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Abstract. The local pattern mining literature has long struggled with
the so-called pattern explosion problem: the size of the set of patterns
found exceeds the size of the original data. This causes computational
problems (enumerating a large set of patterns will inevitably take a sub-
stantial amount of time) as well as problems for interpretation and usabil-
ity (trawling through a large set of patterns is often impractical).

Two complementary research lines aim to address this problem. The
first aims to develop better measures of interestingness, in order to reduce
the number of uninteresting patterns that are returned [6,10]. The sec-
ond aims to avoid an exhaustive enumeration of all ‘interesting’ patterns
(where interestingness is quantified in a more traditional way, e.g. fre-
quency), by directly sampling from this set in a way that more ‘interest-
ing’ patterns are sampled with higher probability [2].

Unfortunately, the first research line does not reduce computational
cost, while the second may miss out on the most interesting patterns.
In this paper, we combine the best of both worlds for mining inter-
esting tiles [8] from binary databases. Specifically, we propose a new
pattern sampling approach based on Gibbs sampling, where the proba-
bility of sampling a pattern is proportional to their subjective interest-
ingness [6]—an interestingness measure reported to better represent true
interestingness.

The experimental evaluation confirms the theory, but also reveals an
important weakness of the proposed approach which we speculate is
shared with any other pattern sampling approach. We thus conclude
with a broader discussion of this issue, and a forward look.

Keywords: Pattern mining · Subjective interestingness · Pattern
sampling · Gibbs sampling

1 Introduction

Pattern mining methods aim to select elements from a given language that bring
to the user “implicit, previously unknown, and potentially useful information
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from data” [7]. To meet the challenge of selecting the appropriate patterns for
a user, several lines of work have been explored: (1) Many constraints on some
measures that assess the quality of a pattern using exclusively the data have
been designed [4,12,13]; (2) Preference measures have been considered to only
retrieve patterns that are non dominated in the dataset; (3) Active learning
systems have been proposed that interact with the user to explicit her interest
on the patterns and guide the exploration toward those she is interested in; (4)
Subjective interestingness measures [6,10] have been introduced that aim to take
into account the implicit knowledge of a user by modeling her prior knowledge
and retrieving the patterns that are unlikely according to the background model.

The shift from threshold-constraints on objective measures toward the use of
subjective measures provides an elegant solution to the so-called pattern explo-
sion problem by considerably reducing the output to only truly interesting pat-
terns. Unfortunately, the discovery of subjectively interesting patterns with exact
algorithms remains computationally challenging.

In this paper we explore another strategy that is pattern sampling. The
aim is to reduce the computational cost while identifying the most important
patterns, and allowing for distributed computations. There are two families of
local pattern sampling techniques.

The first family uses Metropolis Hastings [9], a Markov Chain Monte Carlo
(MCMC) method. It performs a random walk over a transition graph represent-
ing the probability of reaching a pattern given the current one. This can be done
with the guarantee that the distribution of the considered quality measure is
proportional on the sample set to the one of the whole pattern set [1]. However,
each iteration of the random walk is accepted only with a probability equal to the
acceptance rate α. This can be very small, which may result in a prohibitively
slow convergence rate. Moreover, in each iteration the part of the transition
graph representing the probability of reaching patterns given the current one,
has to be materialized in both directions, further raising the computational cost.
Other approaches [5,11] relax this constraint but lose the guarantee.

Methods in the second family are referred to as direct pattern sampling
approaches [2,3]. A notable example is [2], where a two-step procedure is pro-
posed that samples frequent itemsets without simulating stochastic processes. In
a first step, it randomly selects a row according to a first distribution, and from
this row, draws a subset of items according to another distribution. The combi-
nation of both steps follows the desired distribution. Generalizing this approach
to other pattern domains and quality measures appeared to be difficult.

In this paper, we propose a new pattern sampling approach based on Gibbs
sampling, where the probability of sampling a pattern is proportional to their
Subjective Interestingness (SI) [6]. Gibbs sampling – described in Sect. 3 – is
a special case of Metropolis Hastings where the acceptance rate α is always
equal to 1. In Sect. 4, we show how the random walk can be simulated with-
out materializing any part of the transition graph, except the currently sampled
pattern. While we present this approach particularly for mining tiles in rectan-
gular databases, applying it for other pattern languages can be relatively easily
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achieved. The experimental evaluation (Sect. 5) confirms the theory, but also
reveals a weakness of the proposed approach which we speculate is shared by
other direct pattern sampling approaches. We thus conclude with a broader dis-
cussion of this issue (Sect. 6), and a forward look (Sect. 7).

