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Abstract 

Diabetic retinopathy (DR) is the most common eye complication of diabetes and one 

of the leading causes of blindness and vision impairment. Automated and accurate DR 

grading is of great significance for the timely and effective treatment of fundus diseases. 

Current clinical methods remain subject to potential time-consumption and high-risk. In 

this paper, a hierarchically Coarse-to-fine network (CF-DRNet) is proposed as an 

automatic clinical tool to classify five stages of DR severity grades using convolutional 

neural networks (CNNs). The CF-DRNet conforms to the hierarchical characteristic of DR 

grading and effectively improves the classification performance of five-class DR grading, 

which consists of the following: (1) The Coarse Network performs two-class classification 

including No DR and DR, where the attention gate module highlights the salient lesion 

features and suppresses irrelevant background information. (2) The Fine Network is 

proposed to classify four stages of DR severity grades of the grade DR from the Coarse 

Network including mild, moderate, severe non-proliferative DR (NPDR) and proliferative 

DR (PDR). Experimental results show that proposed CF-DRNet outperforms some state-

of-art methods in the publicly available IDRiD and Kaggle fundus image datasets. These 

results indicate our method enables an efficient and reliable DR grading diagnosis in clinic. 
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1. INTRODUCTION 

Diabetic retinopathy (DR), a complication of diabetes, is one of the main causes of 

blindness in humans [1]. Individual with diabetes is more likely to develop into DR disease 

[2-3]. In recent years, clinical studies have indicated that the accurate classification for DR 

grading is important because it reveals DR severity levels to improve the selection of the 

appropriate therapeutic options (photocoagulation [4], vitrectomy [5], and injecting 

medicine into the eyes [6]) [7]. 

DR grading can be classified through the numbers, sizes, and types of lesions on the 

surface of the retinas from fundus images [8]. According to the clinical International 

Clinical Diabetic Retinopathy Disease Severity Scale [9], five stages of DR severity grades 

can be specified including no diabetic retinopathy (No DR), mild non-proliferative DR 

(NPDR), moderate NPDR, severe NPDR, and PDR. The samples of fundus images with 

increasing DR severity grades are shown in Fig. 1. In the subclinical phase, patients do not 

have apparent retinopathy [10]. In the clinic phase, the earliest DR stage is mild NPDR 

characterized by microaneurysms (MAs) that occurs due to leakage from tiny blood vessels 

of the retina. Then the DR severity grade is further evolved into moderate NPDR, where 

MAs begin to increase and additional lesions (hemorrhages (HMs), exudates (EXs)) appear. 

When developing to severe NPDR, amounts of MAs, HMs, and EXs diffuse on the surface 

of retina. From NPDR to PDR, an obvious signal is the growth of new blood vessels, which 

can cause a severe visual loss for patients [11]. These physiological changes in retinopathy 

leading to visual differences in fundus images can effectively divide five stages of DR 

severity grades [12]. 

 



Fig. 1. The representative samples of diabetic retinopathy (DR) with increasing severity grades. Grade 

No DR represents no apparent DR lesions in (a). The DR lesions begin to expand and evolve from grade 

mild DR (b) to PDR (e) in the fundus images. 

The current methods for DR grading have achieved significantly improved 

performance [2], [13]. However, accurate classification for DR grading remains challenges 

because: 1) the insufficiency of training samples limits the classification performance of 

automatic DR grading [14]. It is difficult to achieve excellent performance on the DR 

grading task compared with the classification tasks which have millions of data such as the 

ImageNet Challenge [15]; 2) the classification performance of DR grading suffers from 

inter-class similarities and intra-class variations [16]. The classification for DR grading is 

complicated because there are significant visual differences in sizes of lesions among the 

fundus images of the same class and visual similarities in shapes and colors between the 

fundus images of two different classes [17]. 

