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Augmented Reality Guided
Laparoscopic Surgery of the Uterus

T. Collins, D. Pizarro, S. Gasparini, N. Bourdel, P. Chauvet, M. Canis, L. Calvet and A. Bartoli

Abstract—A major research area in Computer Assisted In-
tervention (CAI) is to aid laparoscopic surgery teams with
Augmented Reality (AR) guidance. This involves registering
data from other modalities such as MR and fusing it with the
laparoscopic video in real-time, to reveal the location of hidden
critical structures. We present the first system for AR guided
laparoscopic surgery of the uterus. This works with pre-operative
MR or CT data and monocular laparoscopes, without requiring
any additional interventional hardware such as optical trackers.
We present novel and robust solutions to two main sub-problems:
the initial registration, which is solved using a short exploratory
video, and update registration, which is solved with real-time
tracking-by-detection. These problems are challenging for the
uterus because it is a weakly-textured, highly mobile organ that
moves independently of surrounding structures. In the broader
context, our system is the first that has successfully performed
markerless real-time registration and AR of a mobile human
organ with monocular laparoscopes in the OR.

Index Terms—Augmented Reality, Laparoscopy, Gynecology,
Registration, Tracking, Markerless, Surgical Navigation

I. INTRODUCTION

A laparoscopic surgeon consults pre-operative images such
as MR or CT to localize hidden structures such as tumors
and major vessels. However, it can be difficult, even for expe-
rienced surgeons, to accurately predict their positions during
surgery. One of the main goals of CAI is to ease this task by
enriching laparoscopic images with data from pre-operative
MR or CT using AR [1], [2]. The key technical challenge
is non-rigid registration of soft-body organs. Once achieved,
the position of the hidden structures can be augmented onto
the laparoscopic video. A major open challenge is achieving
registration accurately, reliably and in real-time.

We present the first complete AR pipeline for the uterus
using a segmented pre-operative 3D model and monocular
laparoscopic images, with novel technical contributions at
various stages. This facilitates important clinical applications,
including AR-assisted resection of lesions such as uterine fi-
broids. We specifically target monocular laparoscopes because
their use is far more widespread than stereo laparoscopes
in standard (non-robotic) laparoscopic procedures. This is
because of several factors including cost, setup time, image
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Fig. 1: Main phases of our AR pipeline

resolution, port size and display comfort. However, the techni-
cal challenges are much greater with monocular laparoscopes.

The main phases of our AR pipeline are illustrated in Fig. 1
and explained in detail in §3. Pre-operatively, the uterus is seg-
mented from an MR image and its deformation properties are
modelled. Intra-operatively, first, automatic camera calibration
is performed to determine the laparoscope’s intrinsics such as
its focal length, by withdrawing the scope from the patient and
viewing a hand-held calibration planar target (OpenCV). Next
is scene exploration, where the laparoscope is re-inserted and
the uterus surface is viewed by movement of the laparoscope
and uterus. Next is scene reconstruction, where the uterus
surface is reconstructed in 3D using dense multi-view-stereo
(MVS). Next is initial registration, where a 3D registration
is performed to align the uterus model to the interventional
reconstruction. Next is feature mapping, where texture, in the
form of keypoints such as SIFT [3] or SURF [4], is associated
to the model’s surface. Finally, is tracking and AR, where the
model is tracked in real-time using robust keypoint matching
with the laparoscope live video, and the registered model is
visualized to the surgeon via AR. Our main contributions
concentrate on the challenging problems of initial registration,
feature mapping and tracking.

II. RELATED WORK

A. Scope

The types of AR-guided laparosurgery with the most clinical
impact involve the fusion of pre-operative medical image data
from MR or CT, to which we therefore limit the scope of this
section. A broader perspective, including fusion with intra-
operative images such as Cone Beam CT (CBCT), is given
in [5]. An important categorization of approaches is whether
they work with monocular [6] or stereo laparoscopes [7]–[12].
As ours is in the former category, we mostly focus on that
category. Any approach that works with monocular scopes
can be applied to stereo scopes. The converse is not true,
because existing methods using stereo laparoscopes require
depth maps obtained by stereo triangulation [13]. Recently,
Convolutional Neural Networks (CNNs) have been trained
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to recover depth from endoscopic images (colonoscopy [14]
and bronchoscopy [15]), however they are yet unsuccessful
with laparoscopy because of the large variability in image
content. The availability of depthmaps fundamentally changes
a registration problem, because they provide 3D-to-3D reg-
istration constraints. This contrasts monocular registration,
where 3D-to-3D constraints are unavailable. Like us, previous
approaches solve monocular registration in two stages: an
initial registration stage and a tracking stage.

B. Initial Registration

Despite considerable research, there exists no automatic
and robust solution to the initial registration with a soft-
body organ. State-of-the-art approaches tend to be organ-
specific and have mainly focused on registering the liver [11],
[16]–[19], the prostate [9] and the kidney [6], [12], [20]. So
far the only existing approaches for the initial registration
with monocular images require a manual registration [6]
and an interactive Graphical User Interface (GUI), which is
not practical in real OR conditions. Of the stereo methods,
some perform registration with a manual GUI [9], [11] and
others perform it semi-automatically with manually located
landmarks [7], [8], [10], [12] or using 3D surface features [19].
In some works the registration is refined by Iterative Closest
Point (ICP) [10], [12]. The initial registration requires non-
visual constraints to prevent unlikely or physically implausi-
ble deformations. Various models have been used, including
rigidity [12], deformation smoothness with 3D splines [8] and
bio-mechanics [10], [11], [19]. There is no general consensus
on the best model to use, as it depends heavily on available
boundary conditions, available knowledge of mechanical tissue
properties, and computational resources. Recent works have
built on deep learning [21]–[23], showing promising results
but they do not work with real monocular images.