2 Problem Formulation

2.1 Notation

Table 1. Example of a
binary dataset D.

# 1 2 3 4 5
1 0 1 0 1 0
2 0 1 1 0 0
3 1 0 1 0 1
4 0 1 1 1 0
5 1 1 1 1 1
6 0 1 1 1 0
7 0 1 1 1 1

Input Dataset. A dataset D is a Boolean matrix with
m rows and n columns. For i ∈ �1,m� and j ∈ �1, n�,
D(i, j) ∈ {0, 1} denotes the value of the cell corre-
sponding to the i-th row and the j-th column. For a
given set of rows I ⊆ �1,m�, we define the support
function suppC(I) that gives all the columns having
a value of 1 in all the rows of I, i.e., suppC(I) =
{j ∈ �1, n� | ∀i ∈ I : D(i, j) = 1}. Similarly, for
a set of columns J ⊆ �1, n�, we define the function
suppR(J) = {i ∈ �1,m� | ∀j ∈ J : D(i, j) = 1}. Table 1
shows a toy example of a Boolean matrix, where for
I = {4, 5, 6} we have that suppC(I) = {2, 3, 4}.

Pattern Language. This paper is concerned with a particular kind of pattern
known as a tile [8], denoted τ = (I, J) and defined as an ordered pair of a set
of rows I ⊆ {1, ...,m} and a set of columns J ⊆ {1, ...n}. A tile τ is said to be
contained (or present) in D, denoted as τ ∈ D, iff D(i, j) = 1 for all i ∈ I and
j ∈ J . The set of all tiles present in the dataset is denoted as T and is defined
as: T = {(I, J) | I ⊆ {1, ...,m} ∧ J ⊆ {1, ...n} ∧ (I, J) ∈ D}. In Table 1, the tile
τ1 = ({4, 5, 6, 7}, {2, 3, 4}) is present in D (τ1 ∈ T ), because each of its cells has
a value of 1, but τ2 = ({1, 2}, {2, 3}) is not present (τ2 /∈ T ) since D(1, 3) = 0.

2.2 The Interestingness of a Tile

In order to assess the quality of a tile τ , we use the framework of subjective
interestingness SI proposed in [6]. We briefly recapitulate the definition of this
measure for tiles, denoted SI(τ) for a tile τ , and refer the reader to [6] for
more details. SI(τ) measures the quality of a tile τ as the ratio of its subjective
information content IC(τ) and its description length DL(τ):

SI(τ) =
IC(τ)
DL(τ)

.

Tiles with large SI(τ) thus compress subjective information in a short descrip-
tion. Before introducing IC and DL, we first describe the background model—an
important component required to define the subjective information content IC.

Background Model. The SI is subjective in a sense that it accounts for prior
knowledge of the current data miner. A tile τ is informative for a particular
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user if this tile is somehow surprising for her, otherwise, it does not bring new
information. The most natural way for formalizing this is to use a background
distribution representing the data miner’s prior expectations, and to compute the
probability Pr(τ ∈ D) of this tile under this distribution. The smaller Pr(τ ∈ D),
the more information this pattern contains. Concretely, the background model
consists of a value Pr(D(i, j) = 1) associated to each cell D(i, j) of the dataset,
and denoted pij . More precisely, pij is the probability that D(i, j) = 1 under
user prior beliefs. In [6], it is shown how to compute the background model and
derive all the values pij corresponding to a given set of considered user priors.
Based on this model, the probability of having a tile τ = (I, J) in D is:

Pr(τ ∈ D) = Pr

⎛
⎝ ∧

i∈I,j∈J

D(i, j) = 1

⎞
⎠ =

∏
i∈I,j∈J

pij .

Information Content IC. This measure aims to quantify the amount of infor-
mation conveyed to a data miner when she is told about the presence of a tile
in the dataset. It is defined for a tile τ = (I, J) as follows:

IC(τ) = − log(Pr(τ ∈ D)) =
∑

i∈I,j∈J

− log(pij).