1.1. Related Works 

Accurate and automatic classification for DR grading aims to achieve automated DR 

severity grades for improving the diagnosis efficiency and precision [18]. Traditional 

approaches for DR grading need to design manual features and classify the DR grades 

using common classifier or their variants such as support vector machines (SVMs), random 

forest (RF). Acharya et al. [19] employed a higher-order spectra method to extract the 

features from fund images of 300 subjects and used the SVMs for five-class classification 

of DR grading. Adarsh et al. [20] recognized the retinal blood vessels and pathologies 

(exudates and MAs) from fundus images as DR features and classified the DR severity 

grades by the SVMs. De la et al. [13] employed the local binary patterns (LBP) to extract 

local features and trained the random forest classifier for DR detection, which achieves the 

excellent performance using 71 fundus images. All of these show great potential with the 

development of methods for DR grading, however, they excessively depend on prior 

knowledge. 

Recently, Convolutional Neural Networks (CNNs) have been proved effective 

methods for many medical imaging tasks, including feature recognition [21], image 

analysis [22], and lesion detection [23]. Chandrakumar T et al. [24] using CNN models 

deployed with dropout layer techniques obtained the excellent performance for classifying 

five stages of DR grades. Pratt et al. [2] proposed a CNN model with data augmentation 

and achieved a sensitivity of 95% and an accuracy of 75% on the publicly available Kaggle 

dataset. Zhou et al. [25] designed the Multi-Cell architecture to gradually increase the depth 

of CNNs and the resolution of input images, which effectively reduces computation 

complexity and relieves the influence of gradient vanishing problem. 

The above studies have made significant contributions for DR grading. In this paper, 

the CF-DRNet is proposed to further improve the classification performance as to the five 

stages of DR severity grades. According to the hierarchical attributes of DR grading, a 

coarse-to-fine network is designed to hierarchically classify five stages of DR severity 

grades and reduce the influence of data imbalance problem. Moreover, rich physiological 

structures (blood vessels, macula lutea, and optic papillae) can be observed in fundus 



images, which are redundant and seriously influence the DR grading classification. To 

suppress the interference of this irrelevant information, the Coarse Network with attention 

gate module is designed and this can effectively highlights the lesion areas and extracts 

discriminative lesion features for DR grading. 

1.2. Contributions 

In this paper, a hierarchically Coarse-to-fine DR network (CF-DRNet) based on 

CNNs is proposed to automatically classify five stages of DR severity grades from fundus 

images with two complementary sub-networks including the Coarse Network and the 

Fine Network. The pre-trained Coarse Network with attention modules performs the two-

class classification including grade No DR and DR to highlight the discriminative lesion 

regions and efficiently exploit localized lesion information in fundus images. The grade 

DR can be further divided into four stages of severity grades including mild NPDR, 

moderate NPDR, severe NPDR, and PDR. These four-class classification is performed by 

the pre-trained Fine network. The main contributions can be generalized as follows: 

1. For the first time, we propose a CF-DRNet to automatically and hierarchically classify 

five-stage DR grades. It enables a reliable and effective DR grading on the fundus 

images. It can help to develop accurate and automatic DR diagnosis and evaluation 

schemes for clinical physicians. 

2. The Coarse Network and the Fine Network are designed using the pertained CNNs for 

two-class and four-class classification respectively. These two classification tasks 

hierarchically perform the five-stage DR grading, which effectively alleviates data 

imbalance problem and improves the five-stage DR classification performance. 

3. Self-gated soft-attention mechanism modules are introduced in the pre-trained Coarse 

Network for two-class classification (No DR, DR) to effectively highlight the lesion 

features and suppress irrelevant information, which efficiently improves the two-class 

classification performance. 

Experiment results show that, for five-fold cross-validation, proposed CF-DRNet for 

DR grading achieves classification with accuracy of 56.19%, sensitivity of 64.21%, and 

specificity of 87.39% in IDRiD database and accuracy of 83.10%, sensitivity of 53.99%, 

and specificity of 91.22% in Kaggle database. For the IDRiD database, the same training 

set and testing set are employed in the Grading Challenge of ISBI-2018 and the proposed 

CF-DRNet obtains the performance with the accuracy of 60.20%, which can achieve the 

second place [39]. These demonstrate that the CF-DRNet has the potential to become 

highly competitive method for five-stage DR grading. 

