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Abstract The Moreau–Rockafellar subdifferential is a highly important notion in
convex analysis and optimization theory. But there are many functions which fail
to be subdifferentiable at certain points. In particular, there is a continuous convex
function defined on `2(N), whose Moreau–Rockafellar subdifferential is empty at
every point of its domain. This paper proposes some enlargements of the Moreau–
Rockafellar subdifferential: the sup?-subdifferential, sup-subdifferential and symmet-
ric subdifferential, all of them being nonempty for the mentioned function. These
enlargements satisfy the most fundamental properties of the Moreau–Rockafellar sub-
differential: convexity, weak∗-closedness, weak∗-compactness and, under some addi-
tional assumptions, possess certain calculus rules. The sup? and sup subdifferentials
coincide with the Moreau–Rockafellar subdifferential at every point at which the func-
tion attains its minimum, and if the function is upper semi-continuous, then there are
some relationships for the other points. They can be used to detect minima and max-
ima of arbitrary functions.

Keywords Moreau–Rockafellar subdifferential · Convex function · Normal cone ·
Directional derivative.

Mathematics Subject Classification (2000) 49J52 · 49J53 · 90C30

1 Motivation

Throughout the paper, X is a real topological vector space. The topological (continu-
ous) dual of X is denoted by X∗. If T : X ⇒ X∗ is a set-valued mapping, the set of all
x ∈ X such that T (x) is nonempty is the domain of T and is denoted by dom T .

Various problems coming from different areas can be formulated as

Find x ∈ dom T such that 0 ∈ T (x) (OP)
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(see [8–10] and the references therein). We denote this problem by (OP) (Original
Problem) for easy reference. When T is the subdifferential mapping of some extended-
real-valued convex function f : X→R∞ :=R∪{+∞}, then (OP) becomes the Fermat
rule:

0 ∈ T (x) ⇐⇒ x minimizes f

which is one of the central facts in optimization theory.
In some situations, it can be convenient to consider an enlargement of T : a set-

valued mapping T ′ : X ⇒ X∗ such that T (x)⊂ T ′(x) and T ′(x) is convex for all x ∈ X ,
and being close to T in a sense which will be specified later, and study the auxiliary
problem

Find x ∈ dom T ′ such that 0 ∈ T ′(x).

Solutions of the latter problem can serve as approximate solutions of the original prob-
lem (OP).

The ε-subdifferential ∂ε f of a proper lower semicontinuous convex function f :
X → R∞ defined for all x ∈ dom f and ε ≥ 0 by

∂ε f (x) = {x∗ ∈ X∗ : f (y)− f (x)≥ 〈x∗,y− x〉− ε for all y ∈ X}

is an enlargement of the conventional Moreau–Rockafellar subdifferential. It plays a
key role in the theory of extremal problems and has been successfully used to construct
numerical methods for minimizing convex functions.

Following this idea, given a monotone operator A acting between X and X∗, and
ε ≥ 0, Revalski and Théra [23] defined an enlargement Aε : X → X∗ of A by

Aε x := {x∗ ∈ X∗ : 〈y− x,x∗− y∗〉 ≥ −ε for all (y,y∗) ∈ gphA},

where x ∈ X and ε ≥ 0. Aε has convex and weak∗-closed values for all ε ≥ 0 and

Ax⊂ Aε x for all ε ≥ 0 and x ∈ X .

When A = ∂ f , it holds ∂ε f (x)⊂ (∂ f )ε(x), and the inclusion can be strict, as the next
example by Martı́nez-Legaz and Théra [16] shows:

f (x) = x2, 0 /∈ ∂ 1
2

f (1) but 0 ∈ (∂ f )
1
2 (1).

Now consider the following problem:

Find an enlargement T ′ of T such that 0 ∈ T ′(x) for all x ∈ dom T ′. (EP)

For the sake of convenience, we denote this problem by (EP) (Enlargement Problem).
Suppose that T ′ is a solution of (EP). For ε ∈ [0,1], define Tε(x) := εT ′(x) +

(1− ε)T (x) for x ∈ dom T and Tε(x) := T ′(x) for x ∈ dom T ′ \ dom T . Obviously
T (x)⊂ Tε(x)⊂ T ′(x) and T1(x) = T ′(x) for all x ∈ X . Let A⊂ X be a given nonempty
subset of X with A∩dom T ′ 6= /0. Set

ε0 := inf{ε ∈ [0,1] : ∃x ∈ A such that 0 ∈ Tε(x)}.

Obviously 0 ≤ ε0 ≤ 1. Hence, there exist a sequence (xn) ∈ A and a decreasing se-
quence (εn) ∈ ]0,1] converging to ε0 such that 0 ∈ Tεn(xn). If A is compact and T ′

satisfies some continuity properties, then one can show that 0 ∈ Tε0(x̄) for some x̄ ∈ A.
Therefore, such a Tεn (and Tε0 ) allows us to define perturbations of the problem (OP).
If ε0 = 0 (and therefore Tε0 = T ), then we can formulate the following Auxiliary Prob-
lem:
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Find x ∈ A such that 0 ∈ Tεn(x), (AP1)

which may be more tractable and somewhat easier to handle. In this case, xn is a so-
lution of (AP1) and, under the compactness and continuity assumptions, the sequence
(xn) has a subsequence which converges to some solution x̄ ∈ A of (OP). If ε0 > 0,
then (OP) fails to have a solution in A. In this case, instead of A, we can consider an
increasing sequence of closed subsets An ⊂ X (A1 ⊂ A2 ⊂ ·· · ) with X = ∪∞

n=1An such
that A1∩dom T ′ 6= /0 (implying An∩dom T ′ 6= /0 for all n ∈ N).

Then εn := inf{ε ∈ [0,1] : ∃x ∈ An such that Tε(x)} is a decreasing sequence in
[0,1] (converging to zero), and we can formulate another Auxiliary Problem:

Find xn ∈ dom Tεn such that 0 ∈ Tεn(xn). (AP2)

Finding an appropriate enlargement T ′ (as a solution of (EP)) plays a key role in
this procedure. Notice that T ′ := X∗ is a solution of (EP) but it is not appropriate for
our purposes. Indeed, by letting T ′ := X∗, we have Tε(x) = X∗ for all 0 < ε ≤ 1 and
Tε(x) = T for ε = 0. Such an enlargement is useless.

