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Abstract This paper proposes three enlargements of the conventional Moreau–Rocka-
fellar subdifferential: the sup-, sup?- and symmetric subdifferentials. They satisfy the
most fundamental properties of the conventional subdifferential: convexity, weak∗-
closedness and, if the function is bounded, weak∗-compactness. Moreover, they are
nonempty for the Rainwater function, possess certain calculus rules, and provide nec-
essary and sufficient optimality conditions for not necessarily convex functions.
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1 Introduction

Throughout the paper, X is a real topological vector space. The topological (continu-
ous) dual of X is denoted by X∗.

Various problems coming from different areas can be formulated as

Find x ∈ dom T such that 0 ∈ T (x), (OP)

where T : X ⇒ X∗ is a set-valued mapping, and the set dom T := {x ∈ X : T (x) 6= /0}
is the domain of T ; cf. [1]. We refer to this problem as Original Problem (OP). When
T := ∂ f is the subdifferential mapping of some extended-real-valued convex function
f : X → R∞ := R∪{+∞}, then (OP) becomes the Fermat rule:

0 ∈ T (x) ⇐⇒ x minimizes f , (1)

which is one of the central facts in optimization theory.
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It is often convenient to study an auxiliary problem:

Find x ∈ dom T ′ such that 0 ∈ T ′(x),

where a set-valued mapping T ′ : X ⇒ X∗ is an enlargement of T , i.e. T (x) ⊂ T ′(x)
and T ′(x) is convex for all x ∈ X , and T ′ is “close” to T in a certain sense. Solutions
to the latter problem can serve as approximate solutions to (OP). For a general theory
of enlargements of monotone operators and their numerous applications we refer the
readers to the book by Burachik and Iusem [1] and papers [?, ?].

The ε-subdifferential mapping ∂ε f of a proper lower semicontinuous convex func-
tion f : X → R∞, defined for all x ∈ dom f and ε ≥ 0 by

∂ε f (x) := {x∗ ∈ X∗ : 〈x∗,y− x〉 ≤ f (y)− f (x)+ ε ∀y ∈ X},

represents a typical enlargement of the conventional subdifferential. It plays a key
role in the theory of extremal problems and has been successfully used to construct
numerical methods. Several other enlargements of the subdifferential mapping have
been proposed in the framework of the abstract convexity theory; see, e.g., [2, 3]. For
a great account of how much one can extend convex analysis to a wider framework in
which some convexity features remain, we refer the readers to [4].

A convenient enlargement of an arbitrary monotone operator T : X → X∗:

T ε x := {x∗ ∈ X∗ : 〈x∗− y∗,y− x〉 ≥ −ε ∀(y,y∗) ∈ gphT}

was proposed by Revalski and Théra [5]. It has convex and weak∗-closed values for
all ε ≥ 0, and T x ⊂ T ε x for all ε ≥ 0 and x ∈ X . Moreover, T ε possesses other
nice properties: local boundedness, demi-closed graph, Lipschitz continuity and the
Brøndsted–Rockafellar property. The particular case T = ∂ f was studied in [6]. Note
that ∂ε f (x)⊂ (∂ f )ε(x). Martı́nez–Legaz and Théra [7] provided an example showing
that the latter inclusion can be strict.

Finding an enlargement with the right properties is of major importance for appli-
cations. Motivated by (1), we consider the following Enlargement Problem (EP):

Find an enlargement T ′ of T such that 0 ∈ T ′(x) for all x ∈ dom T ′. (EP)

Suppose that T ′ is a solution to (EP). Then dom T ⊂ dom T ′. For any ε ∈ [0,1], one
can define another enlargement Tε : X ⇒ X∗ by setting Tε(x) := εT ′(x)+(1− ε)T (x)
for x ∈ dom T and Tε(x) := T ′(x) for x ∈ dom T ′ \dom T . Obviously T (x)⊂ Tε(x)⊂
T ′(x), T0(x) = T (x) for all x ∈ dom T , and T1(x) = T ′(x) for all x ∈ X . The mappings
Tε can be used to define perturbations of the problem (OP).

Given a nonempty subset A⊂ X with A∩dom T ′ 6= /0 and a number ε ∈ (0,1], we
can formulate the Auxiliary Problem (AP):

Find x ∈ A such that 0 ∈ Tε(x), (AP)

which may be more tractable and easier to handle.
Finding an appropriate enlargement T ′ (as a solution to (EP)) plays a key role

in this procedure. In this paper, we consider the case T := ∂ f , and aim at finding
solutions (enlargements) of the problem (EP) such that T ′ satisfies some fundamen-
tal properties of ∂ f including convexity, weak∗-closedness, weak∗-compactness and
certain calculus rules.

It is well known that, even if a convex function f is continuous at x̄, the subdiffer-
ential ∂ f (x̄) can be empty. The next example is due to Rainwater [8]. (We refer the
readers to [9, Example 4.2.10] for another example of this kind.) Recall that `2(N) is
the linear space of all real sequences x := (xn) such that ‖x‖2 := ∑

∞
n=1 |xn|2 < ∞.
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Example 1.1 Define f : `2(N)→ R by

f (x) :=

{
−∑

∞
n=1(2

−n + xn)
1
2 if x ∈C,

+∞ otherwise,
(2)

where C := {x ∈ `2(N) : |xn| ≤ 2−n, n = 1,2, · · ·}. Observe that f is convex and
continuous on C, and ∂ f (x) = /0 for all x = (xn) ∈ `2(N) such that |xn| < 2−n for
infinitely many n ∈ N.

This paper proposes three enlargements of the conventional subdifferential: the
sup-subdifferential, sup?-subdifferential (section 2) and symmetric subdifferential (sec-
tion 4), which provide additional tools for analyzing extended-real-valued functions
when the conventional convex analysis is not applicable. Each of these enlargements
is nonempty for the Rainwater function in Example 1.1 and satisfies the fundamen-
tal properties of the Moreau–Rockafellar subdifferential: convexity, weak∗-closedness
and, if the function is bounded, weak∗-compactness. They also possess some calculus
rules and provide some optimality conditions for convex and nonconvex nonsmooth
functions.

The sup?-subdifferential coincides with the Moreau–Rockafellar subdifferential at
every point at which the minimum of the function is attained. The sup-subdifferential
contains the sup?-subdifferential and coincides with ∂ f at x if and only if x minimizes
f . For other points there are some connections with the conventional subdifferential
if the involved function is upper semi-continuous. The symmetric subdifferential con-
tains a nonzero element at each point x̄, where f is directionally differentiable, and
there exists a direction d̄ such that the maximum of f ′(x̄; d̄) and f ′(x̄;−d̄) is finite and
positive. Note that the function (2) satisfies this condition.