The remainder of this paper is organized as follows: In Section 2, proposed framework 

for DR grading is discussed. The implementation details are reported in Section 3. In 

Section 4, the evaluation of proposed CF-DRNet is given to validate the performance. 

Finally, we draw conclusions about proposed CF-DRNet and discuss related future work 

in Section 5. 

II. Methods 



The proposed framework includes the following interdependent parts: (1) The 

Preprocessing module performs the operations of normalization, image enhancement, and 

data augmentation for fundus images. (2) The CF-DRNet module is utilized for DR 

classification, which consists of two sub-networks including Coarse Network and Fine 

Network. The pre-trained Coarse Network with attention modules performs the two-class 

classification. The pre-trained Fine Network with larger-size images is designed for these 

four stages of DR severity grades. (3) The Aggregation module performs label fusion from 

the Coarse Network and the Fine Network for final five-class DR grading classification. 

The main workflow of proposed CF-DRNet is depicted in Fig. 2. 

 
Fig. 2. The CF-DRNet performs automatic five stages of DR grading, which has three interdependent 

parts: Preprocessing module, CF-DRNet module, and Aggregation module. The CF-DRNet module 

includes the Coarse Network and the Fine Network. Coarse Network performs the two-class 

classification to judge whether there is a DR disease or not. The Fine Network performs four-class 

classification to classify four stages of DR severity grades (mild NPDR, moderate NPDR, severe NPDR, 

and PDR). Final outputted five-class classification results will be obtained via label fusion operation. 

2.1. Preprocessing Module 

The preprocessing module follows three steps including image enhancement, image 

normalization, and data augmentation. The image enhancement performs the noise 



reduction from varying illumination. The normalization is utilized to reduce computation 

complexity. Data augmentation is employed to tackle the overfitting problem. 

2.1.1.  Image enhancement 

To remove the irrelevant information from varying illumination, a contrast-enhanced 

image ( )I x,y;σ  is obtained as follows [26]: 

.................................. ( ) ( ) ( ) ( )I x,y;σ =αI x,y +βG x,y;ε *I x,y +γ , (1) 

where   represents the convolution operator and G(x, y;ε)  is a Gaussian filter. α  is 

employed to adjust to local average color from one fundus image, β  is utilized to highlight 

pixel values of lesion areas, γ  is the pixel bias, and ε  is the scale of the Gaussian filter. 

The values of the parameters are chosen as: α 4 , β 4  , ε 512 / 20  and γ 128  

according to [27]. The representative original image and the enhanced fundus image can 

be seen in Fig. 3. 

 

Fig. 3. Comparison between the Original image (a) and the image after enhancement (b). The red arrows 

indicate the underlying lesions can be singularized after preprocessing. 

2.1.2. Image normalization 

To lower computational complexity, the fundus images are normalized into 256×256 

pixels for the Coarse Network and 512×512 pixels for the Fine Network via bilinear 

interpolation [28], respectively. 

As to the fundus images with three channels, each pixel value of each channels is 

normalized into the range of (0, 1). The normalization formula is defined by Eqs (2): 

............................................. 
x-MinValue

y=
MaxValue-MinValue

 (2) 

where x  is the input pixel value of one fundus image, MinValue  is the minimum pixel 

value of this fundus image, MaxValue  is the maximal pixel value of this fundus image, y 

is the pixel value output after normalization. 

2.1.3. Data Augmentation 

Data augmentation is applied upon training datasets to tackle the over-fitting and data 

imbalance problems in the case of limited training dataset [29]. In our experiment, the 

transformations including translation, stretching, rotation and flipping are employed to the 



labelled dataset. A summary of the transformations with the parameters is given in TABLE 

1. 