The main scope of this paper is to find solutions (enlargements) of problem (EP),
close to T in a certain sense, when T is the subdifferential operator: T := ∂ f . In this
case, finding a close solution of problem (EP) means to find an enlargement T ′ of ∂ f
such that T ′ satisfies the fundamental properties of ∂ f such as convexity, weak∗-clo-
sedness, weak∗-compactness and certain calculus rules.

The enlargements ∂sup f and ∂sym f defined below and the corresponding to them
set-valued mapping Tε satisfy the mentioned fundamental properties. Moreover, the
subdifferential equations ∂sup f (x) = {0} and ∂sup(− f )(x) = {0} can be used for de-
tecting minima and maxima of an arbitrary function f ; cf. Corollary 3.1, and Exam-
ples 3.4 and 3.5.

2 Introduction

Let us start with recalling some basic concepts and terminology. Let f : X→R∞ be an
extended-real-valued function. The directional derivative of f at x̄∈ dom f := {x ∈ X :
f (x)<+∞} in direction d ∈ X , denoted by f ′(x̄;d), is defined by the following limit:

f ′(x̄;d) := lim
t→0+

f (x̄+ td)− f (x̄)
t

.

We say that f is directionally differentiable at x̄ if the above limit exists in R∪{±∞}
for all d ∈ X . In this case, the subdifferential of f at x̄ is the set (cf. [12, 14, 21])

∂ f (x̄) := {x∗ ∈ X∗ : 〈x∗,d〉 ≤ f ′(x̄;d) ∀d ∈ X}. (1)

If f is convex, then f is directionally differentiable at every x̄ ∈ dom f , and the set (1)
coincides with the Moreau–Rockafellar subdifferential of f at x̄:

∂ f (x̄) = {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ x)− f (x̄) ∀x ∈ X}.

Given a subset C ⊂ X , we define

∂C f (x̄) := {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ x)− f (x̄) ∀x ∈C}.

If C = /0, we set ∂C f (x̄) := X∗.
The Moreau–Rockafellar subdifferential has proven to be a powerful tool in con-

vex analysis and optimization theory (see [1–6, 11, 15, 17, 18, 25, 28, 30] and the ref-
erences therein). It is well known that, even if f is continuous at x̄, the subdifferential
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∂ f (x̄) can be empty. The next example is due to Rainwater [22]. (We refer the readers
to [6, Example 4.2.10] for another example of this kind.) Recall that `2(N) is the linear
space of all real sequences x := (xn) such that ‖x‖ := ∑

∞
n=1 |xn|2 < ∞.

Example 2.1 Define f : `2(N)→ R by

f (x) :=

{
−∑

∞
n=1(2

−n + xn)
1
2 if x ∈C,

+∞ otherwise,
(2)

where
C := {x ∈ `2(N) : |xn| ≤ 2−n, n = 1,2, · · ·}.

It is easy to check that f is convex, continuous on C, and ∂ f (x) = /0 for all x ∈N (C),
where

N (C) := {x ∈ `2(N) : |xn|< 2−n for infinitely many n}.

This paper proposes three enlargements of the subdifferential of a directionally
differentiable function: the sup?-subdifferential, sup-subdifferential (section 3) and
symmetric subdifferential (section 4). Each of these enlargements is nonempty for
the Rainwater function in Example 2.1 and satisfies the fundamental properties of the
Moreau–Rockafellar subdifferential: convexity, weak∗-closedness and weak∗-compact-
ness. The sup?-subdifferential coincides with the Moreau–Rockafellar subdifferential
at every point at which the minimum of the function is attained. The sup-subdifferential
contains the sup?-subdifferential and coincides with ∂ f at x if and only if x minimizes
f . For other points there are some connections with the conventional subdifferential
if the involved function is upper semi-continuous. The sup?- and sup-subdifferentials
also provide some optimality conditions for convex and nonconvex nonsmooth func-
tions (Proposition 3.2, Examples 3.4 and 3.5, and Corollaries 3.1 and 3.3). The sym-
metric subdifferential under a mild condition contains a nonzero element. More pre-
cisely, if there exists a direction d̄ such that the maximum of f ′(x̄; d̄) and f ′(x̄;−d̄)
is positive and finite, then the symmetric subdifferential of f at x̄ contains a nonzero
continuous linear functional. Note that the function (2) satisfies this condition. Thus,
the symmetric subdifferential of the function (2) contains a nonzero element at every
point at which the Moreau–Rockafellar subdifferential of this function is empty (Ex-
ample 4.1). The mentioned enlargements also possess some calculus rules, and there-
fore are close to the subdifferential operator ∂ f in the sense that they behave very
much like ∂ f . This is why we call each of these enlargements a “subdifferential”.

The paper is organized as follows. In section 3, we define the sup- and sup?-sub-
differentials and verify their properties. In section 4, we define the symmetric subd-
ifferential and state its fundamental properties. In section 5, we prove some calculus
rules for these subdifferentials.

In what follows, we consider a directionally differentiable function f : X → R∞

defined on a real topological vector space.

3 The Sup- and Sup?-Subdifferentials

In this section, X is assumed to be a normed vector space, and BX and BX∗ denote the
closed unit ball in X and X∗, respectively.

The subset E ⊂ BX∗ is said to be norm-generating, if for any x ∈ X there exists
e∗ ∈ E such that |〈e∗,x〉| = ‖x‖. The collection of all weak∗ closed norm-generating
subsets is denoted by F . By the Hahn–Banach theorem, BX∗ ∈F (see [24, 26]).

The following example demonstrates that the canonical basis of Rn is a closed
norm-generating subset.
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Example 3.1 Equip Rn with the max norm ‖x‖max := max{|xk| : 1≤ k ≤ n} for x =
(x1,x2, · · · ,xn) ∈Rn. Let {e1,e2, . . . ,en} be the canonical basis of Rn. For any x ∈ Rn,
we have ‖x‖max = |xk| for some 1 ≤ k ≤ n, and |〈ek,x〉| = |xk| = ‖x‖max. Hence,
{e1,e2, . . . ,en} is a closed norm-generating subset of Rn.

