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CRITICAL POINTS OF THE MOSER-TRUDINGER FUNCTIONAL ON CLOSED SURFACES

Given a closed Riemann surface (Σ, g 0 ) and any positive weight f ∈ C ∞ (Σ), we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional

for every p ∈ (1, 2) and β > 0, or for p = 1 and β ∈ (0, ∞) \ 4πN. Letting p ↑ 2 we obtain positive critical points of the Moser-Trudinger functional F (u) := Σ

Introduction

We consider a smooth, closed Riemann surface (Σ, g 0 ) (2-dimensional, connected and without boundary) and a smooth positive function f , and we endow the usual Sobolev space H 1 = H 1 (Σ) with the standard norm • H 1 given by

u 2 H 1 = Σ |∇u| 2 g0 + u 2 dv g0 .
(0.1)

Building up on previous works, see e.g. [3,[START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF][START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF][START_REF] Judovi£ | Some estimates connected with integral operators and with solutions of elliptic equations[END_REF][START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF][START_REF] Pohoºaev | On the eigenfunctions of the equation δu + λf (u) = 0[END_REF][START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF][START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF], Yuxiang Li [START_REF] Li | Moser-Trudinger inequality on compact Riemannian manifolds of dimension two[END_REF] proved that the following Moser-Trudinger inequality holds

sup u∈H 1 , u 2 H 1 =β Σ e u 2 f dv g0 < +∞ ⇔ β ≤ 4π , (MT ) 
(see also Remark 0.2) and that there is an extremal function for (MT ) even in the critical case β = 4π (see also Remark 5.1). Such an extremal is (up to a sign change) a positive critical point of

F (u) := Σ e u 2 -1 f dv g0 , (0.2) constrained to u ∈ E β := v ∈ H 1 s.t. v 2 H 1 = β (0.
3) when β ∈ (0, 4π]. A positive function u is a critical point of F constrained to E β if and only if it satises the Euler-Lagrange equation

∆ g0 u + u = 2λf ue u 2 , u > 0 in Σ , (0.4) 
where our convention for the Laplacian is with the sign that makes it nonnegative and where λ > 0 is given by

2λ Σ u 2 e u 2 f dv g0 = β = u 2 H 1 .
(0.5)

For β < 4π, nding critical points of F constrained to E β reduces to a standard maximization argument. Finding such critical points for larger β's is a more challenging problem, since upper bounds on the functional fail, and this will be the main achievement of this paper. Some results in this direction, for planar domains and in slightly supercritical regimes 0 < β -4π 1 were obtained in [START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF] and [START_REF] Lamm | The heat ow with a critical exponential nonlinearity[END_REF].

In order to do handle the case of general β s greater than 4π, we would like to use a variational method, more precisely a minmax method, to produce a converging Palais-Smale sequence. The two main analytic diculties are that the functional F does not satisfy the Palais-Smale condition and that its criticality is of borderline type, which prevents us from using the methods of [START_REF] Lamm | The heat ow with a critical exponential nonlinearity[END_REF][START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF] for β large. To overcome these problems we will introduce a family of subcritical functional I p,β , p ∈ [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF], that, in some sense, interpolate between a Liouville-type problem and our critical Moser-Trudinger problem, apply the minmax method to obtain critical points of I p,β , and then prove new compactness and quantization results for such critical points.

More precisely, given p ∈ [1, 2) and β > 0, we let I p,β be given in H 1 by

I p,β (u) = 2 -p 2 p u 2 H 1 2β p 2-p -ln Σ e u p + -1 f dv g0 , (0.6) 
where u + = max{u, 0} and we set I p,β (u) = +∞ if u ≤ 0. By Trudinger's result [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF], for p ∈ (1, 2), I p,β is nite and of class C 1 on the subset of H 1 of functions with non-trivial positive part, and its critical points are the solutions of

∆ g0 u + u = pλf u p-1 e u p
, u > 0 in Σ , (0.7)

where the positivity follows from the maximum principle, see Lemma 1.1, and λ > 0 is given by the relation (0.8)

While I 1,β is not dierentiable at functions u vanishing on sets of positive measure, it is dierentiable at any u > 0 a.e., and u > 0 is a critical point if and only if it solves (0.7)-(0.8) with p = 1. Smoothness follows by standard elliptic theory and [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF], see Lemma 1.1. Now, multiplying (0.7) by u and integrating by parts in Σ, (0.8) may be rewritten as λp 2 2 Σ e u p -1 f dv g0 (0.9) By (MT ) and Young's inequality, I p,β is bounded from below for all β ≤ 4π, and for β < 4π nding critical points of I p,β reduces to a standard minimization argument, as it happens for the constrained extremization of F : similarly, nding such critical points for larger β's is much more dicult. As we shall discuss, compactness and quantization (see Corollary 4.1) give that, as p approaches the borderline case p 0 = 2, the critical points of I p,β converge to critical points of the functional F in (0.2) constrained to E β , at least when β > 0 is given out of 4πN , where N denotes the set of the positive integers.

Our main results read as follows:

Theorem 0.1. Let (Σ, g 0 ) be a smooth closed surface and f be a smooth positive function. Let p ∈ (1, 2) and β > 0 be given. Then the set C p,β of the positive critical points of I p,β is not empty and compact. The same is true for p = 1 and every β ∈ (0, ∞) \ 4πN .

Letting p ↑ 2 suitably, we will obtain the following result, which according to us is the most relevant achievement of this paper. Theorem 0.2. Let (Σ, g 0 ) be a smooth closed surface and f be a smooth positive function. Let β > 0 be given. Then the set C 2,β of the positive critical points of the functional F constrained to E β is not empty and compact in C 2 .

A notable fact in Theorems 0.1 and 0.2 is that, except for p = 1, the full range β > 0 is covered and in particular also the case β ∈ 4πN . If fact we will also prove that the sets

β∈[4π(k-1)+δ,4πk] p∈[1+δ,2]
C p,β , β∈[4π(k-1)+δ,4πk-δ] p∈ [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF] C p,β are compact for any δ > 0, i.e. blow-up can occur only for β ↓ 4πN or for p → 1 and β → 4πN , as we shall see.

Let us explain the strategy of the proofs. We shall start with the existence part of Theorem 0.1. Here with a minmax scheme based on so called baricenters, as originally used in [START_REF] Djadli | Existence of conformal metrics with constant q-curvature[END_REF], we show that given p ∈ (1, 2) and β ∈ (4π, +∞) \ 4πN , the very low sublevels of I p,β are topologically non-trivial, see Proposition 1.1. This would allow to construct a Palais-Smale sequence at some minmax level, but it is only with a monotonicity trick introduced by Struwe, see [START_REF] Struwe | The existence of surfaces of constant mean curvature with free boundaries[END_REF], that we are able to construct Palais-Smale sequences that are bounded for almost every β > 0 and for p ∈ (1, 2). Then, again using the subcriticality of e u p with respect to (MT ), a H 1 -bounded subsequence strongly converges to a positive critical point of I p,β , see Proposition 1.3 (see also [START_REF] Costa | Concentration proles for the Trudinger-Moser functional are shaped like toy pyramids[END_REF]Thm. 5.1] for counterexamples to the strong convergence of bounded Palais-Smale sequences when p = 2).

The next step is to extend this result from the existence for a.e. β to the existence for every β ∈ (0, ∞) \ 4πN . This is done via the crucial compactness Theorem 4. 1, showing that a sequence (u ε ) ε of positive critical points of J pε,βε with p ε ∈ [1, 2) and β ε → β ∈ [0, ∞) can fail to be precompact only if β ∈ 4πN. If fact, as p ε ↑ 2, this also allows to show that the positive critical points of J pε,βε converge to positive critical points of F | E β if β ∈ 4πN, (see Corollary 4.1), hence proving Theorem 0.2, except for β ∈ 4πN . This quantization property (β ∈ 4πN in case of blow up) can be seen as a no-neck energy result, but not only. Indeed, in the specic case where p = 2, extending the quantization of [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF] to the surface setting, Yang [START_REF] Yang | Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary[END_REF] already proved a no-neck energy result for such sequences, but without excluding that some nonzero weak limit u 0 ≡ 0 appears. We know now that ruling this situation out, or in other words getting the sharp quantization (4.5) instead of (4.6), is a very sensitive property, which depends also on the lower-order terms appearing in the RHS of (0.16) (see for instance [START_REF] Mancini | Glueing a peak to a non-zero limiting prole for a critical MoserTrudinger equation[END_REF] for counterexamples with a perturbed version of the nonlinearity e u 2 ) and which requires to be more careful in the way we approach the border case p = 2. In this sense, our Theorem 4.1 cannot be seen as a perturbation of previous results, but it is a novelty in itself. We also mention that the proof of Theorem 4.1 never uses the Pohozaev identity, which is however quite classical in proving such quantization results. Instead, we rst compare in small disks our blow-up solutions with some radially symmetric functions solving the same PDE, sometimes called "bubbles", and we directly show that the dierence must satisfy some balance condition (see (3.1)). From this balance condition, we get that the union of these separate disks is large in the sense that the complementary region cannot contribute in the quantization (4.5). In this last part of the proof, we also show that our specic family of nonlinearities forces the Lagrange multipliers to converge appropriately to 0 (see Step 4.2) as blow-up occurs. One delicate consequence is that each disk only brings the minimal energy 4π in (4.5) (see also Remark 4.1).

Finally, covering the case β ∈ 4πN relies on delicate energy expansions of the blowing-up sequences carried out in Theorem 5.1 below. When β = 4π and p = 2, it was already observed in a slightly dierent setting (see [START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF][START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]) that such expansions do not clearly depend on the geometric quantities of the problem and that the energy always converges to 4π from above. In the present paper, we observe that this is still true at any level β ∈ 4πN and for all p ∈ [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF], so that if we let β ε ↑ β ∈ 4πN no blow-up occurs, while it could occur for β ε ↓ β ∈ 4πN . In striking contrast, the analogous expansions in [START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces[END_REF], dealing with an equation qualitatively similar to the case p = 1 (see Remark 0.2 below), are dierent in nature: for instance, the Gauss curvature of the surface appears and compactness is not always true at critical levels β ∈ 4πN (see the discussion below [START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces[END_REF]Corollary 1.2]).

We conclude this introduction with some remarks. Remark 0.1. When Σ is a non-simply connected bounded domain in R 2 , in [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities II-Existence of solutions of high energies[END_REF] the authors compute the Leray-Schauder degree of the Euler-Lagrange equation of the functional F | E β , showing that it is non-zero if Σ is not simply connected. Even if we were able to adapt the strategy to the case of a closed manifold Σ, when the genus of Σ is 0 (i.e. if Σ is topologically a sphere), the Leray-Schauder degree of the Euler-Lagrange equation is expected to be 1 for β ∈ (0, 4π], -1 for β ∈ (4π, 8π] and 0 for β > 8π. Hence this topological method fails to completely answer the question of the existence of critical points of F | E β on a closed surface.

In any case, the Leray-Schauder degree does not depend on p ∈ [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF] by compactness (except for p = 1 and β ∈ 4πN ), and coincides with that of the mean eld equation (with the full H 1 -norm, slightly dierent from [START_REF] Chen | Topological degree for a mean eld equation on Riemann surfaces[END_REF] or [START_REF] Malchiodi | Morse theory and a scalar eld equation on compact surfaces[END_REF]), namely (0.12) p = 1. For the case p ∈ (1, 2] and β = 4πk the L-S degree is equal to the degree for β ∈ (4π(k -1), 4πk) by Theorem 5.1. Remark 0.2. It is worth mentioning that, on a surface, there is a Moser-Trudinger inequality with a zero average constraint, namely

sup u∈Z β Σ e u 2 dv g0 < +∞ ⇔ β ≤ 4π , (MT Z )
where

Z β = u ∈ H 1 s.t. Σ |∇u| 2
g0 dv g0 = β and Σ u dv g0 = 0 . This inequality was already proven in the original paper of Moser [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF], if (Σ, g) is the standard 2-sphere, and in the general case by Fontana [START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF], dealing also with the higher dimensional case. The functional I β , qualitatively related to I p,β in (0.6) for p = 1,

I β (u) = 1 4β Σ |∇u| 2 g0 dv g0 + Σ u dv g0 -ln Σ e u dv g0 (0.10)
attracted a huge attention in the literature (see [START_REF] Li | Harnack type inequality: the method of moving planes[END_REF][START_REF] Chen | Topological degree for a mean eld equation on Riemann surfaces[END_REF][START_REF] Djadli | Existence result for the mean eld problem on riemann surfaces of all genuses[END_REF] and references therein) and its critical points give rise to the very much studied mean-eld equation. As a remark, for all β ≤ 4π, as (MT ) implies that I 1,β is bounded below, we get from (MT Z ) that I β is bounded below.

Remark 0.3. In the papers [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF], [START_REF] Chang | Extremal functions for a mean eld equation in two dimension[END_REF], [START_REF] Lin | Uniqueness of solutions for a mean eld equation on torus[END_REF], [START_REF] Suzuki | Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity[END_REF] some uniqueness results for Liouville equations in planar domains or on closed surfaces were proved, while in [START_REF] Marchis | Multiplicity result for a scalar eld equation on compact surfaces[END_REF], [START_REF] Marchis | Generic multiplicity for a scalar eld equation on compact surfaces[END_REF] some multiplicity results as well. It would be worthwhile to consider such issues for the critical points of the Moser-Trudinger functional as well.

Remark 0.4. Dierent kinds of bubbling solutions for the Moser-Trudinger inequalities on domains and surfaces were built in [START_REF] Del Pino | New solutions for Trudinger-Moser critical equations in R 2[END_REF][START_REF] Deng | Bubbling solutions for an exponential nonlinearity in R 2[END_REF][START_REF] Figueroa | Bubbling solutions for Moser-Trudinger type equations on compact Riemann surfaces[END_REF].

Preliminaries

It is convenient to get rid of the smooth weight function f and to reformulate the problem by introducing the norm • h given by

u 2 h = Σ |∇u| 2 g + hu 2 dv g , (0.11) 
where

h := 1/f ∈ C ∞ (Σ)
and where the new metric g is conformal to g 0 and given by g = f g 0 . Keeping then the notation in (0.1), we have u h = u H 1 for all u ∈ H 1 (Σ). Besides, since ∆ g = ∆ f g0 = f -1 ∆ g0 by the conformal covariance of the Laplacian, we obtain that u solves (0.7) if and only if it solves

∆ g u + hu = λpu p-1 e u p , u > 0 in Σ . (0.12)
Then, for all p ∈ [1, 2), the aforementioned critical points u of I p,β solving (0.7)-(0.8) are exactly those of the functional J p,β given by

J p,β (u) = 2 -p 2 p u 2 h 2β p 2-p -ln Σ e u p + -1 dv g , (0.13) 
solving (0.12) with λ > 0 given by

λp 2 2 p u 2 h 2β 2(p-1) 2-p Σ e u p -1 dv g = β .
(0.14)

Again, multiplying (0.12) by u and integrating by parts, (0.14) may be rephrased as

β = λp 2 2 Σ e u p -1 dv g 2-p p Σ u p e u p dv g 2(p-1) p . (0.15)
Now, even for p = 2, we have that u ∈ H 1 solves our problem (0.4)-(0.5), if and only if we have (0.12) for p = 2, namely

∆ g u + hu = 2λue u 2 , u > 0 in Σ , (0.16) 
with λ > 0 given by (0.15).

Remark 0.5. Working with (0.12) instead of (0.7) will considerably simplify the choice of constants and the writing of some estimates in the blow-up analysis. Yet, if one consents to burden the presentation, a straightforward adaptation of our proofs can handle the case where two independent weights appear, namely for the equation ∆ g u + hu = pλf u p-1 e u p .

Variational part

The main goal of the section is to prove the following theorem, with J p,β as in (0.13).

Theorem 1.1. Let (Σ, g) be a closed surface, a positive function h ∈ C ∞ (Σ) and let p ∈ (1, 2) be given. Then, for almost every β > 0, J p,β possesses a smooth and positive critical point u, where J p,β is as in (0.13).

As discussed in introduction, u given by Theorem 1.1 is smooth, positive and solves (0.12)-(0.14) for some λ > 0, as we shall now prove. Lemma 1.1. Every non-trivial critical point of J p,β , p ∈ (1, 2), is a smooth and positive solution to (0.12). Moreover, for every p ∈ [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF] every solution to (0.12) is smooth.

Proof. Assume p ∈ (1, 2). One easily veries that the Euler-Lagrange equation of

J p,β is ∆u + hu = λu p-1 + e u p + , (1.1) 
where λ > 0. Since e u p + ∈ L q (Σ) for every q ∈ [1, ∞) thanks to [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF], elliptic estimates imply that u ∈ C 2 (Σ).

We rst claim that u ≥ 0. Indeed, assume that Σ -:= {x ∈ Σ : u(x) < 0} = ∅. Then ∆u = -hu > 0 in Σ -, violating the weak maximum principle at a point of minimum.

Now consider Σ + := {x ∈ Σ : u(x) > 0}. We claim that Σ + = Σ, i.e. u > 0 everywhere. Otherwise ∂Σ + = ∅. Let then x 0 ∈ ∂Σ + be a point satisfying the interior sphere condition, and let D ⊂ Σ + be a disk with x 0 ∈ ∂D and such that

∆u = λu p-1 e u p -hu > 0 in D.
It is possible to nd such D because u(x 0 ) = 0, λ > 0, and p < 2. Then, by the Hopf lemma, see e.g. [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF]Lemma 3.4],

∂u ∂ν (x 0 ) < 0,
where ν is the outer normal to ∂Σ + at x 0 . This violates the non-negativity of u, leading to a contradition. Hence u > 0. Going back to (1.1), we can now bootstrap regularity, hence u ∈ C ∞ (Σ). Also for p = 1, 2 the regularity of solutions to (0.12) follows from elliptic estimates and [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF], which implies that the right-hand side of (0.12) belongs to L q (Σ) for

q ∈ [1, ∞).
In the rest of the section we consider p ∈ (1, 2) and the positive function h ∈ C ∞ (Σ) xed. The rst tools we shall need in the proof of Theorem 1.1 are improved Moser-Trudinger inequalities. Let us rst observe that from Young's inequality ab ≤ a q q + b r r applied with q = 2 p and r = q = 2 2-p we obtain, for u ≡ 0,

|u| p = |u| u h 8π p p u h p 8π p ≤ 4π u 2 u 2 h + u 2p 2-p h 2 -p 2 p 8π p 2-p ,
hence with (MT ) we get

ln Σ e |u| p -1 dv g ≤ ln Σ e |u| p dv g ≤ 2 -p 2 p u 2 h 8π p 2-p + C. (1.2) It follows that J p,β (u) ≥ 2 -p 2 p u 2 h p 2-p 1 2β p 2-p - 1 8π p 2-p -C, so that J p,β is coercive for β < 4π.
On the other hand, if the density e |u| p -1 is spread into k + 1 ≥ 1 disjoint regions we have the following improved Moser-Trudinger inequality which gives a uniform lower bound on J p,β (u) for each β < 4π(k + 1), see [START_REF] Chen | Prescribing Gaussian curvatures on surfaces with conical singularities[END_REF] for a related argument.