TABLE 1 
Data Augmentation Parameters 

Transformation Type Description 

Rotation Randomly rotate an angle of 0 360-  

Flipping 0 (without flipping) or 1(with flipping) 

Rescaling Randomly with scale factor between 1/1.6 and 1.6 

Translation Randomly with shift between −10 and 10 pixels 

2.2. CF-DRNet Module 

CF-DRNet consists of two sub-networks including the Coarse Network and the Fine 

Network. The Coarse Network performs two-class classification to determine the presence 

of DR lesions. The Fine Network performs four-class classification including mild NPDR, 

moderate NPDR, severe NPDR, and PDR. 

2.2.1.  Coarse Network 

The overall dataset can be divided into two classes including grade No DR and grade 

DR. The Coarse Network performs this two-class classification to determine the presence 

of DR lesions. 

The Coarse Network is designed based on the ResNet-18 proposed by kaiming He 

et.al [30], which contains four convolution layers, five pooling layers, four residual block, 

and two attention gate modules. The ResNet network can well tackle the degradation 

problems via shortcut connection, and Fig. 4 depicts the structure of the Residual block 

[31,32]. For clarity, ( )LH x denotes the transformation function of the 
thL  building block, 

and x  is the input of the 
thL  building block. The desired output for the Residual block is 

set as ( )LF x . The residual block explicitly forces the output to fit the residual mapping, 

i.e., the stacked nonlinear layers are used to learn the following transformation: 

 ( ) ( )L LF x =H x -x . (3) 

Therefore, the transformation for the 
thL  building block is: 

 ( ) ( )L LH x =F x +x . (4) 

The residual block consists of convolution layers with the kernel size of 1 1  and 3 3 . 

The convolution layers with the kernel size of 1 1  are used to reduce channel numbers 

into n ( n<m ) and the convolution layers with the kernel size of 3 3  are employed for 

extracting spatial features and returning to the input channel number m . Limited to the 

small size of training data, all the residual blocks pre-trained on the ImageNet dataset [15] 

are fine-tuned for two-class classification. 



 

Fig. 4. A building block of residual network. 

The pooling layer is used for down-sampling to reduce computation complexity [33]. 

From the detail design of the Coarse Network in TABLE 2, we can see that the data size is 

down-sampled from 256 256  pixels to 4×4 pixels throughout the pooling layers. 

The attention gate module proposed by Oktay O et al. [34] is applied in the Coarse 

Network. The ResNet with the attention gate module can learn to enhance the lesion 

features and suppress irrelevant information for fundus images. The activation maps 

 1 1 1 1l C H W

iA = a R    of a chosen layer  1 1l 1, ,L  extract the local features, where 
1C , 

1H , 
1W  are the numbers of channel, height, width, and 

ia is the pixel-wise feature vectors 

of the feature map 1lA  . The global feature maps  2 2 2 2l C H W

iB = b R     of a chosen layer 

 2 2l 1, ,L related to the lesion region of interests are extracted, where 
2C ,

2H , 
2W  and 

ib  are the numbers of channel, height, width and the pixel-wise feature vectors of feature 

maps 2lB . The attention gate combines the global features 1lA  and the local features 2lB  

via the pixel-wise additive operation to compute the compatibility score 

  1 1
n

1 H Wl

i i=1
T= t R  

 . The l

it  can be obtained by Eqs (5): 

........................................ 
1 2

( )

( )

l

i 1 2

l l

1 a b 1 2

t =μσ e +b

  =μσ W A +W B +b +b
, (5) 

where 
1σ  is the Rectified Linear Unit (ReLU) nonlinear activation function [35] can be 

described as follows: 

.................................................... ( ) ( )1σ x =max 0,e , (6) 

where e represents the input of the ReLU nonlinear activation function. int 1 11 C H W
μ

  
 ,

int 1 1 1C C H W

aW
  

 , and 2 2 2Cint C H W

bW
  

  are learnable weight parameters to match the 

dimension of between 1lA and 2lB , 
1b  and 

2b  are the learnable bias parameters. 