Our basic notation is standard. Let f : X → R∞ be an extended-real-valued func-
tion, and x̄ ∈ dom f := {x ∈ X : f (x) < +∞}. The directional derivative of f at x̄ in
direction d ∈ X is defined by the following limit:

f ′(x̄;d) := lim
t→0+

f (x̄+ td)− f (x̄)
t

.

We say that f is directionally differentiable at x̄ if the above limit exists in R∪{±∞}
for all d ∈ X . If f is convex, its subdifferential at x̄ is the set:

∂ f (x̄) := {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ x)− f (x̄) ∀x ∈ X}.

The paper is organized as follows. In section 2, we define the sup- and sup?-sub-
differentials, verify their basic properties and establish some necessary and sufficient
optimality conditions. In section 3, we study sup- and sup?-subdifferentials of upper
semi-continuous functions and derive some representations in the convex and noncon-
vex cases. In section 4, we define the symmetric subdifferential and state its funda-
mental properties. In particular, we establish conditions under which the symmetric
subdifferential is nonempty. In section 5, we prove some calculus rules for the sup-,
sup?- and symmetric subdifferentials.

2 Sup- and Sup?-Subdifferentials

In this section, X is assumed to be a normed vector space, and BX and BX∗ denote the
closed unit balls in X and X∗, respectively.

A subset E ⊂ BX∗ is said to be norm-generating if, for any x ∈ X , there exists
e∗ ∈ E such that |〈e∗,x〉| = ‖x‖. The collection of all weak∗-closed norm-generating
subsets is denoted by F . By the Hahn–Banach theorem, BX∗ ∈F .

The following example demonstrates that the canonical basis of Rn is a closed
norm-generating subset.
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Example 2.1 Equip Rn with the max norm ‖x‖max := max{|xk| : 1≤ k ≤ n} for x =
(x1,x2, · · · ,xn) ∈Rn. Let {e1,e2, . . . ,en} be the canonical basis of Rn. For any x ∈ Rn,
we have ‖x‖max = |xk| for some 1 ≤ k ≤ n, and |〈ek,x〉| = |xk| = ‖x‖max. Hence,
{e1,e2, . . . ,en} is a closed norm-generating subset of Rn.

Moreover, any norm-generating subset E of Rn contains either ek or −ek for all
k = 1, . . . ,n. Indeed, by the definition of E , for any k = 1, . . . ,n, there exists some
u = (u1, . . . ,un) ∈ E such that |〈u,ek〉| = ‖ek‖max = 1. Hence, uk = ±1. On the other
hand, by the definition of the dual norm, ‖u‖(Rn)∗ = ∑

n
i=1 |ui| ≤ 1. Hence, ui = 0 for

all i 6= k, and therefore u equals either ek or −ek.
Using the same arguments, the above example can be easily extended to the case of

an `p(N) space (1≤ p≤+∞). Recall that `p(N) is the linear space of all real sequences
x := (xk) such that ‖x‖p

p :=∑
∞
k=1 |xk|p <∞ if p<∞, and ‖x‖∞ :=maxk∈N |xk|<∞. ut

Example 2.2 The canonical basis {e1,e2, . . . ,} (i.e. ek is a sequence whose only non-
zero entry is a “1” in the kth coordinate) is a norm-generating subset of `∞(N). Any
norm-generating subset of `p(N) (1 ≤ p ≤ +∞) contains either ek or −ek for all
k = 1,2, . . ..

Given x ∈ X and u∗ ∈ X∗, denote

τu∗(x) :=


∣∣∣∣〈u∗,

x
‖x‖

〉∣∣∣∣ if x 6= 0,

0 otherwise.
(3)

Observe that 0≤ τu∗(x)≤ ‖u∗‖.
In what follows, we consider a function f : X → R∞ and assume that x̄ ∈ dom f .

The sets

∂sup f (x̄) :=
{

x∗ ∈ X∗ : 〈x∗,x〉 ≤ sup
0≤t≤1

f (x̄+ tx)− f (x̄) ∀x ∈ X
}
, (4)

∂
E
sup f (x̄) :=

{
x∗ ∈ X∗ : 〈x∗,x〉 ≤ sup

u∗∈E
f (x̄+ τu∗(x)x)− f (x̄) ∀x ∈ X

}
, (5)

∂
?
sup f (x̄) :=

⋂
E∈F

∂
E
sup f (x̄) (6)

are called, respectively, the sup-subdifferential, supE -subdifferential and sup?-sub-
differential of f at x̄. The set (5) is determined by a given norm-generating set E ∈F .

Proposition 2.1 ∂sup f (x̄) = ∂
BX∗
sup f (x̄).

Proof If u∗ ∈ BX∗ , then 0≤ τu∗(x)≤ 1. Hence, ∂
BX∗
sup f (x̄)⊂ ∂sup f (x̄). Let x ∈ X . Then

there exists u∗ ∈ BX∗ such that 〈u∗,x〉= ‖x‖. Hence, for any t ∈ [0,1], we have tu∗ ∈
BX∗ , 〈tu∗,x〉= t‖x‖ and τtu∗(x) = t, and consequently, ∂sup f (x̄)⊂ ∂

BX∗
sup f (x̄). ut

The next example is an extension of Example 1.1 to the case of an `p(N) space
(1≤ p < ∞).

Example 2.3 Define f : `p(N)→ R by

f (x) :=

{
−∑

∞
n=1(2

− 2n
p + xn)

1
2 if x ∈C,

+∞ otherwise,

where C := {x ∈ `p(N) : |xn| ≤ 2−
2n
p , n = 1,2, . . .}. Let x̄ ∈ C. We show that 0 ∈

∂ ?
sup f (x̄). The set C is convex. Each summand in the first part of the definition of f

is continuous and convex, and its absolute value is bounded from above by 2−
n
p+

1
2 .
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Hence, the series is uniformly convergent; this shows that f is continuous on C and
convex. Let (ek) denote the canonical basis of `p(N). Let E ∈F . In view of Exam-
ple 2.2, ek ∈ E for all k ∈ N. Now let x = (xn) ∈ C and x 6= 0. For all k ∈ N, we
have 〈

±ek,
x
‖x‖p

〉
=
±xk

‖x‖p
.

Hence,

f
(

x̄+
|xk|
‖x‖p

x
)
= f

(
x̄+
∣∣∣∣〈±ek,

x
‖x‖p

〉∣∣∣∣x)≤ sup
u∗∈E

f (x̄+ τu∗(x)x) .

Since f is continuous, by letting k→∞, we obtain supu∗∈E f (x̄+ τu∗(x)x)− f (x̄)≥ 0.
This implies that 0 ∈ ∂E

sup f (x̄), and consequently, 0 ∈ ∂ ?
sup f (x̄). ut

The next two propositions collect some basic properties of the subdifferentials
defined above.