A general limitation of the previous works is that they
only use one monocular or one stereo image pair to constrain
the initial registration. This is limiting because registration
accuracy depends strongly on how much organ surface is
visible. This can be very small, particularly for larger organs
such as the liver and uterus, leading to poor registration.

C. Tracking

Almost all monocular approaches rely on the detection
and tracking of features, either artificial fiducial markers [9]
inserted on the organ, or natural keypoints. The former are
invasive and generally not practical. The latter are sensitive
to illumination changes, large camera motion and occlusion.
These factors critically affect the performance of tracking as
they restrain the capability of maintaining the registration, and
hence AR visualization, for long periods of time, especially if
the organ is deformed or occluded by, e.g., the surgery tools.

To date, only one previous work has been capable of
robust long duration tracking of the kidney (several minutes)
without artificial fiducials [6]. This work has however two
main limitations. Firstly, only one reference image is used,
which means features only exist on the surface region visible
in the reference image. Tracking therefore breaks down if

the organ is seen from strong viewpoint changes. This is a
common situation for the uterus, because unlike the kidney it
is highly mobile, and is often moved by the surgeon’s assistant
with a cannula. Secondly, the initial registration is performed
manually, which is not practical in real OR conditions. In our
approach, we overcome both of these limitations.

Markerless tracking is also addressed by visual Simultane-
ous Localisation and Mapping (SLAM) [24], [25]. In SLAM, a
3D representation or map of the environment is incrementally
built and updated and, at the same time, the camera is
localized w.r.t. the map. However, SLAM in laparoscopy is
not yet reliable enough for routine clinical use. This is because
monocular SLAM systems assume a rigid scene and hence
are incapable of tracking a mobile organ such as the uterus,
as we show in §IV-C. A deformable SLAM method has been
recently introduced [26]. The principle is promising but the
method requires the scene to be a single deforming object.

D. Contributions
This work describes the first complete pipeline to pro-

vide AR-guided uterine laparoscopic surgery without artificial
markers or tracking equipment. It is therefore strongly com-
patible with existing workflows and hospital equipment. To
achieve this we present technical innovations that overcome
the limits of previous works.

This paper is a distillation and extension of contributions
from three workshop papers [27]–[29]. Four significant land-
mark results have been achieved for the first time in laparo-
scopic AR in this work, which we now summarize. Firstly,
we show that dense in-vivo 3D reconstruction is achievable
with a monocular laparoscope with Structure-from-Motion
(SfM) and MVS. Following this, SfM and MVS have been
applied by other groups in related problems. Reconstruction
is provided up to an unknown scale factor. This ambiguity
is always present in motion-based methods, including SfM
and SLAM. Secondly, we recover the reconstruction’s absolute
scale, by solving it simultaneously with the initial registration
via numerical optimization. Thirdly, we show how the organ’s
silhouette (contours in the laparoscopic images correspond-
ing to the organ’s boundary) can be used to significantly
improve the initial registration. This fruitfully complements
information from the scene reconstruction (Fig. 2), and is
particularly important for organs that are very smooth and lack
strong geometric details, such as the uterus. Without contours,
the model can incorrectly slide over the reconstruction and
drift from the correct solution. Fourthly, we track a mobile
organ (one that, like the uterus, can move independently of
surrounding structures) using robust keypoint matching within
tracking-by-detection. This allows the organ to be tracked over
long durations (several dozens of minutes) in the presence of
difficulties including partial views, occlusions and when the
organ moves out of the laparoscope’s field-of-view.

This paper presents several improvements of our complete
AR pipeline towards clinical use and to reduce manual effort
during the initial registration. Specifically, three main contribu-
tions considerably improved our workshop papers. We (i) ease
contour marking by using a touchscreen requiring only non-
precise finger strokes, thus making the approach much faster
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Fig. 2: The initial registration problem illustrated on a patient
case. Four keyframes from the exploratory video are shown in
the first row with their associated silhouette contour fragments.

and more practical in the OR. We (ii) propose a semi-automatic
mechanism to collect the frames for 3D reconstruction of the
organ by SfM. The tool guides the surgeon in the exploratory
phase to acquire sharp images that are also sufficiently spread
in space. We show that this has a dramatic impact on the
reconstruction quality and tracking robustness. We (iii) con-
siderably improve the tracking algorithm using a robust real-
time SIFT detector, which increases tracking robustness and
smoothness. We present a manual mechanism to update the
model’s keypoints over time to overcome small appearance and
geometric changes in the organ during tracking. This allows us
to handle gradual texture changes of the organ during surgery
and significantly improves tracking quality.

The result is a system that we have tested 12 times live in
the OR, which we recall has not been previously achieved for
any organ, including the uterus, using monocular laparoscopes
and a markerless approach.

III. METHODOLOGY

A. Pre-operative Data Requirements

The system requires a segmented pre-operative 3D organ
model, which comprises the organ’s surface mesh, and meshes
of internal structures to be visualized with AR. For the uterus,
internal structures are typically the cavity, tumors and safe-
tissue margins. Our approach does not require a specific organ
deformation model to be used, because to date there is no clear
consensus on the best one to use for registering organs.