Two attention gate modules are employed in the Coarse Network. The outputs of the 

attention gate modules are fused with its input via product fusion operation and the fusion 

results serve as the input of the next layer. For clarity, one product fusion function 

( )a by=f x ,x , two feature maps 
ax and 

bx , and a fusion feature map y are defined, where 

a H W Dx R  ∈  , 
b H W Dx R  ∈ , H W Dy R  ∈ (W, H, and D are the width, height, and channel 

number of feature maps). The function a by (x ,x )f stacks the two features at the same 

1x1, n

3x3, n

1x1, m

+

m

Relu

Relu

Relu



location ( )i, j  across the feature channel d : 

.................................................... a b

i,j,d i,j,d i,j,dy =x x . (7) 

The Softmax layer is used to normalize feature maps into the range of (0, 1) so that 

the output vector 
my  represents the probability of the mth class [36]. The operation for the 

Softmax layer can be written as: 

........................................................ 
2

x

m
x

m=1

e
y =

e
, (8) 

where 
my  is the output probability of the mth class, x  represents the input neurons of the 

upper layer. 

The cross-entropy loss function is selected as the objective function of the Coarse 

Network to accelerate training. The cross-entropy loss function of Coarse Network 
Closs  

is given by Eqs (9): 

..................................... ( ) ( )
m 2

C i i

i=1 k=1

1
loss =- I l =k log p k|x

m
 , (9) 

where m  is the number of samples in per min-batch, 
il  stands for the class label (0-1) of 

the image 
ix , ( )I  is an indicator function which equals one if 

il  is equal to k . The 

detailed configuration of the Coarse Network is listed in TABLE 2. 

TABLE 2 
Configurations of the CF-DRNet. 

CF-DRNet 

 Coarse Network Fine Network 

Layer 
Kernel Size, 

Channel Number 
Output Size 

Kernel Size, 

Channel Number 
Output Size 

Data - 256×256 - 512×512 

Conv 1 3×3, 128 128×128 3×3, 128 256×256 

Pool 1 2×2, 128 64×64 2×2, 128 128×128 

Residual 

Block-1 

Conv 1-1 1×1, 64 64×64 128×128 128×128 

Conv 1-2 3×3, 64 64×64 128×128 128×128 

Conv 1-3 1×1, 256 64×64 128×128 128×128 

Conv2 3×3,256 64×64 3×3,256 128×128 

Pool 2 2×2, 256 32×32 2×2, 256 64×64 

Residual 

Block-2 

Conv 2-1 1×1,128 32×32 1×1, 128 64×64 

Conv 2-2 3×3, 128 32×32 3×3, 128 64×64 

Conv 2-3 1×1,512 32×32 1×1,512 64×64 

Conv3 3×3,512 32×32 3×3,512 64×64 

Attention Gate 1 -,512 32×32 - - 

Pool 3 2×2, 512 16×16 2×2, 512 32×32 

Residual 

Block-3 

Conv 3-1 1×1, 256 16×16 1×1, 256 32×32 

Conv 3-2 3×3,256 16×16 3×3,256 32×32 

Conv 3-3 1×1,1024 16×16 1×1,1024 32×32 

Conv 4 3×3, 1024 16×16 3×3, 1024 32×32 

Attention Gate 2 -,1024 16×16 - - 

Pool 4 2×2, 1024 8×8 2×2, 1024 16×16 

Residual Conv 4-1 1×1, 512 8×8 1×1, 512 16×16 



Block-4 Conv 4-2 3×3, 512 8×8 3×3, 512 16×16 

Conv 4-3 1×1, 2048 8×8 1×1, 2048 16×16 

Pool 5 2×2, 2048 4×4 2×2, 2048 8×8 

Softmax 2 Neurons 4 Neurons 

2.2.2. Fine Network 

The Fine Network is designed to further divide the grade DR outputted from the 

Coarse Network into four severity grades including grade mild NPDR, moderate NPDR, 

severe NPDR, and PDR. In order to dig into more elaborate inter-class differences for these 

four grades, the input size of the Fine Network is resized into 512 512  pixels for four-

class classification. 