Moreover, any norm-generating subset E of Rn contains either ek or −ek for all
k = 1, . . . ,n. Indeed, by the definition of E , for any k = 1, . . . ,n, there exists some
u = (u1, . . . ,un) ∈ E such that |〈u,ek〉| = ‖ek‖max = 1. Hence, uk = ±1. On the other
hand, by the definition of the dual norm, ‖u‖(Rn)∗ = ∑

n
i=1 |ui| ≤ 1. Hence, ui = 0 for

all i 6= k, and therefore u equals either ek or −ek.

Using the same arguments, the above example can be easily extended to the case of
an `p(N) space (1≤ p≤+∞). Recall that `p(N) is the linear space of all real sequences
x := (xk) such that ‖x‖p := ∑

∞
k=1 |xk|p < ∞ if p < ∞, and ‖x‖∞ := maxk∈N |xk|< ∞.

Example 3.2 The canonical basis {e1,e2, . . . ,} (i.e., ek is a sequence whose only non-
zero entry is a “1” in the kth coordinate) is a norm-generating subset of `∞(N). Any
norm-generating subset of `p(N) (1 ≤ p ≤ +∞) contains either ek or −ek for all
k = 1,2, . . ..

3.1 Definitions and Fundamental Properties

Given x ∈ X and u∗ ∈ X∗, denote

τu∗(x) :=


∣∣∣∣〈u∗,

x
‖x‖

〉∣∣∣∣ if x 6= 0,

0 otherwise.

Observe that 0≤ τu∗(x)≤ ‖u∗‖.
Let x̄ ∈ dom f . The sets

∂
E
sup f (x̄) :=

{
x∗ ∈ X∗ : 〈x∗,x〉 ≤ sup

u∗∈E
f (x̄+ τu∗(x)x)− f (x̄) ∀x ∈ X

}
, (3)

∂sup f (x̄) :=
{

x∗ ∈ X∗ : 〈x∗,x〉 ≤ sup
0≤t≤1

f (x̄+ tx)− f (x̄) ∀x ∈ X
}
, (4)

∂
?
sup f (x̄) :=

⋂
E∈F

∂
E
sup f (x̄) (5)

are called, respectively, the supE -subdifferential, sup-subdifferential and sup?-sub-
differential of f at x̄. The first one determined by a given norm-generating set E ∈F .
Note that ∂sup f (x̄) is a particular case of ∂E

sup f (x̄) with E := BX∗ .

Proposition 3.1 ∂sup f (x̄) = ∂
BX∗
sup f (x̄).

Proof If u∗ ∈ BX∗ , then 0≤ τu∗(x)≤ 1. Hence, ∂
BX∗
sup f (x̄)⊂ ∂sup f (x̄). Let x ∈ X . Then

there exists u∗ ∈ BX∗ such that 〈u∗,x〉= ‖x‖. Hence, for any t ∈ [0,1], we have tu∗ ∈
BX∗ , 〈tu∗,x〉= t‖x‖ and τtu∗(x) = t, and consequently, ∂sup f (x̄)⊂ ∂

BX∗
sup f (x̄). ut

The next example is an extension of Example 2.1 to the case of an `p(N) space
(1≤ p < ∞).

Example 3.3 Define f : `p(N)→ R by

f (x) :=

{
−∑

∞
n=1(2

− 2n
p + xn)

1
2 if x ∈C,

+∞ otherwise,
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where
C := {x ∈ `p(N) : |xn| ≤ 2−

2n
p , n = 1,2, . . .}.

Let x̄ ∈C. We show that 0 ∈ ∂ ?
sup f (x̄). The set C is convex. Each summand in the first

part of the definition of f is continuous and convex, and its absolute value is bounded
from above by 2−

n
p+

1
2 . Hence, the series is uniformly convergent; this shows that f is

continuous on C and convex. Let (ek) denote the canonical basis of `p(N). Let E ∈F .
In view of Example 3.2, ek ∈ E , for all k ∈ N. Now let x = (xn) ∈C and x 6= 0. For all
k ∈ N, we have 〈

±ek,
x
‖x‖p

〉
=
±xk

‖x‖p
.

Hence,

f
(

x̄+
|xk|
‖x‖p

x
)
= f

(
x̄+
∣∣∣∣〈±ek,

x
‖x‖p

〉∣∣∣∣x)≤ sup
u∗∈E

f (x̄+ τu∗(x)x) .

Since f is continuous, by letting k→ ∞, we obtain

sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄)≥ 0.

This implies that 0 ∈ ∂E
sup f (x̄), and consequently, 0 ∈ ∂ ?

sup f (x̄). ut

Proposition 3.2 Let x̄ ∈ dom f . The following assertions hold true:

(i) ∂E
sup f (x̄) is convex and weak∗-closed for all E ∈F . As a consequence, ∂sup f (x̄)

and ∂ ?
sup f (x̄) are convex and weak∗-closed.

(ii) 0 ∈ ∂sup f (x̄). If x̄ maximizes f , then ∂sup f (x̄) = {0}.
(iii) If f is convex, then ∂ f (x̄)⊂ ∂E

sup f (x̄)⊂ ∂sup f (x̄) for all E ∈F . As a consequence,
∂ f (x̄)⊂ ∂ ?

sup f (x̄)⊂ ∂sup f (x̄).
(iv) If f is convex, then x̄ minimizes f if and only if ∂sup f (x̄) = ∂ f (x̄). As a conse-

quence, x̄ minimizes f if and only if ∂ f (x̄) = ∂ ?
sup f (x̄) = ∂sup f (x̄).

(v) If f is convex and ∂sup f (x̄) is a singleton, then either x̄ minimizes f or ∂ f (x̄) = /0.
(vi) Suppose that the function x 7→ f (x̄+x) is bounded on BX . Then ∂E

sup f (x̄) is weak∗-
compact for all E ∈ F . As a consequence, ∂sup f (x̄) and ∂ ?

sup f (x̄) are weak∗-
compact.

(vii) Suppose that X is finite dimensional and f is continuous. Then ∂E
sup f (x̄) is compact

for all E ∈F . As a consequence, ∂sup f (x̄) and ∂ ?
sup f (x̄) are compact.