We require two interfaces to the deformation model. The
first is the transform function f(p;xt) : Ω → R3. Given the
model’s parameters xt at time t, it transforms a 3D point
p of the model’s 3D domain Ω ⊂ R3 to the laparoscope
coordinate frame. The second interface is the internal energy
function Eint(xt) : Rd → R+. This returns the internal energy
for transforming the organ according to xt (for mechanical
models, the strain energy induced by soft-tissue deformation),
used to regularize the deformation. We only require that f
and Eint be continuously differentiable, which is satisfied by
virtually all models of interest.

B. Registration Pipeline Overview

Our task is registration: to compute xt for a given live
monocular laparoscopic image. We break it down into the
initial registration stage and the tracking stage. The initial
registration is important for two main reasons. Firstly, the
different patient posture between pre-operative and intra-
operative steps and the insufflation may induce a deformation
of the organ. Initial registration estimates this change of shape
from the pre-operative to the intra-operative state, or reference
state. Secondly, during the tracking stage, we assume that the
organ does not undergo significant deformations so that the
tracking stage can be reasonably modeled with rigid motion.
The initial registration allows us to associate texture with the
organ’s surface, necessary to achieve tracking.

Formally, the two stages of registration break down f(p;xt)
as f(p;xt) = M(f(p;xref); Rt, tt). Here xref denotes the
organ’s unknown deformation for the reference state. The
function M(·; Rt, tt) : R3 → R3 denotes the unknown update
transform at time t, parameterized by a 3D rotation Rt ∈ SO3

and translation tt ∈ R3.
In practice, the rigidity assumption during tracking is rea-

sonable because during live AR guidance the surgeon does not
significantly deform the organ. We emphasize that the intended
use of AR is to assist spatial comprehension of internal
structures and intra-operative resection planning. Typically this
is done by guiding the marking of a tumor resection plane
on the uterus surface with a coagulation instrument. Such
marking is standard practice in uterine surgery. During the
actual resection, where strong deformation and topological
changes occur, AR visualization is deactivated because the
surgeon follows the coagulation marks.

To provide real-time AR, only the tracking stage needs to
be real-time. To minimize workflow interruption, we require
the initial registration to be computed in no longer than a
few minutes. The manual pre-processing takes on average
2 min and the optimisation 1 min. Tracking is an optimized
implementation in C++/CUDA and runs at ∼ 25 fps.

C. Solving the Initial Registration

1) Solution Overview: Fig. 2 shows the initial registration
problem, which is challenging to solve for two main issues: (i)
the model to be registered is textureless and (ii) the registra-
tion is non-rigid. To overcome these problems, our approach
includes a dense 3D reconstruction of the organ’s surface using
an exploratory video and SfM/MVS reconstruction, for which
mature and open-source methods exist [30]. Given this recon-
struction, we solve the initial registration with numerical opti-
mization of a system that combines data constraints (organ-to-
reconstruction distances and contour fragment distances) with
constraints from the model’s internal energy.

2) Interventional 3D Reconstruction: During the ex-
ploratory video, the uterus is rotated by the surgeon’s assistant
using the cannula (Fig. 3). It moves independently of back-
ground structures, so the scene cannot be reconstructed using
SLAM, which requires the scene to be globally rigid. We de-
veloped a new tool to capture sharp keyframes with significant
mutual spatial displacement. We extract SIFT keypoints from
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Fig. 3: Example keyframes from an exploratory video of a
uterus undergoing cannula motion.

a frame and track them along the frames of the live feed [31].
When the average 2D keypoint displacement exceeds a thresh-
old (default 100 pixels) or too many keypoints are lost w.r.t.
the initial frame (default 35 %), we consider that the camera
has sufficiently moved. We are then ready to acquire a new
keyframe and the UI asks the surgeon to hold the camera still.
We then extract and track new keypoints and the keyframe is
acquired when the maximum displacement remains below a
threshold (default 3 pixels) for the last M = 15 frames. Then
the process starts again until at least N = 15 keyframes are
acquired. We use a touch-screen interface to manually segment
the uterus roughly in the keyframes, so that the background
is masked and only the organ is reconstructed. This takes
a few seconds per keyframe. We then run a state-of-the-art
SfM/MVS open source library [32]. As output we obtain a
dense 3D point cloud Q def

= {qj}, qj ∈ R3, and, for each
keyframe, the relevant camera pose matrix Mi ∈ SE4, holding
the rotation matrix Ri ∈ SO3 and translation vector ti ∈ R3

w.r.t. the point cloud. We recall that all MVS reconstructions
are only computed up to an unknown global scale factor s.
We solve for s jointly with registration in §III-E.

3) Silhouette Contours: An occluding contour is a bound-
ary in a 2D image where a surface in the foreground occludes a
surface behind it (Fig. 2). There are two types: self-occluding
contours, which are formed where the object self-occludes,
and silhouette contours, which are formed by the object
and a background structure. Most organs are approximately
convex, so self-occluding contours are rare events. By contrast,
silhouette contours are common, and we propose to use these
to constrain the organ’s shape during registration. We require
the silhouette contours to be provided in a keyframe image
(Fig. 2). This is very difficult to automate because not all of the
organ’s boundaries in an image correspond to silhouette con-
tours. Indeed, they are either silhouette contours, or contours
formed by the silhouette of another structure occluding the
organ. We illustrate this in Fig. 2 (top row) where abdominal
fat occludes the posterior region of the uterus. The boundary
between fat and the uterus conveys no information about the
shape of the uterus. We therefore propose to extract silhouette
contours with a fast semi-automatic process and a touch-
screen interface. The keyframes are displayed and the operator
traces the organ’s silhouette contours with a finger stroke. We
apply the method of [33] to snap the finger stroke to the
nearest image contour, based on active contours attracted to
the dominant image edge adjacent. This is very fast and a
keyframe is processed in a matter of seconds.