Lemma 1.2. For any xed k ∈ N, let Ω 1 , . . . , Ω k+1 be subsets of Σ satisfying dist(Ω i , Ω j ) ≥ δ 0 for i = j and some δ 0 > 0. Let also γ 0 ∈ 0, 1 k+1 , δ 1 ∈ (0, 8π(k + 1)). Then there exists a constant

C = C(k, δ 0 , δ 1 , γ 0 , Σ) such that ln Σ e |u| p -1 dv g ≤ 2 -p 2 p u 2 h 8π(k + 1) -δ 1 p 2-p + C (1.3) for all the functions u ∈ H 1 (Σ)\{0} satisfying Ωi e |u| p -1 dv g Σ e |u| p -1 dv g ≥ γ 0 , ∀ i ∈ {1, . . . , k + 1}.
(1.4) Proof. Fix u satisfying (1.4). We can nd k + 1 functions g 1 , . . . , g k+1 such that

       g i (x) ∈ [0, 1]
for every x ∈ Σ;

g i (x) = 1, for every x ∈ Ω i ; g i (x) = 0, if dist(x, Ω i ) ≥ δ0 2 ; g i C 1 ≤ C δ0,Σ .
(1.5) For ε > 0 small (to be xed depending on k and δ 1 ) using the inequality 2ab ≤ εa 2 + ε -1 b 2 we can nd a constant C ε,δ0 (the dependence of the constants on Σ and h will be omitted) such that, for any i ∈ {1, . . . , k + 1} and v ∈ H 1 (Σ) there holds

g i v 2 h ≤ Σ g 2 i |∇v| 2 dv g + ε Σ |∇v| 2 dv g + C ε,δ0 Σ v 2 dv g .
(1.6)

Now let λ ε,δ0 be an eigenvalue of ∆ g + h such that C ε,δ 0 λ ε,δ 0 < ε, where C ε,δ0 is as in (1.6), and write

u = P V ε,δ 0 u + P V ⊥ ε,δ 0 u =: u 1 + u 2 ,
where V ε,δ0 ⊂ H 1 (Σ) is the direct sum of the eigenspaces of ∆ g + h with eigenvalues less than or equal to λ ε,δ0 , and P V ε,δ 0 , P V ⊥ ε,δ 0 denote the projections onto V ε,δ0 and

V ⊥ ε,δ0 respectively. We now choose i such that Σ g 2 i |∇u 2 | 2 dv g ≤ Σ g 2 j |∇u 2 |
2 dv g for every j ∈ {1, . . . , k + 1}. Since the functions g 1 , . . . , g k+1 have disjoint supports, (1.6) applied with v = u 2 gives

g i u 2 2 h ≤ 1 k + 1 Σ |∇u 2 | 2 dv g + ε Σ |∇u 2 | 2 dv g + C ε,δ0 Σ u 2 2 dv g .
This, together with the inequalities

C ε,δ0 Σ u 2 2 dx ≤ C ε,δ0 λ ε,δ0 u 2 2 h ≤ ε u 2 2 h , implies g i u 2 2 h ≤ 1 k + 1 + 2ε u 2 2 h ≤ 1 k + 1 + 2ε u 2 h .
(1.7)

In particular from the Moser-Trudinger inequality (1.2) and (1.7), we have for ε small enough, which we now x depending on δ 1 and k,

ln Σ e (1+ε)|giu2| p dv g ≤ 2 -p 2 p(1 + ε) 2 p g i u 2 2 H 1 8π p 2-p + C ≤ 2 -p 2 p u 2 2 H 1 8π(k + 1) -δ 1 p 2-p + C. (1.8)
Notice also that since V ε,δ0 is nite dimensional, we have

v L ∞ ≤ Cε,δ0 v L 2 ≤ Ĉε,δ0 v h , for v ∈ V ε,δ0 , hence u 1 L ∞ (Ω) ≤ Ĉε,δ0 u 1 h .

Now, using the inequality

(a + b) p ≤ C ε,p a p + (1 + ε)b p , we get Σ e |giu| p dv g ≤ e Cε,p u1 p ∞ Σ e (1+ε)|giu2| p dv g ,
hence, from (1.4) and (1.8) we deduce

ln Σ e |u| p -1 dv g ≤ ln 1 γ 0 + ln Ωi e |u| p -1 dv g ≤ ln 1 γ 0 + ln Σ e |giu| p dv g ≤ ln 1 γ 0 + C ε,p u 1 p L ∞ + ln Σ e (1+ε)|giu2| p dv g ≤ 2 -p 2 p u 2 2 h 8π(k + 1) -δ 1 p 2-p + Cε,p u 1 p h + C , (1.9) with C = C (k, δ 0 , δ 1 , γ 0 , Σ).
A further application of Young's inequality to the term Cε,p u 1 p h and the inequality a q + b q ≤ (a + b) q for q > 1 then gives

ln Σ e |u| p -1 dv g ≤ 2 -p 2 p( u 2 2 H 1 + u 1 2 h ) 8π(k + 1) -δ 1 p 2-p + C with C = C(k, δ 0 , δ 1 , γ 0 , Σ), and since u 2 2 h + u 1 2 h = u 2 h we conclude.
The next lemma, proven in [START_REF] Djadli | Existence of conformal metrics with constant q-curvature[END_REF]Lemma 2.3], is a criterion which implies the situation described by condition (1.4).

Lemma 1.3. Let k be a given positive integer, and consider ε, r > 0. Suppose that for a non-negative function

f ∈ L 1 (Σ) with f L 1 = 1 there holds k i=1 Br(xi) f dx < 1 -ε for every k-tuple x 1 , . . . , x k ∈ Σ.
(1.10) Then there exist ε > 0 and r > 0, depending only on ε, r, k and Ω (but not on f ), and

k + 1 points x1,f , . . . , xk+1,f ∈ Σ such that B r(x j,f ) f dx ≥ ε, for j = 1, . . . , k + 1, and B 2r (x i,f ) ∩ B 2r (x j,f ) = ∅ for i = j.
Lemma 1.2 and Lemma 1.3 then imply the following other result. Lemma 1.4. If β ∈ (4πk, 4π(k + 1)) with k ≥ 1, the following property holds. For any ε > 0 and any r > 0 there exists a large positive constant L = L(ε, r, p, β) such that, for every u ∈ H 1 (Σ) with J p,β (u) ≤ -L there exist k points x 1 , . . . , x k ∈ Σ such that (1.11)

Proof. Fix ε, r, p, and β as in the statement of the lemma and let u ∈ H 1 (Σ) be such that J p,β (u) ≤ -L for some constant L ≥ 0, and assume by that (1.11) fails for every k-tuple of points x 1 , . . . , x k . Then setting

f := e |u| p -1 e |u| p -1 L 1
we have that (1.10) holds. Therefore, by Lemma 1.3 we can nd ε = ε(ε, r, k, Σ), r = r(ε, r, k, Σ) and points x1 , . . . , xk+1 ∈ Σ such that the assumptions of Lemma 1.2 hold with Ω i = B r (x i ), γ 0 = ε and δ 0 = 2r. Fix also δ 1 = 8π(k + 1) -2β. Then by Lemma 1.2 there exists a constant C depending on k, δ 0 , δ 1 , γ 0 , p and Σ, hence depending on ε, r, p, β, k and Σ such that

ln Σ e |u| p -1 dv g ≤ 2 -p 2 p u 2 H 1 2β p 2-p + C,
hence J p,β (u) ≥ -C, and up to choosing L > C we obtain a contradiction, unless (1.11) holds for a suitable k-tuple x 1 , . . . , x k ∈ Σ.

Given k ∈ N we introduce the set of formal barycenters of Σ of order k, namely

Σ k = σ = k i=1 t i δ xi : x i ∈ Σ, t i ≥ 0, k i=1 t i = 1 ,
where δ xi is the Dirac mass at x i , see [START_REF] Djadli | Existence of conformal metrics with constant q-curvature[END_REF], [START_REF] Malchiodi | Topological methods for an elliptic equation with exponential nonlinearities[END_REF]. We will see Σ k as a subset of M(Σ), the set of all probability Radon measures on Σ, endowed with the distance dened using duality versus Lipschitz functions:

dist(µ, ν) := sup ψ Lip(Σ) ≤1 Σ ψ dµ - Σ ψ dν , µ, ν ∈ M(Σ), (1.12) 
which receives the name of Kantorovich-Rubinstein distance.

Lemma 1.5. For any ε > 0 there exist δ > 0 and r ε > 0 such that, for any

r ∈ (0, r ε ], if f ∈ L 1 (Σ) is a non-negative function such that Σ\∪ k i=1 Br(xi) f dv g Σ f dv g < δ (1.13)
for some x 1 , . . . , x k ∈ Σ, then

dist f dv g Σ f dv g , σ < ε, where σ = k i=1 t i δ xi , t i = Br(xi) f dv g ∪ k j=1 Br(xj ) f dv g .
Proof. Consider a function ψ on Σ with ψ Lip(Σ) ≤ 1, which we can assume to have zero average, and let us estimate for Σ f dv g = 1 (otherwise, we can rescale f by a constant)

Σ f ψ dv g - Σ ψ dσ ≤ k i=1 Br(xi) f ψ dv g - Br(xi) ψ dσ + Σ\∪ k i=1 Br(xi)
f ψ dv g .

Since f ≥ 0, with Σ f dv g = 1, and since ψ is uniformly bounded by the diameter of Σ (due to the fact that it is 1-Lipschitz and has zero average), by (1.13) we clearly have that

Σ\∪ k i=1 Br(xi) f ψ dv g ≤ δ diam g (Σ).
On the other hand, for the same reason we have that

∪ k j=1 Br(xj ) f dv g = 1 + O(δ),
which implies that t i = (1 + O(δ)) Br(xi) f dv g and in turn that

Br(xi) ψdσ = t i Ψ(x i ) = ψ(x i ) Br(xi) f dv g + O(δ).
Again from the fact that ψ is 1-Lipschitz, we get that

Br(xi) f ψ dv g = ψ(x i ) Br(xi) f dv g + O(r).
Since ψ was arbitrary, the conclusion follows from the last four formulas.

An immediate consequence of Lemma 1.4 and Lemma 1.5 is that the low sublevels of J p,β can be mapped close to Σ k , in the sense of the following lemma. Lemma 1.6. Given β ∈ (4πk, 4π(k + 1)) with k ≥ 1, ε > 0 there exists L = L(ε, p, β) such that for every u ∈ H 1 (Σ) with J p,β ≤ -L we have

dist e |u| p -1 dv g Σ e |u| p -1 dv g , Σ k < ε.
Let us rst recall a well known result about Σ k , endowed with the topology induced by dist(•, •).

Lemma 1.7 ([38]). For any k ≥ 1 the set Σ k is non-contractible.

Our goal is to show that, if β ∈ (4πk, 4π(k + 1)), Σ k can be mapped into very negative sublevels of J p,β and that this map is non trivial in the sense that it carries some homology. Then, as a consequence of the previous Lemma we will get the non contractibility of low sublevels of J p,β .

Let us rst dene the standard bubble ϕ γ : R 2 → R for γ > 0,

ϕ γ (x) := 2 p 1 p γ 1 - 1 γ p ln 1 + |x| 2 r 2 γ +
, where r γ is chosen so that

r γ = o e -γ p , ln r γ e γ p = o(γ p ), (1.14) 
for instance, r γ = γ -1 e -γ p . Now, given x ∈ Σ we dene the function ϕ γ,x : Σ → R as

ϕ γ,x = 2 p 1 p γ 1 - 1 γ p ln 1 + d 2 (y, x) r 2 γ + .
Notice that ϕ γ,x (y) > 0 if and only if y ∈ B δγ (x), where

δ 2 γ := r 2 γ (e γ p -1) → 0 as γ → ∞. (1.15) 
For a barycenter σ = k i=1 t i δ xi ∈ Σ k we now want to construct test functions ϕ γ,σ continuous with respect to σ (from M(Σ) into H 1 (Σ)) concentrating mass near the points x i , in the sense that

(e ϕ p γ,σ -1)dv g Σ e ϕ p γ,σ -1 dv g → σ, as γ → ∞. (1.16)
In order to do so, to each t ∈ [0, 1] and γ > 0 we associate τ = τ (t, γ) such that

R 2 e (ϕγ -τ ) p + -1 dx R 2 e ϕ p γ -1 dx = t.
(1.17)

Notice that τ is decreasing with respect to t and that τ (0, γ)

= 2 p 1 p γ, τ (1, γ) = 0
for every γ > 0. We will need the following elementary estimate. Proof. Given γ, τ > 0, consider L ≥ 2 γ to be xed later. We easily see that

{ϕγ <L} e (ϕγ -τ ) p + -1 dx ≤ {ϕγ <L} e ϕ p γ -1 dx ≤ e L p -1 πδ 2 γ = o γ (1).
(1.18)

Moreover, for γ such that

2 p 1 - ln 2 γ p p ≥ 1 + ε > 1,
also using that ϕ γ ≥ L on B rγ (0) for γ large, we get

{ϕγ ≥L} e ϕ p γ -1 dx ≥ Br γ (0) e 2 p γ p (1-ln 2 γ p ) p -1 dx ≥ Br γ (0) e (1+ε)γ p -1 dx ≥ πr 2 γ e (1+ε)γ p -1 → ∞.
(1.19)

By the Taylor expansion

(1 -x) p = 1 -px + p(p -1) 2(1 -ξ) 2-p x 2 ≤ 1 -px + C p x 2 , 0 ≤ ξ ≤ x ≤ 1 2 ,
we get for

ϕ γ ≥ L ≥ 2τ (ϕ γ -τ ) p + ≤ ϕ p γ -pτ ϕ p-1 γ + C p τ 2 ϕ p-2 γ ≤ ϕ p γ - p 2 τ ϕ p-1 γ
up to choosing L ≥ L 0 (p) suciently large. We then infer

{ϕγ ≥L} e (ϕγ -τ

) p + -1 dx ≤ e -p 2 τ L p-1 {ϕγ ≥L} e ϕ p γ dx = o L R 2 e ϕ p γ -1 dx , as L → ∞.
(1.20)

Putting (1.18)-(1.20) together it follows that t(τ, γ) := R 2 e (ϕγ -τ ) p + -1 dx R 2 e ϕ p γ -1 dx = o(1) as γ → ∞
for any τ > 0. This implies that τ ( t, γ) = o(1) as γ → ∞ for any t ∈ (0, 1] since otherwise there would be sequences γ ε → 0 and τ ε ∈ (0, γ ε ] such that τ ε ( t, γ ε ) ≥ τ * > 0, and by monotonicity

0 < t = t(τ ε , γ ε ) ≤ t(τ * , γ ε ) = o(1)
as ε → 0, a contradiction. Using the monotonicity of τ with respect to t the conclusion follows at once. Now call τ i = τ (t i , γ), 1 ≤ i ≤ k and dene ϕ γ,σ by the formula

e ϕ p γ,σ -1 = k i=1 e (ϕγ,x i -τi) p + -1 ,
or, explicitly

ϕ γ,σ = ln 1 p 1 + k i=1 e (ϕγ,x i -τi) p + -1 .
(1.21)

Notation. Until the end of the section o(1) (resp. O(1)) will denote a quantity tending to 0 (resp. a bounded quantity) as γ → ∞, uniformly with respect to x ∈ Σ and σ ∈ Σ k .

Lemma 1.9. For every x ∈ Σ, we have

Σ |∇ϕ γ,x | 2 dv g = 2 p 2 p 4πγ 2-p (1 + o(1)), as γ → ∞.
Proof. By a straightforward computation, for any y ∈ B δγ (x), we get

∇ϕ γ,x (y) = - 2 p 1 p γ 1-p r -2 γ ∇ y (d 2 (y, x)) 1 + r -2 γ d 2 (y, x) , while ∇ϕ γ,x (y) = 0 in Σ \ B δγ (x).
Using geodesic coordinates centered at x, with an abuse of notation, we identify the points in Σ with their pre-image under the exponential map. Using these coordinates, and recalling that δ γ → 0 we have that

d(y, x) = |y -x|(1 + o(1)), |∇ y (d 2 (y, x))| = 2|y -x|(1 + o(1)), y ∈ B δγ (x) hence |∇ϕ γ,x (y)| = 2 p 1 p γ 1-p (1 + o(1)) 2|y -x| r 2 γ + |y -x| 2 , y ∈ B δγ (x).
(1.22)

Thanks to the change of variable s = r 2 γ + ρ 2 , we are able to conclude that

Σ |∇ϕ γ,x | 2 dv g = B δγ (x) |∇ϕ γ,x | 2 dv g = 2 p 2 p γ 2-2p (1 + o(1)) B R 2 δγ (x) 4|y -x| 2 (r 2 γ + |y -x| 2 ) 2 dy = 2 p 2 p 4πγ 2-2p (1 + o(1)) δγ 0 2ρ 3 (r 2 γ + ρ 2 ) 2 dρ = 2 p 2 p 4πγ 2-2p (1 + o(1)) r 2 γ e γ p r 2 γ 1 s - r 2 γ s 2 ds = 2 p 2 p 4πγ 2-p (1 + o(1)),
yielding the result.

Lemma 1.10. In the above notation we have, uniformly

for σ ∈ Σ k Σ |∇ϕ γ,σ | 2 dv g ≤ 2 p 2 p 4πkγ 2-p (1 + o(1)).
Proof. We compute

∇ϕ γ,σ = k i=1 (ϕ γ,xi -τ i ) p-1 + e (ϕγ,x i -τi) p + ∇ϕ γ,xi ln p-1 p 1 + k j=1 e (ϕγ,x j -τj ) p + -1 1 + k j=1 e (ϕγ,x j -τj ) p + -1 . Notice that 0 ≤ (ϕ γ,xi -τ i ) p-1 + e (ϕγ,x i -τi) p + ln p-1 p 1 + k j=1 e (ϕγ,x j -τj ) p + -1 1 + k j=1 e (ϕγ,x j -τj ) p + -1 ≤ a i χ {ϕγ,x i >τi} ,
where

a i := e (ϕγ,x i -τi) p + 1 + k j=1 e (ϕγ,x j -τj ) p + -1 , hence |∇ϕ γ,σ (x)| ≤ k i=1 a i (x)|∇ϕ γ,xi (x)|χ {ϕγ,x i >τi} (x).
Split now Σ as a disjoint (up to sets of measure zero) union

Ω 1 ∪ • • • ∪ Ω k , such that |∇ϕ γ,xj (x)| = max 1≤i≤k |∇ϕ γ,xi (x)| for x ∈ Ω j ,
and further split Σ as Σ = Σ + ∪ Σ -, where

Σ + :=    x ∈ Σ : k j=1 e (ϕγ,x j (x)-τj ) p + ≥ γ    , Σ -:= Σ \ Σ + .
Notice that k i=1 a i (x) ≤ 1 + o γ (1) 

for x ∈ Σ + .
Then, with the help of Lemma 1.9 we obtain

Σ+ |∇ϕ γ,σ | 2 dx ≤ k j=1 Σ+∩Ωj k i=1 a i |∇ϕ γ,xj | 2 dx ≤ (1 + o(1)) k j=1 Σ+ |∇ϕ γ,xj | 2 dx ≤ (1 + o(1)) 2 p 2 p 4πkγ 2-p .
(1.23)

We now want to prove that the integral over Σ -is negligible. Indeed we have

k i=1 a i (x) ≤ k for x ∈ Σ -,
since s s-k+1 ≤ k for s ≥ k, and similarly to (1.23) we get

Σ- |∇ϕ γ,σ | 2 dx ≤ k 2 k j=1 Σ-∩Ωj |∇ϕ γ,xj | 2 dx.
In order to estimate the right-hand side, observe that

1 ≤ e (ϕj (x)-τj ) p + ≤ γ for x ∈ Σ -.
This implies that

Σ -∩ Ω j ⊂ B R1 (x j ) \ B r1 (x j ) for every j,
where R 1 and r 1 are given by the relations

1 ≤ e Cpγ 1-1 γ p ln 1+ d 2 (x,x j ) r 2 γ -τj p ≤ γ, C p := 2 p 1 p .
This yields

γ p -C -1 p τ j γ p-1 ≥ ln 1 + d 2 (x, x j ) r 2 γ ≥ γ p -C -1 p τ j γ p-1 -γ p-1 ln 1 p γ,
and

R 2 1 = e γ p -C -1 p τj γ p-1 -1 r 2 γ , r 2 1 = e γ p -C -1 p τj γ p-1 -γ p-1 ln 1 p γ -1 r 2 γ .
We now integrate as in Lemma 1.9, and with the same change of variables s = r 2 γ +ρ 2

we obtain

B R 1 (xj )\Br 1 (xj ) |∇ϕ γ,xj | 2 dv g = O γ 2-2p r 2 γ +R 2 1 r 2 γ +r 2 1 s -r 2 γ s 2 ds ≤ O γ 2-2p r 2 γ e γ p -C -1 p τ j γ p-1 r 2 γ e γ p -C -1 p τ j γ p-1 -γ p-1 ln 1 p γ ds s = O γ 1-p ln 1 p γ = o(γ 2-p ).
Together with (1.23), we conclude.