Thus, the smaller Pr(τ ∈ D), the higher IC(τ), and the more informative τ .
Note that for τ1, τ2 ∈ D : IC(τ1 ∪ τ2) = IC(τ1) + IC(τ2) − IC(τ1 ∩ τ2).

Description Length DL. This function should quantify how difficult it is for a
user to assimilate the pattern. The description length of a tile τ = (I, J) should
thus depend on how many rows and columns it refers to: the larger are |I| and
|J |, the larger is the description length. Thus, DL(τ) can be defined as:

DL(τ) = a + b · (|I| + |J |) ,

where a and b are two constants that can be handled to give more or less impor-
tance to the contributions of |I| and |J | in the description length.

2.3 Problem Statement

Given a Boolean dataset D, the goal is to sample a tile τ from the set of all the
tiles T present in D, with a probability of sampling PS proportional to SI(τ),
that is: PS(τ) = SI(τ)

∑
τ′∈T SI(τ ′)

.

A näıve approach to sample a tile pattern according to this distribution is
to generate the list {τ1, ..., τN} of all the tiles present in D, sample x ∈ [0, 1]

uniformly at random, and return the tile τk with
∑k−1

i=1 SI(τi)
∑

i SI(τi)
≤ x <

∑k
i=1 SI(τi)

∑
i SI(τi)

.
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However, the goal behind using sampling approaches is to avoid materializing the
pattern space which is generally huge. We want to sample without exhaustively
enumerating the set of tiles. In [2], an efficient procedure is proposed to directly
sample patterns according to some measures such as the frequency and the area.
However, this procedure is limited to only some specific measures. Furthermore,
it is proposed for pattern languages defined on only the column dimension, for
example, itemset patterns. In such language, the rows related to an itemset
pattern F ⊆ {1, ..., n} are uniquely identified and they correspond to all the
rows containing the itemset, that are suppR(F ). In our work, we are interested
in tiles which are defined by both columns and rows indices. In this case, it is
not clear how the direct procedure proposed in [2] can be applied.

For more complex pattern languages, a generic procedure based on Metropo-
lis Hasting algorithm has been proposed in [9], and illustrated for subgraph
patterns with some quality measures. While this approach is generic and can be
extended relatively easily to different mining tasks, a major drawback of using
Metropolis Hasting algorithm is that the random walk procedure contains the
acceptance test that needs to be processed in each iteration, and the accep-
tance rate α can be very small, which makes the convergence rate practically
extremely slow. Furthermore, Metropolis Hasting can be computationally expen-
sive, as the part of the transition graph representing the probability of reaching
patterns given the current one, has to be materialized.

Interestingly, a very useful MCMC technique is Gibbs sampling, which is a
special case of Metropolis-Hasting algorithm. A significant benefit of this app-
roach is that the acceptante rate α is always equal to 1, i.e., the proposal of
each sampling iteration is always accepted. In this work, we use Gibbs sampling
to draw patterns with a probability distribution that converges to PS . In what
follows, we will first generically present the Gibbs sampling approach, and then
we show how we efficiently exploit it for our problem. Unlike Metropolis Hast-
ing, the proposed procedure performs a random walk by materializing in each
iteration only the currently sampled pattern.

3 Gibbs Sampling

Suppose we have a random variable X = (X1,X2, ...,Xl) taking values in some
domain Dom. We want to sample a value x ∈ Dom following the joint distri-
bution P (X = x). Gibbs sampling is suitable when it is hard to sample directly
from P but known how to sample just one dimension xk (k ∈ �1, l�) from
the conditional probability P (Xk = xk | X1 = x1, ...,Xk−1 = xk−1,Xk+1 =
xk+1, ...,Xl = xl). The idea of Gibbs sampling is to generate samples by sweep-
ing through each variable (or block of variables) to sample from its conditional
distribution with the remaining variables fixed to their current values. Algo-
rithm1 depicts a generic Gibbs Sampler. At the beginning, x is set to its ini-
tial values (often values sampled from a prior distribution q). Then, the algo-
rithm performs a random walk of p iterations. In each iteration, we sample
x1 ∼ P (X1 = x

(i1)
1 | X2 = x

(i1)
2 , ...,Xl = x

(i1)
l ) (while fixing the other dimen-

sions), then we follow the same procedure to sample x2, ..., until xl.
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Algorithm 1: Gibbs sampler
1 Initialize x(0) ∼ q(x)
2 for k ∈ �1, p� do

3 draw x
(k)
1 ∼ P

(
X1 = x1 | X2 = x

(k−1)
2 , X3 = x

(k−1)
3 , ..., Xl = x

(k−1)
l

)

4 draw x
(k)
2 ∼ P

(
X2 = x2 | X1 = x

(k)
1 , X3 = x

(k−1)
3 , ..., Xl = x

(k−1)
l

)

5 ...