Proposition 2.2 The following assertions hold true.

(i) ∂E
sup f (x̄) is convex and weak∗-closed for all E ∈F . As a consequence, ∂sup f (x̄)

and ∂ ?
sup f (x̄) are convex and weak∗-closed.

(ii) 0 ∈ ∂sup f (x̄). If x̄ is a local maximizer of f , then ∂sup f (x̄) = {0}.
(iii) Suppose that the function x 7→ f (x̄+x) is bounded on BX . Then ∂E

sup f (x̄) is weak∗-
compact for all E ∈F . As a consequence, ∂sup f (x̄) and ∂ ?

sup f (x̄) are weak∗-com-
pact.

(iv) Suppose that X is finite dimensional and f is continuous. Then ∂E
sup f (x̄) is compact

for all E ∈F . As a consequence, ∂sup f (x̄) and ∂ ?
sup f (x̄) are compact.

Proof (i) Let E ∈ F . For any x∗1,x
∗
2 ∈ ∂E

sup f (x̄), α,β ∈ [0,1] with α + β = 1, and
x ∈ X , we have

〈x∗1,x〉 ≤ sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄), 〈x∗2,x〉 ≤ sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄),

and consequently, 〈αx∗1 +βx∗2,x〉 ≤ supu∗∈E f (x̄+ τu∗(x)x)− f (x̄). Hence, ∂E
sup f (x̄) is

convex. Let (x∗γ )γ∈Γ be a net in ∂E
sup f (x̄) converging to some x∗ ∈ X∗ in the weak∗

topology of X∗. Let x ∈ X . For all γ ∈ Γ , we have 〈x∗γ ,x〉 ≤ supu∗∈E f (x̄+ τu∗(x)x)−
f (x̄), and consequently, 〈x∗,x〉 ≤ supu∗∈E f (x̄+ τu∗(x)x)− f (x̄). Hence, ∂E

sup f (x̄) is
weak∗-closed. In view of Proposition 2.1, and thanks to the fact that the intersection
of convex and weak∗-closed sets is convex and weak∗-closed, the other two subdiffer-
entials are convex and weak∗-closed too.

(ii) We have sup0≤t≤1 f (x̄+ tx)≥ f (x̄) for all x ∈ X . It follows from definition (4)
that 0 ∈ ∂sup f (x̄). Let x̄ be a local maximizer of f . Then there is a number δ > 0 such
that f (x̄+ x) ≤ f (x̄) for all x ∈ δBX . If x∗ ∈ ∂sup f (x̄), then by definition (4), for all
x ∈ δBX , we have 〈x∗,x〉 ≤ sup0≤t≤1 f (x̄+ tx)− f (x̄) = 0, and consequently, x∗ = 0.
Hence, ∂sup f (x̄) = {0}.

(iii) Suppose that | f (x̄+x)| ≤M <+∞ for all x∈BX . Let E ∈F and x∗ ∈ ∂E
sup f (x̄).

Then

‖x∗‖= sup
x∈BX

〈x∗,x〉 ≤ sup
x∈BX ,u∗∈E

f (x̄+ τu∗(x)x)− f (x̄)≤M− f (x̄).

Thus, ∂E
sup f (x̄) is bounded and therefore weak∗-compact by the Banach–Alaoglu–Bo-

urbaki theorem. The second assertion follows since the intersection of weak∗-compact
sets is weak∗-compact.

(iv) Recall that the closed unit ball in a finite dimensional space is compact, and
therefore the continuity of f implies that the function x 7→ f (x̄+x) is bounded on BX .
The assertion follows from (vi). ut
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Proposition 2.3 Let f be convex. The following assertions hold true.

(i) ∂ f (x̄)⊂ ∂E
sup f (x̄)⊂ ∂sup f (x̄) for all E ∈F . As a consequence, ∂ f (x̄)⊂ ∂ ?

sup f (x̄)⊂
∂sup f (x̄).

(ii) If X = R, then ∂ ?
sup f (x̄) = ∂ f (x̄).

(iii) x̄ minimizes f if and only if ∂ f (x̄) = ∂ ?
sup f (x̄) = ∂sup f (x̄).

(iv) If ∂sup f (x̄) is a singleton, then either x̄ minimizes f or ∂ f (x̄) = /0.

Proof (i) Let E ∈F , x∗ ∈ ∂ f (x̄) and x ∈ X . Then 〈x∗,x〉 ≤ f (x̄+x)− f (x̄), and there
exists û∗ ∈ E such that |〈û∗,x〉|= ‖x‖, i.e. τû∗(x) = 1. Therefore

f (x̄+ x) = f (x̄+ τû∗(x)x)≤ sup
u∗∈E

f (x̄+ τu∗(x)x) ,

and consequently, 〈x∗,x〉≤ supu∗∈E f (x̄+ τu∗(x)x)− f (x̄). It follows that x∗ ∈ ∂E
sup f (x̄),

and consequently, ∂ f (x̄) ⊂ ∂E
sup f (x̄). The opposite inclusion ∂E

sup f (x̄) ⊂ ∂sup f (x̄) is
straightforward from definitions (4) and (5). The second claim is a consequence of the
first one.

(ii) ∂ f (x̄)⊂ ∂ ?
sup f (x̄) by (i). The set E := {1} is norm-generating in R. τ1(x) = 1

if x 6= 0. Hence, f (x̄+ τ1(x)x) = f (x̄+ x) for all x ∈ R, and consequently, ∂ ?
sup f (x̄)⊂

∂E
sup f (x̄)⊂ ∂ f (x̄).

(iii) If ∂ f (x̄) = ∂sup f (x̄), then by Proposition 2.2(ii), 0∈ ∂ f (x̄), and consequently,
x̄ minimizes f . Conversely, suppose that x̄ ∈ X is a minimizer of f . Let x∗ ∈ ∂sup f (x̄)
and x ∈ X . Then

〈x∗,x〉 ≤ sup
0≤t≤1

f (x̄+ tx)− f (x̄)≤ sup
0≤t≤1

t( f (x̄+ x)− f (x̄)) = f (x̄+ x)− f (x̄),

It follows that x∗ ∈ ∂ (x̄), and consequently, ∂sup f (x̄)⊂ ∂ f (x̄). In view of (i), we have
∂ f (x̄) = ∂ ?

sup f (x̄) = ∂sup f (x̄).
(iv) Let ∂sup f (x̄) be a singleton. By Proposition 2.2(ii), ∂sup f (x̄) = {0}. Hence, by

(i), either ∂ f (x̄) = /0 or ∂ f (x̄) = {0}. In the latter case, x̄ minimizes f . ut

As a by-product of Proposition 2.3(ii), we see that the sup?-subdifferential can be
empty at some points. Thanks to Proposition 2.2(ii), the sup-subdifferential is always
nonempty.

