝑄𝑚
8𝜔1

|𝑤�̈�|² (60) 

 

We design the two first generators to present the same resonant frequency and the same coefficient 𝐵𝑓
2/𝑀 so 

that the mechanical quality factor is the only remaining parameter that affects the maximal generated power at a 

given acceleration. 
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We choose a rectangular shape for the proof mass to facilitate the fabrication process. Steel (𝑌𝑠 = 200 Gpa, 

𝜈 = 0.3 and 𝜌𝑠 = 7930 kg.m−3) is chosen as the substrate and the proof mass material as it presents low intrinsic 

mechanical losses and a large value of yield strength. 

The optimal designs have been obtained using the proposed model with some constraints since suppliers limit 

the accessible thicknesses of piezoelectric and steel plates. The obtained final designs for PMN-PT N and PZT N 

are detailed in Table 2. The adjustments on the thicknesses have an impact on the theoretical global 

electromechanical coupling coefficients but strong coupling coefficients are still expected. With the optimal 

configuration, the theoretical 𝑘2 are expected to reach 15.2% and 12.8% for the PMN-PT N and PZT N 

respectively. Due to the aforementioned adjustments with the final dimensions, they are expected to be equal to 

12.9% and 11.8% respectively. The two optimal structures implement a long proof mass to homogenize the 

longitudinal strain distribution. 

As the material coupling coefficient 𝑘31
2 of PZT is lower than the one of PMN-PT, a same trend is expected for 

𝑘². Thinner or/and longer piezoelectric layers are also necessary to reach the same resonant frequency as the 

stiffness of the PZT ceramic is larger than the one of the PMN-PT single crystal. PMN-PT represents a convenient 

material when low frequency and strong global coupling coefficient are expected. Nevertheless, the PZT-5A 

material may be advantageous as it is much cheaper and best suited for higher temperature applications.  

 

Table 2: Geometrical parameters of the three proposed prototypes 

(N holds for the 2 narrow prototypes and W for the widest prototype) 

Design name “PMN-PT N” “PZT N” “PZT W” 

Material PMN-PT PZT-5A PZT-5A 

Beam length  𝑏 45 mm 15 mm 15 mm 

Mass length  𝑚 45 mm 60 mm 60 mm 

Height of mass  𝑚 5 mm 10 mm 10 mm 

Beam and mass width 𝐵 10 mm 5 mm 25 mm 

Substrate thickness ℎ𝑠 0.5 mm 0.4mm 0.4mm 

Piezoelectric thickness ℎ𝑝 0.5 mm 0.3 mm 0.3 mm 

Width-to-length ratio 𝐵/ 𝑏  0.22 0.33 1.67 

Coefficient 𝐵𝑓
2/𝑀 18.2 g 19.8 g 99.1 g 

 

 

In order to study the width B influence on 𝑘² and to design a PZT-based device with a strong global coupling 

coefficient, we also built a third prototype (PZT-W) with same parameters as the PZT-N device (Table 2) while 

widening the beam. However, we selected a moderate value of width to limit the volume of the harvester. The 

beam width equals 25mm (5 times larger than the PZT-N design). The dimensions of the PZT-W design are listed 

in Table 2. 

 

4. Experimental validations 

  

4.1. Prototypes fabrication and impedance measurements 

 

The PMN-PT patches from TRS technologies and PZT patches from Noliac have been cut to size by the 

manufacturers and glued in our laboratory on steel beams with non-conductive epoxy glue (Epotecny E505). 

During the gluing process, a strong compressive force is applied to electrically connect the middle electrode of the 

piezoelectric patches to the conductive substrate (steel beam) making the glue thickness a priori negligible. The 

proof mass is made from two steel sheets bonded on the substrates with a 3M® epoxy glue. The clamped end is 

obtained by screwing steel thick parallelepipeds to sandwich the other end of the substrate beam (Figure 9). Figure 

10 shows the three assembled prototypes.  
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a)    b)  c)   

 

Figure 10: Pictures of the assembled prototypes showing a) the PMN-PT N design, b) the PZT N design 

and c) the PZT W design.  