6 draw x
(k)
l ∼ P

(
Xl = xl | X1 = x

(k)
1 , X2 = x

(k)
2 , ..., Xl−1 = x

(k)
l−1

)

7 return x(p)

The random walk needs to satisfy some constraints to guarantee that the
Gibbs sampling procedure converges to the stationary distribution P . In the
case of a finite number of states (a finite space Dom in which X takes values),
sufficient conditions for the convergence are irreducibility and aperiodicity:

Irreducibility. A random walk is irreducible if, for any two states x, y ∈ Dom s.t.
P (x) > 0 and P (y) > 0, we can get from x to y with a probability > 0 in a
finite number of steps. I.e. the entire state space is reachable.

Aperiodicity. A random walk is aperiodic if we can return to any state x ∈ Dom
at any time. I.e. revisiting x is not conditioned to some periodicity constraint.

One can also use blocked Gibbs sampling. This consists in growing many
variables together and sample from their joint distribution conditioned to the
remaining variables, rather than sampling each variable xi individually. Blocked
Gibbs sampling can reduce the problem of slow mixing that can be due to the
high number of dimensions used to sample from.

4 Gibbs Sampling of Tiles with Respect to SI

In order to sample a tile τ = (I, J) with a probability proportional to SI(τ), we
propose to use Gibbs sampling. The simplest solution is to consider a tile τ as
m + n binary random variables (x1, ..., xm, ..., xm+n), each of them corresponds
to a row or a column, and then apply the procedure described in Algorithm1. In
this case, an iteration of Gibbs sampling requires to sample from each column and
row separately while fixing all the remaining rows and columns. The drawback
of this approach is the high number of variables (m + n) which may lead to a
slow mixing time. In order to reduce the number of variables, we propose to
split τ = (I, J) into only two separated blocks of random variables I and J , we
then directly sample from each block while fixing the value of the other block.
This means that an iteration of the random walk contains only two sampling
operations instead of m+n ones. We will explain in more details how this Blocked
Gibbs sampling approach can be applied, and how to compute the distributions
used to directly sample a block of rows or columns.
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Algorithm 2: Gibbs-SI
1 Initialize (I, J)(0) ∼ q(x)
2 for k ∈ �1, p� do

3 draw I(k) ∼ P
(
I = I | J = J(k−1)

)
, draw J(k) ∼ P

(
J = J | I = I(k)

)

4 return (I, J)(p)

Algorithm 2 depicts the main steps of Blocked Gibbs sampling for tiles. We
start by initializing (I, J)(0) with a distribution q proportional to the area (|I|×
|J |) following the approach proposed in [2]. This choice is mainly motivated by
its linear time complexity of sampling. Then, we need to efficiently sample from
P (I = I | J = J) and P (J = J | I = I). In the following, we will explain how
to sample I with P (I = I|J = J), and since the SI is symmetric w.r.t. rows
and columns, the same strategy can be used symmetrically to sample a set of
columns with P (J = J | I = I).

Sampling a Set of Rows I Conditioned to Columns J. For a specific J ⊆
{1, ..., n}, the number of tiles (I, J) present in the dataset can be huge, and can
go up to 2m. This means that näıvely generating all these candidate tiles and then
sampling from them is not a solution. Thus, to sample a set of rows I conditioned to
a fixed set of columns J , we propose an iterative algorithm that builds the sampled
I by drawing each i ∈ I separately, while ensuring that the joint distribution of
all the drawings is equal to P (I = I|J = J). I is built using two variables: R1 ⊆
{1, ...,m} made of rows that belong to I, and R2 ⊆ {1, ...,m} \ R1 that contains
candidate rows that can possibly be sampled and added to R1. Initially, we have
R1 = ∅ and R2 = suppR(J). At each step, we take i ∈ R2, do a random draw to
determine whether i is added to R1 or not, and remove it from R2. When R2 = ∅,
the sampled set of rows I is set equal to R1. To apply this strategy, all we need
is to compute P (i ∈ I | R1 ⊆ I ⊆ R1 ∪ R2 ∧ J = J), the probability of sampling i
considering the current sets R1, R2 and J :