Lemma 1.11. We have the following estimates, uniformly for

σ ∈ Σ k Σ hϕ 2 γ,σ dv g = o(γ 2-p ).
Proof. Let us rst evaluate, for x ∈ Σ, Σ ϕ 2 γ,x dv g . Being

Br γ (x) ϕ 2 γ,x dv g = o(1), ϕ γ,x = 0 in Σ \ B δγ (x),
it is enough to estimate B δγ (x)\Br γ (x) ϕ 2 γ,x dv g . Using normal coordinates at x and the change of variables s = 1 + r 2 r 2 γ , we get

Σ\Br γ (x) ϕ 2 γ,x dv g = O(γ 2 ) δγ rγ r 1 - 2 γ p ln(1 + r 2 r 2 γ ) + 1 γ 2p ln 2 (1 + r 2 r 2 γ ) dr = O(γ 2 ) e γ p 2 r 2 γ 1 - 2 γ p ln(s) + 1 γ 2p ln 2 (s) ds = O(γ 2 r 2 γ ) s - 2 γ p (-s + s ln s) + 1 γ 2p (2s -2s ln s + s ln 2 s) e γ p 2 = O(γ 4-4p ) = o(γ 2-p ).
(1.24)

Splitting Σ as a disjoint (up to sets of measure zero) union

Ω1 ∪ • • • ∪ Ωk , so that ϕ γ,xi (x) = max 1≤j≤k ϕ γ,xj (x) for x ∈ Ωj ,
we have

ϕ 2 γ,σ (x) ≤ ln 2 p k i=1 e ϕ p γ,x i (x) ≤ k j=1 χ Ωj (x) ln 2 p e ϕ p γ,x j (x) ≤ k j=1 ln k + ϕ p γ,xj (x) 2 p ≤ O(1) + O(1) k j=1 ϕ 2 γ,xj (x),
where in the last inequality we used the convexity of the map t → t 2 p . As a consequence, since h is bounded,

Σ hϕ 2 γ,σ dv g = O(1) + O(1) k j=1 Σ ϕ 2 γ,xj (x) dv g (1.24) = o(γ 2-p ),
as desired.

Lemma 1.12. We have, uniformly

for σ ∈ Σ k ln Σ e ϕ p γ,σ -1 dv g ≥ 2 -p p γ p (1 + o(1)), as γ → ∞. Proof. Given σ = k i=1 t i δ xi ∈ Σ k , x i such that t i ≥ 1 k . Then, according to Lemma 1.8 we have τ i = o(1) as γ → ∞, hence ϕ p γ,σ ≥ (ϕ γ,xi -τ i ) p + ≥ 2 p γ p 1 - ln 2 γ p -o γ (1) p + ≥ 2 p γ p (1 + o(1)) on B rγ (x i )
for γ suciently large. Then, also using (1.14), it follows

ln Σ e ϕ p γ,σ -1 dv g ≥ ln Br γ (xi) e ϕ p γ,σ -1 dv g ≥ ln (1 + o(1))πr 2 γ e 2 p γ p (1+o(1)) = 2 p -1 + o(1) γ p = 2 -p p γ p (1 + o(1)), as claimed. Lemma 1.13. Given β ∈ (4πk, 4π(k + 1)), with k ≥ 1, then as γ → +∞ we have: i. J p,β (ϕ γ,σ ) → -∞ uniformly for σ ∈ Σ k , ii. dist e ϕ p γ,σ -1 dvg Σ e ϕ p γ,σ -1 dvg , σ → 0 uniformly for σ ∈ Σ k , see (1.12).
Proof. i. By denition of ϕ γ,σ and Lemmas 1.10, 1.11 and 1.12 we have

J p,β (ϕ γ,σ ) = 2 -p 2 p ϕ γ,σ 2 h 2β p 2-p -ln Σ e ϕ p γ,σ -1 dv g ≤ 2 -p 2 p( 2 p ) 2 p 4πkγ 2-p (1 + o(1)) 2β p 2-p - 2 -p p γ p (1 + o(1)) = 2 -p 2 4πk β p 2-p 2 p γ p (1 + o(1)) - 2 -p p γ p (1 + o(1)) = 2 -p p γ p 4πk β p 2-p -1 (1 + o(1)) → -∞, uniformly for σ ∈ Σ k .
ii. Let us rst collect some simple calculations.

Let σ = k i=1 t i δ xi ∈ Σ k : then, since δ γ → 0 when γ → +∞, B δγ (xi) e (ϕγ,x i -τi) p + -1 dv g = (1 + o(1)) B R 2 δγ (0) e (ϕγ -τi) p + -1 dx (1.17) = (1 + o(1)) t i R 2 e ϕ p γ -1 dx, (1.25) 
as a consequence

∪ k j=1 B δγ (xj ) (e ϕ p γ,σ -1) dv g (1.21) = ∪ k j=1 B δγ (xj ) k i=1 e (ϕγ,x i -τi) p + -1 dv g = k i=1 B δγ (xi) e (ϕγ,x i -τi) p + -1 dv g (1.25) = (1 + o(1)) R 2 e ϕ p γ -1 dx, (1.26) 
where in the second identity we used that ϕ γ,xi ≡ 0 on Σ \ B δγ (x i ). Given ε > 0, we need to show that

dist (f γ,σ dv g , σ) < 2ε
for γ suciently large, uniformly for σ ∈ Σ k , where

f γ,σ = e ϕ p γ,σ -1 Σ e ϕ p γ,σ -1 dv g .
Let δ > 0 and r ε > 0 be the positive constants of the statement of Lemma 1.5.

It is immediate to see that f γ,σ satises (1.13), being ϕ γ,σ ≡ 0 in Σ \ ∪ k i=1 B δγ (x i ),
then by Lemma 1.5 (which holds with r = δ γ , if γ is suciently large)

dist (f γ,σ , σ γ ) < ε where σ γ := k i=1 B δγ (xi) (e ϕ p γ,σ -1)dv g ∪ k j=1 B δγ (xj ) (e ϕ p γ,σ -1)dv g δ xi .
(1.27)

In virtue of (1.25) and (1.26) 1))δ xi , and so dist(σ γ , σ) < ε for γ suciently large.

σ γ = k i=1 t i (1 + o(
(1.28) The thesis follows from (1.27) and (1.28).

Let us set for

L > 0 J -L p,β := {u ∈ H 1 (Σ) : J p,β (u) ≤ -L}. Proposition 1.1. Let β ∈ (4πk + δ, 4π(k + 1) -δ), with k ≥ 1 and δ ∈ (0, 1 2 ). 
Then, there exist L > 0 and γ > 0 suciently large depending on p, k and δ, and a continuous function

Ψ : J -L p,β -→ Σ k such that i) Φ(σ) := ϕ γ,σ ∈ J -2L
p,β for every σ ∈ Σ k and ii) the map Ψ•Φ : Σ k → Σ k , is homotopically equivalent to the identity on Σ k . Proof. By [2, Proposition 2.2] there exist ε > 0 and a continuous retraction

Ψ : {σ ∈ M(Σ) : dist(σ, Σ k ) < ε} → Σ k . By Lemma 1.6 there exists L = L(ε, p, β) such that for every u ∈ J -L p,β dist e |u| p -1 dv g Σ e |u| p -1 dv g , Σ k < ε.
Since the map u → (e |u| p -1)dvg

Σ (e |u| p -1)dvg is continuous from J -L p,β ⊂ H 1 (Σ) into M(Σ), for such L the map Ψ : J -L p,β → Σ k dened as Ψ(u) := Ψ e |u| p -1 dv g Σ e |u| p -1 dv g
is well posed and continuous with respect to the H 1 (Σ) topology.

In turn, by Lemma 1.13 there exist γ > 0 such that

ϕ γ,σ ∈ J -2L p,β , dist   e ϕ p γ,σ -1 dv g Σ e ϕ p γ,σ -1 dv g , σ   < ε, for any σ ∈ Σ k . (1.29) Hence Ψ • Φ(σ) = Ψ(ϕ γ,σ
) is well dened and we only need to show that

Ψ • Φ Id Σ k . Consider the homotopy H : [0, 1] × Σ k → M(Σ)
given by

H(s, σ) = sσ + (1 -s) e ϕ p γ,σ -1 dv g Σ e ϕ p γ,σ -1 dv g .
From (1.29) we infer that

dist(H(s, σ), Σ k ) ≤ dist(H(s, σ), σ) < ε for s ∈ [0, 1], σ ∈ Σ k , so Ψ is
well dened on the image of H and we can then dene the homotopy

H : [0, 1] × Σ k → Σ k H(s, σ) = Ψ • H(s, σ).
Clearly

H(0, •) = Ψ • Φ and H(1, •) = Id Σ k .
We are now ready to construct a minmax scheme in the spirit of [START_REF] Djadli | Existence of conformal metrics with constant q-curvature[END_REF]. Given p, k and δ > 0, x L > 0, γ > 0 and Φ : Σ k → H 1 (Σ) as in Proposition 1.1.

Consider the topological cone C k over Σ k dened as

C k = (Σ k × [0, 1])/ ∼ where (σ 1 , r 1 ) ∼ (σ 2 , r 2 ) if and only if r 1 = r 2 = 1. We shall also identify Σ k × {0} with Σ k . Set A k := { Φ ∈ C 0 (C k , H 1 (Σ)) s.t. Φ| Σ k = Φ}, and call α β := inf Φ∈A k max ξ∈C k J p,β ( Φ(ξ))
(1.30) the minmax value.

Lemma 1.14. With the above choice of L and γ, depending on p, k and δ, we have

α β ≥ -L, sup Φ∈A k sup ξ∈Σ k J p,β ( Φ(ξ)) ≤ -2L.
(1.31)

Proof. The second inequality follows immediately from Proposition 1.1. Assume by contradiction that α β < -L: then we can nd Φ ∈ A k such that

Φ(C k ) ⊂ J -L p,β .
By Proposition 1.1, the map

Ψ • Φ : C k → Σ k
is well-dened and continuous. Moreover, on the one hand

Ψ • Φ| Σ k = Ψ • Φ Id Σ k , (1.32 

) and on the other hand

Ψ • Φ gives a homotopy between Ψ • Φ(•, 0) = Ψ • Φ| Σ k and the constant map Ψ • Φ(•, 1
). This and (1.32) imply that Σ k is homotopic to a point, which contradicts Lemma 1.7.

We will now use a well-known monotonocity trick by Struwe to construct bounded Palais-Smale sequences for J p,β at level α β , as dened in (1.30): Proposition 1.2. For almost every β > 4π the functional J p,β admits a bounded Palais-Smale sequence at level α β , i.e. a sequence

(u ε ) bounded in H 1 (Σ) such that J p,β (u ε ) → α β , J p,β (u ε ) → 0 as k → ∞.
(1. [START_REF] Laurain | Concentration of CM C surfaces in a 3-manifold[END_REF] Proof. Since for all u ∈ H 1 β → J p,β (u) is monotone decreasing, the function β → α β is non-increasing, hence it is dierentiable almost everywhere. Set

D p := {β ∈ (4π, ∞) \ 4πN : α β is dierentiable}. Take β ∈ D p , x δ ∈ (0, 1 
2 ) and k ∈ N such that β ∈ (4πk + δ, 4π(k + 1) -δ), and choose a sequence (1.34) and let also ξ ε ∈ C k be given such that

β ε ↑ β with β ε ∈ (4πk + δ, 4π(k + 1) -δ). For every ε > 0 let a function Φε ∈ A k be given such that max ξ∈C k J p,βε ( Φε (ξ)) ≤ α βε + (β -β ε ),
J p,β ( Φε (ξ ε )) ≥ α β .
(1.35) Notice that the set of ( Φε , ξ ε )'s satisfying (1.34)-(1.35) is non-empty thanks to (1.30) (used with β and β ε ).

Set

v ε := Φε (ξ ε ). Then, posing C p := 2-p 2 p 2 p 2-p , we have that J p,βε (v ε ) -J p,β (v ε ) = C p v ε 2p 2-p h 1 β p 2-p ε - 1 
β p 2-p , hence, setting q = p 2-p , α β = dα β
dβ , and writing

β q -β q ε = -qβ q-1 (β ε -β) + o(β ε -β),
we bound

v ε 2q h = (β ε β) q C p J p,βε (v ε ) -J p,β (v ε ) β q -β q ε ≤ (β ε β) q C p α βε -α β + β -β ε β q -β q ε = β 2q + o(1) C p • -α β + 1 + o(1) qβ q-1 ≤ Cp,β .
(1.36)

In particular v ε 2p p-2 h = O(1) as ε → 0 for any sequence v ε = Φ ε (ξ ε )
, where Φ ε and ξ ε satisfy (1.34) and (1.35).

We now proceed similarly to [START_REF] Ding | Existence results for mean eld equations[END_REF]. For every δ > 0 (not the same as in Lemma 1.14) consider the set

N δ,M := u ∈ H 1 (Σ) : u h ≤ M, |J p,β (u) -α β | < δ for M ≥ C p-2 2p p,β + 1,
where Cp,β is as in (1.36). Notice that N δ,M is non-empty by the previous discussion.

Assume that the claim of the proposition is false, so that there exists δ > 0 small such that

J p,β (u) H -1 ,h := sup v h ≤1 J p,β (u), v ≥ 2δ for u ∈ N δ,M . Since J p,β is of class C 1 (on the open set of H 1 (Σ)
where it is nite), we can construct a locally Lipschitz pseudo-gradient vector eld (see e.g. [48, Lemma 3.2])

X : H 1 (Σ) → H 1 (Σ) such that sup u∈N δ,M X(u) h ≤ 1, sup u∈N δ,M J p,β (u), X(u) ≤ -δ.
We have

J p,β (u), v = C p,β u 4p-4 2-p H 1 u, v h -Σ pu p-1 + e u p + vdv g Σ e u p + -1 dv g , (1.37) 
where u, v h := Σ (∇u∇v + huv)dv g and

C p,β = p p 2β p 2-p , hence, for any se- quence β ε ↑ β J p,β (u) -J p,βε (u) H -1 ,h ≤ (C p,β -C p,βε ) u 3p-2 2-p h = o(1) as ε → 0, uniformly for u ∈ N δ,M . Then for ε small we have sup u∈N δ,M J p,βε (u), X(u) ≤ 0.

We now choose a Lipschitz cut-o function

η : H 1 (Σ) → [0, 1] such that η(u) = 0 if u ∈ H 1 (Σ) \ N δ,M and η(u) = 1 if u ∈ N δ 2 ,M -1 ,
and consider the ow φ t : H 1 (Σ) → H 1 (Σ) generated by the vector eld ηX.

Assuming with no loss of generality that

-2L < α β -δ, since Φ(Σ k ) ⊂ J -2L p,β , it follows that φ t • Φ| Σ k = Φ| Σ k = Φ, hence φ t • Φ ∈ A k for every Φ ∈ A k , t ≥ 0. Moreover dJ p,βε (φ t (u)) dt t=0 ≤ 0, for u ∈ H 1 (Σ), (1.38) 
hence if Φε satises (1.34), so does φ t • Φε for t ≥ 0. Moreover, for ε small, given any Φε ∈ A k satisfying (1.34)

α β ≤ max ξ∈C k J p,β (φ t ( Φε (ξ))) = max ξ∈C k : Φε(ξ)∈N δ 2 ,M -1 J p,β (φ t ( Φε (ξ))), (1.39) 
since every ξ ε ∈ C k attaining the maximum of J p,β (φ t ( Φε (•))) satises (1.35), so (1.39) follows from (1.36) and our choice of M . Therefore, since

dJ p,β (φ t (u)) dt t=0 ≤ -δ, for u ∈ N δ 2 ,M -1 ,
we infer

d dt sup ξ∈C k J p,β (φ t ( Φε (ξ))) ≤ -δ for t ≥ 0,
which contradicts (1.39).

Proposition 1.3. Given p ∈ (1, 2) and β > 0, let (u ε ) ⊂ H 1 (Σ) be a bounded Palais-Smale sequence for J p,β . Then up to a subsequence we have u ε → u 0 strongly in H 1 (Σ), where u 0 > 0 is a positive critical point of J p,β .

Proof. Up to a subsequence we have u ε → u 0 in L q (Σ) for every q < ∞, almost everywhere and weakly in H 1 (Σ). Moreover, by Young's inequality and the Moser-Trudinger inequality we infer e u p ε+ L q ≤ C(p, q, u ε h ) for every q < ∞, (1.40) hence from Vitali's theorem

Σ e u p ε+ dv g → Σ e u p 0+ dv g as ε → 0. (1.41)
From (1.37) we deduce that

J p,β (u ε ), u ε -u 0 = o(1) as ε → 0. Using u ε -u 0 as test function in J p,β (u ε ) → 0, we obtain o(1) = J p,β (u ε ) -J p,β (u 0 ), u ε -u 0 = C p,β u ε 4p-4 2-p h u ε -u 0 4p-4 2-p h u 0 , u ε -u 0 h -Σ pu p-1 ε+ e u p ε+ (u ε -u 0 )dv g Σ e u p ε+ dv g + Σ pu p-1 0+ e u p 0+ (u ε -u 0 )dv g Σ e u p 0+ dv g .
Taking (1.40), (1.41) and the Sobolev embedding into account we notice that the last two terms sum up to o(1), so that

o(1) = u ε 4p-4 2-p h u ε -u 0 4p-4 2-p h u 0 , u ε -u 0 h = u ε 4p-4 2-p h u ε -u 0 2 h + u ε 4p-4 2-p h -u 0 4p-4 2-p h u 0 , u ε -u 0 h = u ε 4p-4 2-p h u ε -u 0 2 h + o(1), hence u ε → u 0 strongly in H 1 (Σ).
In order to prove that u 0 is a critical point of J p,β , for v ∈ H 1 (Σ) we write

J p,β (u 0 )(v) = J p,β (u 0 )(v) -J p,β (u ε )(v) + o(1) = C p,β u ε 4p-4 2-p h u ε -u 0 4p-4 2-p h u 0 , v h -Σ pu p-1 ε+ e u p ε+ vdv g Σ e u p ε+ dv g + Σ pu p-1 0+ e u p 0+ vdv g Σ e u p 0+ dv g + o(1) = C p,β u 0 4p-4 2-p h u ε -u 0 , v h + u ε 4p-4 2-p h -u 0 4p-4 2-p h u ε , v h + o(1) = o(1), hence J p,β (u 0 ) = 0.
Were u 0 ≡ 0, with (1.41) we would infer that J p,β (u ε ) → ∞, which is impossible since (u ε ) is a Palais-Smale sequence. Then Lemma 1.1 implies that u 0 > 0.

Remark 1.1. The analogue of proposition 1.3 does not hold in the case p = 2 as proven by Costa-Tintarev (Theorem 5.1 in [START_REF] Costa | Concentration proles for the Trudinger-Moser functional are shaped like toy pyramids[END_REF]).

Proof of Theorem 1.1 (completed). For every β ∈ (0, 4π) the functional J p,β has a minimizer, hence a critical point, which can be obtained via direct methods, using (1.2), (1.40) and (1.41). The existence of critical points for a.e. β > 4π follows at once from Propositions 1.2 and 1.3.