Proposition 2.2(ii) also gives a simple necessary condition for local optimality.
Now we discuss some more local conditions. For every δ ∈ (0,+∞], we define a lo-
calization of ∂sup f (x̄):

∂
(δ )
sup f (x̄) := {x∗ ∈ X∗ : 〈x∗,x〉 ≤ sup

0≤t≤1
f (x̄+ tx)− f (x̄), ‖x‖< δ}. (7)

Observe that 0 ∈ ∂
(δ )
sup f (x̄) for all δ ∈ (0,+∞], and

∂sup f (x̄) = ∂
(+∞)
sup f (x̄) =

⋂
δ>0

∂
(δ )
sup f (x̄).

Analyzing the proof of Proposition 2.2(ii), we can see that, using (7), we can
formulate a slightly sharper necessary condition.

Proposition 2.4 If x̄ is a local maximizer of f , then ∂
(δ )
sup f (x̄) = {0} for all δ ∈

(0,+∞].

Example 2.4 (See Fig. 2.) Define f : R→ R as

f (x) :=


x2−1 if |x| ≥ 1,
2x2−2 if 0 < x < 1,
−x−1 if −1 < x≤ 0.
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Note that f is not convex and fails to be continuous at 0 (although it is upper semi-
continuous). For all x ∈ R, one has

sup
0≤t≤1

(− f )(tx) =− inf
0≤t≤1

f (tx) =

{
2 if x≥ 0,
1 if x < 0,

and consequently, for each δ > 0, ∂
(δ )
sup (− f )(0) consists of all numbers a such that

ax ≤ 1 for all x ∈ (0,δ ) and ax ≤ 0 for all x ∈ (−δ ,0). Hence, ∂
(δ )
sup (− f )(0) =

[0, 1
δ
] and, by Proposition 2.4, 0 fails to be a local minimizer of f . Observe that

∂sup(− f )(0) = ∩δ>0∂
(δ )
sup (− f )(0) = {0}, and Proposition 2.2(ii) does not allow us to

make this conclusion. One can also check that ∂sup(− f )(x) 6= {0} for all x 6= 0. Thus,
f has no local minimizers. Similarly, ∂sup f (x) 6= {0} for all x ∈ X , and consequently,
f has no local maximizers. ut

Fig. 1 The graph of f (Example 2.4)

We now show that under some additional assumptions, the necessary optimality
condition in Proposition 2.4 becomes sufficient. We first consider the case X := R.
Given a function f : R→ R∞ and a point x̄ ∈ dom f , consider the one-sided limits:

f ′+(x̄) := liminf
x↓0

f (x̄+ x)− f (x̄)
x

, f ′−(x̄) := limsup
x↑0

f (x̄+ x)− f (x̄)
x

. (8)

Observe that the above limits can be infinite, and

f ′−(x̄) =− liminf
x↓0

f (x̄− x)− f (x̄)
x

.

Given an α ∈ [−∞,+∞], we use the standard notations α+ := max{α,0} and α− :=
min{α,0}.

Proposition 2.5 Let f : R→ R and x̄ ∈ dom f .

(i) For any ε > 0, there exists a number δ > 0 such that(
( f ′−(x̄)+ ε)−,( f ′+(x̄)− ε)+

)
⊂ ∂

(δ )
sup f (x̄).

(ii) Suppose that ∂
(δ )
sup f (x̄) = {0} for all δ > 0. Then f ′−(x̄) ≥ 0 and f ′+(x̄) ≤ 0. As a

consequence, f is upper semi-continuous at x̄. If both f ′+(x̄) and f ′−(x̄) are nonzero,
then x̄ is a local maximizer of f .

Proof (i) Let ε > 0 and a ∈
(
( f ′−(x̄)+ ε)−,( f ′+(x̄)− ε)+

)
. If f ′+(x̄)<+∞, set M1 :=

f ′+(x̄); otherwise set M1 := a + ε . If f ′−(x̄) > −∞, set M2 := f ′−(x̄); otherwise set
M2 := a− ε . Choose a number δ > 0 such that

f (x̄+ x)− f (x̄)
x

> M1− ε for all x ∈ (0,δ ),

f (x̄+ x)− f (x̄)
x

< M2 + ε for all x ∈ (−δ ,0).
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Then, for any x ∈ (−δ ,δ ),

sup
0≤t≤1

f (x̄+ tx)− f (x̄)≥ max
t∈{0,1}

f (x̄+ tx)− f (x̄) = ( f (x̄+ x)− f (x̄))+

≥

{
(M1− ε)+x≥ ax if x≥ 0,
(M2 + ε)−x≥ ax if x≤ 0.

Hence, a ∈ ∂
(δ )
sup f (x̄).

(ii) By (i), f ′−(x̄)+ε ≥ 0 and f ′+(x̄)−ε ≤ 0 for all ε > 0, and consequently, f ′−(x̄)≥
0 and f ′+(x̄)≤ 0. In view of the definitions (8), these inequalities imply that f is upper
semi-continuous at x̄. If f ′+(x̄) and f ′−(x̄) are nonzero, then f ′−(x̄)> 0 and f ′+(x̄)< 0;
hence, x̄ is a local maximizer of f . ut

Remark 2.1 Condition ∂
(δ )
sup f (x̄) = {0} in Proposition 2.5(ii) is essential. For example,

for the function x 7→ f (x) := x, we have f ′−(0) = f ′+(0) = 1, but 0 is obviously not a
maximizer of f . Notice that ∂

(δ )
sup f (0) = [0,1] for all δ > 0.

The following example demonstrates that condition f ′+(x̄) 6= 0 in Proposition 2.5(ii)
is not necessary.

Example 2.5 (See Fig. 2.) Define f : R→ R as

f (x) :=


x2−1 if |x| ≥ 1,
2−2x2 if 0≤ x < 1,
x+1 if −1 < x < 0.

The point x = 0 is obviously a local maximizer. Moreover, it is easy to check (as in
Example 2.4) that ∂sup f (0) = {0}. At the same time, f ′+(0) = 0, i.e. the sufficient
conditions in Proposition 2.5(ii) are not satisfied. One can also check that ∂sup f (x) 6=
{0} for all x 6= 0. Thus, f has no other local maximizers.

Observe that ∂
(δ )
sup (− f )(±1) = {0} for all δ > 0, while f ′+(±1)> 0 and f ′−(±1)<

0. It follows from Proposition 2.5(ii) applied to the function− f that x =−1 and x = 1
are local minimizers of f . ut

Fig. 2 The graph of f (Example 2.5)

Remark 2.2 Flores Bazán [10] used a derivative notion defined geometrically via the
epigraph:

epiDR
e f (x̄; ·) :=

⋃
t≥0

t(epi f − (x̄, f (x̄)).