Proof (i) Let E ∈ F . For any x∗1,x
∗
2 ∈ ∂E

sup f (x̄), α,β ∈ [0,1] with α + β = 1, and
x ∈ X , we have

〈x∗1,x〉 ≤ sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄),

〈x∗2,x〉 ≤ sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄),

and consequently,

〈αx∗1 +βx∗2,x〉 ≤ sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄).

Hence, ∂E
sup f (x̄) is convex. Let (x∗γ )γ∈Γ be a net in ∂E

sup f (x̄) converging to some x∗ ∈
X∗ in weak∗-topology of X∗. Let x ∈ X . For all γ ∈ Γ , we have

〈x∗γ ,x〉 ≤ sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄),

and consequently,
〈x∗,x〉 ≤ sup

u∗∈E
f (x̄+ τu∗(x)x)− f (x̄).
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Hence, ∂E
sup f (x̄) is weak∗-closed. In view of Proposition 3.1, and thanks to the fact

that the intersection of convex and weak∗-closed sets is convex and weak∗-closed, the
other two subdifferentials are convex and weak∗-closed too.

(ii). We have sup0≤t≤1 f (x̄ + tx) ≥ f (x̄) for all x ∈ X . It follows from defini-
tion (4) that 0 ∈ ∂sup f (x̄). If x̄ maximizes f , then f (x̄+ tx)− f (x̄) ≤ 0 for all x ∈ X
and all 0 ≤ t ≤ 1, and consequently, sup0≤t≤1 f (x̄+ tx) = f (x̄) for all x ∈ X . Hence,
∂sup f (x̄) = {0}.

(iii). Let f be convex, E ∈F , x∗ ∈ ∂ f (x̄) and x ∈ X . Then

〈x∗,x〉 ≤ f (x̄+ x)− f (x̄),

and there exists û∗ ∈ E such that |〈û∗,x〉|= ‖x‖, i.e. τû∗(x) = 1. Therefore

f (x̄+ x) = f (x̄+ τû∗(x)x)≤ sup
u∗∈E

f (x̄+ τu∗(x)x) ,

and consequently,

〈x∗,x〉 ≤ sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄).

It follows that x∗ ∈ ∂E
sup f (x̄), and consequently, ∂ f (x̄)⊂ ∂E

sup f (x̄). The opposite inclu-
sion ∂E

sup f (x̄) ⊂ ∂sup f (x̄) is straightforward from definitions (3) and (4). The second
claim is a consequence of the first one.

(iv). Let f be convex. If ∂ f (x̄) = ∂sup f (x̄), then by (ii), 0 ∈ ∂ f (x̄), and con-
sequently, x̄ minimizes f . Conversely, suppose that x̄ ∈ X is a minimizer of f . Let
x∗ ∈ ∂sup f (x̄) and x ∈ X . Then

〈x∗,x〉 ≤ sup
0≤t≤1

f (x̄+ tx)− f (x̄)

≤ sup
0≤t≤1

t( f (x̄+ x)− f (x̄)) = f (x̄+ x)− f (x̄),

It follows that x∗ ∈ ∂ (x̄), and consequently, ∂sup f (x̄)⊂ ∂ f (x̄). In view of (iii), we have
∂sup f (x̄) = ∂ f (x̄). The second claim is a consequence of the first one and (iii).

(v). Let f be convex and ∂sup f (x̄) be a singleton. By (ii), ∂sup f (x̄) = {0}. Hence
by (iii), either ∂ f (x̄) = /0 or ∂ f (x̄) = {0}. In the latter case, x̄ minimizes f .

(vi) Suppose that | f (x̄+x)| ≤M <+∞ for all x∈BX . Let E ∈F and x∗ ∈ ∂E
sup f (x̄).

Then

‖x∗‖= sup
x∈BX

〈x∗,x〉 ≤ sup
x∈BX ,u∗∈E

f (x̄+ τu∗x)− f (x̄)≤M− f (x̄).

Thus, ∂E
sup f (x̄) is bounded and therefore weak∗-compact by the Banach–Alaoglu–Bo-

urbaki theorem. The second assertion follows since the intersection of weak∗-compact
sets is weak∗-compact.

(vii). Recall that the closed unit ball in a finite dimensional space is compact, and
therefore the continuity of f implies that the function x 7→ f (x̄+x) is bounded on BX .
The assertion follows from (vi). ut

Proposition 3.2(ii) yields necessary conditions of optimality.

Corollary 3.1 Let x̄ ∈ dom f . If x̄ maximizes f , then ∂sup f (x̄) = {0}.
If x̄ minimizes f , then ∂sup(− f )(x̄) = {0}.
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Example 3.4 Define f : R→ R as

f (x) :=


x2−1 if |x| ≥ 1,
2−2x2 if 0≤ x < 1,
x+1 if −1 < x < 0.

By Proposition 3.2(ii), 0 ∈ ∂sup f (0). Moreover, for any x ∈ [−1,1], one has
sup0≤t≤1 f (tx) = f (0), and consequently, if a ∈ ∂sup f (0), then ax ≤ 0 for all
x ∈ [−1,1], which yields a = 0. Hence, ∂sup f (0) = {0}. One can also check that
∂sup(− f )(±1) = {0}, while at all other points the sup-subdifferential of both f and
− f is not equal to {0}. By Corollary 3.1, the points ±1 and 0 are the only candidates
for the function f to attain its local minima and maxima, respectively (Fig. 1 shows
that this is actually the case). Note that f is not convex and fails to be continuous at
zero (although it is upper semi-continuous at 0).

Fig. 1 The graph of f (Example 3.4)

Example 3.5 Define f : R→ R as

f (x) :=


x2−1 if |x| ≥ 1,
2x2−2 if 0 < x < 1,
−x−1 if −1 < x≤ 0.

By Proposition 3.2(ii), 0 ∈ ∂sup f (0). Moreover, for any x ∈ R, one has

sup
0≤t≤1

(− f )(tx) =− inf
0≤t≤1

f (tx) =

{
2 if x≥ 0,
1 if x < 0,

and consequently, if a∈ ∂sup(− f )(0), then ax≤ 1 for all x> 0 and ax≤ 0 for all x< 0,
which yields a = 0. Hence, ∂sup(− f )(0) = {0}. One can also check that at all other
points the sup-subdifferential of both f and − f is not equal to {0}. By Corollary 3.1,
the point 0 is the only candidate for the function f to attain its local minimum (see
Fig. 2 below). However, 0 fails to be a minimizer of f .