D. Initialization

Initially, xref is initialized with a rigid transform Ma ∈ SE4.
If the laparoscope is in a canonical position w.r.t. the organ, Ma
can be considered known a priori. Otherwise, we devised an
interactive and relatively simple procedure to provide a rough
estimate of Ma. The method is based on solving PnP [34]
between 3D points on the organ’s surface model and their
corresponding 2D points on one of the keyframes, selected
interactively. The operator can first freely rotate the 3D model
to present it from a similar viewpoint as the keyframe. Then
they select at least 5 3D points on the 3D model and their
corresponding points on the image. We found that a good
strategy is to select the 4 equidistant points on the image
along (but not on) the occluding contour and one roughly in
the middle. The corresponding points on the 3D model can be
guessed following the same pattern. Associating points from
an untextured 3D model to its image is not in general a trivial
task but we found that surgeons can easily perform the op-
eration thanks to their detailed understanding of the anatomy.
The correspondences are not required to be accurate, as this
only serves as rough initialization of the initial registration.

To provide an initialization of the reconstruction scale factor
s, we apply Ma to the model. We then use OpenGL to render a
synthetic image of it using the calibrated intrinsic parameters
of the laparoscope. OpenGL’s z-buffer provides a depth map
d(x, y) from which we can compute s by comparing depths in
d to depths in Q. Specifically, for a 3D point qj , an estimate
of s is sj = d(xj , yj)/d̃j , where d̃j is the depth of qj , and
(xj , yj) its corresponding 2D point. The robust estimate is
given by the median over all points, s = median{sj}.

E. Energy-based Optimization

We describe the registration energy function and optimiza-
tion process. To improve clarity we assume all image points
in normalized camera coordinates, which is obtained from
the intrinsic calibration, and thus define camera projection
as π([x, y, z]

>
)

def
= [x, y]

>
/z. Besides the model’s internal

energy Eint(x), the energy function E(x, s) ∈ R+ consists of
two other terms. We introduce a point cloud data term Epoint
to help the organ’s surface fit the reconstructed point cloud. To
constrain the organ’s silhouette contours to fit the silhouette
contour fragments we also include a contour data term Econ.
Thus, the energy E(x, s) is defined as:

E(x, s) = Epoint(x, s;Q) + λconEcon(x, s) + λintEint(x), (1)

where λcon and λint are scalar weights (with defaults λcon =
100 and λint = 50).

For the point cloud data term Epoint we use an ICP-based
energy term: it uses a set of virtual point correspondences
P = {pj} with |Q| = |P|, where pj ∈ ∂Ω is the unknown
position of point qj on the organ’s surface mesh Ω. For a given
(x, s), Epoint is computed by first transforming Ω according
to f(·;x) and applying the estimated scale factor s to the
point cloud, so that q̂j ← sqj . Then, pj is set to the closest
point to q̂j on the surface’s mesh. Similarly to the point-to-
plane distance function of ICP with rigid objects, Epoint uses a
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robust point-to-plane distance function that allows the model
to slide over the point cloud without resistance to improve
convergence. The energy is as follows:

Epoint(x, s;Q) =
1

M

M∑
j=1

ρ (dplane (vj(x), q̂j)) , (2)

where vj(x) ∈ R4 gives the organ surface’s tangent plane
at f(pj). The function dplane(v,q) gives the signed distance
between a plane v and a 3D point q. The function ρ : R→ R+

is an M-estimator. The MVS reconstruction may contain points
off the organ or poorly reconstructed; these are discarded
by the M-estimator. We experimented with different types of
estimators and found that a pseudo-L1 ρ(x)

def
=
√
x2 + ε offers

good results (with default ε = 10−4).
Similarly, Econ uses virtual point correspondences on the

organ surface mesh’s occluding contours. More explicitly, for a
given estimate (x, s) and a given keyframe i, we generate a set
of virtual correspondences Ri = {r1, . . . , rC(i)} containing,
for each contour pixel ck, the unknown position rk ∈ ∂Ω of
its corresponding 3D point on the model’s surface. To compute
the correspondence we first apply f(·;x) to the organ’s surface
mesh, and we bring the model in the reference frame of the
camera i using (Ri, s ti). Then we render the surface mesh as
described in §III-D and store all the pixels on the silhouette
boundary in a set B. Let Ci the set of all pixels belonging to
the contour fragments in keyframe i. We compute for each
contour pixel ck ∈ Cj its closest point bk ∈ B. Finally, we set
rk as the 3D position of bk, computed using the render’s depth
buffer. From all the correspondences Ri, Econ is computed as:

Econ(x, s) =
1

C

N∑
i=1

∑
ck∈Ci
rk∈Ri

ρ (‖π (f(rk))− ck‖) , (3)

where C is the total number of contour fragment pixels.
Similarly to Epoint, we use the M-estimator ρ for robustness.

F. Optimisation

In order to improve convergence, we use a stiff-to-flexible
strategy to optimize E. We start with a stiff model, we
optimize E, and then we reduce the stiffness to account for
more deformation. We use 6 stiffness levels, in which the
value of λint is halved w.r.t. the previous level, i.e. λint(l) =
λint(l−1)/2. At each level we alternate between computing the
virtual correspondence sets (Ri and P) and optimising E, via
Gauss-Newton iterations with backtracking line search until
either convergence or a maximum of 20 iterations is reached.