It is easy to see that x̄ is a (global) minimizer of f if and only if DR
e f (x̄;v) ≥ 0 for

all v ∈ X . This criterion obviously allows one to recover some of the conclusions in
Examples 2.4 and 2.5.
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Next, we proceed to extending Proposition 2.5(ii) to the setting of a general normed
vector space. We are going to use a weaker ‘one-dimensional’ notion of optimality.

Definition 2.1 A point x̄ is an algebraic local maximizer (minimizer) of f if, for every
x ∈ X , there exists a number ε > 0 such that f (x̄+ tx) ≤ f (x̄) ( f (x̄) ≤ f (x̄+ tx)) for
all t ∈ (0,ε).

Remark 2.3 In the above definition, it suffices to consider only unit vectors x ∈ X .
Condition t ∈ (0,ε) can be replaced by a two-sided constraint t ∈ (−ε,ε). Thus, x̄
is an algebraic local maximizer (minimizer) of f if and only if, for every x ∈ X , the
number 0 is an algebraic local maximizer (minimizer) of the function t 7→ f (x̄+ tx)
on R.

A local maximizer (minimizer) of f is an algebraic local maximizer (minimizer)
of f . The opposite assertion is not true in general, unless X = R.

The lower directional derivative of f at x̄ in the direction x ∈ X is defined as fol-
lows:

f ′+(x̄;x) := liminf
t↓0

f (x̄+ tx)− f (x̄)
t

.

For each x ∈ X , the function fx : R→R∞ is defined by fx(t) := f (x̄+ tx) for all t ∈R.
Obviously, ( fx)

′
+(0) = f ′+(x̄;x). The next proposition is a consequence of Proposi-

tion 2.5(ii).

Proposition 2.6 If ∂
(δ )
sup fx(0)= {0} for some x∈X and all δ > 0, then f ′+(x̄;x)≤ 0. As

a consequence, if for all x 6= 0 and all δ > 0, we have ∂
(δ )
sup fx(0)= {0} and f ′+(x̄;x) 6= 0,

then x̄ is an algebraic local maximizer of f .

The next example demonstrates that condition ∂
(δ )
sup fx(0) = {0} in the second part

of Proposition 2.6 is essential.

Example 2.6 Consider the continuous function f : R2→ R given by

f (x,y) :=

{√
x2 + y2 sin( 1√

x2+y2
) if x2 + y2 6= 0,

0 if x = y = 0.

Obviously (0,0) fails to be an algebraic local maximizer of f . We are going to show
that ∂

(δ )
sup f(1,0)(0) contains nonzero elements, where δ := 2

π
; more precisely, [− 1

5 ,
1
5 ]⊂

∂
(δ )
sup f(1,0)(0). One can easily check that

f(1,0)(x) :=

{
|x|sin( 1

|x| ) if x 6= 0,

0 if x = 0.

Now let a ∈ [− 1
5 ,

1
5 ]. For each x ∈ (−δ ,0)∪ (0,δ ), set kx :=

⌊
(2π)−1( 1

|x| −
π

2 )
⌋
+ 1

and tx := [(2kxπ + π

2 )|x| ]
−1. Observe that kx ∈ N and 0 < tx < 1, and consequently,

sup
0≤t≤1

f(1,0)(tx)≥ f(1,0)(txx) = tx|x|=
1

2kxπ + π

2
≥ |x|

1+2π|x|
>
|x|
5
≥ ax.

Hence, a ∈ ∂
(δ )
sup f(1,0)(0). Notice that for every (x,y) 6= (0,0) one has

f ′+((0,0);(x,y)) = liminf
t↓0

|t|sin
(

1
|t|·‖(x,y)‖2

)
t

‖(x,y)‖2 =−‖(x,y)‖2 6= 0,

where ‖(x,y)‖2 =
√

x2 + y2. ut
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3 Sup- and Sup?-Subdifferentials of Upper Semi-Continuous Functions

In this section, we assume that X is a normed vector space, a function f : X → R∞ is
upper semi-continuous, and x̄ ∈ dom f . We derive some representations for the sup-
and sup?-subdifferentials in the convex and nonconvex cases. Recall that f is upper
semi-continuous at x̄ if limsupx→x̄ f (x) ≤ f (x̄). A function is said to be upper semi-
continuous if it is upper semi-continuous at every x ∈ X .

Given a subset E ∈F , a function τu∗ : X → R defined for u∗ ∈ E by (3), and a
point x ∈ X , set

τE (x) := min
{

τx∗(x) : f (x̄+ τx∗(x)x) = sup
u∗∈E

f (x̄+ τu∗(x)x) , x∗ ∈ E

}
, (9)

τ(x) := min
{

λ ∈ [0,1] : f (x̄+λx) = sup
0≤t≤1

f (x̄+ tx)
}
. (10)

Lemma 3.1 Let E ∈F . The functions τE ,τ : X → [0,1], given by (9) and (10) are
well-defined, and τ ≤ τE . If, furthermore, f is convex, then, for all x ∈ X,

sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄)≤ τE (x)( f (x̄+ x)− f (x̄)),

sup
0≤t≤1

f (x̄+ tx)− f (x̄)≤ τ(x)( f (x̄+ x)− f (x̄)).

Proof Let x ∈ X . Define a function Qx : X∗→ R∞:

Qx(x∗) := f (x̄+ τx∗(x)x) , x∗ ∈ X∗.

We claim that Qx is weak∗-upper semi-continuous. Indeed, suppose that (x∗ν) is a net in
X∗ which converges to some x∗ in the weak∗ topology. It follows that τx∗ν (x)→ τx∗(x)
and, since f is upper semi-continuous, limsupx∗ν→x∗Qx(x∗ν)≤Qx(x∗), i.e. Qx is weak∗-
upper semi-continuous. By the Banach–Alaoglu theorem, E is weak∗-compact, and
therefore, there exists x∗ ∈ E such that Qx(x∗) = supu∗∈E Qx(u∗), i.e.

f (x̄+ τx∗(x)x) = sup
u∗∈E

f (x̄+ τu∗(x)x) .

The point x∗ ∈ E defined above and the corresponding number τx∗(x) are in general
not unique. Nevertheless, one can easily check that the set of all such numbers is
compact in [0,1], and consequently, the function (9) is well-defined. Let f be convex.
Since τE (x) ∈ [0,1], we have

sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄) = f (x̄+ τE (x)x)− f (x̄)≤ τE (x)( f (x̄+ x)− f (x̄)).