The next example shows that for a convex function of a single real variable the
sup?-subdifferential reduces to the conventional one.

Example 3.6 Let f : R→ R∞ be convex and x̄ ∈ dom f . Then ∂ ?
sup f (x̄) = ∂ f (x̄). In-

deed, ∂ f (x̄) ⊂ ∂ ?
sup f (x̄) by Proposition 3.2(iii). Note that the set E := {1} is norm-

generating in R, and τ1(x) = 1 if x 6= 0. Hence, f (x̄+τ1(x)x) = f (x̄+x) for all x ∈R,
and consequently, ∂ ?

sup f (x̄)⊂ ∂E
sup f (x̄)⊂ ∂ f (x̄).

As a byproduct of Example 3.6, we see that the sup?-subdifferential can be empty
at some points. Recall that, in view of Proposition 3.2(ii), the sup-subdifferential is
always nonempty.
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Fig. 2 The graph of f (Example 3.5)

3.2 Sup- and Sup?-Subdifferentials of Upper Semi-Continuous Functions

In this section, we derive relationships between the sup-subdifferential, sup?-subdiffe-
rential and ∂C subdifferential of an upper semi-continuous function. Recall that a func-
tion f : X → R∞ is upper semi-continuous at x̄ if

limsup
x→x̄

f (x)≤ f (x̄).

A function is said to be upper semi-continuous if it is upper semi-continuous at every
x ∈ X . We begin with the following result about upper semi-continuous functions.

Proposition 3.3 Let f be upper semi-continuous, x̄ ∈ dom f and E ∈ F . Then the
function τE : X → [0,1], defined for all x ∈ X by

τE (x) := min
{

τx∗(x) : f (x̄+ τx∗(x)x) = sup
u∗∈E

f (x̄+ τu∗(x)x) , x∗ ∈ E

}
, (6)

is well-defined. If, furthermore, f is convex, then

sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄)≤ τE (x)( f (x̄+ x)− f (x̄)) for all x ∈ X .

Proof Let x ∈ X . Define a function Qx : X∗→ R∞:

Qx(x∗) := f (x̄+ τx∗(x)x) , x∗ ∈ X∗.

We claim that Qx is weak∗-upper semi-continuous. Indeed, suppose that (x∗ν) is a net in
X∗ which converges to some x∗ in the weak∗-topology. It follows that τx∗ν (x)→ τx∗(x)
and, since f is upper semi-continuous, limsupx∗ν→x∗Qx(x∗ν)≤Qx(x∗), i.e. Qx is weak∗-
upper semi-continuous. By the Banach–Alaoglu theorem, E is weak∗-compact, and
therefore there exists x∗ ∈ E such that Qx(x∗) = supu∗∈E Qx(u∗), i.e.

f (x̄+ τx∗(x)x) = sup
u∗∈E

f (x̄+ τu∗(x)x) .

The point x∗ ∈ E defined above and the corresponding number τx∗(x) are in general
not unique. Nevertheless, one can easily check that the set of all such numbers is
compact in [0,1], and consequently, the function (6) is well-defined. Let f be convex.
Since τE (x) ∈ [0,1], we have

sup
u∗∈E

f (x̄+ τu∗(x)x)− f (x̄) = f (x̄+ τE (x)x)− f (x̄)

≤ τE (x)( f (x̄+ x)− f (x̄)).

This completes the proof. ut
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With E := BX∗ , Proposition 3.3 yields the following corollary.

Corollary 3.2 Let f be upper semi-continuous and x̄ ∈ dom f . Then the function τ :
X → [0,1]:

τ(x) := min
{

λ ∈ [0,1] : f (x̄+λx) = sup
0≤t≤1

f (x̄+ tx)
}
, x ∈ X (7)

is well-defined. If, furthermore, f is convex, then

sup
0≤t≤1

f (x̄+ tx)− f (x̄)≤ τ(x)( f (x̄+ x)− f (x̄)) for all x ∈ X .

Remark 3.1 Comparing (6) and (7), one can notice that, under the conditions of Propo-
sition 3.3, it holds 0≤ τ(x)≤ τE (x)≤ 1 for all E ∈F and x ∈ X .

Recall that, for a nonempty subset A ⊂ X , the negative polar cone to A is defined
as

A◦ := {x∗ ∈ X∗ : 〈x∗,x〉 ≤ 0 ∀x ∈ A}.

If A = /0, we set A◦ := X∗. The normal cone to a convex subset A ⊂ X at x̄ ∈ A is
defined as

NA(x̄) := {x∗ ∈ X∗ : 〈x∗,x− x̄)≤ 0 ∀x ∈ A}.

Thus, if A is convex and 0 ∈ A, then A◦ is just the normal cone to A at zero.

Theorem 3.1 Let f be upper semi-continuous and x̄ ∈ dom f . Then

∂
E
sup f (x̄) =

⋂
0<λ≤1

{
λ∂CE

λ

f (x̄)
}⋂(

τ
−1
E (0)

)◦
for all E ∈F , (8)

∂
?
sup f (x̄) =

⋂
E∈F , 0<λ≤1

{
λ∂CE

λ

f (x̄)
}⋂(

τ
−1
E (0)

)◦
,

∂sup f (x̄) =
⋂

0<λ≤1

{
λ∂Cλ

f (x̄)
}⋂(

τ
−1(0)

)◦
, (9)

where CE
λ

:= λ
(
τ
−1
E (λ )\ τ

−1
E (0)

)
, Cλ := λ

(
τ−1(λ )\ τ−1(0)

)
, and the functions τE

and τ are defined by (6) and (7), respectively.

Proof Let E ∈F . By definition (3) and Proposition 3.3, we have

∂
E
sup f (x̄) = {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ τE (x)x)− f (x̄) ∀x ∈ X}.