The pre-trained Fine Network based on the ResNet-18 is fine-tuned for four-class 

classification. The data size is down-sampled from 512 512   pixels to 8 8   pixels 

throughout the pooling layers. 

The cross entropy loss of Fine Network is employed as the objective function of the 

Fine Network to accelerate training. The cross-entropy loss function is given by Eqs (10): 

..................................... ( ) ( )
m 4

F i i

i=1 k=1

1
loss =- I l =k log p k|x

m
 , (10) 

where m  is the number of samples in per min-batch, 
il  stands for the class label (0-3) of 

the image 
ix , ( )I  is an indicator function which equals one if 

il  is equal to k . The 

configurations of the Fine Network are depicted in TABLE 2. 

2.3. Aggregation Module 

Overall testing set is divided into two classes including grade No DR and grade DR. 

The results of grade No DR is obtained via the two-class classification performance from 

the Coarse Network. Grade DR is further divided into four sub-classes including grade 

mild NPDR, moderate NPDR, severe NPDR, and PDR and these four grade results are 

obtained by the four-class classification performance from Fine Network. Final five-class 

classification results are summarized to realize five stages of DR grading. 

III. Implementation Details 

In this section, the implementation of proposed CF-DRNet and the training/testing 

process is described. The computer platform is configured as follows: CPU was Inter(R) 

Core(TM) i7-5930K 3.5GHz; GPU was NVIDIA 2080TI with 11G memory. All codes 

were written under Python 3.6, and we used Tensorflow r1.4 as the deep learning library. 

The CUDA edition used here was 10.0. 

During the training phase, the weight parameters are learned using mini-batch 

stochastic gradient descent with momentum (set to 0.9). The base learning rate is set to 
-310  and iteratively decreases until the loss stops decreasing. All the models were trained 

using 10000 iterations. 

For the Coarse Network, five grades of fundus images and corresponding labels (No 

DR, mild NPDR, moderate NPDR, and severe NPDR) in the dataset are transformed into 



two grades of fundus images and corresponding labels (No DR, DR). The batch size is set 

to 8 during the training phase and all the preprocessed test images of 256 256  pixels are 

input into the Coarse Network in the testing phase. Finally, the fundus images from the 

testing set are classified as two classes (No DR, DR). 

For the Fine Network, the batch size is set to 4 in the training phase. In the testing 

phase, the images and labels of the grade DR from the results of the Coarse Network are 

further divided into four grades (Mild NPDR, Moderate NPDR, and Severe NPDR). All 

the testing images of 512 512  pixels are input into the Fine Network. Finally, the fundus 

images from the testing set are classified as four stages of DR severity grades. 

IV. Experiment and Results 

4.1. Database Description 

The Kaggle fundus database contains 88400 fundus images taken under a variety of 

imaging conditions [12]. These fundus images were provided via EyePACS [37], which is 

a free platform for retinopathy screening. Every subject provides the left and right fields of 

human eyes. The IDRiD fundus database provided by the retinal specialists at an Eye Clinic 

located in India [38] contains 516 fundus images from thousands of examinations. There 

are five grades (No DR, Mild NPDR, Moderate NPDR, Severe NPDR, PDR) in these two 

databases. The detailed data distribution of collected fundus images can be seen in TABLE 

3 and TABLE 4. 

Five-fold cross-validation is used. We use 80 percent of the fundus images for training 

and 20 percent of the images for testing. It is noted that no data is overlapping between the 

training dataset and testing dataset. 