 

Impedance measurements have been performed on each prototype (Figure 11) with a 6500B series impedance 

analyze from Wayne Kerr®. The short circuit resonant frequencies 𝑓𝑠𝑐 and the squared global electromechanical 

coupling coefficients 𝑘2 are determined with the method presented in [33] and are compared to the ones determined 

with the proposed model, 2D FEM simulations and 3D FEM simulations. The results are presented in Table 3. In 

the case of FEM simulations, the 𝑘2 are obtained by performing (𝑓𝑠𝑐
2 − 𝑓𝑜𝑐

2 )/𝑓𝑜𝑐
2  where 𝑓𝑠𝑐 and 𝑓𝑜𝑐 are the computed 

the short circuit and open circuit resonant frequencies, respectively. 2D-FEM and proposed model were used 

according to the plane stress assumption for PMN-PT N and PZT N designs and the plane strain assumption for 

the PZT W design. 

 

  

 
Figure 11: Magnitude and phase of the measured impedance on each prototype and model curves with the 

fitted parameters. 

 

Table 3: Short circuit resonant frequency 𝑓𝑠𝑐 and squared global electromechanical coupling coefficient 𝑘² of the 

three prototypes deduced from modeling, simulations and impedance measurements 

  Design PMN-PT N Design PZT N Design PZT W 

Proposed 

Modeling 

𝑓𝑠𝑐  31.2Hz 34.2Hz 36.3Hz 

𝑘2 12.9% 11.8% 27.9% 

2D-FEM 
𝑓𝑠𝑐  31.2Hz 34.1Hz 36.2Hz 

𝑘2 12.6% 11.5% 27.3% 

3D-FEM 
𝑓𝑠𝑐  34.3 Hz 34.8 Hz 35.8 Hz 

𝑘2 21.3% 14.2% 23.3% 

Impedance 

Measurement 

𝑓𝑠𝑐  29.9 Hz 32.0 Hz 32.0 Hz 

𝑘2 16.6 % 11.3% 16.4% 
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Figure 9: 3D CAD design of the PMN-PT N device and its interface for shaker. 
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4.2. Comparison between analytical model, FEM simulations and experiments 

results 

 

From Table 3, we can notice a very good agreement between the model and 2D-FEM simulations. However, 

these results do not match perfectly with the 3D-FEM ones. Indeed, the width-to-length ratios of designed 

structures (Table 2) favor either the plane stress assumption or the plane strain assumption, which are, nevertheless, 

only a simplification for analytical modeling and 2D-FEM approaches. For designs with intermediate width-to-

length ratios (from 0.2 to 5), models that explicitly consider the width-to-length ratio appear therefore interesting 

[47]. However, they do not take the width-to-thickness ratio into account while it has been shown to be also 

involved in the out-of-plane stress interaction [48]. As a solution, 3D-FEM simulations can be used to analyze the 

stress distribution in the beams (Figure 12 and Figure 13) and to evaluate the influence of the beam width on 𝑘2 

(Figure 14). 

 

The model appears to determine accurately the strain and stress compared to the 3D-FEM simulations and just 

a slight difference is noticed between the plane stress modeling and the 3D-FEM results for the PMN-PT N design. 

Furthermore, for small and large width-to-length ratios (i.e. 𝐵/ 𝑏 equal to 0.1 and 10 respectively), 𝑘2 is 

 

Figure 12: Strain and stress distributions along the center position of the upper piezoelectric patch (𝑧 = 𝑧𝑚2) of 

the PMN-PT N design for a displacement at  =  𝑏  equal to 0.1mm. PStress: plane stress, PStrain: plane strain. 

 

Figure 13: Strain and stress distributions along the center position of the upper piezoelectric patch (𝑧 = 𝑧𝑚2) 

of the PZT based designs for a displacement at  =  𝑏  equal to 0.1mm. 