G. Real-time Tracking-by-Detection

1) Overview: Once the initial registration is computed, real-
time tracking starts from the live feed of the laparoscope.
Our approach updates the initial registration at each frame
and is robust to common challenges including occlusions (e.g.,
surgical tools), partial views and viewpoint changes.

2) Keypoint Mapping: For each keyframe, we render the
3D model and store the depth map of all the pixels lying
within the model’s silhouette. From this, the 3D position u of
any 2D image keypoint located within the model’s silhouette
can be determined. For each keyframe, we then extract a set
of image keypoint and to each one of them we associate
its corresponding depth. We concatenate the keypoint from
all images into a single list F = {(um, im,dm)}, where
um ∈ R3 is the 3D point associated to feature detected in
the keyframe of index im, with dm its associated descriptor.

The approach can be used with any keypoint detector, such
as SIFT [3], ORB [35] or SURF [4]. We find that SIFT
has better performances in image matching [36]. We used
the recent open-source GPU implementation PopSift [37] to
achieve real-time computation: for a typical HD 1920× 1080
image of the uterus, up to 3000 keypoints can be found in
about 11 ms with a standard GPU. To significantly reduce the
problem of wrongly tracking specularities, we detect saturated
pixels with an intensity threshold of 250 and any keypoint
within 5 pixels to a saturated pixel is discarded.

3) Pose Estimation Overview: For each new image we
extract a set of keypoints G = {(yi, d̃i)}, where yi is
the 2D image point and d̃i its descriptor. Our registration
scheme has three main steps. First, a set of candidate matches
between F and G is computed and then a pose hypothesis
that best explains these matches is searched. Finally the best
pose hypothesis is refined with the Levenberg-Marquardt (LM)
algorithm by minimizing the reprojection errors.

4) Computing Candidate Matches: Good candidate
matches of the sets F and G are those pairs with (i) strong
descriptor agreement (i.e. low descriptor distance) and (ii) a
low likelihood of being false. We achieve the latter condition
by applying Lowe’s Ratio Test (LRT) [3]. A novelty of
using multiple keyframes is that we can also exploit match
coherence. Specifically, consider a feature in the image that
matches a feature in the ith keyframe. It is likely to be
correct if there exists other features that also match with
features in the ith keyframe. We adopt a “winner-takes-all”
strategy to enforce coherence and reduce false matches. Let
i∗ be the index of the keyframe with the largest amount of
candidate matches. Since SIFT is invariant to scale changes
and image rotation, the keyframe i∗ can be considered as the
visually “closest” to the input image. we then recompute the
candidate matches, but using only features from the keyframe
i∗. Computational efficiency can be easily achieved as F is
completely pre-computed and the distances to evaluate the
descriptor likelihood are quite fast to compute on the GPU
(e.g., ∼ 3 ms to match 2000 features from an HD image
against 5600 features from 16 keyframes).

5) Computing 3D Pose: From the set of candidate matches,
we find the best pose hypothesis that explains these matches
using RANSAC from OpenCV’s default implementation. In
some images tracking may be impossible or unreliable, if the
organ is not visible or very partially. A good indicator for
deciding if pose can be estimated reliably is the number nc of
inlier matches found by RANSAC. If this is below a threshold
(default 8 points), we reject the pose and consider the organ to
be untrackable in that image. Finally, to reduce jitter, we feed
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Fig. 4: TRE for affine (left) and mechanical (right) deforma-
tions. The deformation extent increases along the x-axis. The
TRE is shown for different depths from the fundus.

the pose estimates into an Extended Kalman Filter (EKF).
6) Adding New Keyframes: The operator can manually add

new keyframes to F on the fly during the live tracking. This
mitigates any remaining jitter and stabilizes tracking if the
organ is viewed from a viewpoint that is very dissimilar to
the keyframes. Adding keyframes also copes with changes
occuring between the reference and current intra-operative
states in organ appearance (bleeding spots, change of color
because of the clamping) and 3D orientation (due to mobi-
lization). We add the keypoints of the current image and their
associated 3D points to F . We do not automate the process of
adding new keyframes because without care it can lead to drift.
Specifically, errors in the estimate pose then lead to incorrectly
aligned keypoints in F and degradation in tracking accuracy.
The operator can add the current frame as a new keyframe by
pressing a bottom on the interface. A still image of the current
frame with AR is then shown to the operator for validation.

IV. EXPERIMENTAL VALIDATION

A. Overview

We first assess the Target Registration Error (TRE) on a
phantom and we then present a thorough evaluation with of-
fline videos of real surgeries1, where we analyse three specific
points of our pipeline: automatic keyframe selection, occlusion
resistance in tracking and the use of new keyframes during
tracking2. We then describe our experiences with deploying
and running the pipeline in the real clinical setting. All the
experiments are novel and more advanced compared to the
workshop papers. We emphasize that all previous works on
real-time markerless monocular laparoscopic registration with
pre-operative organ models have only been evaluated with pre-
recorded video data. Thus they have never made the step up
to live tests in the OR and their robustness and practicality in
the clinical setting have not been validated.

B. Quantitative Evaluation with Phantoms

In our workshop paper [27] we presented a thorough eval-
uation of the initial registration step with simulated data. A
3D uterus model was rendered with realistic camera motion

1All participants enrolled gave their written informed consent according to
the approval of the ethical committee (IRB 2018-A03130-55).