A first analysis in the radially symmetric case

Let (p γ ) γ be any family of numbers in [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF], and let (µ γ ) γ be a given family of positive real numbers. Let λ γ > 0 be given by

λ γ p 2 γ γ 2(pγ -1) µ 2 γ e γ pγ = 8 , (2.1) 
and let t γ , tγ be dened in R 2 by

t γ (x) = ln 1 + |x| 2 µ 2 γ ; tγ = t γ + 1 , (2.2) 
for all γ > 0 large. In the sequel, for any radially symmetric function f around 0 ∈ R 2 , since no confusion is then possible, we often make an abuse of notation and write f (r) instead of f (x) for |x| = r. Let η ∈ (0, 1) be xed. Let also (r γ ) γ be any family of positive real numbers such that

lim γ→+∞ µ γ rγ = 0 , (2.3) 
t γ (r γ ) ≤ η p γ γ pγ 2 , (2.4) 
γ 2pγ r2 γ = O(1) (2.5) 
for all γ 1 large. Given a positive constant h 0 > 0, we study in this section the behavior as γ → +∞ of a family (B γ ) γ of functions solving

     ∆B γ + h 0 B γ = λ γ p γ B pγ -1 γ e B pγ γ , B γ (0) = γ > 0 ,
B γ is radially symmetric and positive in B rγ (0) , (2.6) where ∆ = -∂ xx -∂ yy denotes the Euclidean Laplace operator in R 2 . For γ xed, (2.6) reduces to an ODE with respect to the radial variable r = |x|: then we may assume that B γ , dened in [0, s γ ), is the maximal positive solution of (2.6) and it may be checked that it does not blow-up before it vanishes, namely s γ < +∞ implies lim r→s - γ B γ (r) = 0. Actually, the proof of Proposition 2.1 below shows that our assumptions (2.4)-(2.5) ensure that B γ is well dened and positive in B rγ (0) for all γ 1. Let w γ be given by

B γ = γ 1 - 2t γ p γ γ pγ + w γ γ pγ .
(2.7) Then we have the following result: Proposition 2.1. We have B γ ≤ γ,

w γ = O(γ -pγ t γ ) , w γ = O(γ -pγ t γ ) ,
and

λ γ p γ B pγ -1 γ e B pγ γ = 8e -2tγ µ 2 γ γ pγ -1 p γ 1 + O e ηtγ γ pγ ,
uniformly in [0, rγ ] and for all γ 1 large, where η is any xed constant in (η, 1) and w γ is as in (2.7).

Once Proposition 2.1 is proven, we obtain rst

B γ (r) = γ - 2 p γ γ pγ -1 ln 1 µ 2 γ + ln(µ 2 γ + r 2 ) + O γ 1-pγ
using (2.4) to handle the remainder term, so that we get from (2.1)

B γ (r) = - 2 p γ -1 γ + 2 p γ γ pγ -1 ln 1 λ γ γ 2(pγ -1) (µ 2 γ + r 2 ) + O γ 1-pγ (2.8)
uniformly in r ∈ [0, rγ ] and for all γ 1 large. While the principal part of the expression in (2.8) becomes negative for r > 0 large enough, writing it in its initial form (2.7), condition (2.4) and the pointwise estimate of w γ in Proposition 2.1 clearly ensure its positivity in the considered range r ∈ [0, rγ ], as claimed in (2.6).

Proof of Proposition 2.1. Let r γ be given by

r γ = sup r ∈ [0, rγ ] s.t. |w γ | ≤ t γ γ pγ 2 in [0, r] (2.9) 
for all γ. We aim to show that

r γ = rγ (2.10)
for all γ 1. We start by expanding the RHS in the rst equation of (2.6) uniformly in [0, r γ ] as γ → +∞, using in a crucial way the control on w γ that we have by (2.9). Fix η 1 < η 2 < η 3 such that η k ∈ (η, 1) for all k. When not specied, the expansions of this proof are uniform in [0, r γ ] as γ → +∞. First, since

|w γ | = o(t γ ), we get from (2.7) that B γ /γ ≥ (1 -η 1 ) in [0, r γ ]
for all γ 1 large. First, for all p ∈ [1, 2] and all x ≤ 1, we notice that

0 ≤ (1 -x) p -(1 -px) ≤ p 2 4 x 2 .
Then, we have Here and several times in the sequel, we use the elementary inequality

0 ≤ B pγ γ γ pγ -1 - 2t γ -p γ w γ γ pγ ≤ t 2 γ γ 2pγ (1 + o(1)) ,
e x - n-1 j=0 x j j! ≤ |x| n n! e |x|
for all x ∈ R and all integers n ≥ 1. Using also (2.1) and (2.9) again, we get that

λ γ p γ B pγ -1 γ e B pγ γ = 8 e -2tγ µ 2 γ γ pγ -1 p γ 1 + O t γ γ pγ × 1 + p γ w γ + O t 2 γ γ pγ exp p γ t γ γ pγ /2 1 + O t 2 γ γ pγ e η1tγ , = 8 e -2tγ µ 2 γ γ pγ -1 p γ 1 + p γ w γ + O t3 γ γ pγ e η2tγ .
(2.11)

In view of (2.9), to conclude the proof of (2.10), it is sucient to obtain

|w γ | = O t γ γ pγ , (2.12) 
which we prove next. By (2.9), we have that

B γ ≤ γ in [0, r γ ] for all γ 1. Set wγ = w γ (•/µ γ ). Then, since T 0 := ln(1 + | • | 2 ) solves ∆T 0 = -4e -2T0 in R 2 ,
(2.13) we get from (2.6) and (2.11) that

∆ wγ = 8e -2T0 wγ + O µ 2 γ γ pγ + O e (-2+η3)T0 γ pγ , (2.14) 
uniformly in [0, r γ /µ γ ] as γ → +∞, applying ∆ to (2.7). By integrating (2.14) in B r (0) and also by parts, writing merely | wγ | ≤ r w γ ∞ , we get that

-2πr w γ (r) = O r 2 µ 2 γ γ pγ + O r 2 γ pγ (1 + r 2 ) + O w γ ∞ r 3 1 + r 3 ,
where w γ ∞ stands for w γ L ∞ ([0,rγ /µγ ]) and where w γ = d dr wγ , so that we get

| w γ (r)| = O rµ 2 γ r 2 γ γ pγ + O r 1 + r 2 w γ ∞ + 1 γ pγ , (2.15) 
uniformly in r ∈ [0, r γ /µ γ ] as γ → +∞, using (2.5) and r γ ≤ rγ . If w γ ∞ = O(γ -pγ ) for all γ, (2.12) follows from (2.3), (2.15) and from the fundamental theorem of calculus, using again wγ (0) = 0. Then, assume by contradiction that the complementary case occurs, namely that

lim γ→+∞ γ pγ w γ ∞ = +∞ , (2.16) 
maybe after passing to a subsequence. Let

ρ γ ∈ [0, r γ /µ γ ] be such that | w γ (ρ γ )| = w γ ∞ . By (2.
3), (2.15) and (2.16), up to a subsequence, ρ γ → l and r γ /µ γ → L as γ → +∞, for some l ∈ (0, +∞), L ∈ (0, +∞], l ≤ L. Setting now wγ := wγ / w γ ∞ , we then get from (radial) elliptic theory and from (2.14) with (2.3) and (2.5) that, up to a subsequence, wγ → w∞ in C 1 loc ([0, L)) as γ → +∞ , where w∞ solves

         ∆ w∞ = 8e -2T0 w∞ in B L (0) , w∞ (0) = 0 , w∞ is radially symmetric , | w ∞ (l)| = 1 ;
(2.17) but by ODE theory, the only function satisfying the rst three conditions in (2.17) is the null function, which gives the expected contradiction. Observe that we get also a contradiction in the most delicate case where l = L. Indeed, since we then have L ∈ (0, +∞), writing (2.14) in radial coordinates gives in this case that

( wγ C 2 ([0,rγ /µγ ]) ) γ is bounded, so that w ∞ ∈ C 1 ([0, l])
is well dened at l, so that the fourth line in (2.17) makes sense and holds true. As explained above, this concludes the proof of (2.10). Proposition 2.1 clearly follows.

Nonradial blow-up analysis: the case of a single bubble

Let (p ε ) ε be a sequence of numbers in [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF], let (µ ε ) ε and (r ε ) ε be sequences of positive real numbers. Let (u ε ) ε be a sequence of functions such that u ε is smooth in the closure of B rε (0), where B rε (0) is the ball of center 0 and radius rε in the standard Euclidean space R 2 . We assume that ∇u ε (0) = 0 (3.1) for all ε and that

γ ε := u ε (0) → +∞ (3.2) as ε → 0. As for (2.1), let (λ ε ) ε be given by λ ε p 2 ε γ 2(pε-1) ε µ 2 ε e γ pε ε = 8
(3.3) and let t ε , tε be given by

t ε = ln 1 + | • | 2 µ 2 ε ; tε = t ε + 1
for all ε. Let η ∈ (0, 1) be xed; assume also that

µ ε rε = o(1) , (3.4) 
t ε (r ε ) ≤ η p ε γ pε ε 2 , (3.5) 
Br ε (0)

u 4 ε dx ≤ C , (3.6) 
for all ε 1 small and for some given C > 1, and that

lim ε→0 p ε 2 γ pε-1 ε (γ ε -u ε (µ ε •)) = ln 1 + | • | 2 in C 1 loc (R 2 ) , (3.7) 
up to a subsequence. As we will see in the subsequent blow-up analysis and in Lemma 4.1, the last two assumptions are indeed natural ones. Let (v ε ) ε be a sequence of smooth functions solving

     ∆v ε + h(0) v ε = λ ε p ε v pε-1 ε e v pε ε in B rε (0) , v ε (0) = γ ε v ε is radially symmetric around 0 ∈ R 2 , (3.8) 
for all ε, where h is a given smooth positive function on a neighborhood of 0 ∈ R 2 . Let (ϕ ε ) ε be a sequence of smooth functions such that

lim ε→0 ϕ ε (r ε •) = ϕ 0 in C 2 B 1 (0) and ϕ ε (0) = 0 (3.9)
for all ε small. We assume that u ε solves

∆u ε = e 2ϕε -hu ε + λ ε p ε u pε-1 ε e u pε ε , u ε > 0 in B rε (0) , (3.10) 
for all ε. At last, we assume that the following key gradient estimate holds true: there exists C G > 0 such that

|x||∇u ε (x)|u ε (x) pε-1 ≤ C G for all x ∈ B rε (0) (3.
11) for all ε. Letting w ε be given by

u ε = v ε + w ε ,
(3.12) the following proposition holds true: Proposition 3.1. We have that

|w ε (x)| ≤ C 0 |x| γ pε-1 ε rε for all x ∈ B rε (0) , (3.13) 
and that

∇w ε L ∞ (Br ε (0)) ≤ C 0 γ pε-1 ε rε (3.14)
for all ε 1 small, where C 0 is any xed constant greater than (C G /(1 -η)) + 4, for C G as in (3.11) and η as in (3.5). Up to a subsequence, there exists a function ψ 0 , harmonic in B 1 (0), such that we have

lim ε→0 γ pε-1 ε w ε (r ε •) = ψ 0 in C 1 loc (B 1 (0)\{0}) , (3.15) ∇ψ 0 (0) = 0 . (3.16)
In order to make sure that the estimates of Section 2 can be used to control the v ε 's, it will be checked in the proof below that our assumptions of this section actually imply for all ε, again guaranteed by Lemma 4.1, we will also show that (3.17) may be improven to

γ 2pε ε r2 ε = O(1) , (3.17 
ln γ ε = o ln 1 rε (3.19) as ε → 0.
Proof of Proposition 3.1. We rst prove (3.13). By (3.8), we have that v ε (0) = 0; by (3.2) and (3.8), we have that u ε (0) = v ε (0) and we then nd w ε (0) = 0 and ∇w ε (0) = 0 (3.20) for all ε, using (3.1) and (3.12). Then, in order to get (3.13), it is sucient to prove (3.14). Let r ε be given by 

r ε = sup r ∈ [0, rε ] s.t. γ pε-1 ε r ∇w ε L ∞ (Br(0)) ≤ C 0 , γ 4 ε r 2 ≤ 2 C π(1-η) 4
u 4 ε dx = πγ 4 ε r2 ε (1 + o(1)) ≤ C
and that γ 2pε ε r2 ε ≤ 2 C/π for all ε 1. Then, we may use Proposition 2.1 in B rε (0), with assumption (2.5), to get that 1) as ε → 0, for all given R 1. Summarizing, both conditions in (3.21) give that µ ε = o(r ε ) as ε → 0 and we may now apply Proposition 2.1 in B rε (0): we have that

lim ε→0 p ε 2 γ pε-1 ε (γ ε -v ε (µ ε •)) = ln(1 + | • | 2 ) in C 1 loc (R 2 ) , which implies with (3.7) that γ pε-1 ε µ ε ∇w ε L ∞ (B Rµε (0)) = o(
sup s∈[0,rε] p ε 2 γ pε-1 ε s|v ε (s)| ≤ 2 + o(1) (3.23) 
for all ε 1. Using w ε (0) = 0, we get from the rst condition in (3.21) that

|w ε | ≤ C 0 γ 1-pε ε so that u ε = v ε + O γ 1-pε ε in B rε (0)
for all ε 1. Independently, we get from Proposition 2.1 and from (3.5) that

v ε ≥ γ ε (1 -η + o(1)) in [0, r ε ] , (3.24) 
for all ε 1. Then, writing 

|∇w ε | ≤ |∇u ε | + |∇v ε |
∇w ε L ∞ (∂Br ε (0)) ≤ 1 + o(1) γ pε-1 ε r ε C G (1 -η) pε-1 + 4 < C 0 γ pε-1 ε r ε (3.25)
for all ε 1, using our assumption on C 0 . Independently, Proposition 2.1 gives that v ε (r) = O r -1 γ 1-pε ε , so we rst get that

u ε = v ε (r ε ) + O γ 1-pε ε ln 2r ε | • | , (3.26) 
then, with (3.24), that also

u ε (r) 4 = v ε (r ε ) 4 1 + O γ -pε ε ln 2r ε r + γ -pε ε ln 2r ε r 4 uniformly in r ∈ (0, r ε ],
and at last, with (3.6), that

πv ε (r ε ) 4 r 2 ε (1 + o(1)) = Br ε (0) u 4 ε dx ≤ C :
summarizing, the second inequality in (3.21) is strict at r = r ε for all ε 1, using (3.24) again. However by (3.25), the rst inequality in (3.21) is strict as well at r = r ε , which concludes the proof of (3.22) by continuity and then, as discussed above, those of (3. 

= v pε ε +p ε v pε-1 ε w ε (1+o(1)) and u pε-1 ε = v pε-1 ε (1 + O (|w ε |/γ ε )), then u pε-1 ε e u pε ε = v pε-1 ε e v pε ε 1 + p ε v pε-1 ε w ε 1 + O |w ε | γ ε + v pε-1 ε |w ε | + O |w ε | γ ε = v pε-1 ε e v pε ε 1 + p ε v pε-1 ε w ε 1 + O γ pε-1 ε |w ε | + O γ -pε ε ,
and, observing also

e 2ϕε = 1 + O(| • |) by (3.9), |w ε | = O γ 1-pε ε | • |/r ε by (3.
13), and using (3.8) and (3.10), we may write at last

∆w ε = -e 2ϕε w ε + O (| • |v ε ) + λ ε p ε v pε-1 ε e v pε ε p ε v pε-1 ε w ε 1 + O | • | rε + 1 γ pε ε + O(| • |) (3.27)
uniformly in B rε (0) and for all ε 1. Setting now wε = γ pε-1 ε rε µε w ε (µ ε •) and given any R 1, we get from Proposition 2.1 and (3.27) that

∆ wε = O µ 2 ε wε + O µ 2 ε γ pε ε rε + 8e -2T0 p ε γ pε-1 ε 1 + O(γ -pε ε ) × p ε γ pε-1 ε wε 1 + O µ ε rε + γ -pε ε + O γ pε-1 ε rε
uniformly in B Rµε (0), for all ε. Then, by (3.4), (3.14), (3.17), the rst assertion in (3.20) and elliptic theory, we get that, up to a subsequence,

lim ε→0 wε = w 0 in C 1 loc (R 2 ) , (3.28) 
where w 0 satises (3.30) In order to conclude the proofs of (3.15) and (3.16), we establish now the following key estimate:

∆w 0 = 8 exp(-2T 0 )w 0 in R 2 , |w 0 | ≤ C 0 | • | in R 2 . ( 3 
lim ε→0 γ pε-1 ε rε ∇(w ε -(ψ ε -ψ ε (0))) ∞,ε = 0 , (3.31) where • ∞,ε denotes • L ∞ (Br ε (0))
and where ψ ε is given by

∆ψ ε = 0 in B rε (0) , ψ ε = w ε on ∂B rε (0) , (3.32) 
for all ε. Let G (ε) be the Green's function of ∆ in B rε (0) with zero Dirichlet boundary conditions (for an explicit formula for G (ε) , see for instance Han-Lin [START_REF] Han | Elliptic partial dierential equations[END_REF]Proposition 1.22]). Then (see also for instance [23, Appendix B]), there exists C > 0 such that

|∇G (ε) y (x)| ≤ C |x -y| ,
for all x, y ∈ B rε (0), x = y and all ε. Let (y ε ) ε be any sequence such that y ε ∈ B rε (0) for all ε. By the Green's representation formula, we may write

∇(w ε -ψ ε )(y ε ) = Br ε (0) ∇G (ε) yε (x)(∆w ε )(x)dx
for all ε. Then, using also (3.9), (3.27), Proposition 2.1 and the rst assertion in (3.20), we get that

|∇(w ε -ψ ε )(y ε )| = O Br ε (0) ( ∇w ε ∞,ε + γ ε )|x|dx |y ε -x| + O Br ε (0) |x|e (-2+η)tε(x) ∇w ε ∞,ε + γ 1-pε ε dx µ 2 ε |y ε -x| , (3.33) 
for all ε, where η is some given constant in (η, 1). By the change of variable x = rε y, we rst deduce

Br ε (0) |x|dx |y ε -x| = O r2 ε .

If we have |y

ε | = O(µ ε ), we get that Br ε (0) |x|e (-2+η)tε(x) dx µ 2 ε |y ε -x| = O(1)
for all ε, by the change of variable x = µ ε y; otherwise, up to a subsequence, we have 

|∇(w ε -(ψ ε -ψ ε (0)))(y ε )| = O ( ∇w ε ∞,ε + γ ε )r 2 ε + O 1 1 + |yε| µε ∇w ε ∞,ε + γ 1-pε ε , = 1 γ pε-1 ε rε O 1 1 + |yε| µε + o(1) (3.34) 
for all ε. The last line in (3.34) uses (3.14) and (3.17). We claim now that (ψ ε ) ε from (3.32) satises

∇ψ ε ∞,ε = O 1 γ pε-1 ε rε . (3.35)
Writing ∇ψ ε = ∇w ε + ∇(ψ ε -w ε ), using (3.34) which gives

∇(ψ ε -w ε ) ∞,ε = O 1 γ pε-1 ε rε ,
we indeed get (3.35) from (3.14). Thus, we nd from (3.35) and elliptic theory that

lim ε→0 γ pε-1 ε (ψ ε (r ε •) -ψ ε (0)) = ψ 0 in C 1 loc (B 1 (0)) , (3.36) 
up to a subsequence, where ψ 0 is harmonic in B 1 (0), and we obtain at last

lim ε→0 γ pε-1 ε rε µ ε (ψ ε (µ ε •) -ψ ε (0)) = ∇ψ 0 (0), • in C 1 loc (R 2 ) , (3.37) 
by (3.4), where •, • denotes the standard scalar product in R 2 . Assume now by contradiction that (3.31) does not hold true, in other words that, up to a subsequence,

1 γ pε-1 ε rε = O ( ∇(w ε -ψ ε ) ∞,ε ) (3.38) 
for all ε. First, we claim that (3.16) holds true, for ψ 0 as in (3.36)-(3.37). Indeed, let R 1 be given and let (y ε ) ε be such that y ε ∈ ∂B Rµε (0) for all ε 1. We get from (3.28), (3.30) and (3.37) that

lim ε→0 γ pε-1 ε rε ∇(w ε -ψ ε )(y ε ) = ∇ψ 0 (0) .
This estimate, combined with (3.34), proves (3.16) since R 1 may be chosen arbitrarily large. Secondly, we may pick (y ε ) ε , such that y ε ∈ B rε (0) and (1 + t) 1/3 = 1 + O(|t| 1/3 ) for all t > -1 , p ε ≥ 1 and v ε (r ε ) ≤ γ ε , we get rst

∇(w ε -ψ ε ) ∞,ε = |∇(w ε -(ψ ε -ψ ε (0)))(y ε )| (3.
u 1/3 ε = v ε (r ε ) 1/3 1 + O γ -pε ε ln 2r ε | • | 1/3 = v ε (r ε ) 1/3 + O ln 2r ε | • | 1/3
uniformly in B rε (0)\{0}, so that we eventually get

Br ε (0) e u 1/3 ε dx = e vε(rε) 1/3 Br ε (0) exp O ln 2r ε | • | 1/3 dx e ( (1-η)γε 2 ) 1/3 r2 ε ,
for all ε 1, which concludes the proof of (3.19) by (3.18).