TABLE 3 
The Data Distribution of Fundus Images from the Kaggle Database 

 Images 
No 

DR 

Mild 

NPDR 

Moderate 

NPDR 

Severe 

NPDR 
PDR 

Raw images 88400 65130 6185 13105 2075 1905 

Train 70720 52104 4948 10484 1660 1524 

Training Augmentation 101915 52104 12370 13629 11620 12192 

Test 17680 13026 1237 2621 415 381 

TABLE 4 
The Data Distribution of Fundus Images from the IDRiD Databases 

 Images 
No 

DR 

Mild 

NPDR 
Moderate NPDR 

Severe 

NPDR 
PDR 

Raw images 516 168 25 168 93 62 

Train 415 135 20 135 75 50 



Training Augmentation 3237 1620 400 405 412 400 

Test 101 33 5 33 18 12 

 

4.2. Results and Evaluation 

With the Kaggle and IDRiD fundus database, the classification performance is 

measured. According to the property measurement, we conduct the following experiments: 

(1) For analyzing the effectiveness of the Coarse Network for DR grading, we compare the 

performance of between the basic ResNet and the Coarse Network (the ResNet attached 

with the attention gate). (2) The proposed Coarse-to-fine network and the sub-networks 

(the Coarse Network and the Fine Network) are analyzed for five-class classification of 

DR grading. (3) Finally, proposed CF-DRNet is compared with the other methods. 

To further clarify the evaluation metrics, the classification performance is measured 

using sensitivity (SENS), specificity (SPEC), accuracy (ACC), which can be defined by 

Eqs (11) - (13): 

.................................................... 
TP

TP FN
SEN=


, (11) 

................................................... 
TN

FP TN
SPEC=


, (12) 

......................................... 
(TP TN)

(TP TN FP FN)
ACC




  
, (13) 

Where: 

 TP, True Positives: the number of positive samples is correctly classified. 

 FP, False Positives: the number of negative samples is wrongly classified as positive. 

 TN, True Negatives: the number of negative samples is correctly classified. 

 FN, False Negatives: the number of positive samples is wrongly classified as negative. 

4.2.1. The effectiveness of the Coarse Network 

TABLE 5 

The Performance of the Coarse Network and the Normal ResNet 50 for Two-class Classification in the 

IDRiD and Kaggle Database. 

Methods Kaggle 

 ACC SEN SPEC 

ResNet 84.86% 91.90% 72.56% 

Coarse Network 88.61% 64.43% 96.92% 

 IDRiD 

 ACC SEN SPEC 

ResNet 73.33% 83.09% 68.02% 

Coarse Network 80.00% 85.91% 76.78% 

 



For two-class classification for DR grading, the attention gate module is applied in 

the Coarse Network based on the ResNet. The performance of the proposed Coarse 

Network and the basic ResNet is shown in TABLE 5. It can be seen that the Coarse 

Network in virtue of attention gate module has better performance than the basic ResNet 

for DR grading compared with ResNet in terms of accuracy (3.75% improvement) and 

specificity (24.36% improvement) in Kaggle Database, accuracy (6.67% improvement), 

sensitivity (2.82% improvement) and specificity (8.76% improvement) in IDRiD Database. 

The statistical analysis is done under the help of Receiver Operating Characteristics 

(ROC) curves and Area Under Curve (AUC) for the proposed Coarse Network and the 

Basic ResNet in Fig. 5. As illustrated in this figure, the Coarse Network achieves superior 

performance (AUC: 0.87 in the IDRiD database, 0.89 in the Kaggle database) over the 

ResNet (AUC: 0.77 in the IDRiD database, 0.84 in the Kaggle database). The ROC curves 

of the Kaggle database are smoother than the ROC curves of the IDRiD database because 

of the larger data size of the testing set for the Kaggle database. 

 

(a)                                                                          (b) 

Fig. 5. The ROC Curves and AUC Values of the Coarse Network (Blue), ResNet (Red) in the Kaggle 

Database (a) and in the IDRiD Database (b). 

4.2.2. The effectiveness of the CF-DRNet and its subnetworks 

The classification performance of proposed CF-DRNet in terms of SENS, SPEC and 

ACC for DR grading and its subnetworks (Coarse Network and Fine Network) in the 

IDRiD and Kaggle database are given in TABLE 6. As can be seen in this table, the Coarse 

Network and the Fine Network achieve excellent performance to fulfill the two-class 

classification and four-class classification in the Kaggle and IDRiD database. The overall 

CF-DRNet obtains the classification performance with the sensitivity of 53.99%, 

specificity of 91.22%, and accuracy of 83.10% in the Kaggle and the performance with the 

sensitivity of 64.21%, specificity of 87.39%, and accuracy of 56.19% in the IDRiD 

database, respectively. 