In the particular case E := BX∗ , it follows that the function (10) is well-defined, and
the second inequality holds in the convex case. The inequality τ ≤ τE is a direct con-
sequence of the definitions (9) and (10). ut

Recall that, for a nonempty subset A ⊂ X , the negative polar cone to A is defined
as A◦ := {x∗ ∈ X∗ : 〈x∗,x〉 ≤ 0 ∀x ∈ A}. If A = /0, we set A◦ := X∗. The normal cone
to a convex subset A⊂ X at x̄ ∈ A is defined as

NA(x̄) := {x∗ ∈ X∗ : 〈x∗,x− x̄)≤ 0 ∀x ∈ A}.

Thus, if A is convex and 0 ∈ A, then A◦ is just the normal cone to A at zero.
Given a subset C ⊂ X , we denote

∂C f (x̄) := {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ x)− f (x̄) ∀x ∈C},

with the convention ∂C f (x̄) := X∗ if C = /0.
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Theorem 3.1 Let the functions τ and τE be defined by (10) and (9), respectively. Then

∂sup f (x̄) =
⋂

0<λ≤1

{
λ∂Cλ

f (x̄)
}⋂(

τ
−1(0)

)◦
, (11)

∂
E
sup f (x̄) =

⋂
0<λ≤1

{
λ∂CE

λ

f (x̄)
}⋂(

τ
−1
E (0)

)◦
for all E ∈F , (12)

∂
?
sup f (x̄) =

⋂
E∈F , 0<λ≤1

{
λ∂CE

λ

f (x̄)
}⋂(

τ
−1
E (0)

)◦
,

where Cλ := λ
(
τ−1(λ )\ τ−1(0)

)
and CE

λ
:= λ

(
τ
−1
E (λ )\ τ

−1
E (0)

)
.

Proof Let E ∈F . By definition (5) and Lemma 3.1, we have

∂
E
sup f (x̄) = {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ τE (x)x)− f (x̄) ∀x ∈ X}.

One can easily check that ∂E
sup f (x̄) = BE ∩

(
τ
−1
E (0)

)◦
, where

BE :=
{

x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ τE (x)x)− f (x̄) ∀x ∈ X \{τ−1
E (0)}

}
.

Next we check that

BE =
⋂

0<λ≤1

{
x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+λx)− f (x̄) ∀x ∈ τ

−1
E (λ )\ τ

−1
E (0)

}
=

⋂
0<λ≤1

{
λx∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ x)− f (x̄) ∀x ∈ λ

(
τ
−1
E (λ )\ τ

−1
E (0)

)}
=

⋂
0<λ≤1

{
λ∂CE

λ

f (x̄)
}
.

This proves (12). The other two representations are consequences of (12). ut

Set L>
f (x̄) := {x ∈ X : f (x̄+ x)> f (x̄)}. The sets L<

f (x̄), L=
f (x̄) and L≤f (x̄) are de-

fined in a similar way. The next lemma provides explicit representations of the func-
tions τE and τ defined by (9) and (10) for an upper semi-continuous convex function.

Lemma 3.2 Let f be convex and E ∈F . Then τE (x) = τ(x) = 1 for all x ∈ L>
f (x̄),

and τ(x) = 0 for all x ∈ L≤f (x̄). If 0 ∈ E , then τE (x) = 0 for all x ∈ L≤f (x̄).

Proof By Lemma 3.1, we have

f (x̄+ tx)− f (x̄) ≤ τE (x)( f (x̄+ x)− f (x̄)) (13)

for all t ∈ TE := {τu∗(x) : u∗ ∈ E } and all x ∈ X . By the definition of F , we always
have 1 ∈ TE , and 0 ∈ TE if 0 ∈ E , particularly if E = BX∗ .

If x ∈ L>
f (x̄), then, by letting t = 1 in (13), we obtain τE (x) ≥ 1, and therefore,

τE (x) = 1; in particular, τ(x) = 1. Let 0 ∈ E . If x ∈ L<
f (x̄), then, by letting t = 0 in

(13), we get τE (x)≤ 0, and therefore, τE (x) = 0; in particular, τ(x) = 0. If x ∈ L=
f (x̄),

then, for all t ∈ [0,1], we have

f (x̄+ tx) = f ((1− t)x̄+ t(x̄+ x))≤ (1− t) f (x̄)+ t f (x̄+ x) = f (x̄),

and consequently, maxt∈TE
f (x̄+ tx) is attained at t = 0. It follows from definition (9)

that τE (x) = 0; in particular, τ(x) = 0. ut

Using Lemma 3.2, we can simplify the conclusions of Theorem 3.1 for upper
semi-continuous convex functions.
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Corollary 3.1 Let f be convex and 0 ∈ E ∈F . Then

∂
E
sup f (x̄) = ∂sup f (x̄) = ∂L>f (x̄)

f (x̄)∩NL≤f (x̄)
(0). (14)

As a consequence, ∂ f (x̄) = ∂L>f (x̄)
f (x̄)∩NL≤f (x̄)

(0) if and only if x̄ minimizes f .

Proof By Lemma 3.2, for all 0 < λ < 1, we have τ
−1
E (λ ) = τ−1(λ ) = /0, and conse-

quently, using the notations in Theorem 3.1, ∂CE
λ

f (x̄) = ∂Cλ
f (x̄) = X∗. We also have

CE
1 =C1 = L>

f (x̄) and τ
−1
E (0) = τ−1(0) = L≤f (x̄). Hence, representations (11) and (12)

reduce to (14). The last assertion follows thanks to Proposition 2.3(ii). ut

Corollary 3.2 Let X := `p(N) with p≥ 1 and f be convex. Then ∂ ?
sup f (x̄) = ∂sup f (x̄).

As a consequence, ∂ ?
sup f (x̄) = ∂ f (x̄) if and only if x̄ minimizes f .

Proof Let (ek) denote the canonical basis of `p(N) and E ∈ F . In view of Exam-
ple 2.2, ek ∈ E for all k ∈ N. The sequence (ek) converges to 0 in the weak∗ topology
of `q(N) where q and p are convex conjugates. Since E is weak∗-closed, 0 ∈ E . The
assertion follows from definition (6) and Corollary 3.1. ut

Remark 3.1 In general real topological vector spaces, the equality ∂ ?
sup f (x̄) = ∂ f (x̄)

may hold even if x̄ does not minimize f ; cf. Proposition 2.3(ii).

The sup-subdifferential can be connected with certain directional derivatives. In-
deed, if f is convex, then for all x ∈ X , the function

h 7→
sup0≤t≤h f (x̄+ tx)− f (x̄)

h
is nondecreasing, and the function

x 7→ f ′sup(x̄;x) := lim
h↓0

sup0≤t≤h f (x̄+ tx)− f (x̄)
h

is positively homogeneous (note that the limit exists in R∪{±∞}). It follows that

∂sup f (x̄) = {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f ′sup(x̄;x) ∀x ∈ X}.