Nonradial blow-up analysis: the case of several bubbles

The following theorem is the main result of this section. It is a quantization result determining in a precise way the possible blow-up energy levels. Notice that assumption (4.3) will follow from variational reasons. Theorem 4.1. Let h be a smooth positive function on Σ. Let (λ ε ) ε be any sequence of positive real numbers and (p ε ) ε be any sequence of numbers in [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF]. Let (u ε ) ε be a sequence of smooth functions solving

∆ g u ε + hu ε = λ ε p ε u pε-1 ε e u pε ε , u ε > 0 in Σ , (4.1)
for all ε. Let (β ε ) ε be given by

β ε = λ ε p 2 ε 2 Σ e u pε ε -1 dv g 2-pε pε Σ u pε ε e u pε ε dv g 2(pε-1) pε (4.2)
for all ε. If we assume the energy bound

lim ε→0 β ε = β ∈ [0, +∞) , (4.3) 
but the pointwise blow-up of the u ε 's, namely

lim ε→0 max Σ u ε = +∞ , (4.4) 
then, there exists an integer k ≥ 1 such that

β = 4πk . (4.5) 
A quantization result on a surface and in the specic case p ε = 2 was partially obtained by Yang [START_REF] Yang | Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary[END_REF], following basically the scheme of proof developed in [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF] to get an analoguous result on a bounded domain. However, even in this specic case, Theorem 4.1 is stronger (see also Remark 4.1). Indeed the analysis in [START_REF] Yang | Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary[END_REF] does not exclude that a nonzero H 1 -weak limit u 0 of the u ε 's contributes and breaks (4.5), that would become

β = 4πk + u 0 2 H 1 .
(4.6) On a bounded domain and still in this specic case p ε = 2, starting from the socalled weak pointwise estimates and using the rst quantization in [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF], a more precise blow-up analysis was carried out and in particular the precise quantization (4.5) was obtained recently in [START_REF] Druet | Multi-bump analysis for Trudinger-Moser nonlinearities I-Quantication and location of concentration points[END_REF]. Here on a surface and for general p ε 's in [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF], our proof starts also from the weak pointwise estimates, but gives at once the precise quantization, without using any intermediate one, by pushing techniques in the spirit of [START_REF] Druet | Multi-bump analysis for Trudinger-Moser nonlinearities I-Quantication and location of concentration points[END_REF]. As mentioned in introduction, perturbing the standard critical nonlinearity in the RHS of (0.16), as we do here, requires to be very careful, if one wants to keep the precise quantization (4.5), which is crucial for the overall strategy of the present paper to work. Indeed, it was recently proven in [START_REF] Mancini | Glueing a peak to a non-zero limiting prole for a critical MoserTrudinger equation[END_REF] that (4.5) may actually break down for some perturbations of the nonlinearity in (0.16) which are surprisingly weaker in some sense than the ones that we consider here.

As a byproduct of Theorem 4.1, we easily get the following corollary, allowing to get critical points of F in (0.2) constrained to E β in (0.3), as the limit of critical points of J p,β as p → 2, for any xed β ∈ 4πN . Corollary 4.1. Let h be a smooth positive function on Σ and let β ∈ (0, +∞)\4πN be given. Let (p ε ) ε be any sequence of numbers in [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF] such that p ε → 2 as ε → 0. Let (u ε ) ε be a sequence of smooth functions such that (4.1) holds true for λ ε > 0 given by (4.2) and for β ε := β for all ε. Then, up to a subsequence, we have that u ε → u in C 2 , where u > 0 is smooth and solves (0.14) for p = 2 and (0.16).

For any λ > 0, p ∈ [1, 2] and u satisfying (0.12), observe rst that we necessarily have

2λ ≤ max Σ h , (4.7)
by integrating (0.12) in Σ, by using qt q-1 e t q ≥ 2t, for all t > 0 and all q ∈ [1, 2], and the assumption in (0.12) that u is positive on Σ.

Proof of Corollary 4.1. Let β, (p ε ) ε , (u ε ) ε and (λ ε ) ε be given as in Corollary 4.1.

Since β ∈ 4πN , we get from Theorem 4.1 that (4.4) cannot hold true. Then, by (4.7) and by standard elliptic theory as developed in [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF], up to a subsequence, λ ε → λ and u ε → u in C 2 as ε → 0, for some C 2 -function u ≥ 0 and some λ ≥ 0 satisfying the equation in (0.16) and (0.14) for p = 2. If u ≡ 0, we clearly get a contradiction with (0.14), since β > 0. Then, u ≡ 0 and u > 0 in Σ by the maximum principle, which concludes the proof of Corollary 4.1.

We now turn to the proof of Theorem 4.1 itself. From now on, we let (λ ε ) ε be a sequence of positive real numbers, we let (p ε ) ε be a sequence of numbers in [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF] and we let (u ε ) ε be a sequence of smooth functions solving (4.1). Let (β ε ) ε be given by (4.2). We also assume (4.3). Then, since

2 -p ε p ε + 2(p ε -1) p ε = 1 , (4.8) 
Hölder's inequality gives that

λ ε Σ u 2(pε-1) ε e u pε ε -1 dv g = O(1) .
(4.9)

By (4.7), p ε ∈ [1, 2] and the fact that Σ has nite volume

λ ε Σ u 2(pε-1) ε dv g = λ ε {uε≤2} u 2(pε-1) ε dv g + λ ε {uε>2} u 2(pε-1) ε dv g ≤ O(1) + λ ε e -2 Σ e u pε ε u 2(pε-1) ε dv g , (4.10) 
then as a consequence

λ ε Σ u p ε e u pε ε dv g = O(1) (4.11) 
for all p ∈ [0, 2(p ε -1)] and all ε. We get (4.11), for p = 2(p ε -1), combining (4.9) and (4.10), and then also for p ∈ [0, 2(p ε -1)), using that Σ has nite volume and (4.7). As a rst step, observe that we may directly get the following rough, subcritical but global bounds on the u ε 's. for all ε. In particular, for all given p < +∞, (u ε ) ε is bounded in L p . Lemma 4.1 strongly relies on (4.3) and is actually the very rst step to get Proposition 4.1 below, already obtained in [START_REF] Yang | Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary[END_REF] for p ε = 2. This lemma is relevant to handle the term hu ε in the LHS of (4.1), appearing in the present surface setting.

Proof of Lemma 4.1. Integrating (4.1) in Σ, we get from the consequence (4.11) of (4.3) that (u ε ) ε is bounded in L 1 . Set now ǔε = max{u ε , 1}. Multiplying (4.1) by ǔ-1/3 ε and integrating by parts in Σ (see for instance [29, Proposition 2.5]), we get

3 Σ |∇(ǔ 1/3 ε )| 2 dv g = + Σ ǔ-1/3 ε hu ε dv g -λ ε p ε Σ ǔ-1/3 ε u pε-1 ε e u pε ε dv g . Since ǔε ≥ 1 and (u ε ) ε is bounded in L 1 , it is clear that Σ ǔ-1/3 ε u ε dv g = O(1).
Concerning the last integral, writing Σ = {x s.t. u ε > 1} ∪ {x s.t. u ε ≤ 1}, we nd that the integral on the latter set is of order O(1) since Σ has nite volume and by (4.7), while the integral on the complement is of order O(1) by (4.11) for p = p ε -1,

using ǔε ≥ 1. Similarly, since (u ε ) ε is bounded in L 1 , (ǔ 1/3 ε ) ε is bounded in L 2 .
Then, by the Moser-Trudinger inequality, (exp(ǔ 1/3 ε )) ε is bounded in L 1 . Obviously, the same property also holds for (exp(u 1/3 ε )) ε , which concludes the proof.

From now on, we also assume that the u ε 's blow-up, namely we assume that (4.4) holds. In order to prove Theorem 4.1, we need to introduce some notation and a rst set of pointwise estimates on the u ε 's gathered in Proposition 4.1 below. As aforementioned, these estimates have already been proven by Yang [START_REF] Yang | Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary[END_REF] in the case where p ε equals 2 for all ε. Yet, if this last specic condition is not satised, note that, even in the case p ε → 2 -, we are not here in the suitable framework to use the results from [START_REF] Yang | Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary[END_REF], since the nonlinearity appearing in the RHS of (4.1) is not of uniform Moser-Trudinger critical growth (see [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF]Denition 1]). However, as it was already observed in the literature (see for instance [START_REF] De Marchis | Asymptotic prole of positive solutions of Lane-Emden problems in dimension two[END_REF]), the technique of the pointwise exhaustion of concentration points introduced in [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF] is rather robust and may be successfully adapted to a much broader class of problems. Once Lemma 4.1 is obtained, the proof of Proposition 4.1 for general p ε 's is very similar to the corresponding proof for p ε = 2 in [START_REF] Yang | Quantization for an elliptic equation with critical exponential growth on compact Riemannian surface without boundary[END_REF].

Concerning the notation, for all i ∈ {1, ..., N } and ε 1, we may choose isothermal coordinates

(B κ1 (x i,ε ), φ i,ε , U i,ε ) around x i,ε , such that φ i,ε is a dieomorphism from B κ1 (x i,ε ) ⊂ Σ to U i,ε ⊂ R 2 ,
where κ 1 > 0 is some appropriate given positive constant and B κ1 (x i,ε ) is the ball of radius κ 1 and center x i,ε for the metric g, such that φ i,ε (x i,ε ) = 0, such that B 2κ (0) ⊂ U i,ε , for some κ > 0, and such that (φ i,ε ) g = e 2ϕi,ε ξ, where R 2 is endowed with its standard metric ξ (see for instance [START_REF] Carmo | Dierential geometry of curves and surfaces[END_REF][START_REF] Taylor | Partial dierential equations I. Basic theory[END_REF]). We may also assume that

(ϕ i,ε ) ε satises ∀ε , ϕ i,ε (0) = 0 and lim ε→0 ϕ i,ε = ϕ i in C 2 loc (B 2κ (0)) . (4.12)
At last, we set

u i,ε = u ε • φ -1 i,ε and h i,ε = h • φ -1 i,ε
in B 2κ (0). We denote also by d g (•, •) the Riemannian distance on (Σ, g). Proposition 4.1. Up to a subsequence, there exist an integer N ≥ 1 and sequences (x i,ε ) ε of points in Σ such that ∇u ε (x i,ε ) = 0, such that, setting γ i,ε := u ε (x i,ε ),

µ i,ε := 8 λ ε p 2 ε γ 2(pε-1) i,ε e γ pε i,ε 1 2 → 0 , (4.13) 
such that ∀j ∈ {1, ..., N }\{i} ,

d g (x j,ε , x i,ε ) µ i,ε → +∞ , (4.14) 
and such that

p ε 2 γ pε-1 i,ε (γ i,ε -u i,ε (µ i,ε •)) → T 0 := ln 1 + | • | 2 in C 1 loc (R 2 ) , (4.15) 
as ε → 0, for all i ∈ {1, ..., N }. Moreover, there exist C 1 , C 2 > 0 such that we have

min i∈{1,...,N } u pε-1 ε d g (x i,ε , •) 2 |∆ g u ε | ≤ C 1 in Σ (4.16)
and

min i∈{1,...,N } u pε-1 ε d g (x i,ε , •)|∇u ε | g ≤ C 2 in Σ (4.17)
for all ε. We also have that lim ε→0 x i,ε = x i for all i, and that there exists

u 0 ∈ C 2 (Σ\S) such that lim ε→0 u ε = u 0 in C 2 loc (Σ\S) , (4.18) 
where S := {x 1 , ..., x N }.

Observe rst that γ i,ε → +∞ as ε → 0 by (4.7) and (4.13). As an other remark, by (4.14) and (4.15), we have that )). Indeed, for p = 2, it is now known (see [START_REF] Mancini | Critical points of Moser-Trudinger type functionals: a general picture[END_REF]) that a tower of k-bubbles may exist for nonlinearities which are lower order perturbations of the one in (0.16) and we may then have only one "highest bubble" (i.e. N = 1) with any k ∈ N in (4.5).

4πN = N R 2 4e -2T0 dx ≤ lim inf ε→0 λ ε p 2 ε 2 Σ u 2(pε-
We get from (4.1) that

∆u i,ε = e 2ϕi,ε -h i,ε u i,ε + λ ε p ε u pε-1 i,ε e u pε i,ε , u i,ε > 0 in B 2κ (0) , (4.19) 
for all i and ε, where ∆ = ∆ ξ throughout the paper. For all i ∈ {1, ..., N }, we set

r i,ε = κ if N = 1 , min 1 3 min j∈{1,...,N }\{i} d g (x i,ε , x j,ε ), κ otherwise , (4.20) 
for all ε, so that we get from (4.13) and (4.14) that

lim ε→0 µ i,ε r i,ε = 0 . (4.21)
We set t i,ε := ln 1

+ |•| 2 µ 2 i,ε in R 2 .
We set also

v i,ε = B γi,ε , (4.22 
) where B γ is as in (2.6) for (p γ ) γ and (µ γ ) γ satisfying p γi,ε = p ε and µ γi,ε = µ i,ε , for all ε and all i ∈ {1, ..., N }. Up to renumbering, we may also assume that

r 1,ε ≤ r 2,ε ≤ ... ≤ r N,ε (4.23) for all ε.
In order to link the present situation to the results of Sections 2 and 3, we need some preliminary observations. Let l ∈ {1, ..., N } be given. Given a parameter η ∈ (0, 1) that is going to take several values in the proof below, we let r (η) l,ε be given by

t l,ε r (η) l,ε = η p ε γ pε l,ε 2 , (4.24)
and, for r l,ε as in (4.20), we set

r(η) l,ε = min r l,ε , r (η) l,ε (4.25) 
for all ε. By collecting the above preliminary information, we can check that Proposition 3.1 applies with rε = r(η) l,ε ,

ϕ ε = ϕ l,ε , u ε = u l,ε , γ ε = γ l,ε and v ε = v l,ε .
In particular, the denition (4.20) of r l,ε is used to get (3.11) from (4.17), while Lemma 4.1 is used to get (3.6) and (3.18). As a remark, the metrics (φ l,ε ) g and ξ are equivalent in B κ (0) by (4.12): we use this fact here and currently in the sequel. We get in particular (see (3.19)) that r(η) l,ε = o(1) and even that

ln γ l,ε = o ln 1 r(η) l,ε , (4.26) 
so that Proposition 3.1 also applies (see the remark involving (3.17)), and so that we get

γ l,ε ≥ v l,ε = γ l,ε   1 - 2t l,ε 1 + O γ -pε l,ε p ε γ pε l,ε   ≥ (1 -η)γ l,ε + O γ 1-pε l,ε , (4.27) 
uniformly in 0, r(η)

l,ε
and for all ε 1, using Proposition 2.1 and (4.24). We also get from Section 3 (see (3.13)) that

|u l,ε -v l,ε | = O | • | γ pε-1 l,ε r(η) l,ε (4.28) 
and (see (3.14))

|∇(u l,ε -v l,ε )| = O 1 γ pε-1 l,ε r(η) l,ε (4.29) 
uniformly in B r(η)

l,ε (0) 
and for all ε 1. We get now the following result:

Step 4.1. For all i ∈ {1, ..., N }, we have that

lim inf ε→0 2t i,ε (r i,ε ) p ε γ pε i,ε ≥ 1 , (4.30) 
and that there exists C 1 such that

0 < ūi,ε (r) ≤ - 2 p ε -1 γ i,ε + 2 p ε γ pε-1 i,ε ln C λ ε γ 2(pε-1) i,ε r 2 + O r 3/2 (4.31)
uniformly in r ∈ (0, κ] and for all ε 1, where ūi,ε is continuous in [0, 2κ) and given by ūi,ε (r) = 1 2πr ∂Br(0) u i,ε dσ ξ , (4.32) for all r ∈ (0, 2κ), where dσ ξ is the volume element for the metric induced in ∂B r (0) by the standard metric ξ in R 

r(η1) i,ε = r (η1) i,ε and r(η2) i,ε = r (η2) i,ε
for all ε 1. Then (4.31) holds true uniformly in 0, r (η2) i,ε using (2.8) and (4.28) for l = i and parameters η 1 or η 2 . We get also from (4.27) and (4.28) that ūi,ε r

(η1) i,ε = v i,ε r (η1) i,ε + O γ 1-pε i,ε ≤ γ i,ε + O γ 1-pε i,ε , (4.33)
and from (4.29) that

∇(u i,ε -v i,ε ) L ∞ ∂B r (η 1 ) i,ε (0) 
= O 1

γ pε-1 i,ε r (η2) i,ε (4.34) 
for all ε 1. For f a C 2 function around 0 ∈ R 2 and r ≥ 0, we let f (r) (see (4.32)) be the average of f on ∂B r (0); integrating by parts, we get

-2πr f (r) = Br(0) (∆f )(x)dx (4.35)
with the usual radial (abuse of) notation. We write with (4.12) and (4.19) that

Br(0) (∆u i,ε )dx ≥ B r (η 1 ) i,ε (0) 
(∆u i,ε )dx + O   Br(0)\B r (η 1 ) i,ε (0) 
u i,ε dx   ,
that Br(0) u i,ε dx = O r 3/2 by Hölder's inequality with Lemma 4.1 for p = 4, and then, with (4.35), that

ū i,ε (r) ≤ - 1 2πr -2πr (η1) i,ε ū i,ε r (η1) i,ε + O r 1/2 (4.36)
uniformly in r ∈ r (η1) i,ε , κ and for all ε 1. We get from the denition (4.24) of r (ηj ) l,ε for l = i and j ∈ {1, 2} that ln r

(η1) i,ε r (η2) i,ε = - p ε γ pε i,ε 4 (η 2 -η 1 ) + o(1)
(4.37)

as ε → 0. We now write

ū i,ε = v i,ε + ū i,ε -v i,ε = - 2t i,ε p ε γ pε-1 i,ε 1 + O γ -pε i,ε + O r (η1) i,ε r (η2) i,ε
, at r (η1) i,ε for all ε 1, using Proposition 2.1 and (4.34). This implies with (4.37) that -2πr

(η1) i,ε ū i,ε r (η1) i,ε = 8π p ε γ pε-1 i,ε + O γ 1-2pε i,ε , (4.38) using also that r (η1) i,ε t i,ε r (η1) i,ε = 2 + O µ 2 i,ε / r (η1) i,ε 2 = 2 + O γ -pε i,ε
for all ε 1, by the denition (4.24) of r (η1) i,ε . Then, integrating (4.36) in [r (η1) i,ε , s] and using the fundamental theorem of calculus and (4.38), we get that ūi,ε (s) -ūi,ε r

(η1) i,ε ≤ - 4 p ε γ pε-1 i,ε ln s r (η1) i,ε 1 + O γ -pε i,ε + O s 3/2 (4.39)
uniformly in s ∈ [r (η1) i,ε , κ], for all ε 1, and conclude the proof of (4.31) by evaluating ūi,ε r (η1) i,ε with (2.8) and (4.33). To get the existence of C > 0 in (4.31) from the remainder in (4.39), we use that (4.39) and ūi,ε (κ) > 0 imply

0 ≤ ln s r (η1) i,ε = O γ pε-1 i,ε ūi,ε r (η1) i,ε + O γ pε-1 i,ε = O(γ pε i,ε )
uniformly in s ∈ [r (η1) i,ε , κ] and for all ε 1, thanks to (4.33). Proof of (4.30). We now turn to the proof of (4.30). We prove it by induction on i ∈ {1, ..., N }. In particular, we assume that (4.30) holds true at steps 1, ..., i -1 if i ≥ 2. By contradiction, assume in addition that (4.30) does not hold true at step i. Thus, by (4.24)-(4.25), up to a subsequence, we may choose and x η ∈ (0, 1) suciently close to 1 such that

r(η) i,ε = r i,ε (4.40) for all ε 1. Set J i = {j ∈ {1, ..., N } s.t. d g (x i,ε , x j,ε ) = O (r i,ε )}. Obviously, we get from (4.20) that r l,ε = O (r i,ε ) (4.41)
for all ε 1 and all l ∈ J i . We also nd from (4.26) for l = i and from (4.40) that r i,ε → 0, so we get from (4.12) that

g l,ε := (φ l,ε ) g (r i,ε •) → ξ in C 2 loc (R 2 ) , (4.42)
as ε → 0 for all l ∈ J i . Up to a subsequence, we may assume that

lim ε→0 φ i,ε (x l,ε ) r i,ε = xl ∈ R 2
for all l ∈ J i , and we have that S i := {x l , l ∈ J i } contains at least two distinct points, by (4.20), since r i,ε → 0 as ε → 0. We may now choose and x τ ∈ (0, 1) small enough such that

3τ < min {(x,y)∈S 2 i ,x =y} |x -y|
and such that S i ⊂ B 1/(3τ ) (0). We can check that there exists C > 0 such that any point in

Ω i,ε := B ri,ε/τ (0)\ ∪ j∈Ji B τ ri,ε (φ i,ε (x j,ε ))
may be joined to ∂B τ ri,ε (0) by a C 1 path in Ω i,ε of ξ-length at most Cr i,ε , for all ε 1. Therefore, by (4.40) with (4.27) and (4.28) for l = i, we may estimate rst u i,ε on ∂B τ ri,ε (0) and then get from (4.17) and (4.42) that

u i,ε = ūi,ε (τ r i,ε ) + O γ 1-pε i,ε ≥ (1 -η)γ i,ε + O(1) (4.43)
uniformly in Ω i,ε and for all ε 1, with η ∈ (0, 1) still as initially xed in (4.40). Independently, we get from (2.8), (4.28) for l = i and (4.40) that

ūi,ε (τ r i,ε ) = - 2 p ε -1 γ i,ε + 2 p ε γ pε-1 i,ε ln 1 λ ε γ 2(pε-1) i,ε r 2 i,ε + O(1) (4.44)
for all ε 1.