 

Figure 14: 3D simulated coupling evolution as a function of the beam width for the PMN PT and PZT devices. 

The other geometrical parameter are in Table 2.  The crosses and the dots stand for the simulated and the 

experimental results respectively of the designed prototypes. 
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accurately determined for designs using PZT material while there still is a difference for designs using PMN PT. 

These differences are thought to be due to the out-of-plane interactions associated to a strong material coupling 

coefficient as approximations of the effective piezoelectric material parameters are done in the model.  

Despite the consideration of the beam width-to-length ratio, lower 𝑘2are measured on the prototypes than the 

ones expected by the 3D-FEM simulations (Table 2), which could be explained by the clamping configuration and 

the glue thickness. Due to prototypes’ configuration, functional clearances between the patches and the stationary 

frame at one end and between the patches and the proof mass on the opposite end are required. Even if these 

distances and the glue thickness cannot be accurately determined and are limited, they induce a drastic decrease 

of 𝑘². As an example, the squared global coupling coefficient 𝑘2 of  the PZT W design is equal to 17.0% if we 

consider the clearances equal to 1 µm and a glue thickness of 5 µm in a 3D-FEM simulation (for which the epoxy 

glue Young’s modulus is assumed to be 4 GPa) compared to 23.3% in the case of perfect clamping and bonding. 

The proposed model approximates the 𝑘² of the final prototypes due to assumptions on the effective material 

parameters and manufacturing variations not considered. Yet, the model is relevant to study the strain and the 

stress distributions and provides critical information for a design optimization as it brings to light the underlying 

physical explanations.  

 

4.3. Discussion on experimental global coupling coefficients measurements 

 

From the impedance measurements, the global coupling coefficients 𝑘2, the quality factors 𝑄𝑚 and the figure 

of merit 𝑘𝑒
2𝑄𝑚  of the prototypes are reported in Table 4 as well as comparisons to the values from the state of the 

art . We also propose a new figure of merit: the Structural Coupling Optimization 𝑆𝐶𝑂 =  𝑘2/max (𝑘31
𝑙 2
; 𝑘31

𝑤 2) 
defined as the global coupling coefficient normalized by the maximal coupling coefficient of the material between 

the plane stress and the plane strain assumptions. It indicates the ability of the proposed structure to takes benefit 

of the material performance. 

To our knowledge, the coefficients 𝑘² reached by our prototypes are the best experienced with PMN-PT [001] 

and PZT-5A based cantilevers compared to the state of the art. According to Table 4, devices made with relaxor-

based ferroelectric single crystals show better coupling thanks to their strong material coupling coefficients. Some 

of these devices reach strong SCO values as their effective material coupling coefficients are maximal with narrow 

beams. In general, lower 𝑘² are reached with ceramics but our method allowed us to design the strongly coupled 

PZT W device that competes with the PMN-PT N design. Enlarging the beam width between the PZT N and PZT 

W devices, we succeed in increasing 𝑘2 by +45%. To conclude on Table 4, we notice that the systems that exhibit 

the best structural coupling optimization are the devices that include a long proof mass. This validates that this 

shape improves the strain distribution and by doing so, maximizes the global electromechanical coupling.  

 

Table 4: Performance comparison of the proposed prototypes with reported values from the state-of-the-art 

regarding the global coupling coefficient and the mechanical quality factor 

 Reference Material 
Material coupling 

𝒌𝟑𝟏
𝒍 𝟐

-𝒌𝟑𝟏
𝒘 𝟐 

Quality 

factor  

𝑸𝒎 

Global 

coupling 

𝒌² 
𝒌𝒆
𝟐𝑸𝒎 𝑺𝑪𝑶 =

𝒌𝟐

𝐦𝐚𝐱(𝒌𝟑𝟏
𝒍 𝟐

; 𝒌𝟑𝟏
𝒘 𝟐)

 Characteristic 
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es
 [21] PZN-PT  85% - N/A  28 53.0% 32 64% ▬ 