4 Symmetric Subdifferential

In this section, we assume that X is a topological vector space, f : X → R∞, and
x̄ ∈ dom f . The symmetric subdifferential of f at x̄ is defined as

∂sym f (x̄) :=
{

x∗ ∈ X∗ : 〈x∗,d〉 ≤ f ′sym(x̄;d) ∀d ∈ X
}
,

where

f ′sym(x̄;d) := lim
t↓0

max{ f (x̄+ td), f (x̄− td)}− f (x̄)
t

is the symmetric directional derivative of f at x̄ in direction d (if the limit exists in
R∪{±∞}). If f is convex, then f ′sym(x̄;d) exists, and is finite if x̄ ∈ int dom f . Indeed,

f ′sym(x̄;d) = max
{

f ′(x̄;d), f ′(x̄;−d)
}
, (15)

where f ′(x̄;d) denotes the conventional directional derivative of f at x̄ in direction
d ∈ X . Note that, if the (double-sided) limit limt→0( f (x̄+ td)− f (x̄))/t exists, then

f ′sym(x̄;d) = | f ′(x̄;d)|. (16)

When f is convex and continuous at x̄, then

f ′(x̄;d) = max{〈x∗,d〉 : x∗ ∈ ∂ f (x̄)}. (17)

The following proposition, which is a direct consequence of (15) and (17), states a
similar property for the symmetric directional derivative (see [11, formula (4)]).
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Proposition 4.1 Suppose that f is convex and continuous at x̄. Then

f ′sym(x̄;d) = max{〈x∗,d〉 : x∗ ∈ ∂ f (x̄)∪{−∂ f (x̄)}} .

The set ∂sym f (x̄) is convex, weak∗-closed and symmetric. If the function
d 7→ f (x̄+d) is bounded on a neighborhood of the origin, then ∂sym f (x̄) is also weak∗-
compact. ∂sym f (x̄) contains ∂ f (x̄), since f ′(x̄;d)≤ f ′sym(x̄;d) for all d ∈ X . Hence, we
have the following sufficient condition of minimality.

Proposition 4.2 Suppose that f is convex. If ∂sym f (x̄) = ∂ f (x̄) 6= /0, then x̄ mini-
mizes f .

Proof Under the assumptions, ∂ f (x̄) is symmetric, and therefore 0 ∈ ∂ f (x̄). ut

The following theorem provides a sufficient condition under which the symmetric
subdifferential is nonempty.

Theorem 4.1 Let f be convex. If there exists d̄ ∈ X such that

0 < max
{

f ′(x̄; d̄), f ′(x̄;−d̄)
}
<+∞,

then ∂sym f (x̄) contains a nonzero element.

Proof One can easily check that f ′sym(x̄;αd) = |α| f ′sym(x̄;d) for all α ∈ R and d ∈ X .
The function d 7→ f ′sym(x̄;d) is sub-additive. Indeed, for all d1,d2 ∈ X , we have

f ′sym(x̄;d1 +d2) = max
{

f ′(x̄;d1 +d2), f ′(x̄;−d1−d2)
}

≤ max
{

f ′(x̄;d1)+ f ′(x̄;d2), f ′(x̄;−d1)+ f ′(x̄;−d2)
}

≤ max
{

f ′(x̄;d1), f ′(x̄;−d1)
}
+max

{
f ′(x̄;d2), f ′(x̄;−d2)

}
= f ′sym(x̄;d1)+ f ′sym(x̄;d2).

Thus, the function d 7→ f ′sym(x̄;d) is sublinear on X . Now let H := R{d̄} be the sub-
space generated by the nontrivial singleton {d̄}. Define the functional l∗ ∈ H∗ as
〈l∗,h〉 := α f ′sym(x̄; d̄), where h = α d̄. Note that l∗ is well-defined since d̄ 6= 0 and
f ′sym(x̄; d̄) is finite. It follows that, for all h ∈ H,

〈l∗,h〉 ≤ |α| f ′sym(x̄; d̄) = f ′sym(x̄;α d̄) = f ′sym(x̄;h).

By the Hahn–Banach theorem, l∗ can be extended to a functional x∗ ∈ X∗ satisfying
〈x∗,d〉 ≤ f ′sym(x̄;d) for all d ∈ X . Thus, 0 6= x∗ ∈ ∂sym f (x̄). ut

Example 4.1 We consider the function f : `2(N) → R in Example 1.1. Let x̄ =
(x̄1, x̄2, . . .) ∈ C and d̄ = ek, the kth basis vector in `2(N) for some k ∈ N. One can
easily check that

f ′(x̄; d̄) =−1
2
(x̄k +2−k)−

1
2 , f ′(x̄;−d̄) =

1
2
(x̄k +2−k)−

1
2 .

Hence, ∂sym f (x̄) contains a nonzero element.

Example 4.2 Define f : R→ R as

f (x) :=

{
x if x > 0,
1− x if x≤ 0.

It is discontinuous at 0 (though upper semi-continuous) and fails to be convex. One
can easily check that ∂sym f (0) = [−1,1]. Indeed, max{ f ′(0;d), f ′(0;−d)} = |d| for
all d ∈ X .
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5 Calculus Rules in Banach Spaces

In this section, we establish certain calculus rules for ∂sup, ∂ ?
sup and ∂sym for proper

continuous convex functions on Banach spaces. Let f : X → R∞ and x̄ ∈ dom f .
The next three rules are immediate from the definitions:

∂sup(λ f )(x̄) = λ∂sup f (x̄), ∂
?
sup(λ f )(x̄) = λ∂

?
sup f (x̄), ∂sym(λ f )(x̄) = λ∂sym f (x̄)

for all λ > 0. If ∂sym f (x̄) 6= /0 and ∂ ?
sup f (x̄) 6= /0, then these equalities also hold for

λ = 0. We now proceed to sum rules.
We start with an auxiliary lemma for the symmetric subdifferential. Recall that a

Banach space is Asplund if every continuous convex function on an open convex set is
Fréchet differentiable on some its dense Gδ subset, or equivalently, if the dual of each
its separable subspace is separable [12, 13].

Lemma 5.1 Let f : X→R∞ be a convex function on a Banach space, continuous at x̄.
Assume that the function x 7→ f (x̄+ x) is bounded on BX . Then

∂sym f (x̄) = clw∗ co (∂ f (x̄)∪ (−∂ f (x̄))) , (18)

∂sup f (x̄) = clw∗ co(∂ f (x̄)∪{0}), (19)

where clw∗ represents the closure with respect to the weak∗ topology.
If X is Asplund, then clw∗ in (18) can be replaced by the closure with respect to the

norm topology.

