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a b s t r a c t

A sequence of one-year combined state–parameter estimation experiments has been conducted in a North

Atlantic and Arctic Ocean configuration of the coupled physical–biogeochemical model HYCOM-NORWECOM

over the period 2007–2010. The aim is to evaluate the ability of an ensemble-based data assimilation method

to calibrate ecosystem model parameters in a pre-operational setting, namely the production of the MyOcean

pilot reanalysis of the Arctic biology. For that purpose, four biological parameters (two phyto- and two zooplankton

mortality rates) are estimated by assimilating weekly data such as, satellite-derived Sea Surface Temperature,

along-track Sea Level Anomalies, ice concentrations and chlorophyll-a concentrationswith an Ensemble Kalman

Filter. The set of optimized parameters locally exhibits seasonal variations suggesting that time-dependent

parameters should be used in ocean ecosystem models. A clustering analysis of the optimized parameters is

performed in order to identify consistent ecosystem regions. In the north part of the domain, where the ecosystem

model is themost reliable, most of themcan be associatedwith Longhurst provinces and newprovinces emerge in

the Arctic Ocean. However, the clusters do not coincide anymore with the Longhurst provinces in the Tropics due

to large model errors. Regarding the ecosystem state variables, the assimilation of satellite-derived chlorophyll

concentration leads to significant reduction of the RMS errors in the observed variables during the first year, i.e.

2008, compared to a free run simulation. However, local filter divergences of the parameter component occur in

2009 and result in an increase in the RMS error at the time of the spring bloom.

1. Introduction

Ocean ecosystem models are now commonly used in operational

oceanography, from global to regional high resolution configurations

(Gehlen et al., 2015). For instance, within the framework of developing

a Europeanmarine environmentmonitoring service associatedwith the

MyOcean1 project, coupled physical-ecosystem models run in six

regions covering the global ocean, the Arctic Ocean and the European

Seas, both for reanalysis and forecast purposes (Edwards et al., 2012;

Elmoussaoui et al., 2011; Mateus et al., 2012; Samuelsen and Bertino,

2011; Teruzzi et al., 2014; Wan et al., 2012). However, these models

present numerous uncertainties linked to the complexities of the

processes that they attempt to represent; the mathematical and

physical ways the different components of the system are coupled and

the parameterizations on which they are built. Consequently, ocean

ecosystem models introduce numerous poorly known parameters that

may depend on space and/or time (Doron et al., 2013; Losa et al.,

2003, 2004;Mattern et al., 2012; Roy et al., 2012) and can have a strong

impact on the dynamics (e.g. Gentleman et al., 2003). Therefore, using

such models requires a fine tuning of these parameters, in particular

those to which the model is most sensitive. Even if the number of

parameters to calibrate is reduced, it can lead to an estimation problem

with a very high dimension when spatio-temporal variations of the

parameters are allowed. Solutions – a.k.a. optimized parameters – can

be obtained using data assimilation methods given their ability to

combine in an optimalway the uncertain andheterogeneous information

provided by the model and the observations.

Ensemble-based data assimilation methods like the Ensemble

Kalman Filter (EnKF; Evensen, 1994; Burgers et al., 1998; Evensen,

2003, 2009) are now being used in large-scale operational ocean fore-

casting systems (Bertino and Lisæter, 2008; Cummings et al., 2009;

Sakov et al., 2012) and were proven successful in dealing with high
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dimensional problems. Combined state and parameter estimation can

be performed by simply augmenting the state vector with the parame-

ters one wishes to estimate (Anderson, 2001; Evensen, 2009). This

strategy can tackle high dimensional problems as highlighted by

Annan et al. (2005) in an Earth systemmodel or even used for estimat-

ing physical bias parameters as described by Sakov et al. (2012) in an

eddy-permitting ocean model.

However, estimating both state variables and parameters of ocean

ecosystem models with ensemble-based data assimilation methods is

a more challenging task. This is usually related to the nonlinearity of

themodels, the constraints of positiveness and/or bounds thatmust ful-

fill variables and parameters, and the high dimensions of the problem.

While nonlinear methods like particle filters – see van Leeuwen

(2009) for a review – successfully estimate parameters in 1D ocean eco-

systemmodels (Losa et al., 2003), their efficient use in high dimensional

systemsmight not be affordable due to the very large size of the ensem-

ble that would be required (Snyder et al., 2008). Strategies like implicit

sampling (Chorin et al., 2010; Weir et al., 2013) are promising for mak-

ing the use of particle filters possible in high dimensions. However, to

the best of our knowledge, further investigations are required before

considering their application in operational systems. Unlike particle fil-

ters, ensemble-based Kalman filters can deal with a high number of di-

mensions. Nevertheless, their optimality in terms of reducing the error

variance relies on the linearity assumption of the model and observa-

tion operators, and further the multi-Gaussian distributed variables

and errors. These assumptions are often not fulfilled in the context of

ocean ecosystem models. Thus, filter divergences can occur due to the

collapse of some ensemble components, given the constraint of posi-

tiveness (Simon and Bertino, 2012). One possible solution consists of a

change of variables in order to improve the multi-Gaussian aspect of

system variables and observations. This strategy is, in essence, the

Gaussian anamorphosis extension of the EnKF suggested by Bertino

et al. (2003). This approach can be easily applied to high dimensional

problems such as those tackled in operational oceanography (Brankart

et al., 2012; Simon and Bertino, 2009). Twin experiments realized in

ocean ecosystem models (Doron et al., 2011; Simon and Bertino,

2012; Simon et al., 2012) or aquifer models (Zhou et al., 2011) demon-

strated the ability of the approach to estimate parameters in nonlinear

and bound-constrained frameworks.