[19,20] PZN-PT 85%* - N/A 20● 49.9% 20 59%* ► 

[49] PZN-PT  85%  -  N/A 50 15.4% 9.1 19% ► 

[50] PMN-PT N/A  -  N/A 22● 6.0%● 1.4 N/A ||||| 

PMN-PT N PMN-PT 20%  -  68% 130 16.6% 26 24% ▬ 
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 [51] PZT-5H 19%  -  46% 65 12.3% 9.1 27% ▲ 

[22] PZT-5A 12% - 27% 32 12.5% 4.6 46% ▬ 

PZT N PZT-5A 15% - 34% 85 11.3% 11 33% ▬ 

PZT W PZT-5A 15% - 34% 91 16.4% 18 48% ▬ 

▬ :  Long proof mass, ►: Thickness tapered beam, ▲ : Width tapered beam    |||||: Interdigitated electrodes 
●: values deduced from figures, *: 33-piezoelectric mode is used. 
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4.4. Power measurements and discussions 

 

Each prototype has been tested under vibration excitation to determine the output power and the frequency 

bandwidth for various accelerations levels. The experimental setup scheme, presented in Figure 15, consists in an 

electromagnetic shaker (K2075E-HT) driven by a DSpace board through a feedback integrating an accelerometer 

(PCB Piezotronics 356A17). The DSpace board is controlled by a dedicated Matlab script that defines the 

acceleration level and frequency and controls the programmable electrical resistances. The experiments have been 

done for 60 resistive loads between 1 kΩ and 2 MΩ over 100 excitation frequencies. 

In order to compare the harvesters, we use the normalized power density NPD figure of merit (59) proposed in 

[52] where 𝑉 is the volume.  

 

𝑁𝑃𝐷 =
𝑃𝑅𝑀𝑆
|𝑤�̈�|

2𝑉
 (61) 

 

As the volume is hardly available from the state-of-the-art, the device volume corresponds to the volume of the 

smaller rectangular block that can contain the device. The NPDs of each prototype on optimal resistive loads are 

plotted as a function of the frequency for several accelerations in Figure 16. The resulting bandwidths as defined 

in section 2.1 and the maximal NPDs are plotted as a function of the acceleration level in Figure 17.  

 

   
Figure 15: Representation of the experimental setup used for vibration testing 

 

 

  

Figure 16: Normalized power densities measured for the three prototypes, for various excitation accelerations 

   
Figure 17: Frequency bandwidth and maximal NPD of the three prototypes as a function of the excitation acceleration 

 

Our prototypes exhibit a nonlinear (softening) behavior when the excitation acceleration increases (Figure 16 

and Figure 17). The maximal NPD values are approximately divided by 2 for each prototype when the acceleration 
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level is multiplied by 10 (from 0.02 m.s-2 and 0.2 m.s-2), while the bandwidth is increased by 11%, 34% and 22% 

for the PMN-PT N, PZT N and PZT W devices respectively. Large stress occurs in the piezoelectric patches even 

at low acceleration due to the combination of the low resonant frequency and large proof masses, which induces 

large displacement amplitudes at the end of the beam. However, the analysis of non-linear effects on our prototypes 

is out of the scope of this paper. Besides, other works have thoroughly studied the nonlinear behavior of 

piezoelectric cantilevers [53].  

Table 5 reports the maximal value of the NPDs of our harvesters and for the state of the art. Two volumes are 

considered for normalization: the piezoelectric and the global volumes. While normalizing by the global volume 

appears interesting in order to consider constraints in terms of available space, normalizing by the volume of 

piezoelectric material will underline the structures that best optimize the use of the piezoelectric material, for cost 

reduction as an example. We also report the bandwidth when available. Table 5 is limited to strongly coupled 

harvesters. Additional devices exhibiting significant NPDs but limited bandwidths can be found in other works 

[54,55]. 