• We prove now that, for all j ∈ J i

j < i =⇒ lim ε→0 γ i,ε γ j,ε = 0 , (4.45) 
up to a subsequence. Then, let j ∈ J i such that j < i. By (4.23), we have that r j,ε ≤ r i,ε and, by our induction assumption, we know from (4.30) at step j and from (4.24)-(4.25) that, given any η 2 ∈ (0, 1),

r(η2) j,ε = r (η2) j,ε (4.46) 
for all ε 1. Then, by (4.27), by (4.28) for l = j with parameter η = η 2 , and by the denition (4.24) of r (η2) j,ε we have that ūj,ε r(η2)

j,ε ≤ (1 -η 2 )γ j,ε (1 + o(1))
as ε → 0. For all l ∈ J i , let w l,ε be given by

∆w l,ε = -e 2ϕ l,ε h l,ε u l,ε in B ri,ε/(2τ ) (0) , w l,ε = 0 on ∂B ri,ε/(2τ ) (0) . (4.47)
By observing that ∆(u l,ε -w l,ε ) ≥ 0 in B ri,ε/(2τ ) (0) by (4.19), the maximum principle yields that u l,ε -w l,ε attains its inmum on B ri,ε/(2τ ) (0) at some point in ∂B ri,ε/(2τ ) (0). Moreover, for all given p ∈ (1, +∞), we get from Lemma 4.1 and (4.12) that

∆(w l,ε (r i,ε •)) L p (B 1/(2τ ) (0)) = O r 2(p-1) p i,ε
, so, by elliptic theory, (4.24)-(4.26) and (4.40), we get

w l,ε (r i,ε •) = O r 2(p-1) p i,ε = o γ 1-pε i,ε (4.48) 
uniformly in B 1/(2τ ) (0) as ε → 0. Summarizing this argument for l = j, we get

(1 -η)γ i,ε ≤ (1 -η 2 )γ j,ε (1 + o(1))
(4.49) as ε → 0, using also (4.42)-(4.43). Indeed, by (4.42), observe that we may choose τ > 0 suciently small from the beginning to have

∂B ri,ε/(2τ ) (0) ⊂ φ -1 l,ε • φ i,ε (Ω i,ε ) , (4.50) 
so that we may estimate u l,ε on ∂B ri,ε/(2τ ) (0) with (4.43), for all l ∈ J i and all ε 1. Since η 2 < 1 may be chosen arbitrarily close to 1, (4.49) gives (4.45). • We prove now that, for all j ∈ J i ,

γ j,ε = O (γ i,ε ) .
(4.51) By contradiction, if (4.51) does not hold true, we choose j ∈ J i such that

lim ε→0 γ i,ε γ j,ε = 0 , (4.52) 
up to a subsequence. In particular, we have j = i. If j > i, we may write that

t j,ε (r j,ε ) = ln r 2 j,ε µ 2 j,ε + o(1) , = ln r 2 j,ε r 2 i,ε + t i,ε (r i,ε ) + ln µ 2 i,ε µ 2 j,ε + o(1) , = O(1) + η p ε 2 γ pε i,ε + γ pε j,ε -γ pε i,ε + O (ln γ i,ε + ln γ j,ε ) , = γ pε j,ε (1 + o(1)) (4.53) 
as ε → 0. The rst two equalities use (4.21); the third one uses rst our assumption j > i with (4.23) and (4.41), then the denition (4.24) for η as in (4.40), and at last (4.13); the last equality uses (4.52). Thus, given any η 2 ∈ (0, 1), we get in complement of (4.45) and the paragraph below that (4.46) holds true also if j > i.

As a rst consequence, for all given 0 < η 2 < η 2 < 1, we get that

lim ε→0 r (η 2 ) j,ε r i,ε = 0 , (4.54) 
using (4.41). We get from (2.8) and (4.28), for l = j and parameter η 2 , that ūj,ε r

(η 2 ) j,ε = - 2 p ε -1 γ j,ε + 2 p ε γ pε-1 j,ε ln 1 λ ε γ 2(pε-1) j,ε r (η 2 ) j,ε 2 + O(1) (4.55)
for all ε 1.

In order to have the desired contradiction with (4.52), xing η 2 ∈ (0, 1), we prove now the following estimate ūj,ε r

(η2) j,ε ≥ ūi,ε (τ r i,ε ) + 2 p ε γ pε-1 j,ε ln r 2 i,ε r (η2) j,ε 2 + O γ 1-pε i,ε (4.56) 
for all ε 1. Let ψ ε be given by

∆ψ ε = 0 in B ri,ε/(2τ ) (0) , ψ ε = u j,ε on ∂B ri,ε/(2τ ) (0) ,
for all ε. We get rst

ψ ε = ūi,ε (τ r i,ε ) + O γ 1-pε i,ε (4.57) 
for all ε 1, by (4.43), (4.50) and the maximum principle for the harmonic function ψ ε . Let (z ε ) ε be any sequence of points such that |z ε | = r (η2) j,ε for all ε. Let G ε be the Green's function of ∆ in B ri,ε/(2τ ) (0) with zero Dirichlet boundary conditions. We know that G ε (x, y) > 0 by the maximum principle for all x, y ∈ B ri,ε/(2τ ) (0), x = y and for all ε. Let η 1 ∈ (0, η 2 ) be xed. By Green's representation formula and (4.19), using the positivity of ∆u j,ε + e 2ϕj,ε h j,ε u j,ε and that of G ε (z ε , •), we have that

(u j,ε -ψ ε -w j,ε )(z ε ) ≥ λ ε p ε B r (η 1 ) j,ε (0) 
G ε (z ε , y)e 2ϕj,ε u j,ε (y) pε-1 e u pε j,ε (y) dy (4.58) for all ε 1, with w j,ε given by (4.47). There exists C > 0 (see [START_REF] Druet | Multi-bump analysis for Trudinger-Moser nonlinearities I-Quantication and location of concentration points[END_REF]Appendix B]) such that

G ε (z, y) - 1 2π ln r i,ε |z -y| ≤ C
for all y ∈ B ri,ε/(2τ ) (0), for all z ∈ B 5ri,ε/(12τ ) (0), y = z and for all ε 1. Observe also that (4.37) holds true for l = j. Then, since |z ε | = r (η2) j,ε , we rst get that

G ε (z ε , •) = 1 2π ln r i,ε |z ε | + O(1) + O | • | |z ε | = 1 2π ln r i,ε r (η2) j,ε + O(1) (4.59) 
uniformly in B r (η 1 ) j,ε (0) and for all ε 1. Now, by (4.27) and (4.28) for l = j with parameter η = η 2 , computing as in Proposition 2.1 or in the argument involving (3.27), we get that, for some given η ∈ (0, 1),

λ ε p ε e 2ϕj,ε u pε-1 j,ε e u pε j,ε = 8e -2tj,ε µ 2 j,ε γ pε-1 j,ε p ε 1 + O e ηtj,ε | • | r (η2) j,ε + | • | + 1 γ pε j,ε (4.60) in B r (η 1 ) j,ε (0) 
and for all ε 1. Resuming arguments in (4.53) and using (4.54), we have that

0 < ln r i,ε r (η2) j,ε ≤ ln r i,ε µ i,ε + ln µ i,ε µ j,ε = γ pε j,ε (1 + o(1)) (4.61) 
as ε → 0, since (4.52) is assumed to be true. By (4.59), (4.60) and (4.61), we get that

λ ε p ε B r (η 1 ) j,ε (0) 
G ε (z ε , y)u j,ε (y) pε-1 e u pε j,ε (y) dy

= 1 2π ln r i,ε r (η2) j,ε + O(1) 8π γ pε-1 j,ε p ε 1 + O µ j,ε /r (η1) j,ε 2 + O r (η1) j,ε r (η2) j,ε 
+ 1 γ pε j,ε = 2 p ε γ pε-1 j,ε ln r 2 i,ε r (η2) j,ε 2 + O γ 1-pε j,ε
for all ε 1, using the denition of r (η1) j,ε , (

for l = j. By plugging this last estimate with (4.48), (4.52) and (4.57) in (4.58), since (z ε ) ε is arbitrary, this concludes the proof of (4.56).

We now plug (4.44) and (4.55) in (4.56) and we get

2 p ε -1 γ j,ε (1 + o(1)) + 2 + o(1) p ε γ pε-1 i,ε ln 1 r 2 i,ε + ln 1 λ ε ≤ O γ 1-pε i,ε ln γ i,ε
still using (4.52). However this estimate gives a contradiction for ε 1, by (4.7) and (4.26) for l = i and (4.40): (4.51) is proven.

• Then, using (4.23) and (4.45), (4.51) implies that for all l ∈ J i

r i,ε ≤ r l,ε (4.62) 
for all ε 1. We now claim that there exists η 3 ∈ (η, 1) such that

r(η3) j,ε = r j,ε (4.63) 
for all j ∈ J i and all ε 1. Coming back otherwise to (4.24)-(4.25), up to a subsequence, we may assume by contradiction that there exists j ∈ J i such that

2t j,ε (r j,ε ) p ε γ pε j,ε ≥ 1 + o(1)
as ε → 0. As a remark, we must have j = i by (4.40). Then, for all given η 2 ∈ (0, 1), (4.46) holds true and the argument between (4.46) and (4.51) gives (4.52), which does not occur by (4.51) and proves (4.63). For j ∈ J i , since

φ i,ε • φ -1 j,ε ∂B rj,ε/2 (0) ⊂ Ω i,ε
by (4.20), (4.42), (4.62) and the denition of τ , we get from the equality in (4.43)

ūj,ε (r j,ε /2) = ūi,ε (τ r i,ε ) + O γ pε-1 i,ε
, so that we eventually have

γ i,ε = O (γ j,ε ) , (4.64 
) using the inequality in (4.43) and since ūj,ε (r (η3) j,ε /2) ≤ 2γ j,ε by (4.27), (4.28) and (4.63), for all ε 1.

• We are now in position to conclude the proof of (4.30). Setting

ũε := γ pε-1 i,ε (u i,ε (r i,ε •) -ūi,ε (r i,ε )) ,
with an argument similar to the proof of (4.43) one deduces from (4.17) and (4.42) that (ũ ε ) ε is uniformly locally bounded in R 2 \S i for all ε 1, where S i is given below (4.42). Then, using (4.27) and (4.28) for l = i with (4.40), we get from (4.12) and (4.19) that

∆ũ ε = O γ pε i,ε r 2 i,ε + O r 2 i,ε λ ε γ pε-1 i,ε v pε-1 i,ε e v pε i,ε (r i,ε• ) = o(1)
uniformly locally in R 2 \S i for all ε 1. To get the last estimate, we use (4.26) for l = i to control the rst term, while we estimate the second one rst by

O((µ i,ε /r i,ε ) 2(1-η) ) (see Proposition 2.1
) and then we conclude with (4.21). Hence, there exists a harmonic function ũ0 such that ũε → ũ0 in C 1 loc (R 2 \S i ) as ε → 0. Now observe that (4.17) also gives the existence of C > 0 such that

|∇ũ 0 | ≤ C x∈Si 1 |x -•| in R 2 \S i ,
using the local convergence of the ũε 's in R 2 \S i and the lower estimate in (4.27) for l = i. Then, by harmonic function's theory, there exist real numbers α x and Λ such that 

ũ0 = Λ + x∈Si α x ln 1 |x -•| in R 2 \S i . ( 4 
∇ ũ0 -α x ln 1 |x -•| (x) = 0
for all x ∈ S i . Picking now y an extreme point of the convex hull of S i , we get from (4.65) that this last property fails for x = y, since S i possesses at least two points. This gives the expected contradiction to (4.40) and concludes the proof of (4.30).

Step 4.1 is proven.

Up to a subsequence, we assume from now on that

lim ε→0 p ε = p 0 , (4.66) 
for some p 0 ∈ [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF]. As a rst consequence of Step 4.1, we improve (4.7) and conclude the proof of (4.5) and thus that of Theorem 4.1 in the subcritical case.

A key ingredient to get the sharp quantization (4.5) (and not (4.6) for u 0 ≡ 0, for instance) is given by (4.31) in Step 4.1: roughly speaking, the only way for the RHS of (4.31) to be positive at some r not too small is that λ ε is quite small (see (4.68) and (4.107) below).

Step 4.2. In any case, we have that , we get that

1 - p ε 2 γ pε i,ε + 2 3 (p ε -1) ln γ i,ε ≤ ln 1 λ ε + O(1) (4.68) 
for all ε 1 and all i ∈ {1, ..., N }, which clearly proves (4.67). Now assume that p 0 < 2 in (4.66). Up to renumbering, x i such that γ i,ε is the largest of the γ j,ε 's for all ε 1 and all j. Given any η ∈ (0, 1) to be chosen later, setting r (η) l,ε as in (4.24), we know from (4.30) that r(η)

l,ε = r (η)
l,ε for all ε 1 and all l. Then, we get from (4.27) and (4.28) (see also Proposition 2.1) that

B r (η) l,ε (0) 
λ ε p 2 ε 2 u pε l,ε e u pε l,ε e 2ϕ l,ε dx = (4π + o(1)) γ 2-pε l,ε , that B r (η) l,ε (0) 
λ ε p 2 ε 2 e u pε l,ε e 2ϕ l,ε dx = 4π + o(1) γ 2(pε-1) l,ε (4.69) 
and that

u l,ε = (1 -η)γ l,ε + O γ 1-pε l,ε , = - 2 p ε -1 γ l,ε + 2 p ε γ pε-1 l,ε ln 1 λ ε (r (η) l,ε ) 2 + O(1) (4.70) uniformly in ∂B r (η) l,ε (0) 
for all ε 1 and for all l. The second equality uses also (2.8) with γ = γ l,ε and p γ = p ε . Up to a subsequence, by comparing the two RHS of (4.70), by using p 0 < 2, r (η) l,ε ≤ κ and that η (moving only here) may be arbitrarily close to 1, we may complement (4.68) here and get that

1 - p 0 2 γ pε l,ε (1 + o(1)) = ln 1 λ ε (4.71)
for all l as ε → 0, so that we have in particular

γ l,ε = (1 + o(1))γ i,ε (4.72) 
for all l. Given any η ∈ (0, η), we claim that the rst equality in (4.70) implies that

u ε ≤ (1 -η) γ i,ε in Ω ε := Σ\ ∪ N l=1 φ -1 l,ε B r (η) l,ε (0) (4.73) 
for all ε 1. Otherwise, as when proving Proposition 4.1, if x ε ∈ Ω ε satises u ε (x ε ) = max Ωε u ε , then x ε is a good candidate to be another concentration point for u ε : we get that µ l,ε = o (d g (x l,ε , x ε )) for all l by (4.15) and that [START_REF] Ding | The dierential equation ∆u = 8π -8πhe u on a compact Riemann surface[END_REF]) and establishes (4.73). Independently, (4.71) gives

min l∈{1,...,N } u pε-1 ε (x ε )d g (x l,ε , x ε ) 2 |(∆ g u ε )(x ε )| → +∞ as ε → 0, which contra- dicts (4.
λ ε Ωε (1 + u pε ε ) e u pε ε dv g = O exp (1 -η) p0 -1 - p 0 2 γ pε i,ε + o(γ pε i,ε )
for all ε 1. Choosing 0 < η < η < 1 suciently close to 1 from the beginning (depending on the smallness of 2 -p 0 > 0 here), we may plug this estimate and (4.69) in (4.2) to conclude the proof of (4.5), using also (4.8) and (4.72).

In contrast to the case p 0 = 2 handled below (see also [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF]), it is interesting to note that, due to the global nature of both integrals in (4.2), we need also (4.72) to get the quantization (4.5), at least for k > 1 and 1 < p 0 < 2 in (4.66). At that stage, we are left with the proof of (4.5) in the more delicate borderline case p 0 = 2. We assume from now on that p 0 = 2 in (4.66).

Conclusion of the proof of Theorem 4.1. We still use the notation and observations of (4.24)-(4.25) and below. On the other hand, by (4.30) in Step 4.1, for all given η ∈ (0, 1), we have that

r (η) l,ε = o(r l,ε ) =⇒ r(η) l,ε = r (η) l,ε (4.74) 
for all ε 1 and all l ∈ {1, ..., N }. Then, as a consequence of Propositions 2.1 and 3.1, we get that (4.26)-(4.29) hold true. In particular, for all given η < η in (0, 1), we get from (4.29) that

|∇(u l,ε -v l,ε )| = o 1 γ pε-1 l,ε r (η ) l,ε (4.75) 
uniformly in B r (η ) l,ε (0) for all ε 1 and all l. Then, for all given η ∈ (0, 1), since we also have

0 ≤ v l,ε -v l,ε r (η ) l,ε ≤ 2 + o(1) γ pε-1 l,ε ln r (η ) l,ε | • | ,
using the estimate in w γ in Proposition 2.1, we eventually get that

u l,ε -u l,ε r (η ) l,ε ≤ 2 + o(1) γ pε-1 l,ε ln 2r (η ) l,ε | • | (4.76) uniformly in B r (η ) l,ε (0) 
\{0} for all ε 1 and all l. During the whole proof below, we choose and x η 0 ∈ (0, 1) and set

ν j,ε = sup              r ∈ r (η0) j,ε , κ s.t.              |u j,ε -ūj,ε (r)| < 5 πC 2 ūj,ε (r) 1-pε +2 l∈Ij,ε(r) γ 1-pε l,ε ln 6r |•-φj,ε(x l,ε )| in B r (0)\ ∪ l∈Ij,ε(r) B r (η 0 ) l,ε (φ j,ε (x l,ε ))              (4.77)
for all j ∈ {1, ..., N } and all ε 1, where C 2 > 0 is as in (4.17) and where I j,ε (r) is given by I j,ε (r) = l ∈ {1, ..., N } s.t. φ j,ε (x l,ε ) ∈ B 3r

As a rst remark, it follows from the very denition (4.77) of ν j,ε and from (4.76) that, for all given η 2 ∈ [η 0 , 1), we have 

ν l,ε ≥ r (η2) l,ε (4 
so that, using (4.12), the following property currently used in the sequel holds true:

gl,ε := (φ l,ε ) g (ν i,ε• ) → ξ in C 2 loc (R 2 ) (4.84) 
as ε → 0, for all l ∈ I, where

I := {l ∈ {1, ..., N } s.t. d g (x i,ε , x l,ε ) = O (ν i,ε
) for all ε 1} . Up to a further subsequence, we may also assume that

lim ε→0 φ i,ε (x l,ε ) ν i,ε = xl ∈ R 2
for all l ∈ I. Set also S = {x l | l ∈ I} so that clearly 0 ∈ S. Fix τ ∈ (0, 1) and R ≥ 1 to be chosen properly later on such that 3τ <

1 if S = {0} , min {(x,y)∈S 2 |x =y} |x -y| otherwise ,
and such that S ⊂ B 3R (0).