2All supplementary videos are found at https://bit.ly/3lrUh5d indexed with
capital letters from [A] to [I].

and simulated initial deformations. We studied the influence
of keyframe number on registration accuracy. The results
showed that the registration error decreases with the number
of keyframes, and saturates approximately at 1.4 mm for more
than 8 keyframes. More generally, the error distribution tends
to increase towards the cervix (2 mm for 15 views up to 8 mm
for 2 views) away from the uterus fundus (head), which is quite
well constrained by the SfM point cloud as opposed to deeper
regions near the cervix.

We present a new experiment to evaluate the TRE of the
full registration pipeline (initial registration and tracking) with
a realistic latex uterus phantom used for surgery training
(Limbs and Things Inc. Model 60922, Fig. 4). We collected
Ngt = 200 images of the phantom, from which we computed
a 3D surface model using MVS. We used this model as
the preoperative model, and we synthetically deformed it
to simulate different preoperative states with two kinds of
deformations: isovolumetric affine deformations, and mechan-
ical deformations [27] that simulate bending of the organ
using a quadratic deformation law along a principal axis. We
generated 10 examples of each type, progressively increasing
in magnitude. The maximum amount of vertex displacement
due to deformation is around 10 mm in both deformation
types. For each deformation Θ(·), we ran the full registration
pipeline, using Ns = 15 images for the initial registration
step and Ngt − Ns images for tracking. We discretized the
model with a grid of 100 × 100 × 100 voxels, with those
interior to the uterus denoted by V . We computed TRE for
each voxel q ∈ V in each image as ‖f(Θ(q),xt) − Mgt(q)‖,
where xt are the model registration parameters estimated by
our pipeline and Mgt is the ground truth pose provided by the
MVS reconstruction. TRE varies as a function of both the
depth of the target and the amount of organ deformation. We
visualize the trends in Fig. 4. We show TRE averaged over all
the tracked frames for voxels at 30 different depths from the
fundus surface, ranging from 0 mm to 100 mm (approximately
the cervix). TRE at the fundus surface (depth 0 mm) was
below 2 mm for all deformations. In the near fundus (depth
< 20 mm) TRE ranged from 1.8 mm to 3.9 mm for the
most severe affine deformation. The error increased in depth
towards the cervix, from 6.7 mm up to 15.6 mm. The increase
is normal and expected because of the large distance to the
visible surface region. The low registration error in the fundus
indicates the pipeline is sufficiently accurate to help locate
uterine tumours in that region. Due to the large TRE at the
cervix, AR for tumours in that region would be out of the
intended use of the system.

C. Evaluation with Human Uteri in Pre-recorded Videos

In this section we present results on videos recorded during
laparoscopic surgery. We test accuracy, computational com-
plexity and the influence of the keypoint detector in our real-
time organ tracking by detection system, named RT-OTD in
the experiments. We demonstrate the robustness of our model-
based approach w.r.t. classic SLAM approaches [35] and we
show augmentation results, completing the AR pipeline

https://bit.ly/3lrUh5d


7

# frames # poses # matches # matches
winner # inliers

5000
SURF 4569 406.16 46.94 32.93
SIFT 4975 388.06 52.31 44.86

3029
SURF 2713 296.81 42.60 27.74
SIFT 3029 294.00 64.87 52.81

TABLE I: Comparison in number of poses and matches
between SIFT and SURF for two videos.

1) Automatic Keyframe Selection for 3D Reconstruction:
We compare the automatic keyframe selection method auto to
results obtained by sampling the exploratory video (∼ 60 s)
to obtain the 15 keyframes, with different sampling methods:
equally samples the video uniformly, beginning, middle and
end take a keyframe every t = 2 s from the beginning, around
the middle and towards the end of the video, respectively.
We then proceed with reconstruction and tracking for each
strategy. Fig. 10 shows the 3D models. Qualitatively, auto
gave a better model as all the others have many holes. This
is explained by 1) some selected keyframes are blurry and 2)
there are many similar keyframes, thus preventing a complete
coverage of the full organ shape.

We recorded another video (∼ 60 s) in order to test the
tracking using the 3D models obtained from each method.
The video was purposely challenging, with the camera looking
at parts of the uterus that were not completely reconstructed
in any of the models, and no additional keyframes added
during tracking. auto was able to track the largest number
of frames (55.18 %), followed by equally (53.33 %), middle
(52.48 %), beginning (46.14 %) and end (31.08 %). Fig. 11
reports tracking statistics. In general, auto recovers a larger
number of valid matches, both w.r.t. all the keyframes in
the database (Fig. 11.a) and the winning keyframe (Fig. 11.b)
and computes the pose with a larger number of inliers. The
reprojection error is also slightly better than all the other
methods, especially considering the higher number of inliers
over which it is computed. Overall, automatic keyframe selec-
tion improves the quality of reconstruction and tracking. Any
sampling method is always potentially affected by motion blur;
guiding the acquisition of the keyframe reduces the risk.

2) Comparison of Different Tracking Keypoints: We tested
our tracking method RT-OTD using PopSift [37] and the
SURF-GPU from OpenCV on two videos. We see from
Table I that RT-OTD using SIFT establishes more camera
poses (99.5 % and 100 % of the frames) compared to SURF
(91.2 % and 89.6 %). Despite the fact that SURF recovers, on
average, more matches between F and G, SIFT has a higher
discriminative power in selecting the winning keyframe i∗.
As the table shows, the winning keyframe has, on average,
more available matches from which RANSAC can sample
to compute pose. This also results in more inliers found to
support the computed pose. We show both pose components
in Fig. 5 for the 5000 frame video. SIFT provides a more
stable estimate for both as there are much fewer spikes in
the estimates (spikes are typically incorrect estimates). This
translates to a more stable motion estimate, improving overall
AR quality with SIFT (see video [A]).