Our harvesters’ maximal NPDs are among the best of the reported values. In general, devices that integrate a 

long proof mass appear to have large NPD values. The long proof mass reduces the resonant frequency while 

optimizing the global volume. Then, large normalized output power is reached, as the power is inversely 

proportional to the frequency (for a given ambient acceleration level). Moreover, we take full advantage of the 

piezoelectric material thanks to a long proof mass: the longitudinal strain in the piezoelectric layers is almost 

uniform and the value of the coefficient 𝐵𝑓
2/𝑀 in equation (60) is large compared to the piezoelectric volume. The 

PZT N device exhibits larger losses than the PMN-PT N device as it generates lower power while having almost 

the same value of 𝐵𝑓
2/𝑀. 

However, the long proof mass configuration tends to increase the deflections at the tip end of the proof mass 

and may not be the optimal design to increase the NPD if we consider the overall swept volume. Nevertheless, 

even in this case, our NPDs compete with the bests of the state-of-the-art. Considering the maximum tip 

displacements, the NPDs including the swept volumes are indeed equal to 298 kg.s.m-3, 227 kg.s.m-3 and 214 

kg.s.m-3 for the PMN-PT N, PZT N and PZT W respectively at the accelerations reported in Table 5. 

Our prototypes present a large frequency bandwidth. Even if the frequency bandwidth of the PZT N device is 

remarkable for a cantilever (7.8%), the one of the PMN-PT N is larger (10.1%) due to its higher global coupling 

coefficient. Furthermore, thanks to the width increase, the PZT W prototype considerably enhances the bandwidth 

(11.3%) compared to the PZT N while keeping almost the same NPD (Table 5). At an acceleration of 0.2 m.s-2, 

the prototypes PMN-PT N, PZT N and PZT W generate 33.1 µW, 15.1 µW and 70.3 µW respectively. 

 

Table 5: Performances of the fabricated prototypes and comparison to the state-of-the-art in terms of normalized 

power density and bandwidth 

 Reference 

Active 

volume 

(mm3) 

Piezoelectric 

volume 

(mm3) 

Frequency 

(Hz) 

Acceleration 

amplitude 

(m.s-2) 

Maximal  

Power 

RMS (µW) 

NPD on total 

volume 
(𝐤𝐠. 𝐬.𝐦−𝟑)  

NPD on 

piezoelectric 

volume 
(× 𝟏𝟎𝟑. 𝐤𝐠. 𝐬.𝐦−𝟑) 

Bandwidth 
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[21] 1000 350 48.5 0.707 47.1 94.3 1.89 39.0%a 

[19,20] 6750 50 208 0.981 480 73.9 1.43 32.7% 

[49] N/A N/A 253 5.69 670 N/A N/A 7.5%● 

[50] 1.21 0.148 406 14.7 7.18 27.2 0.224 N/A 

PMN-PT N 4500 450 29.1 0.0191 0.586 355 3.55 10.1% 

C
er
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ic
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ed
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ty
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es

 

[51] 3750 104 116 2.45 88.8 3.94 0.142 N/A 

[22] 12300 926 41.6 0.500 160 52.2 0.691 N/A 

PZT N 3750 45 32.1 0.0210 0.393 236 19.7 7.8% 

PZT W 18750 225 32.5 0.0178 1.31 221 18.4 11.3% 

● values deduced from figures, a estimated from theory 
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4.5. Operation with a dedicated integrated circuit 

 

In this section, we demonstrate that the input/ambient vibration frequency can be dynamically tracked thanks 

to a strongly coupled harvester leveraged by an integrated circuit (Figure 18) developed in our group [12].  