P (i ∈ I | R1 ⊆ I ⊆ R1 ∪ R2 ∧ J = J) =
P (R1 ∪ {i} ⊆ I ⊆ R1 ∪ R2 ∧ J = J)

P (R1∪ ⊆ I ⊆ R1 ∪ R2 ∧ J = J)

=

∑
F⊆R2\{i} SI(R1 ∪ {i} ∪ F, J)∑

F⊆R2
SI(R1 ∪ F, J)

=

∑
F⊆R2\{i}

IC(R1∪{i},J)+IC(F,J)
a+b·(|R1|+|F |+1+|J|)∑

F⊆R2

IC(R1,Di)+IC(F,Di)
a+b·(|R1|+|F |+|J|)

=

∑|R2|−1
k=0

1
a+b·(|R1|+k+1+|J|)

∑
F⊆R2\{i}

|F |=k

(IC(R1 ∪ {i}, J) + IC(F, J))

∑|R2|
k=0

1
a+b·(|R1|+k+|J|)

∑
F⊆R2
|F |=k

(IC(R1, J) + IC(F, J))

=

∑|R2|−1
k=0

1
a+b·(|R1|+k+1+|J|)

((|R2|−1
k

) · IC(R1 ∪ {i}, J) +
(|R2|−2

k−1

) · IC(R2 \ {i}, J)
)

∑|R2|
k=0

1
a+b·(|R1|+k+|J|)

((|R2|
k

) · IC(R1, J) +
(|R2|−1

k−1

) · IC(R2, J)
)

=
IC(R1 ∪ {i}, J) · f(|R2| − 1, |R1| + 1) + IC(R2 \ {i}, J) · f(|R2| − 2, |R1| + 1)

IC(R1, J) · f(|R2|, |R1|) + IC(R2, J) · f(|R2| − 1, |R1|) ,

with f(x, y) =
∑x

k=0
(x

k)
a+b·(y+k+|J|) .
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Complexity . Let’s compute the complexity of sampling I with a probability
P (I = I|J = J). Before starting the sampling of rows from R2, we first compute
the value of IC({i}, J) for each i ∈ R2 (in O(n · m)). This will allow to compute
in O(1) the values of IC that appear in P (i ∈ I | R1 ⊆ I ⊆ R1 ∪ R2 ∧ J = J),
based on the relation IC(I1 ∪ I2, J) = IC(I1, J) + IC(I2, J) for I1, I2 ⊆ �1,m�.
In addition to that, sampling each element i ∈ R2 requires to compute the
corresponding values of f(x, y). These values are computed once for the first
sampled row i ∈ R2 with a cost of O(m), and then they can be updated directly
when sampling the next rows, using the following relation:

f(x − 1, y) = f(x, y) − 1
a + b · (x + y + |J |) · f(x − 1, y + 1).

This means that the overall cost of sampling the whole set of rows I with a
probability P (I = I|J = J) is O(n · m). Following the same approach, sampling
J conditionned to I is done in O(n · m). As we have p sampling iterations,
the worst case complexity of the whole Gibbs sampling procedure of a tile τ is
O (p · n · m).

Convergence Guarantee . In order to guarantee the convergence to the station-
ary distribution proportional to the SI measure, the Gibbs sampling procedure
needs to satisfy some constraints. In our case, the sampling space is finite, as
the number of tiles is limited to at most 2m+n. Then, the sampling procedure
converges if it satisfies the aperiodicity and the irreducibility constraints. The
Gibbs sampling for tiles is indeed aperiodic, as in each iteration it is possible
to remain in exactly the same state. We only have to verify if the irreducibil-
ity property is satisfied. We can show that, in some cases, the random walk is
reducible, we will show how to make Gibbs sampling irreducible in those cases.

Theorem 1. Let us consider the bipartite graph G = (U, V,E) derived from the
dataset D, s.t., U = {1, ..,m}, V = {1, ..., n}, and E = {(i, j) | i ∈ �1,m� ∧ j ∈
�1, n� ∧ D(i, j) = 1}. A tile τ = (I, J) present in D corresponds to a complete
bipartite subgraph Gτ = (I, J,Eτ ) of G. If the bipartite graph G is connected,
then the Gibbs sampling procedure on tiles of D is irreducible.