One can easily check that ∂E
sup f (x̄) = BE ∩

(
τ
−1
E (0)

)◦
, where

BE :=
{

x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ τE (x)x)− f (x̄) ∀x ∈ X \{τ−1
E (0)}

}
.

Next we check that

BE =
⋂

0<λ≤1

{
x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+λx)− f (x̄) ∀x ∈ τ

−1
E (λ )\ τ

−1
E (0)

}
=

⋂
0<λ≤1

{
λx∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ x)− f (x̄) ∀x ∈ λ

(
τ
−1
E (λ )\ τ

−1
E (0)

)}
=

⋂
0<λ≤1

{
λ∂CE

λ

f (x̄)
}
.

This proves (8). The other two representations are consequences of (8). ut
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3.3 Sup- and Sup?-Subdifferentials of Upper Semi-Continuous Convex Functions

Set

L>
f (x̄) := {x ∈ X : f (x̄+ x)> f (x̄)};

L<
f (x̄) := {x ∈ X : f (x̄+ x)< f (x̄)};

L=
f (x̄) := {x ∈ X : f (x̄+ x) = f (x̄)};

L≤f (x̄) := {x ∈ X : f (x̄+ x)≤ f (x̄)}.

The following proposition provides explicit representations of the functions τE and τ

defined by (6) and (7) for an upper semi-continuous convex function.

Proposition 3.4 Let f be convex upper semi-continuous, E ∈F and x̄∈ dom f . Then
τE (x) = τ(x) = 1 for all x ∈ L>

f (x̄), and τ(x) = 0 for all x ∈ L≤f (x̄).
If 0 ∈ E , then τE (x) = 0 for all x ∈ L≤f (x̄).

Proof By Proposition 3.3, we have

f (x̄+ tx)− f (x̄) ≤ τE (x)( f (x̄+ x)− f (x̄)) (10)

for all t ∈ TE := {τu∗(x) : u∗ ∈ E } and all x ∈ X . By the definition of F , we always
have 1 ∈ TE , and 0 ∈ TE if 0 ∈ E , particularly if E = BX∗ .

If x ∈ L>
f (x̄), then, by letting t = 1 in (10), we obtain τE (x) ≥ 1, and therefore,

τE (x) = 1; in particular, τ(x) = 1. Let 0 ∈ E . If x ∈ L<
f (x̄), then, by letting t = 0 in

(10), we get τE (x)≤ 0, and therefore, τE (x) = 0; in particular, τ(x) = 0. If x ∈ L=
f (x̄),

then, for all t ∈ [0,1], we have

f (x̄+ tx) = f ((1− t)x̄+ t(x̄+ x))

≤ (1− t) f (x̄)+ t f (x̄+ x) = f (x̄),

and consequently, maxt∈TE
f (x̄+ tx) is attained at t = 0. It follows from definition (6)

that τE (x) = 0; in particular, τ(x) = 0. ut

Using Proposition 3.4, we can simplify the conclusions of Theorem 3.1 for upper
semi-continuous convex functions.

Corollary 3.3 Let f be convex upper semi-continuous, 0 ∈ E ∈ F and x̄ ∈ dom f .
Then

∂
E
sup f (x̄) = ∂sup f (x̄) = ∂L>f (x̄)

f (x̄)∩NL≤f (x̄)
(0). (11)

As a consequence, ∂ f (x̄) = ∂L>f (x̄)
f (x̄)∩NL≤f (x̄)

(0) if and only if x̄ minimizes f .

Proof By Proposition 3.4, for all 0 < λ < 1, we have τ
−1
E (λ ) = τ−1(λ ) = /0, and

consequently, using the notations in Theorem 3.1, ∂CE
λ

f (x̄) = ∂Cλ
f (x̄) = X∗. We also

have CE
1 =C1 = L>

f (x̄) and τ
−1
E (0) = τ−1(0) = L≤f (x̄). Hence, representations (8) and

(9) reduce to (11). The last assertion follows thanks to Proposition 3.2(iv). ut

Corollary 3.4 Let X := `p(N) with p ≥ 1, f be convex upper semi-continuous, and
x̄∈ dom f . Then ∂ ?

sup f (x̄) = ∂sup f (x̄). As a consequence, ∂ ?
sup f (x̄) = ∂ f (x̄) if and only

if x̄ minimizes f .

Proof Let (ek) denote the canonical basis of `p(N) and E ∈ F . In view of Exam-
ple 3.2, ek ∈ E , for all k ∈N. The sequence (ek) converges to 0 in the weak∗ topology
of `q(N) where q and p are convex conjugates. Since E is weak∗-closed, 0 ∈ E . The
assertion follows from definition (5) and Corollary 3.3. ut
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Remark 3.2 In general real topological vector spaces, the equality ∂ ?
sup f (x̄) = ∂ f (x̄)

can hold even if x̄ does not minimize f ; cf. Example 3.6.

The sup-subdifferential can be connected with certain directional derivatives. In-
deed, if f is convex, then for all x ∈ X , the function

h 7→
sup0≤t≤h f (x̄+ tx)− f (x̄)

h

is nondecreasing, and the function

x 7→ f ′sup(x̄;x) := lim
h↓0

sup0≤t≤h f (x̄+ tx)− f (x̄)
h

is positively homogeneous (note that the limit exists in R∪{±∞}). It follows that

∂sup f (x̄) = {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f ′sup(x̄;x) ∀x ∈ X}.

4 The Symmetric Subdifferential

Let X be a linear topological space and x̄ ∈ dom f . The symmetric subdifferential of
f at x̄ is defined as

∂sym f (x̄) :=
{

x∗ ∈ X∗ : 〈x∗,d〉 ≤ f ′sym(x̄;d) ∀d ∈ X
}
,

where

f ′sym(x̄;d) := lim
t↓0

max{ f (x̄+ td), f (x̄− td)}− f (x̄)
t

is the symmetric directional derivative of f at x̄ in direction d (if the limit exists in
R∪{±∞}). If f is convex, then f ′sym(x̄;d) exists, and is finite if x̄ ∈ int dom f . Indeed,

f ′sym(x̄;d) = max
{

f ′(x̄;d), f ′(x̄;−d)
}
, (12)

where f ′(x̄;d) denotes the conventional directional derivative of f at x̄ in direction
d ∈ X . Note that, if the limit

lim
t→0

f (x̄+ td)− f (x̄)
t

exists, then
f ′sym(x̄;d) = | f ′(x̄;d)|. (13)

When f is convex and continuous at x̄, then

f ′(x̄;d) = max{〈x∗,d〉 : x∗ ∈ ∂ f (x̄)}. (14)

The following proposition, which is a direct consequence of (12) and (14), states a
similar property for the symmetric directional derivative (see [13, formula (4)]).