  

In several real-world applications, the host structure of the harvester has a vibration spectrum with a dominant 

frequency that fluctuates [5]. As an example, Beeby et al. [56] showed that the dominant vibration frequencies of 

a water pump in a combined heat and power plant fluctuates in the range of 210 Hz to 219 Hz (5%) due to variations 

of the pump speed. The vibrations of a ferry vehicle engine reported in [56] have a dominant frequency that varies 

from 48 Hz to 50 Hz (4%). Furthermore, temperature variations and/or aging of the harvester may alter the resonant 

frequency of the harvester. For instance, both Wozniak et al. [57] and Gasnier et al. [8] measured drifts in the 

resonant frequencies of their harvesters dedicated to aeronautic environment when subjected to temperature 

variations. Wozniak et al. measured a shift in the resonant frequency of their PMN-PT harvester of -7.0% between 

0°C and 70°C while Gasnier et al. measured a shift of -5.6% with a PZT-5A harvester between 90°C and 120°C. 

Concerning the aging effects, Hoang et al. [6] measured a decrease of around 6% of the resonant frequency of 

their piezoelectric cantilevers after 6.7 billon cycles. Furthermore, a drift of 1% of the resonant frequency of the 

harvester of Benchemoul et al. [58] dedicated to HVAC systems led to a decrease of 30% of the harvested power 

compared to a frequency adjusted case. In order to harvest vibration energy from the above-mentioned 

environments, a harvester with a frequency bandwidth of at least 10% seems unavoidable to solve the problems of 

frequency shifts. 

 

 
Figure 18: Experimental setup used to validate the high tunability of our highly coupled prototype connected 

to our self-adjustable self-powered harvesting circuit.  

 

In order to lie within the range of reported HVAC vents vibration frequencies [58,59], we designed a new 

prototype with a short-circuit resonant frequency of 52,5 Hz. The new prototype shares the same dimensions with 

the PZT W devices depicted in Table 2, while the proof mass is made of aluminum instead of steel. The squared 

global electromechanical coupling coefficient 𝑘² of the prototype is 16.8%. On another note, this experimentally 

confirms that the material of the proof mass does not have much influence on the global coupling coefficient, since 

this new prototype exhibits almost the same coupling as the PZT W device (Table 4). Our highly coupled prototype 

has been tested along with an integrated circuit, presented in [12], which realizes the Phase-Shift SECE (PSSECE) 

harvesting technique [35].  
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The SECE strategy has initially been developed by Lefeuvre et al. [60] in 2005. During most of the vibration 

semi-periods, the harvester works in open-circuit condition. The absolute value of the voltage across the 

piezoelectric patches grows as electrical charges accumulate in the piezoelectric capacitance. As soon as the 

voltage reaches an extremum, an inductor is connected to the piezoelectric patches. The piezoelectric voltage 

quickly drops to zero as and the energy is quickly transferred to the inductor to be finally conveyed toward a 

storage capacitor. The Phase-Shift SECE, also introduced by Lefeuvre et al. in 2017 [35], is a harvesting technique 

derived from the SECE. In the PSSECE sequencing, the energy is extracted from the piezoelectric material with a 

tunable phase-shift comparatively with the standard SECE. The value of this phase-shift, thanks to the important 

backward coupling of our prototype, substantially influences the harvester dynamics, and allows a fine tuning of 

its resonant frequency on a relatively large frequency band.  

The circuit incorporates a high-voltage power management stage, a cold-start, and a maximal power point 

tracking (MPPT) sub-system. The circuit is assembled onto a printed circuit board (PCB) and connected to the 

strongly coupled harvester. The experimental setup is shown in Figure 18. The signal generator sends an alternative 

signal to a power amplifier, which actuates the electromagnetic shaker. The PZT prototype fixed on the shaker is 

subjected to a sinusoidal excitation at frequencies ranging from 46 Hz to 65 Hz and having an amplitude of 0.98 

m/s² (corresponding to the acceleration level indicated in [58]). The prototype is connected to the PSSECE circuit, 

which transmits the extracted power in an off-chip storage capacitor of 94µF. 