Set D ε = B Rνi,ε (0)\ ∪ l∈I B τ νi,ε/3 (φ i,ε (x l,ε )) for all ε 1.
Let now wε be given by

∆ wε = -e 2ϕi,ε h i,ε u i,ε in B Rνi,ε (0) , wε = 0 on ∂B Rνi,ε (0) , (4.85) 
for all ε. Observe rst by (4.19) that ∆(u i,ε -wε ) ≥ 0 in B Rνi,ε (0) so that u i,ε -wε is radially nonincreasing in [0, Rν i,ε ]. Moreover, the maximum principle gives that u i,ε -wε attains its inmum in B Rνi,ε (0) at some point on ∂B Rνi,ε (0). Independently, for all given p > 2, by elliptic theory, we get from Lemma 4.1 and (4.12) that

wε (ν i,ε •) L ∞ (B R (0)) = O ∆ ( wε (ν i,ε •)) L p (B R (0)) = O ν 2(p-1) p i,ε (4.86) 
for all ε 1. Summarizing, by (4.83) and since τ < 1, this argument for R = 1 (only there) gives that ūi,ε (τ ν i,ε ) ≥ ūi,ε (ν i,ε ) + o(1), so that (4.82) leads to

Γ ε := ūi,ε (τ ν i,ε ) → +∞
(4.87) as ε → 0. Then, as a consequence of (4.17) (and (4.84) again), we get that

u i,ε = Γ ε + O Γ 1-pε ε (4.88)
uniformly in D ε and for all ε 1, using once more the mean value property on ∂B τ νi,ε (0) and the denition of τ . Then, by the maximum principle-based argument below (4.85), with (4.83) and (4.86), we get that inf

B Rν i,ε (0) u i,ε ≥ min ∂B Rν i,ε (0) u i,ε + o(1) = Γ ε + o(1) (4.89) as ε → 0.
We prove now that

Γ ε = o(γ j,ε )
(4.90) as ε → 0, for all j ∈ I, up to a subsequence. Consider rst the case j = i in (4.90). For all given η 2 ∈ [η 0 , 1), we have that ūj,ε r

(η2) j,ε = (1 -η 2 )γ j,ε (1 + o(1)) ≥ Γ ε (1 + o(1)) (4.91)
for all ε 1. The rst equality comes from the denition (4.24) of r (η2) i,ε , from (4.74), from the equality in (4.27) and from (4.28) for l = i, while the inequality comes from (4.78), (4.89) and the above largeness assumption S ⊂ B 3R (0) on R 1.

Observe that (4.78) implies that (4.92) below holds true for t = i. Since η 2 may be arbitrarily close to 1, (4.91) concludes the proof of (4.90) for j = i. If now I = {i}, we may pick j ∈ I\{i} and we get from the very denition of I with (4.20) and (4.84) again that r j,ε = O (ν i,ε ) for all ε. Then, also in the last present case j = i, using now (4.74) for l = j, we get

lim ε→0 r (η0) t,ε ν i,ε = 0 , (4.92) 
for all t ∈ I, and then similarly (4.91), to conclude the proof of (4.90).

At that stage, we may improve the estimate in (4.86). As a consequence of (4.87), (4.88) and Lemma 4.1, writing merely that u i,ε L p (Dε) = O(1), we get that

ν 2 i,ε Γ p ε = O(1)
for all ε, so that (4.86) gives

| wε | = O Γ 1-p ε = o(Γ 1-pε ε )
(4.93) uniformly in D ε , for all ε 1, since p is xed greater than 2 just above (4.86). Let ζ ε be given by

∆ζ ε = 0 in B Rνi,ε (0) , ζ ε = u i,ε on ∂B Rνi,ε (0 
) for all ε. By keeping track of the constant C 2 of (4.17) and choosing R 1 large enough (depending only on S) from the beginning, using a mean value theorem on ∂B Rνi,ε (0), (4.84) and (4.87), we may get a slightly more precise version of (4.88) on ∂B Rνi,ε (0), namely we have that sup

B Rν i,ε (0) |ζ ε -ūi,ε (Rν i,ε )| ≤ sup ∂B Rν i,ε (0) |u i,ε -ūi,ε (Rν i,ε )| ≤ 2πC 2 Γ pε-1 ε (4.94)
for all ε 1, using also the maximum principle. Observe in particular that u i,ε = (1 + o(1))Γ ε uniformly in D ε . Let Gε be the Green's function of ∆ in B Rνi,ε (0) with zero Dirichlet boundary condition. Let (z ε ) ε be any sequence of points such that

z ε ∈ B Rνi,ε (0))\ ∪ l∈I B r (η 0 ) l,ε (φ i,ε (x l,ε )) (4.95)
for all ε. We have that

0 < Gε (z ε , •) ≤ 1 2π ln 2Rν i,ε |z ε -•| in B Rνi,ε ( 
0)\{z ε } for all ε 1. Thus, the Green's reprentation formula gives that 

0 ≤ (u i,ε -wε -ζ ε ) (z ε ) ≤ λ ε p ε 2π B Rν i,ε (0) ln 2Rν i,ε |z ε -y| e 2ϕi,ε u pε-1 i,ε e u pε i,ε ( 
| = O 1 r (η0) l,ε γ pε-1 l,ε uniformly in B 3r (η 0 ) l,ε (0) \B r (η 0 ) l,ε 3 (0) 
so that, for all j ∈ I, we get as a byproduct of (4.77) and (4.81) with τ < 1 that

|ū j,ε (τ ν i,ε ) -u j,ε | = O ūj,ε (τ ν i,ε ) 1-pε + O   l∈Ij,ε(τ νi,ε) 1 γ pε-1 l,ε ln 4τ ν i,ε | • -φ j,ε (x l,ε )|   uniformly in B τ νi,ε (0)\ ∪ l∈Ij,ε(τ νi,ε) B 2r (η 0 )
l,ε /5 (φ j,ε (x l,ε )), and then we eventually obtain with (4.88) and our denition of τ that

|Γ ε -u i,ε | = O Γ 1-pε ε + O   l∈Ij,ε(τ νi,ε) 1 γ pε-1 l,ε ln 4τ ν i,ε | • -φ i,ε (x l,ε )|   (4.97) uniformly in D j,ε := B τ νi,ε/2 (φ i,ε (x j,ε ))\ ∪ l∈Ij,ε(τ νi,ε) B r (η 0 ) l,ε /2 (φ i,ε (x l,ε
)) for all ε, still using (4.84). Independently, using that

|z ε -φ i,ε (x l,ε )| ≥ r (η0)
l,ε , we have

ln 2Rν i,ε |z ε -•| = ln 2Rν i,ε |z ε -φ i,ε (x l,ε )| + O r (η0) l,ε r (η0) l,ε + |z ε -φ i,ε (x l,ε )| (4.98)
uniformly in B r (η 0 ) l,ε /2 (φ i,ε (x l,ε )) and for all ε 1. By (4.75) for some given η ∈ (η 0 , 1) and since u l,ε (0

) = v l,ε (0), we get u l,ε -v l,ε = o(γ 1-pε l,ε
), so we eventually get for all given η ∈ (η 0 , 1) that

λ ε p ε u pε-1 l,ε e u pε l,ε = 8e -2t l,ε (1 + o(e ηt l,ε )) µ 2 l,ε γ pε-1 l,ε p ε (4.99) uniformly in B r (η 0 ) l,ε (0) 
and for all ε 1, still applying Proposition 2.1. Then, using also (4.12) and (4.84), we get from (4.98) and (4.99) that

λ ε p ε 2π B r (η 0 ) l,ε /2
(φi,ε(x l,ε ))

ln 2Rν i,ε |z ε -y| e 2ϕi,ε u pε-1 i,ε e u pε i,ε (y) dy 
= (4 + o(1)) p ε γ pε-1 l,ε ln ν i,ε |z ε -φ i,ε (x l,ε )| + O 1 γ pε-1 l,ε , (4.100)
as ε → 0 and for all l ∈ I. Using the basic inequalities

|(1 + t) p -1| ≤ C (|t| + |t| p )
for all t > -1, and

N t=1 a t p ≤ C N t=1 a p t
for all a t ≥ 0 and all p ∈ [1, 2], we get rst from (4.97) that

u pε i,ε = Γ pε ε + O(1) + O   l∈Ij,ε(τ νi,ε) 1 γ pε-1 l,ε ln 4τ ν i,ε | • -φ i,ε (x l,ε )| pε   + O   l∈Ij,ε(τ νi,ε) Γ ε γ l,ε pε-1 ln 4τ ν i,ε | • -φ i,ε (x l,ε )|   (4.101)
uniformly in D j,ε and for all ε. Independently, we get from (4.7), (4.13), (4.24) and (4.74) that

ln 1 r (η0) l,ε 2 = -t l,ε (r (η0) l,ε ) + o(1) + ln 1 µ 2 l,ε , ≤ - p 0 η 0 2 + 1 + o(1) γ pε l,ε , (4.102) 
as ε → 0 and for all l. Recall that we are now assuming that p 0 = 2 in (4.66). Then, we may get from (4.83), (4.92) and (4.102) that

1 γ pε-1 l,ε ln 4τ ν i,ε | • -φ i,ε (x l,ε )| 2 pε = 1 γ pε l,ε ln 4τ ν i,ε | • -φ i,ε (x l,ε )| 2 pε-1 ln 4τ ν i,ε | • -φ i,ε (x l,ε )| 2 , ≤ C(1 -η 0 + o(1)) ln 4τ ν i,ε | • -φ i,ε (x l,ε )| 2 (4.103)
uniformly in D j,ε as ε → 0 and for all l ∈ I. Choose now j 1 , ..., j |S| in I such that {x j1 , ..., xj |S| } = S. We compute and then get from (4.101)-(4.103) and from (4.90) that

λ ε p ε 2π Dj t ,ε ln 2Rν i,ε |z ε -y| e 2ϕi,ε u pε-1 i,ε e u pε i,ε (y) dy = O λ ε Γ pε-1 ε exp (Γ pε ε ) × l∈Ij t ,ε (τ νi,ε) B τ ν i,ε 2 (φi,ε(xj t ,ε )) ln 2Rν i,ε |z ε -y| 4τ ν i,ε |y -φ i,ε (x l,ε )| 2 1- η 0 2 dy , = O λ ε Γ pε-1 ε exp (Γ pε ε ) ν 2 i,ε , (4.104) 
for all t ∈ {1, ..., |S|} and all ε 1, using that η 0 > 0 to get the last estimate. At last, it readily follows from (4.88) that

λ ε p ε 2π D0,ε ln 2Rν i,ε |z ε -y| e 2ϕi,ε u pε-1 i,ε e u pε i,ε (y) dy = O λ ε Γ pε-1 ε exp (Γ pε ε ) ν 2 i,ε (4.105) 
for all ε 1, where

D 0,ε = B Rνi,ε (0)\ ∪ |S| t=1 B τ νi,ε/2 (φ i,ε (x jt,ε )) .
Summarizing, by plugging (4.93), (4.94), (4.100), (4.104) and (4.105) in (4.96), we get that

|u i,ε (z ε ) -ūi,ε (Rν i,ε )| ≤ 2πC 2 Γ 1-pε ε + l∈I 2 + o(1) p ε γ pε-1 l,ε 2 ln 4τ ν i,ε |z ε -φ i,ε (x l,ε )| + O(1) + O λ ε Γ pε-1 ε exp (Γ pε ε ) ν 2 i,ε (4.106) 
for all ε, given (z ε ) ε as in (4.95). By the estimate ν 2 i,ε Γ p ε = O(1) just above (4.93) for p > 4/3, we get that ν 3/2 i,ε = o(Γ 1-pε ε ). Then, evaluating (4.31) at τ ν i,ε and by (4.87), we get that

Γ ε ≤ 2 p ε γ pε-1 i,ε ln 1 λ ε γ 2(pε-1) i,ε ν 2 i,ε + O(1) + o Γ 1-pε ε , (4.107) 
then with (4.90) that

exp (Γ pε ε ) ≤ exp 2Γ pε-1 ε p ε γ pε-1 i,ε ln 1 λ ε γ 2(pε-1 i,ε )ν 2 i,ε + o(1) , that λ ε γ 2(pε-1) i,ε ν 2 i,ε ≤ exp - p ε 2 Γ ε (1 + o(1))γ pε-1 i,ε
and eventually that

λ ε Γ pε-1 ε ν 2 i,ε exp (Γ pε ε ) = o(Γ 1-pε ε ) (4.
108) for all ε 1. By (4.76) and (4.106) with (4.108), we get that

|u i,ε -ūi,ε (Rν i,ε )| ≤ (2πC 2 + o(1))Γ 1-pε ε + O l∈I 1 γ l,ε ln 3Rν i,ε | • -φ i,ε (x l,ε )|
uniformly in B Rνi,ε (0)\{φ i,ε (x j1,ε ), ..., φ i,ε (x j |S| ,ε )}. In particular, using (4.90) again, we get

|ū i,ε (ν i,ε ) -ūi,ε (Rν i,ε )| ≤ (2πC 2 + o(1))Γ 1-pε ε (4.109)
as ε → 0. Then, p 0 = 2, (4.90), (4.106), (4.108) and (4.109) give that

|u i,ε -ūi,ε (ν i,ε )| ≤ 9 2 πC 2 Γ 1-pε ε + l∈Ii,ε(νi,ε) 2 + o(1) γ pε-1 l,ε ln 4τ ν i,ε |z ε -φ i,ε (x l,ε )| (4.110) uniformly in B νi,ε (0)\ ∪ l∈Ii,ε(νi,ε) B r (η 0 ) l,ε (φ i,ε (x l,ε )
) and for all ε. But by (4.78) for l = i, our assumption (4.80) and by (4.18), the inequality in (4.77) for j = i and r = ν i,ε should be an equality somewhere on ∂B νi,ε (0) of this set for all ε 1, which gives a contradiction to (4.110) and concludes the proof of (4.79).

Then, picking now a sequence ( Γε ) ε such that lim ε→0 Γε = +∞ and Γε = o(γ j,ε ), and setting

νj,ε = inf r > 0 s.t. ūj,ε ≥ Γε in [0, r] ,
we get from (4.79) that νj,ε ≤ ν j,ε (4.111) for all j ∈ {1, ..., N } and all ε 1. By (4.15), νj,ε = o(1). As in (4.88), we get from (4.17) and (4.18) that we can x 0 < R < 1 such that u ε = Γε (1 + o(1)) uniformly in ∂φ -1 j,ε (B Rνj,ε (0)) for all ε 1 and all j. Arguing now as below (4.73), we get from (4.16) that

sup Σ\∪j φ -1 j,ε (BRν j,ε (0)) u ε ≤ 2 Γε (4.112)
for all ε 1. Then choose and x ( Γε ) ε growing slowly to +∞ and more precisely such that

λ ε Γpε ε exp (2 Γε ) pε = o γ 2-pε j,ε and (2 -p ε ) ln 1 + λ ε γ 2(pε-1) j,ε exp((2 Γε ) pε ) = o(1) (4.113) 
for all j as ε → 0. The rst condition is clearly possible by (4.67). The second one is also possible since λ ε γ 2(pε-1) j,ε

= O(1) by (4.68) and since now p 0 = 2 in (4.66). We may now compute and use either (4.112) in Σ\ ∪ j φ -1 j,ε (B Rνj,ε (0)), or the controls given by the inequality in (4.77) for r = νj,ε thanks to (4.111), allowing to estimate the nonlinearity as in (4.101)-(4.104). This leads to the following integral estimates:

λ ε p 2 ε 2 Σ\∪j φ -1 j,ε B r (η 0 ) j,ε (0) 
u pε ε e u pε ε dx = o γ 2-pε j,ε , λ ε p 2 ε 2 Σ\∪j φ -1 j,ε B r (η 0 ) j,ε (0) 
e u pε ε -1 dx = O λ ε exp (2 Γε ) pε , (4.114) 
while, computing as in (4.100), we get that

λ ε p 2 ε 2 φ -1 j,ε B r (η 0 ) j,ε (0) 
u pε ε e u pε ε dx = (4π + o(1)) γ 2-pε j,ε , λ ε p 2 ε 2 φ -1 j,ε B r (η 0 ) j,ε (0) 
e u pε ε - 

1 dx = 4π + o(1) γ 2(pε-1) j,ε (4 
β ε =   N j=1 4π + o(1) γ 2(pε-1) j,ε   2-pε pε   (4π + o(1)) N j=1 γ 2-pε j,ε   2(pε-1) pε , = 4π(1 + o(1)) 1 + j =j0 γ j,ε γ j0,ε 2-pε ( ) 2(pε-1) pε , using that   1 + j =j0 γ j0,ε γ j,ε 2(pε-1)   2-pε pε = 1 + o(1)
since p ε → 2, where we choose j 0 ∈ {1, ..., N } such that γ j0,ε = min j∈{1,...,N } γ j,ε for all ε, up to a subsequence. Then, in order to conclude the proof of (4.5) for k = N , it is then sucient to get that the term ( ) converges to N , namely that ∀j ∈ {1, ..., N } , lim ε→0

(2 -p ε ) ln γ j,ε γ j0,ε = 0 .

To get this, we use (4.67), (4.68) and argue as below (4.70) for η = 1/2 to write Our main goal in this section is to prove the following result:

(2 -p ε ) γ pε j,ε ≤ (1 + o(1)) ln 1 λ 2 ε ≤ 1 + o(1) 2 γ pε j,ε for all j, so that 1 ≤ (γ j,ε /γ j0,ε ) pε = O (1/(2 -p ε )) ≤ +∞.
Theorem 5.1. Let (λ ε ) ε be any sequence of positive real numbers. Let p ∈ (1, 2] be given and set p ε = p for all ε. Let (u ε ) ε be a sequence of smooth functions solving (4.1). Let (β ε ) ε be given by (4.2). Assume that (4.4) holds true, so that (4.3) holds true for some β ∈ 4πN (see Theorem 4.1). Then we have that

β ε > β (5.1)
for all ε 1.

More precisely, if (γ 1,ε ) ε , ... , (γ k,ε ) ε are the sequences of positive real numbers diverging to +∞ given by Proposition 4.1, we show in the proof below that

β ε ≥ 4π k + 4(p -1)(1 + o(1)) p 2 k i=1 γ -2p i,ε (5.2) 
as ε → 0. As a remark, according to the proof of Theorem 4.1, N in Proposition 4.1 equals k in (4.5). Interestingly enough, the cancellation of terms of order γ -p i,ε still occurs here on a surface for all p ∈ (1, 2] and for arbitrary energies, as pointed out in [START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF] concerning the unit disk for p = 2 and in the minimal energy case β = 4π.

5.1. Further estimates in the radially symmetric case. Let p ∈ (1, 2] be given, let (µ γ ) γ be a family of positive real numbers, and let (λ γ ) γ be such that (2.1) holds true, where p γ = p for all γ, let t γ , tγ be given by (2.2) and let (B γ ) γ be given by (2.6). Let also (r γ ) γ be a family of positive real numbers such that (2.3) holds true, and such that

t γ (r γ ) ≤ √ γ , (5.3) 
γ 4p r2 γ = O(1) (5.4) 
for all γ 1. In this section we aim to get more precise estimates on the B γ 's than in Section 2, but at smaller scales around 0, in order to be technically as simple as possible: namely, (5.3)-(5.4) imply (2.4)-(2.5). We also restrict here to the specic case where p is xed. As already mentioned in the introduction, some issues may arise when studying compactness at the critical levels β ∈ 4πN in the case p = 1.