Proof By the assumptions, ∂sym f (x̄) is nonempty and weak∗-compact. Hence, by the
Krein–Milman theorem [14], ∂sym f (x̄) contains extreme points. Moreover,

∂sym f (x̄) = clw∗ co ext(∂sym f (x̄)),

where ext ∂sym f (x̄) denotes the set of all extreme points of ∂sym f (x̄). By Proposi-
tion 4.1, ext ∂sym f (x̄)⊂ ∂ f (x̄)∪ (−∂ f (x̄)). Hence,

∂sym f (x̄)⊂ clw∗ co (∂ f (x̄)∪ (−∂ f (x̄))) .

On the other hand, ∂ f (x̄) ⊂ ∂sym f (x̄) and, since ∂sym f (x̄) is symmetric, convex and
weak∗-closed, clw∗ co (∂ f (x̄)∪ (−∂ f (x̄)))⊂ ∂sym f (x̄). This proves (18). The proof of
the second equality goes along the same lines as that of (18); we therefore give only
a sketch of it. Since f is continuous, f ′sup(x̄; ·) = max{ f ′(x̄; ·),0} (τ(x) equals either 1
or 0 for all x ∈ X), and therefore

∂sup f (x̄) =
{

x∗ ∈ X∗ : 〈x∗,x〉 ≤max
{

f ′(x̄;d),0
}
∀x ∈ X

}
.

One can easily check that f ′sup(x̄;d) = max{〈x∗,d〉 : x∗ ∈ ∂ f (x̄)∪{0}}. By the Kre-
in–Milman theorem, ∂sup f (x̄) = clw∗ co(∂ f (x̄)∪{0}). This proves (19). If X is As-
plund, its dual X∗ has the Radon–Nikodým property [12], and it follows from the
Edgar–Lindenstrauss theorem [15, 16] that the weak∗-closure can be replaced by the
norm closure. ut

Remark 5.1 The above proof uses the fact that the dual of an Asplund space has the
Radon–Nikodým property. In fact, a Banach space is Asplund if and only if its dual
has the Radon–Nikodým property [12, Theorem 5.7], [13, Theorem 6].

Theorem 5.1 Let A : X → Y be a bounded linear map between Banach spaces,
f : X → R∞ and g : Y → R∞ be proper convex functions such that f and g ◦A are
finite and continuous at x̄. Suppose that 0 ∈ core(dom g−Adom f ), and the func-
tions x 7→ f (x̄+ x) and y 7→ g(Ax̄+ y) are bounded on BX and BY , respectively. The
following assertions hold true.
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(i) ∂sym( f +g◦A)(x̄)⊂ ∂sym f (x̄)+A∗∂symg(Ax̄).
Furthermore, if for any d ∈ X, f ′(x̄;d) ≥ f ′(x̄;−d) implies g′(Ax̄;Ad) ≥
g′(Ax̄;−Ad), then ∂sym( f +g◦A)(x̄) = ∂sym f (x̄)+A∗∂symg(Ax̄).

(ii) ∂sup( f +g◦A)(x̄)⊂ ∂sup f (x̄)+A∗∂supg(Ax̄).
Furthermore, if for any d ∈ X we have f ′(x̄;d) ≥ 0 ⇐⇒ g′(Ax̄;Ad) ≥ 0, then
∂sup( f +g◦A)(x̄) = ∂sup f (x̄)+A∗∂supg(Ax̄).

Proof (i). The function x 7→ ( f +g◦A)(x̄+x) is bounded on BX , and therefore satisfies
the conditions of Lemma 5.1. The adjoint operator A∗ : Y ∗→ X∗ is weak∗-continuous,
and therefore, maps a weak∗-compact set in Y ∗ to a weak∗-compact set in X∗. From
these observations, the convex subdifferential sum and chain rules [9], and Lemma 5.1,
we have

∂sym( f +g◦A)(x̄)

= clw∗ co (∂ ( f +g◦A)(x̄)∪ (−∂ ( f +g◦A)(x̄)))

= clw∗ co ((∂ f (x̄)+A∗∂g(Ax̄))∪ (−∂ f (x̄)−A∗∂g(Ax̄)))

⊂ clw∗ co ((∂ f (x̄)∪ (−∂ f (x̄)))+(A∗∂g(Ax̄)∪ (−A∗∂g(Ax̄))))

⊂ clw∗
(

clw∗ co (∂ f (x̄)∪ (−∂ f (x̄)))+ clw∗A∗ co (∂g(Ax̄)∪ (−∂g(Ax̄)))
)

⊂ clw∗
(

clw∗ co (∂ f (x̄)∪ (−∂ f (x̄)))+A∗clw∗ co (∂g(Ax̄)∪ (−∂g(Ax̄)))
)

= clw∗ (∂sym f (x̄)+A∗∂symg(Ax̄)) = ∂sym f (x̄)+A∗∂symg(Ax̄),

since the sum of two weak∗-compact sets is weak∗-closed.
Now suppose that x∗ ∈ ∂sym f (x̄), y∗ ∈ ∂symg(Ax̄) and u∗ = A∗y∗. Let d ∈ X . By the

assumptions, we have

〈x∗+u∗,d〉= 〈x∗,d〉+ 〈y∗,Ad〉
≤max{ f ′(x̄;d), f ′(x̄;−d)}+max{g′(Ax̄;Ad),g′(Ax̄;−Ad)}
= max{ f ′(x̄;d)+g′(Ax̄;Ad), f ′(x̄;−d)+g′(Ax̄;−Ad)}
= max{( f +g◦A)′(x̄;d),( f +g◦A)′(x̄;−d)}.

It follows that x∗+u∗ ∈ ∂sym( f +g◦A)(x̄), and therefore,

∂sym f (x̄)+A∗∂symg(Ax̄)⊂ ∂sym( f +g◦A)(x̄).

(ii) The proof goes along the same lines as that of (i). We therefore omit it. ut
The next statement is a straightforward consequence of Theorem 5.1 and Corol-

lary 3.2.

Theorem 5.2 Let p ≥ 1 and f ,g : `p(N)→ R∞ be proper convex functions, continu-
ous at x̄ ∈ dom f ∩dom g. Suppose that 0 ∈ core(dom f −dom g), and the functions
x 7→ f (x̄+ x) and x 7→ g(x̄+ x) are bounded on BX . Then

∂
?
sup( f +g)(x̄)⊂ ∂

?
sup f (x̄)+∂

?
supg(x̄).

If for any d ∈ X we have f ′(x̄;d)≥ 0⇐⇒ g′(x̄;d)≥ 0, then

∂
?
sup( f +g)(x̄) = ∂

?
sup f (x̄)+∂

?
supg(x̄).
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