Figure 19 shows the transient waveforms of the measured voltages obtained with the PSSECE circuit at the 

excitation frequency of 58 Hz and after a frequency shift to 53 Hz. During the first 4 seconds, the circuit gathers 

energy in the storage capacitor in a non-optimal way, in order to cold-start. Thereafter, when the voltage across 

the capacitor reaches 1.9V (meaning that the circuit has collected enough energy to start its optimal operation), the 

SECE techniques starts. The MPPT sub-system starts adjusting the phase-shift of the harvesting events, which 

consequently tunes the prototype resonant frequency. From the 5th to 17th second, the voltage magnitude keeps 

increasing, meaning that the harvested power increases. The extracted power is almost maximal and greater than 

200 µW only 19 seconds after starting the circuit. Around the 19th second, we manually change the vibration 

frequency from 58 Hz to 53 Hz, leading to a quick drop of the voltage across the harvester. Immediately, the MPPT 

sub-system automatically starts converging to a new optimal phase-shift in order to bring the prototype resonant 

frequency closer to the new vibration frequency. Once again, the good convergence of the MPPT sub-system is 

illustrated by an increase of the voltage magnitude, until the 33th second. Through this experiment, we show that 

the system generates an optimal useful power even shortly after large frequency variations. 

 

 
Figure 19: Transient response of our prototype connected to the PSSECE circuit illustrating the resonant 

frequency self-adjustment when the vibration frequency shifts from 58 Hz to 53 Hz. 
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Figure 20 shows the power-frequency response measured with our prototype connected to the PSSECE circuit. 

The harvested power was measured by multiplying the average current flowing into the storage capacitor with the 

DC voltage across it after convergence of the MPPT sub-system for 20 vibration frequencies equally spaced 

between 46 Hz and 65 Hz. The results shown in Figure 20 demonstrate that our system is able to harvest more 

than 100 µW for vibration frequencies ranging from 50 Hz to 62 Hz. This represents enough power to supply a 

wireless sensor node whose average power consumption would be 100 µW, over a frequency bandwidth as large 

as 21% of the central frequency (the bandwidth classically defined at half of the maximal power is equal to 17.8%). 

It is worth noting that the bandwidth obtained with the PSSECE circuit is larger than the ones obtained in section 

4.4 with a simple resistive tuning, which confirm the superior performance of this circuit in this area, as described 

in [33]. The overall consumption of the PSSECE circuit is typically below 1 µW, which remains negligible 

compared to the harvested power.  

Our strongly coupled prototype, leveraged by the tunable PSSECE circuit, exhibits a wide harvesting bandwidth 

while the resonant frequency tuning subsystem consumes only a negligible part of the extracted power. 

 

 
Figure 20: Harvested power with our prototype connected to the PSSECE circuit for vibration 

frequencies ranging from 46Hz to 65Hz. The yellow line is the theoretical prediction obtained from [35] 

multiplied by a 85% factor corresponding to the typical efficiency of the PSSECE circuit [12]. Blue diamonds 

correspond to experimental measurements realized with our prototype and the PSSECE circuit. 

 

5. Conclusion 

 

This paper reports a method to design piezoelectric cantilevers with strong electromechanical coupling 

coefficients 𝑘². Such harvesters allow broadband vibration energy harvesting when combined with resonant 

frequency tuning electrical techniques. An analytical model, based on the Rayleigh-Ritz method and a new two 

degrees-of-freedom model, is proposed and validated through a comparison with FEM simulations. A new 

analytical expression of the alternative electromechanical coupling coefficient is deduced from the model and 

proves to be effective to give design guidelines. The major findings are: 

- The longitudinal and transverse stress distributions can be optimized separately as they do not depend on 

the same parameters. 

- 𝑘² increases with the ratio between the rotary inertia of the proof mass and its mass.  

- Cantilevers with long proof masses are effective configurations to maximize 𝑘². 

- Wide beams based on PZT ceramic materials exhibit larger 𝑘² than narrow beams. 