Following [START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF][START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF] and still abusing the radial notation r = |x|, we let w 0 be given by

w 0 (r) = -T 0 (r) + 2r 2 1 + r 2 - 1 2 T 0 (r) 2 + 1 -r 2 1 + r 2 1+r 2 1 ln t 1 -t dt
for T 0 as in (2.13), so that, by ODE theory, w 0 is the unique solution of

     ∆w 0 = 4e -2T0 2w 0 + T 2 0 -T 0 in R 2 , w 0 (0) = 0 , w 0 is radially symmetric around 0 ∈ R 2 .
(5.5)

We further set

F = 2(p -1)w 0 + (p -2)T 2 0 -8(p -1)T 0 w 0 - 8p -10 3 T 3 0 + 4 (p -1) w 2 0 + 4(p -1)T 2 0 w 0 + (p -1)T 4 0 , (5.6) 
and let w 1 be the unique solution of

       ∆w 1 = 4e -2T0 2w 1 + 4(p-1) p 3 F in R 2 , w 1 (0) = 0 , w 1 is radially symmetric around 0 ∈ R 2 .
(5.7)

Resuming the strategy and the explicit computations in [40, Section 3], even if we do not have w 1 in closed form, we know that

R 2 ∆w 1 dx = 16(p -1) p 3 (p -1) π 3 3 + 33π 2 + 3π 2 (p -2) - 7(4p -5)π 2 .
(5.8)

We also have that

w 0 (r) = -T 0 (r) + O(1) , w 1 (r) = - T 0 (r) 4π R 2 ∆w 1 dx + O(1)
(5.9) as r → +∞. Note that the convention on the sign of the Laplace operator here is not the same as that in [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]. In complement of the computations already done in [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF], we compute also

R 2 |x| 2 -1 (1 + |x| 2 ) 3 T 0 (x) 2 dx = 3π 2
to get (5.8). Let w 0,γ , w 1,γ be given by w 0,γ = w 0 (•/µ γ ) and w 1,γ = w 1 (•/µ γ ), and let w γ be given by

B γ = γ - 2t γ pγ p-1 + 4(p -1)w 0,γ p 2 γ 2p-1 + w 1,γ + w γ γ 3p-1 .
(5.10) Proposition 2.1 already gives B γ ≤ γ and some estimates on w γ given by (5.10) in [0, rγ ] for all γ 1. Much more precisely here, we get that w γ is actually a small remainder term in the following sense:

Proposition 5.1. We have

w γ = O(γ -p t γ ) , w γ = O(γ -p t γ ) ,
and

λ γ pB p-1 γ e B p γ = - 2 pγ p-1 ∆t γ 1 + O e tγ /2 γ 3p + 4(p -1) p 2 γ 2p-1 ∆w 0,γ + ∆w 1,γ γ 3p-1 ,
uniformly in [0, rγ ] and for all γ 1 large, where w γ is as in (5.10).

The proof of Proposition 5.1 follows the strategy of the proof of Proposition 2.1, but the stronger assumption (5.3) basically reduces now the computations to Taylor expansions.

Proof of Proposition 5.1. Let r γ be given by

r γ = sup {r ∈ [0, rγ ] s.t. |w γ | ≤ t γ } for all γ.
Taking advantage of the control on w γ in [0, r γ ] given by this denition, we may perform the following computations uniformly in [0, r γ ] as γ → +∞. We rst get We use for this (5.3) and (5.9) and the expansions of (1 + ε) q as ε → 0. Then, using (2.1), we similarly compute and get 

B p γ = γ p -2t γ + 2(p -1) pγ p 2w 0,γ + t 2 γ + p(w 1,γ + w γ ) γ 2p - 8(p -1) 2 t γ w 0,γ p 2 γ 2p - 8(p -1)(p -2)t 3 γ 6p 2 γ 2p + O t4 γ γ 3p . and B p-1 γ = γ p-1 1 - 2(p - 
λ γ pe B p γ = 8e -2tγ pγ 2(p-
for F as in (5.6), using again (5.3) to write t3 γ /γ 3p = o(1). Then, setting wγ = w γ (•/µ γ ), using now not only (2.13), but also (5.5) and (5.7), we get from (2.6) that ∆ wγ = 8e -2T0 wγ + O µ 2 γ γ 3p + O e -3T0/2 γ p , (5.12) uniformly in [0, r γ /µ γ ] as γ → +∞, applying ∆ to (5.10). The second-last term in (2.14) is obtained when controlling B γ in the LHS of (2.6), since our denition of r γ implies B γ ≤ γ in [0, r γ ] for all γ 1. Then, (2.15) may be obtained from (2.14) by using also (5.4). At that stage, we may conclude the proof of Proposition 5.1 by following closely the lines below (2.15) and showing mainly that (2.10) holds true for all γ 1.

As a direct corollary of Proposition 5.1, we get the following estimates: Corollary 5.1. Assume that (5.3) is an equality, namely that t γ (r γ ) = √ γ (5.13) for all γ 1, then we have that

λ γ p 2 2
Br γ (0)

B p γ e B p γ dx = 4πγ Since the computations to get Corollary 5.1 from Proposition 5.1 basically resume those in [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF], we leave them to the reader. In particular, proving the rst two estimates in Corollary 5.1 uses (5.8) and the following computations

R 2 ∆w 0 dx = - R 2 ∆T 0 dx = - R 2 T 0 ∆T 0 dx = - 1 2 R 2 T 2 0 ∆T 0 dx = 4π , R 2 
(w 0 (∆T 0 ) + T 0 ∆w 0 ) dx = 8π + 2π 3 3 .

Once the rst two estimates of Corollary 5.1 are obtained, proving (5.14) is quite elementary: in particular, we observe in (5.14) the aforementioned cancellation of the term γ -p . Besides, the term γ -2p vanishes as well for p = 1. That is the technical reason why the approach of this section does not work for p = 1 and why we assume p > 1 in Theorem 5.1 (see also the paragraph above Remark 0.1). given by (4.25) equals r (1/2) l,ε in (4.24) for all l ∈ {1, ..., k} and all ε 1. Moreover, since r i,ε = O (1) according to (4.20), we get that r (1/2) i,ε = o(r i,ε ) = o(1) (5.16) for all ε 1 and all i. By (4.24) and (5.15), we deduce that

Conclusion

ln r2 i,ε r (1/2) i,ε 2 = t i,ε (r i,ε ) -t i,ε r (1/2) i,ε + o(1) ≤ -3γ i,ε
for all i and all ε 1. Then, we nd from (5.16) that ri,ε = O e -γi,ε

(5.17) for all ε 1 and all i. Proposition 2.1 may be applied as below (4.25). We get that

|u i,ε -v i,ε | = O ri,ε r (1/2) i,ε γ p-1 i,ε
= O e -γi,ε uniformly in B ri,ε (0) for all ε 1 and all i, using also (4.28). Then, using similarly Proposition 2.1 to get that v i,ε = γ i,ε (1 + o(1)), we obtain that

u p i,ε = v p i,ε 1 + O e -γi,ε γ i,ε , (5.18) 
so that we have e u p i,ε = e v p i,ε

1 + o 1 γ 2p i,ε (5.19) 
uniformly in B ri,ε (0), for all ε 1 and all i. An easy consequence of (4.12), (4.20) and (5.16) is that the domains φ -1 i,ε (B ri,ε (0)) are two by two disjoint for all ε 1. Then we may write that

λ ε p 2 2 Σ u p ε e u p ε dv g ≥ k i=1 λ ε p 2 2 Br i,ε (0) 
u p i,ε e u p i,ε e 2ϕi,ε dx

:=ai,ε , λ ε p 2 2 Σ e u p ε -1 dv g ≥ k i=1 λ ε p 2 2 Br i,ε (0) 
e u p i,ε -1 e 2ϕi,ε dx :=bi,ε .

(5.20)

Using (4.12), (5.17), (5.18) and (5.19), we write e 2ϕi,ε = 1 + O (r i,ε ) and get , by Hölder's inequality for vectors in R k . In order to compute the RHS, since we have (5.17), so that (see (5.4)) we may apply also Proposition 5.1 to v i,ε in B ri,ε (0) and thus use (5.14). This proves (5.2) and concludes the proof of Theorem 5.1.

Remark 5.1. The minimization of I β in (0.10) for β = 4π attracted some attention (see for instance [START_REF] Ding | The dierential equation ∆u = 8π -8πhe u on a compact Riemann surface[END_REF][START_REF] Nolasco | On a sharp Sobolev-type inequality on two-dimensional compact manifolds[END_REF]): in this case we basically have p = 1. Then, turn now to the case p ∈ (1, 2] of this section. First if p = 2, we may get by following the strategy in [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF] that the convergence of (β ε ) ε to 4π from above in (5.2) for k = 1 gives back the existence of a maximizer for (MT ) if β = 4π (see also [3,[START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF][START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF]). Now, if p ∈ (1, 2), we already pointed out in the introduction that

-∞ < Θ p,ε := inf u∈H 1 J p,4π(1-ε) (u)
for all ε ∈ [0, 1), where J p,β is as in (0.13). Moreover, the existence of a minimizer u ε for J p,4π(1-ε) follows from a standard minimization argument for all given ε ∈ (0, 1). Here again, the convergence of (β ε ) ε to 4π from above in (5.2) for k = 1 gives the attainment of Θ p,0 , since the present u ε 's then have to converge strongly in C 2 as ε → 0.

We conclude this remark by a curiosity. If G > 0 is the Green's function of ∆ g + h in Σ, we may write G(x, y) = 1 4π ln 1 |x-y| 2 + H(x, y) for all x = y. We know that H ∈ C 0 (Σ × Σ) and we set M = max x∈Σ H(x, x). As a byproduct of the analysis in the present paper, it can be also checked that as ε → 0, if the u ε 's blow-up at some x ∈ Σ for k = 1 in (4.5) and solve (4.1), with λ ε given by (4.2), for β ε = 4π(1 -ε), p ε = p and γ ε = max Σ u ε for all ε. We may also get that (5.23)

Θ p,0 = inf u∈H 1 J p,4π ( 
The large inequality in (5.23) is a byproduct of a by now rather standard test function computations (see for instance [START_REF] Thizy | When does a perturbed MoserTrudinger inequality admit an extremal ?[END_REF]Step 3.1]). The strict inequality is more subtle and can be seen as a consequence of the convergence of the β ε 's from above, picking the rened test functions provided by the blow-up analysis, in the spirit of [START_REF] Thizy | When does a perturbed MoserTrudinger inequality admit an extremal ?[END_REF]Section 4]. At last, observe that the exponential of the opposite of the RHS of (5.23) converges to π exp (1 + M ) as p → 2, which turns out to be consistent with the original works [3,[START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF].

Conclusion of the proofs of Theorems 0.2 and 0.1

Let β > 0 be given. Assume rst that p is given in [START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF]. By Theorem 1.1, there exist a sequence (β ε ) ε increasing to β -as ε → 0, and u ε such that (4.1) is satised for p ε = p and λ ε given by (4.2) for all ε. Now, we claim that the u ε 's are uniformly bounded: this is a direct consequence of (4.5) in Theorem 4.1 if β ∈ 4πN and follows from Theorem 5.1 if β ∈ 4πN , since the present sequence (β ε ) ε is assumed to increase. By elliptic theory in (4.1) and (4.7), we easily then get that, up to a subsequence, the λ ε 's converge to some λ and the u ε 's converge in C 2 to some u solving the equation in (0.12) and (0.14). Observe in particular that since β > 0, (0.14) gives that u ≥ 0 is not identically zero, so that u > 0 in Σ by Lemma 1.1. Then C p,β u is not empty in Theorem 0.1. The compactness of C p,β also clearly follows from Theorems 4.1 and 5.1. For p = 1, and β ∈ 4πN * , we take a sequences (p ε ), p ε ↓ 1 and u ε ∈ C pε,β . As before, by Theorem 4.1, up to a subsequence (u ε ) converges to a positive function u ∈ C 1,β , and Theorem 0.1 is proven. Assume now that p = 2. By Theorem 1.1 again, there exist a sequence (β ε ) ε increasing to β -, a sequence (p ε ) ε increasing to 2 -as ε → 0, and u ε such that (4.1) is satised for λ ε given by (4.2) for all ε. First, if we have in addition β ∈ 4πN , we get similarly from Theorem 4.1 that, up to a subsequence, the λ ε 's converge to some λ and the u ε 's converge in C 2 to some u solving the equation in (0.16) and (0.14). Then, we use again that β is positive to get from (0.14) that u is actually positive in Σ and then that u ∈ C 2,β . Thus, if we have now β ∈ 4πN , setting β ε = β -ε and p ε = 2, there exists u ε such that (4.1) is satised for λ ε given by (4.2) for all 0 < ε 1. By Theorem 5.1, we similarly get that the u ε 's converge in C 2 to some u ∈ C 2,β solving (0.14)-(0.16), up to a subsequence. The compactness of C 2,β follows from Theorems 4.1 and 5.1 again, which concludes the proof of Theorem 0.2 in any case.

- 1

 1 f dv g0 = β .

i=1

  Br(xi) e |u| p -1 dv g Σ e |u| p -1 dv g < ε.

2 γγ

 2 so we get from (2.4) that exp B pγ γ = e γ pγ e -2tγ e pγ wγ 1 + O t pγ e η1tγ .

  ) for all ε (see (2.5)). Besides, if we strengthen assumption (3.6) and we assume Br ε (0)

( 3 . 21 )

 321 for all ε, with C 0 > (C G /(1 -η)) + 4 xed as in Proposition 3.1 and C as in(3.6). Then proving(3.14) reduces to show that r ε = rε(3.22) for all ε 1. By (3.4) and (3.7), there exist numbers rε such that µ ε = o(r ε ), rε ≤ rε and such that u ε = γ ε (1 + o(1)) uniformly in B rε (0): then, we get from (3.6) that Br ε (0)

. 29 )

 29 By the second assertion in(3.20) and (3.28), we have ∇w 0 (0) = 0. According to the classication result stated by Chen-Lin[START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces[END_REF] Lemma 2.3] and also in the generality on the growth assumption that we need here by Laurain[START_REF] Laurain | Concentration of CM C surfaces in a 3-manifold[END_REF] Lemma C.1], this last property and (3.29) imply w 0 ≡ 0 .

  µ ε = o(|y ε |) and Br ε (0) |x|e (-2+η)tε(x) dx µ 2 ε |y ε -x| = B rε/|yε| (0) y| = O (μ ε ) for all ε 1, by the change of variable x = |y ε |y, where ỹε = y ε /|y ε | has norm 1 and με = µ ε /|y ε |. Plugging these estimates in (3.33), we get in any case

  [START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF] for all ε, and we get from(3.34) and (3.38) that |y ε | = O (µ ε ) for all ε. However, (3.30) and (3.37) with (3.16) contradict (3.38) with (3.39), which concludes the proof of (3.31). Then (3.15) and (3.16) follow from both assertions in (3.20), from (3.31) and from (3.36), which concludes the proof of Proposition 3.1. To end this section, we assume (3.18) and prove (3.19). We have (3.22) and (3.26). Then, using (3.24),

Lemma 4 . 1 .e u 1 / 3 ε

 4113 There exists C > 0 such that Σ dv g ≤ C

  that p 0 ∈ [1, 2), (4.5) holds true for k = N and N given by Proposition 4.1. Proof of Step 4.2. By evaluating (4.31) at r = κγ 2(1-pε)/3 i,ε

Theorem 4.1 is proven. 5 .

 5 Compactness at the critical levels β ∈ 4πN for p ∈[START_REF] Bartolucci | Existence and uniqueness for mean eld equations on multiply connected domains at the critical parameter[END_REF][START_REF] Battaglia | A general existence result for the Toda system on compact surfaces[END_REF] 

ε 1

 1 and all i. Similar arguments give thatBr i,ε (0) e u p i,ε -1 e 2ϕi,ε dx = Br i,ε (0) e v p i,ε dx 1 + o γ -2p i,ε ,(5.22)for all ε 1 and all i. By plugging (5.21)-(5.22) in(5.20) and coming back to the denition (4.2), we obtain

8 +

 8 H x (x) + (p -1) + o(1) ,

  u) < -ln π + M + (p -1) + (2 -p)(p -1)p .

  [START_REF] Del Pino | New solutions for Trudinger-Moser critical equations in R 2[END_REF]) and(3.14). Since p ε ≤ 2, we get at the same time from(3.21) 

that (3.17) holds true, so that we may apply Proposition 2.1 from now on to estimate the v ε 's in B rε (0). We turn now to the proofs of (3.15) and (3.16). First, using

(3.24) 

and that v ε ≤ γ ε by Proposition 2.1, since |w ε | = O γ 1-pε ε by (3.13), we may rst write u pε ε

  so that (4.3) and its consequence(4.11) for p = 2(p ε -1) are not only used to get (4.15) from the classication in[START_REF] Chen | Classication of solutions of some nonlinear elliptic equations[END_REF], but also to get that the extraction procedure of the blow-up points (x i,ε ) ε has to stop after a nite number N of steps, which eventually gives (4.16) (see[START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF] Section 3]).Remark 4.1. At this stage, we have only extracted the "highest bubbles" in(4.15) and it is not yet clear at all whether N in Proposition 4.1 is a good candidate to be k in (4.5) (see also the discussion in[START_REF] Druet | Multi-bump analysis for Trudinger-Moser nonlinearities I-Quantication and location of concentration points[END_REF] Section 2]

	ε	1)	e u pε ε dv g ,

  2 . Proof of Step 4.1. We divide the proof of Step 4.1 into two parts.

	Proof of (4.31). Here we show (4.31), assuming that (4.30) is already obtained for
	some i. Let η 1 < η 2 be two given numbers in (0, 1). Then by (4.24), (4.25) and
	(4.30), we get

  .78) for all ε 1 and all l ∈ {1, ..., N }. Our main goal now is to show that Assume from now on by contradiction that (4.79) does not hold true for all j so that we may choose and x i ∈ {1, ..., N } such that ν i,ε = min {ν j,ε s.t. (4.80) holds true} .

	ūj,ε (ν j,ε ) = O(1)	(4.79)
	for all ε 1 and all j ∈ {1, ..., N }. For all j, we may assume up to a subsequence
	that either (4.79) or	
	lim ε→0 ūj,ε (ν j,ε ) = +∞	(4.80)
	hold true. (4.81)
	Clearly, we then have	
	lim ε→0 ūi,ε (ν i,ε ) = +∞ .	(4.82)
	By (4.18), we also have that	
	lim ε→0	ν i,ε = 0 ,

  1) µ 2 2p p 3 (w 1,γ + w γ ) -8(p -1) 2 t γ w 0,γ --1) 2 t 2 γ w 0,γ + 2(p -1) 2 t 4 γ + 8(p -1) 2 w 2

		γ	1 +	2(p -1) pγ p	2w 0,γ + t 2 γ +
	1 p 2 γ 4 3	(p -1)(p -2)t 3 γ
	+ 8(p 0,γ	+ O	1 γ 3p e C tγ ×	t3 γ γ 3p	,
	so that we eventually have		
	λ γ pB p-1 γ	e B p γ				
	=	8e -2tγ pγ p-1 µ 2 γ	1 +	2(p -1) pγ p	2w 0,γ + t 2 γ -t γ + O	e tγ /2 γ 3p	+
		4e -2tγ γ 3p-1 µ 2 γ	2(w 1,γ + w γ ) +	4(p -1) p 3 F	• µ γ	,

  of the proof of Theorem 5.1. Let (λ ε ) ε be any sequence of positive real numbers. Let p ∈ (1, 2] be given and set p ε = p for all ε. Let (u ε ) ε be a sequence of smooth functions solving (4.1). Let (β ε ) ε be given by (4.2). Assume that (4.4) holds true, so that (4.3) holds true for some β ∈ 4πN by Theorem 4.1. We may also apply Proposition 4.1, getting in particular sequences (µ i,ε ) ε , (x i,ε ) ε , (γ i,ε ) ε and (ϕ i,ε ) ε , and we resume the notation r i,ε , t i,ε and v i,ε in (4.20)-(4.22); let also ri,ε be given byt i,ε (r i,ε ) = √ γ i,ε(5.15)for all i ∈ {1, ..., k} and all ε. By (4.30) in Step 4.1, we know that r(1/2)

	l,ε
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