Proposition 4.1 Suppose that f is convex and continuous at x̄. Then

f ′sym(x̄;d) = max{〈x∗,d〉 : x∗ ∈ ∂ f (x̄)∪{−∂ f (x̄)}} .

The set ∂sym f (x̄) is convex, weak∗-closed and symmetric. If the function
d 7→ f (x̄+d) is bounded on a neighborhood of the origin, then ∂sym f (x̄) is also weak∗-
compact. ∂sym f (x̄) contains ∂ f (x̄), since f ′(x̄;d)≤ f ′sym(x̄;d) for all d ∈ X . Hence, we
have the following sufficient condition of minimality.

Proposition 4.2 Suppose that f is convex and x̄ ∈ dom f . If ∂sym f (x̄) = ∂ f (x̄) 6= /0,
then x̄ minimizes f .
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Proof Under the assumptions, ∂ f (x̄) is symmetric, and therefore 0 ∈ ∂ f (x̄). ut

The following theorem provides a sufficient condition under which the symmetric
subdifferential is nonempty.

Theorem 4.1 Let f be convex and x̄ ∈ dom f . If there exists d̄ ∈ X such that

0 < max
{

f ′(x̄; d̄), f ′(x̄;−d̄)
}
<+∞,

then ∂sym f (x̄) contains a nonzero element.

Proof One can easily check that

f ′sym(x̄;αd) = |α| f ′sym(x̄;d)

for all α ∈ R and d ∈ X . The function d 7→ f ′sym(x̄;d) is sub-additive. Indeed,

f ′sym(x̄;d1 +d2) = max
{

f ′(x̄;d1 +d2), f ′(x̄;−d1−d2)
}

≤ max
{

f ′(x̄;d1)+ f ′(x̄;d2), f ′(x̄;−d1)+ f ′(x̄;−d2)
}

≤ max
{

f ′(x̄;d1), f ′(x̄;−d1)
}
+max

{
f ′(x̄;d2), f ′(x̄;−d2)

}
= f ′sym(x̄;d1)+ f ′sym(x̄;d2) for all d1,d2 ∈ X .

Thus, the function d 7→ f ′sym(x̄;d) is sublinear on X . Now let H := R{d̄} be the sub-
space generated by the nontrivial singleton {d̄}. Define the functional l∗ ∈ H∗ as
〈l∗,h〉 := α f ′sym(x̄; d̄), where h = α d̄. Note that l∗ is well-defined since d̄ 6= 0 and
f ′sym(x̄; d̄) is finite. It follows that, for all h ∈ H,

〈l∗,h〉 ≤ |α| f ′sym(x̄; d̄) = f ′sym(x̄;α d̄) = f ′sym(x̄;h).

By the Hahn–Banach theorem, l∗ can be extended to a functional x∗ ∈ X∗ satisfying
〈x∗,d〉 ≤ f ′sym(x̄;d) for all d ∈ X . Thus, 0 6= x∗ ∈ ∂sym f (x̄). ut

Example 4.1 We consider the function f : `2(N) → R in Example 2.1. Let x̄ =
(x̄1, x̄2, . . .) ∈ C and d̄ = ek, the kth basis vector in `2(N) for some k ∈ N. One can
easily check that

f ′(x̄; d̄) =−1
2
(x̄k +2−k)−

1
2 , f ′(x̄;−d̄) =

1
2
(x̄k +2−k)−

1
2 .

Hence, ∂sym f (x̄) contains a nonzero element.

Example 4.2 Define f : R→ R as

f (x) :=

{
x if x > 0,
1− x if x≤ 0.

It is discontinuous (though upper semi-continuous) at 0 and fails to be convex. One
can easily check that ∂sym f (0) = [−1,1]. Indeed,

max
{

f ′(0;d), f ′(0;−d)
}
= |d| for all d ∈ X .

5 Calculus Rules in Banach Spaces

In this section, we establish certain calculus rules for ∂sup, ∂ ?
sup and ∂sym for proper

continuous convex functions on Banach spaces.
The next three rules are immediate from the definitions (as long as x̄ ∈ dom f ):

∂sup(λ f )(x̄) = λ∂sup f (x̄), ∂
?
sup(λ f )(x̄) = λ∂

?
sup f (x̄), ∂sym(λ f )(x̄) = λ∂sym f (x̄)

for all λ > 0. If ∂sym f (x̄) 6= /0 and ∂ ?
sup f (x̄) 6= /0, then these equalities also hold for

λ = 0. We now proceed to sum rules.
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5.1 Sum Rules

We start with an auxiliary lemma for the symmetric subdifferential. Recall that a Ba-
nach space is Asplund if every continuous convex function on an open convex set is
Fréchet differentiable on some its dense Gδ subset, or equivalently, if the dual of each
its separable subspace is separable [20, 29].

Lemma 5.1 Let f : X→R∞ be a convex function on a Banach space, continuous at x̄.
Assume that the function x 7→ f (x̄+ x) is bounded on BX . Then

∂sym f (x̄) = clw∗ co (∂ f (x̄)∪ (−∂ f (x̄))) , (15)

where clw∗ represents the closure with respect to the weak∗ topology.
If X is Asplund, then clw∗ in (15) can be replaced by the closure with respect to the

norm topology.

Proof By assumptions, ∂sym f (x̄) is nonempty and weak∗-compact. Hence, by the
Krein–Milman theorem [7], ∂sym f (x̄) contains extreme points. Moreover,

∂sym f (x̄) = clw∗ co ext(∂sym f (x̄)),

where ext ∂sym f (x̄) denotes the set of all extreme points of ∂sym f (x̄). By Proposi-
tion 4.1,

ext ∂sym f (x̄)⊂ ∂ f (x̄)∪ (−∂ f (x̄)).