Fig. 5: Comparing SURF and SIFT on 5000 video frames.

(a)

(b)

(c)

(d)

Fig. 6: (a) The 3D preoperative model of the uterus with the
myoma as reconstructed from the MR, (b) the preoperative
model registered with the intraoperative model obtained from
the MVS reconstruction (c) some of the keyframes used for
MVS with the AR augmentation (d) some frames of the video
with the myoma shown as image overlay.

3) Tracking Accuracy and SLAM Evaluation: We eval-
uate our tracking stage using three human uteri captured
before hysterectomy. This experiment is an update of the
one presented in [28] with an evaluation of a state-of-the-
art monocular SLAM approach (ORB-SLAM) [38]. SLAM
approaches such as ORB-SLAM track a camera relative to
a rigid 3D scene while simultaneously modelling the scene’s
3D structure. ORB-SLAM is today the best SLAM system for
use in laparoscopic surgery [35]. The uterus tends to dominate
the field-of-view in uterine surgery, so a pertinent question
is: would ORB-SLAM successfully track the camera with
respect to the uterus? The answer is not obvious, because
ORB-SLAM has built-in robustness that allows it to handle
moving background structures.

The uteri are shown in Fig. 8 and we refer to them as U1,
U2 and U3. Each video includes around 500 frames showing
image motion of the uterus due to motion induced by the
cannula and camera motion. The uterus intra-operative surface
is obtained with an exploratory video with 15 keyframes. The
uterus body was marked by the surgeon with a bipolar grasper
in 12 − 15 different locations. This enabled us to generate
Ground-Truth (GT) camera poses by tracking the obtained
set of small marked regions (∼ 3 mm in diameter). We show
examples of these markers in Fig. 8. The marks were tracked
using a small patch surrounding the image position of each
marker, and fitted using a 2D affine transform. We verified
all tracks and reinitialized them if they were lost. We then
computed the marks’ 3D positions and the uterus 3D poses in
each frame using SfM. If fewer than four marks were visible in
a frame we considered that the GT pose could not be estimated
for that frame. We masked each mark so that the methods
under comparison could not exploit the artificial texture each
mark introduces. We computed the optimal scale factor for
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(a) (b) (c) (d)

(e) (f) (g) (h)

(m)(k)(j)(i)

Fig. 7: Patient 1: (a) MR image showing one myoma, (b) myoma augmentation, (c) resection of the myoma, (d) deployment
of our AR system in the OR. Patient 2: (e) MR image showing three myomas, (f,g,h) myoma augmentation. Patient 3: (i) two
myomas segmented from the MR images, (j,k,m) augmentation of the myomas and the uterine cavity.

Fig. 8: The 3D models from MVS, the coagulation marks and
the registered models.

each method w.r.t. GT. In Fig. 9 we summarize the results of

Fig. 9: Rotation error, position error and camera trajectory, for
U1, U2 and U3 from top to bottom.
RT-OTD using SIFT features. The rotation error (in degrees)
and position error (in mm) are computed as the Euclidean
norm between GT and estimates. There are gaps in the graphs
when GT is not available. The results with RT-OTD are very
accurate and stable in all cases, with an average position error
of 2 mm and an average rotation error of 3◦. Fig. 9 also shows
the tracking performed with ORB-SLAM [38]. While it tracks
a large portion of the first sequence, it quickly degenerates
and loses the track for the other two cases. This is because it
builds a model with points from both the moving uterus and
the background, violating the rigidity assumption. It is also
affected by motion blur and when there are few matches.

4) Robustness Test for Tracking: Since it is hard to obtain
GT data in the laparoscopic setting, we evaluated tracking
robustness w.r.t. occlusions from the keyframes used for 3D

Fig. 10: Left to right: the 3D models generated using the
keyframes from beginning, middle, end, equally, auto.

reconstruction, for which a reference pose is available from
SfM, forming the GT. Using the data collected from 5 patients,
we simulated occlusions and compared the pose computed
by the tracker to the GT. In a first experiment, we used the
known mask of the uterus to add a black occluder starting
from the external contour and towards the center of the uterus.
We gradually increased the size of the occluder and launched
tracking on the keyframe. Fig. 11.e shows the overall per-
centage of frames that could be tracked against the occlusion
ratio. The occlusion ratio is computed from the number of
pixels of the occluder and of the uterus. The graph shows
that tracking copes with up to 60 % occlusion, where ∼ 80 %
of the frames are tracked. For the same experiment, Fig. 11.f
shows that the pose rotational error is below ∼ 1◦ for up to
50 % occlusion, demonstrating good robustness. In a second
experiment we simulated the presence of tools or bleeding
covering the appearance of the uterus by growing black spots
randomly distributed on the the uterus. Fig. 11.g shows that
tracking successfully estimates pose for up to 60 % occlusion,
where ∼ 90 % of the frames are tracked, with rotational error
below or of the order of ∼ 1◦ (see videos [B,C]).

5) Additional Keyframes During Tracking: We present re-
sults to show the impact of adding keyframes during tracking.
We refer the reader to the video material to observe the quali-
tative impact on the stability of pose and quality of AR (videos
[D-F]). Table II shows the number of tracked keyframes for
three videos with and without additional frames. Importantly,
even a single new keyframe can greatly improve the number
of tracked frames, as in video [D] in which it almost doubles
the number of tracked frames. In general however, the number
of tracked frames does not vary considerably but the tracking
is much more stable.