From TABLE 6, it can be seen that the overall performance of the Kaggle database is 

higher than the case for the IDRiD database. The reason might be the difference in image 

quantity and clinician’s experience. For the IDRiD database, the same training set and 

testing set are employed in the Grading Challenge of ISBI-2018 and our proposed CF-

DRNet obtains the performance with the accuracy of 60.20%, sensitivity of 69.61%, and 

specificity of 88.78%, which can achieve the second place [39]. 

TABLE 6 

The Comparative Performances of Proposed CF-DRNet and Its Subnetworks (Coarse Network and 

Fine Network) in the Kaggle and IDRiD Database. 

Methods Kaggle 

 ACC SEN SPEC 

Coarse Network 88.61% 64.43% 96.92% 

Fine Network 67.70% 53.64% 84.01% 

CF-DRNet 83.10% 53.99% 91.22% 

 IDRiD 

 ACC SEN SPEC 

Coarse Network 80.58% 85.91% 77.30% 

Fine Network 58.33% 58.33% 69.73% 

CF-DRNet 56.19% 64.21% 87.39% 

4.2.3. Comparison of the classification performance with state-of-the-art methods 

For the five-class classification of DR grading, the proposed CF-DRNet is compared 

with other well-known classification methods: LBP+SVM [6], and VGG CNN [19]. 

LBP+SVM is a method which employs binarization algorithm of local pixels and uses the 

multiple binary SVMs with linear kernel for classification. The VGG CNN is a modified 

VGG network which consists of multiple convolutional and pooling layers, and fully 

connected layers. 

All the methods are compared in the IDRiD and Kaggle database in TABLE 7. The 

parameters of the comparative methods were set according to their original works. It is 

observed in this table that deep learning based methods (e.g., VGG 16, CF-DRNet) achieve 

better performance than traditional method (e.g., LBP+SVMs) using manual features. 

Especially, it can be found that the CF-DRNet outperforms the other comparative methods. 

TABLE 7 

Comparative Performances of Proposed CF-DRNet and Other State-of-the-art Methods in the Kaggle 

and IDRiD Database. 

Methods Kaggle 

 ACC SEN SPEC 

LBP+SVMs [6] 59.09% 59.09% 80.86% 

VGG CNN [19] 74.12% 30.00% 90.12% 

CF-DRNet 83.10% 53.99% 91.22% 



 IDRiD 

 ACC SEN SPEC 

LBP+SVMs [6] 51.43% 57.66% 86.25% 

VGG CNN [19] 52.28% 62.26% 86.27% 

CF-DRNet 56.19% 64.21% 87.39% 

V. Conclusion and Discussion 

In this paper, for the first time, we proposed a hierarchically coarse-to-fine DR network 

(CF-DRNet) for five-stage DR grading employing convolutional neural networks (CNNs). CF-

DRNet consists of two subnetworks: one Coarse Network and one Fine Network. The Coarse 

Network with attention gate module is designed for two-class classification (No DR, DR) to 

enhance the lesion features and suppress irrelevant information for two-class classification of 

DR grading. The Fine Network with larger size input based on the pre-trained ResNet-18 

performs four-class classification (mild NPDR, moderate NPDR, severe NPDR, and PDR) for 

DR grading. 

Five-fold cross-validation is used in method validation. Experimental results show that 

proposed CF-DRNet outperforms the comparative methods [6, 19] in the IDRiD database and 

Kaggle database. The obtained results demonstrated a promising performance for DR grading 

in fundus images. 

To further obtain improved classification performance, a more elaborate Fine Network 

needs to be designed, which can reduce the confusion among four stages of DR severity grades. 

In addition, DR grading will be explored with the help of DR lesion detection to realize 

automatic DR diagnosis in the future. 
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