Hence,

∂sym f (x̄)⊂ clw∗ co (∂ f (x̄)∪ (−∂ f (x̄))) .

On the other hand, ∂ f (x̄) ⊂ ∂sym f (x̄) and, since ∂sym f (x̄) is symmetric, convex and
weak∗-closed,

clw∗ co (∂ f (x̄)∪ (−∂ f (x̄)))⊂ ∂sym f (x̄).

This proves (15).
If X is Asplund, its dual X? has the Radon–Nikodým property [20], and it follows

from the Edgar–Lindenstrauss theorem [19,27] that the weak∗-closure can be replaced
by the norm closure. ut

Remark 5.1 The above proof uses the fact that the dual of an Asplund space has the
Radon Nikodým property. In fact, a Banach space is Asplund if and only if its dual
has the Radon–Nikodým property [20, Theorem 5.7], [29, Theorem 6].

Theorem 5.1 Let A : X → Y be a bounded linear map between Banach spaces,
f : X → R∞ and g : Y → R∞ be proper convex functions such that f and g ◦A are
finite and continuous at x̄. Suppose that 0 ∈ core(dom g−Adom f ), and the functions
x 7→ f (x̄+ x) and y 7→ g(Ax̄+ y) are bounded on BX and BY , respectively. Then the
following assertions hold true.

(i) ∂sym( f +g◦A)(x̄)⊂ ∂sym f (x̄)+A∗∂symg(Ax̄).
Furthermore, if for any d ∈ X, f ′(x̄;d) ≥ f ′(x̄;−d) implies g′(Ax̄;Ad) ≥
g′(Ax̄;−Ad), then ∂sym( f +g◦A)(x̄) = ∂sym f (x̄)+A∗∂symg(Ax̄).

(ii) ∂sup( f +g◦A)(x̄)⊂ ∂sup f (x̄)+A∗∂supg(Ax̄).
Furthermore, if for any d ∈ X we have f ′(x̄;d) ≥ 0 ⇐⇒ g′(Ax̄;Ad) ≥ 0, then
∂sup( f +g◦A)(x̄) = ∂sup f (x̄)+A∗∂supg(Ax̄).
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Proof (i). The function x 7→ ( f +g◦A)(x̄+x) is bounded on BX , and therefore satisfies
the conditions of Lemma 5.1. The adjoint operator A∗ : Y ∗→ X∗ is weak∗-continuous,
and therefore maps a weak∗-compact set in Y ∗ to a weak∗-compact set in X∗. From
these observations, the convex subdifferential sum and chain rules [6], and Lemma 5.1,
we have

∂sym( f +g◦A)(x̄)

= clw∗ co (∂ ( f +g◦A)(x̄)∪ (−∂ ( f +g◦A)(x̄)))

= clw∗ co ((∂ f (x̄)+A∗∂g(Ax̄))∪ (−∂ f (x̄)−A∗∂g(Ax̄)))

⊂ clw∗ co ((∂ f (x̄)∪ (−∂ f (x̄)))+(A∗∂g(Ax̄)∪ (−A∗∂g(Ax̄))))

⊂ clw∗
(

clw∗ co (∂ f (x̄)∪ (−∂ f (x̄)))+ clw∗A∗ co (∂g(Ax̄)∪ (−∂g(Ax̄)))
)

⊂ clw∗
(

clw∗ co (∂ f (x̄)∪ (−∂ f (x̄)))+A∗clw∗ co (∂g(Ax̄)∪ (−∂g(Ax̄)))
)

= clw∗ (∂sym f (x̄)+A∗∂symg(Ax̄)) = ∂sym f (x̄)+A∗∂symg(Ax̄),

since the sum of two weak∗-compact sets is weak∗-closed.
Now suppose that x∗ ∈ ∂sym f (x̄), y∗ ∈ ∂symg(Ax̄) and u∗ = A∗y∗. Let d ∈ X . By the

assumptions, we have

〈x∗+u∗,d〉= 〈x∗,d〉+ 〈y∗,Ad〉
≤max{ f ′(x̄;d), f ′(x̄;−d)}+max{g′(Ax̄;Ad),g′(Ax̄;−Ad)}
= max{ f ′(x̄;d)+g′(Ax̄;Ad), f ′(x̄;−d)+g′(Ax̄;−Ad)}
= max{( f +g◦A)′(x̄;d),( f +g◦A)′(x̄;−d)}.

It follows that x∗+u∗ ∈ ∂sym( f +g◦A)(x̄), and therefore

∂sym f (x̄)+A∗∂symg(Ax̄)⊂ ∂sym( f +g◦A)(x̄).

(ii) The proof goes along the same lines as that of (i). We therefore give only a sketch
of it. Since f is continuous, f ′sup(x̄; ·) = max{ f ′(x̄; ·),0} (τ(x) equals either 1 or 0 for
all x ∈ X), and therefore

∂sup f (x̄) =
{

x∗ ∈ X∗ : 〈x∗,x〉 ≤max
{

f ′(x̄;d),0
}
∀x ∈ X

}
.

One can easily check that

f ′sup(x̄;d) = max{〈x∗,d〉 : x∗ ∈ ∂ f (x̄)∪{0}} .

By the Krein–Milman theorem, ∂sup f (x̄) = clw∗ co(∂ f (x̄)∪{0}). ut

5.2 Sup?-Subdifferential Sum Rule in `p(N)

The next statement is a straightforward consequence of Theorem 5.1 and Corol-
lary 3.4.

Theorem 5.2 Let p ≥ 1 and f ,g : `p(N)→ R∞ be proper convex functions, continu-
ous at x̄ ∈ dom f ∩dom g. Suppose that 0 ∈ core(dom f −dom g), and the functions
x 7→ f (x̄+ x) and x 7→ g(x̄+ x) are bounded on BX . Then

∂
?
sup( f +g)(x̄)⊂ ∂

?
sup f (x̄)+∂

?
supg(x̄).

If for any d ∈ X we have f ′(x̄;d)≥ 0⇐⇒ g′(x̄;d)≥ 0, then

∂
?
sup( f +g)(x̄) = ∂

?
sup f (x̄)+∂

?
supg(x̄).
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