6) Computational Times: Our hardware is composed of
a desktop PC running Linux Ubuntu with an Intel Core i7-
5960X CPU running at 3.00 GHz with 16 GB of RAM and
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Fig. 11: (a,b,c,d) Tracking statistics (number of matches, inliers, and pose errors) for each keyframe sampling method. (e,f,g,h)
From left to right, histogram of successfully tracked frames and rotation error of estimated pose, for both experiments.

video id # frames % tracked w/o
additional keyframes

added
keyframes % tracked

20190801 1943 55.58% 1 99.90%
20190612 5119 95.64% 8 97.15%
20190724 2444 87.52% 4 87.96%

TABLE II: Number of tracked frames with and without adding
new keyframes during tracking.

an NVIDIA GeForce GTX 980 Ti graphics card. On average,
tracking takes 16.35 ms with a full HD 1920 × 1080 image.
SIFT takes 11.1 ms, descriptor matching between F and G
takes 3.21 ms and pose estimation takes 0.18 ms.

7) Augmentation Results: Fig. 6(a) shows the preoperative
data of a patient whose uterus contains a myoma (in green)
of a size of 11.3 mm×22.9 mm×17.5 mm. The preoperative
mesh of the uterus has 2488 vertices and 4972 faces. From
the exploratory video 15 keyframes were extracted to perform
MVS reconstruction, obtaining a 3D model of 1760 vertices.
Fig. 6(b) shows the successful alignment between the preop-
erative data and the MVS reconstruction. The cost function
(1) was optimized in 6 iterations in approximately 21 s. In
Fig. 6(c) we show four keyframes used for the reconstruction
together with an overlay of the uterus surface registered to each
frame. Qualitatively we see that the 3D preoperative model
aligns well to the image of the uterus. Finally, Fig. 6(d) reports
the visual augmentation of the myoma in some frames of a
video recorded during surgery, clearly showing that the uterus
is tracked well (see videos [G-I]).

D. Live Tests in the Operating Room

We tested our AR system in laparoscopic surgery [39]
and report on three patients with one, three and two uterine
myomas respectively. We built the 3D preoperative models
of the organ and the myomas from preoperative T2-weighted
MR. We used our system so that the surgeon could see the
location of the myomas in real time. In Fig. 7(a) we show
the MR of the first patient with a 6 cm uterine myoma.
Fig. 7(b) shows the augmentation of the myoma and Fig. 7(c)
shows its resection. At that stage our algorithm shows a past

augmentation due to the changes in the uterus surface. In
Fig. 7(d) we show our system deployed in the operating room.
The MR of the second patient is shown in Fig. 7(e), showing
three myomas that are visualized with AR in Fig. 7(f,g,h).
The third patient had two myomas whose segmentation from
MR is shown in Fig. 7(i). Examples of augmentation of the
myomas using bright colors and the uterine cavity mesh are
displayed in Fig. 7(j,k,m). We recall that this is the first time
one demonstrates markerless registration and AR during live
laparoscopic surgery. In our experience both the initial and
tracking AR stages are valuable to the surgeon. The first stage
is necessary to give the first appreciation of hidden structure
locations (tumours and the uterine canal). Recall however that
the surgeon is using a monocular camera. The value of the
tracking stage is to give the sensation of depth and parallax,
and to help orient the uterus to establish a good resection
plane. Specifically, the surgeon can move the uterus with the
cannula and they receive interactive visual feedback. Depth
and spatial comprehension of hidden structures are easier
because of motion and parallax effects.

V. CONCLUSION

The proposed framework is the first complete markerless
real-time AR guidance system for laparoscopic surgery of the
uterus. Its major advantage is that it does not require special
hardware and works with a standard monocular laparoscope
and an off-the-shelf computer. This enables a quick set-up in
the OR, where no other hardware should interfere, perturb or
distract the surgeon. Overall, the required steps for calibration,
3D reconstruction and registration take around ∼ 10 min. Most
of the interactive and manual operations, such as the masking
and the contour annotations are carried out by an operator
and can be done in parallel while the surgeon proceeds with
other surgery tasks (e.g. clamping). Thus the impact on the
clinical activity of the surgeon is limited to acquiring images
for the calibration and the 3D reconstruction. Concerning
AR and the visual feedback, the experiments show that the
proposed approach for tracking is robust and responsive. It
runs in real-time with very low jitter, further mitigated by
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adding keyframes. One of the limitations of our system is
that it relies on a few manual interactions. This will drive our
research directions to further improve usability and accuracy.
First is masking of the keyframes for 3D reconstruction. Even
if the effort is mitigated by the touchscreen (overall time
kept under a minute), automatically detecting the organ in the
image would further the usability. We are investigating the
use of CNNs to automatically extract the occluding contour
fragments for initial registration [40], but while the first results
are encouraging, some more efforts are required to robustly in-
tegrate it in the pipeline. As for the tracking part, an interesting
and challenging research direction is to automate the addition
of keyframes. This is non-trivial because of the potential for
drift caused by the accumulation of small registration errors.
Finally, we are preparing a follow-up clinical trial using a
hybrid OR with interventional CT imaging to quantify TRE
with patients in the OR, which is a notoriously difficult task,
following the ideas proposed in [41]. When the tip of the
laparoscope is in the CT field-of-view, laparoscopic and CT
images can be registered with very high accuracy, enabling
in-vivo end-to-end evaluation of target registration error.
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