Proof. We need to prove that for all pair of tiles τ1 = (I1, J1), τ2 = (I2, J2)
present in D, the Gibbs sampling procedure can go from τ1 to τ2. Let Gτ1 , Gτ2

be the complete bipartite graphs corresponding to τ1 and τ2. As G is connected,
there is a path from any vertex of Gτ1 to any vertex of Gτ2 . The probability that
the sampling procedure walks through one of these paths is not 0, as each step of
these paths constitutes a tile present in D. After walking on one of these paths,
the procedure will find itself on a tile τ ′ ⊆ τ2. Reaching τ2 from τ ′ is probable
after one iteration by sampling the right rows and then the right columns.

Thus, if the bipartite graph G is connected, the Gibbs sampling procedure
converges to a stationary distribution. To make the random walk converge when
G is not connected, we can compute the connected components of G, and then
apply Gibbs sampling separately in each corresponding subset of the dataset.
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Table 2. Dataset characteristics.

Dataset # rows # columns Avg. |row|
mushrooms 8124 120 24

chess 3196 76 38

kdd 843 6159 65.3

Fig. 1. Distribution of sampled patterns in synthetic data with 10 rows and 10 columns.

5 Experiments

We report our experimental study to evaluate the effectiveness of Gibbs-SI. Java
source code is made available1. We consider three datasets whose characteris-
tics are given in Table 2. mushrooms and chess from the UCI repository2 are
commonly used for evaluation purposes. kdd contains a set of SIGKDD paper
abstracts between 2001 and 2008 downloaded from the ACM website. Each
abstract is represented by a row and words correspond to columns, after stop
word removal and stemming. For each dataset, the user priors that we represent
in the SI background model are the row and column margins. In other terms, we
consider that user knows (or, is already informed about) the following statistics:∑

j D(i, j) for all i ∈ I, and
∑

i D(i, j) for all j ∈ J .

Empirical Sampling Distribution. First, we want to experimentally evaluate
how the Gibbs sampling distribution matches with the desired distribution. We
need to run Gibbs-SI in small datasets where the size of T is not huge. Then, we
take a sufficiently large number of samples so that the sampling distribution can
be created. To this aim, we have synthetically generated a dataset containing 10
rows, 10 columns, and 855 tiles. We run Gibbs-SI with three different numbers
of iterations p: 1k, 10k, and 100k, for each case, we keep all the visited tiles, and
we study their distribution w.r.t. their SI values. Figure 1 reports the results.
For 1k sampled patterns, the proportionality between the number of sampling
and SI is not clearly established yet. For higher numbers of sampled patterns,
a linear relation between the two axis is evident, especially for the case of 100k
sampled patterns, which represents around 100 times the total number of all the
tiles in the dataset. The two tiles with the highest SI are sampled the most, and
the number of sampling clearly decreases with the SI value.

1 http://tiny.cc/g5zmgz.
2 https://archive.ics.uci.edu/ml/.

http://tiny.cc/g5zmgz
https://archive.ics.uci.edu/ml/
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Fig. 2. Distributions of the sampled patterns w.r.t. # rows, # columns and SI.

Characteristics of Sampled Tiles. To investigate which kind of patterns are
sampled by Gibbs-SI, we show in Fig. 2 the distribution of sampled tiles w.r.t
their number of rows, columns, and their SI, for each of the three datasets given
in Table 2. For mushrooms and chess, Gibbs-SI is able to return patterns with a
diverse number of rows and columns. It samples much more patterns with low SI
than patterns with high SI values. In fact, even if we are sampling proportionally
to SI, the number of tiles in T with poor quality are significantly higher than
the ones with high quality values. Thus, the probability of sampling one of low
quality patterns is higher than sampling one of the few high quality patterns.
For kdd, although the number of columns in sampled tiles varies, all the sampled
tiles unfortunately cover only one row. In fact, the particularity of this dataset
is the existence of some very large transactions (max = 180).