The design guidelines are validated by PMN-PT and PZT based prototypes that present equal resonant 

frequencies (≈ 30Hz). The fabricated cantilevers exhibit some of the best 𝑘2 reported for such materials: 16.6% 

and 11.3% for the narrow PMN-PT and PZT-5A prototypes respectively and 16.4% for the wide PZT-5A 

prototype. The wide prototype’s 𝑘² represents a 45% increase compared to the narrow PZT-based prototype, and 

a 31% increase compared to the reported literature on PZT-based cantilevers. Power measurements show that the 

prototypes exhibit very high normalized power densities and wide bandwidth behaviors on an optimal resistive 

load: 10.1%, 7.8% and 11.3% of the central frequency for the narrow PMN-PT cantilever, narrow PZT cantilever 

and wide PZT cantilever, respectively. To illustrate the potential applications of such generators, we describe a 

strongly coupled prototype dedicated to HVAC environment, leveraged by a dedicated integrated circuit 

integrating the PSSECE technique able to tune the resonant frequency of the generator. This device harvests more 

than 100 µW over a 21% frequency band. The resonant frequency management circuit consumes less than 1 µW 

and the harvested power is sufficient to supply a low power WSN. Moreover, we experimentally demonstrate that 

the harvester recovers its optimal performance even shortly after wide frequency variations.  
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The bandwidths provided by our approach are sufficient to address issues in many real-world applications where 

the ambient vibration frequency varies and/or where the resonant frequency of the harvester drifts due to 

temperature variations or aging. The strongly coupled harvesters proposed in this work, coupled to resonant 

frequency tuning techniques, pave the way toward the development of autonomous sensors self-adjustable to 

sensitive change in the operating environment. 
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Appendix A 

 

Modeling a piezoelectric cantilever can be done with any shape of proof mass. We can consider that the gravity 

center of the proof mass 𝑂 is at a distance 𝐷𝑡  and  𝑡  according to 𝑂𝑥 and 𝑂𝑧 directions. If 𝐼𝑜 is the rotary inertia 

of the proof mass according to its gravity center 𝑂, we can compute the rotary inertia 𝐼𝑡 according to the projection 

on the neutral axis thanks to the Huygens theorem (62). 

 

 

Figure 21: Cantilever with an asymetric proof mass 

 

𝐼𝑡 = 𝐼𝑜 + 𝑡
2𝑀𝑡 (62) 

 

 

Appendix B 

 

Finding the resonant pulsations of the system in (42) is done by finding the roots of the determinant of the 

matrix (63). The solutions are given in (64) and (65). They represent the short circuit resonant angular frequencies 

of a piezoelectric cantilever with a proof mass when the beam mass is neglected. 

 

 

𝑑𝑒 (𝜔2 [
𝑀𝑡 𝐷𝑡𝑀𝑡

𝐷𝑀𝑡 𝐼𝑡 + 𝐷𝑡
2𝑀𝑡

] +
𝑌𝐼

 𝑏
2 [

12 

 𝑏
−6

−6 4 𝑏

]) = 0 (63) 

 
 

𝜔1
2 =

2 𝑌𝐼  (3 𝐼𝑡 − √(9 𝐷𝑡
4𝑀𝑡

2 +  18 𝐷𝑡
3 𝑏𝑀𝑡

2 +  18 𝐷𝑡
2𝐼𝑡𝑀𝑡 +  15 𝐷𝑡

2 𝑏
2𝑀𝑡

2 +  18 𝐷𝑡  𝐼𝑡 𝑏𝑀𝑡 +  6 𝐷𝑡   𝑏
3𝑀𝑡

2 +  9 𝐼𝑡
2 +  3 𝐼𝑡 𝑏

2𝑀𝑡 +  𝑏
4𝑀𝑡

2)  +  3 𝐷𝑡
2𝑀𝑡 +  𝑏
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3𝑀𝑡

 

 
(64) 

𝜔2
2 =
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4𝑀𝑡
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3𝑀𝑡

2 +  9 𝐼𝑡
2 +  3 𝐼𝑡 𝑏

2𝑀𝑡 +  𝑏
4𝑀𝑡

2)  +  3 𝐷𝑡
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(65) 
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