Quality of the Sampled Tiles. In this part of the experiment, we want to
study whether the quality of the top sampled tiles is sufficient. As mining exhaus-
tively the best tiles w.r.t. SI is not feasible, we need to find some strategy
that identifies high quality tiles. We propose to use LCM [14] to retrieve the
closed tiles corresponding to the top 10k frequent closed itemsets. A closed tile
τ = (I, J) is a tile that is present in D and whose I and J cannot be extended
anymore. Although closed tiles are not necessarily the ones with the highest SI,
we make the hypothesis that at least some of them have high SI values as they
maximize the value of IC function. For each of the three real world datasets, we
compare between the SI of the top closed tiles identified with LCM and the ones
identified with Gibbs-SI. In Table 3, we show the SI of the top-1 tile, and the
average SI of the top-10 tiles, for each of LCM and Gibbs-SI.

Unfortunately, the scores of tiles retrieved with LCM are substantially larger
than the ones of Gibbs-SI, especially for mushrooms and chess. Importantly,
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Table 3. The SI of the top-1 tile, and the average SI of the top-10 tiles, found by
LCM and Gibbs-SI in the studied datasets.

Mushrooms Chess KDD

Top 1 SIAvg(top 10 SI)Top 1 SIAvg(top 10 SI)Top 1 SIAvg(top 10 SI)

Gibbs sampling0.12 0.11 0.015 0.014 0.54 0.54

LCM 3.89 3.20 0.40 0.40 0.83 0.70

there may exist tiles that are even better than the ones found by LCM. This
means that Gibbs-SI fails to identify the top tiles in the dataset. We believe
that this is due to the very large number of low quality tiles which trumps the
number of high quality tiles. The probability of sampling a high-quality tile is
exceedingly small, necessitating a practically too large sample to identify any.

6 Discussion

Our results show that efficiently sampling from the set of tiles with a sampling
probability proportional to the tiles’ subjective interestingness is possible. Yet,
they also show that if the purpose is to identify some of the most interesting
patterns, direct pattern sampling may not be a good strategy. The reason is that
the number of tiles with low subjective interestingness is vastly larger that those
with high subjective interestingness. This imbalance is not sufficiently offset
by the relative differences in their interestingness and thus in their sampling
probability. As a result, the number of tiles that need to be sampled in order
to sample one of the few top interesting ones is of the same order as the total
number of tiles.

To mitigate this, one could attempt to sample from alternative distributions
that attribute an even higher probability to the most interesting patterns, e.g.
with probabilities proportional to the square or other high powers of the sub-
jective interestingness. We speculate, however, that the computational cost of
sampling from such more highly peaked distributions will also be larger, undoing
the benefit of needing to sample fewer of them. This intuition is supported by
the fact that direct sampling schemes according to itemset support are compu-
tationally cheaper than according to the square of their support [2].

That said, the use of sampled patterns as features for downstream machine
learning tasks, even if these samples do not include the most interesting ones,
may still be effective as an alternative to exhaustive pattern mining.

7 Conclusions

Pattern sampling has been proposed as a computationally efficient alternative to
exhaustive pattern mining. Yet, existing techniques have been limited in terms
of which interestingness measures they could handle efficiently.
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In this paper, we introduced an approach based on Gibbs sampling, which is
capable of sampling from the set of tiles proportional to their subjective inter-
estingness. Although we present this approach for a specific type of pattern
language and quality measure, we can relatively easily follow the same scheme
to apply Gibbs sampling for other pattern mining settings. The empirical evalua-
tion demonstrates effectiveness, yet, it also reveals a potential weakness inherent
to pattern sampling: when the number of interesting patterns is vastly outnum-
bered by the number of non-interesting ones, a large number of samples may
be required, even if the samples are drawn with a probability proportional to
the interestingness. Investigating our conjecture that this problem affects all
approaches for sampling interesting patterns (for sensible measures of interest-
ingness) seems a fruitful avenue for further research.
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3. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using
coupling from the past. In: Proceedings of KDD, pp. 69–77 (2012)

4. Boulicaut, J., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 339–354. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-0-387-09823-4 17

5. Chaoji, V., Hasan, M.A., Salem, S., Besson, J., Zaki, M.J.: ORIGAMI: a novel
and effective approach for mining representative orthogonal graph patterns. SADM
1(2), 67–84 (2008)

6. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. DMKD 23(3), 407–446 (2011)

7. Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in
databases: an overview. AI Mag. 13(3), 57–70 (1992)
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