In the present study, we demonstrate the feasibility of state and

parameter estimation for an ocean ecosystemmodel under realistic set-

tings. We focus on the estimation of four biological parameters, namely

the phytoplankton and zooplankton loss rates, combined with the esti-

mation of the state variables in a near operational coupled ocean-ice-

ecosystem model of the North Atlantic and Arctic Oceans. From 2007

to 2010, a 4-year data assimilation experiment has been conducted as-

similating both physical and ocean color remote sensing observations

with an EnKF. Our aim is to evaluate the ability of an ensemble-based

data assimilation system to calibrate ecosystem model parameters in a

pre-operational setting, i.e., the production of theMyOcean pilot reanal-

ysis of the Arctic biology for the period 2007–2010. The considered pa-

rameters are 2D random variables projected on the model grid and are

estimated for two years (2008–2009). In order to assess the hypothesis

that spatio-temporal varying optimized parameters improve the model

dynamics, as reported in Mattern et al. (2012) and Roy et al. (2012), a

yearly set of weekly 2Dmaps of optimized parameters is then extracted

and used for a state estimation process in 2010. To the best of our

knowledge, this is one of the first attempts to estimate spatio-

temporally distributed biological parameters with such a near-

operational large-scale ensemble-based data assimilation system.

While Doron et al. (2013) also estimated biological parameters in a

North Atlantic configuration of a coupled ocean-ecosystem model,

their experimental framework is different from ours. The spatial

discretization of the parameters is given a priori based on Longhurst

provinces (Longhurst, 1995) – one set of values for each province –

and their optimized parameters are obtained from a repetition of single

analyses during spring blooms (the same prior ensemble is used when

performing the analysis at different date). Thismeans that this approach

does not allow seasonal variations of the parameters and the spatial

distribution of the optimized parameters relies on a predefined

observation-based partition of the model grid. Furthermore, it does

not provide information about bias assimilation or filter divergence

that could occur when cycling the analysis.

The remaining of thepaper is organized as follows. The experimental

framework is presented in Section 2, then we analyze the results of the

parameter estimation in Section 3.1, and validate the impact of the

assimilation on the ecosystem state variables in Section 3.2. Finally,

we present our conclusions in Section 4.

2. Description of the experimental framework

2.1. Coupled ocean-ice-ecosystem model

The experimentwas carried out in aNorth Atlantic andArctic config-

uration of the coupled ocean-ecosystem model HYCOM-NORWECOM.

Wedescribe briefly this configuration,which is equivalent to the one in-

troduced by Samuelsen et al. (2015). The spatial domain is illustrated in

Fig. 1.

The physical model used is based on version 2.2.12 of the HYbrid Co-

ordinate OceanModel (HYCOM; Bleck, 2002). In our implementation of

HYCOM, the vertical coordinates are isopycnal in the stratified open

ocean and revert to z-coordinates in the unstratified surface mixed

layer. Themodel uses 28 hybrid layers, amongwhich the top five target

densities are assumed low to force them to remain z-coordinates,with a

minimumz-level thickness of 3m at the top layer. The horizontalmodel

grid was created by a conformal mapping with the poles shifted to the

opposite side of the globe which allows the achievement of a quasi-

homogeneous grid size (Bentsen et al., 1999). The grid presents

216 × 144 horizontal grid points, with approximately 50 km grid

spacing in the whole domain. This is sufficient to broadly resolve the

large-scale circulation but too coarse to permit or resolve themesoscale

variability. The model uses the standard KPP mixing scheme (Large

et al., 1994). It is coupled to a one-thickness-category sea ice model

with an elastic–viscous–plastic (EVP) rheology (Hunke and Dukowicz,

1999); its thermodynamics are described in Drange and Simonsen

(1996). The reader may refer to Sakov et al. (2012) for more details.

The NORWegian ECOlogical Model (NORWECOM; Aksnes et al.,

1995; Skogen and Søiland, 1998) is coupled online to the physical

HYCOM model. It uses the HYCOM facility for advection of tracers and

they both have the same time-step. NORWECOM has been used in

several studies of the North Atlantic and the Norwegian Sea (Hansen

and Samuelsen, 2009; Hansen et al., 2010; Skogen et al., 2007). We

refer to Samuelsen et al. (2015) for more details about the model and

its coupling with HYCOM. The current version includes two classes of

phytoplankton (diatoms and flagellates), two classes of zooplankton

(meso- and microzooplankton) derived with the same zooplankton

feeding parameterization from the model ECOHAM4 (Pätsch et al.,

2009), three types of nutrients (inorganic nitrogen, phosphorus and

silicon) and detritus (nitrogen, phosphorus), biogenic silica, and

oxygen; so that the ecosystem state vector is made of 11 variables.

The interactions between the different components of the model are

depicted in Fig. 2.

The chlorophyll-a concentration (CHLA) is computed from the

model diatom and flagellate concentrations (DIA and FLA) through

Eq. (1).

CHLA ¼
DIAþ FLA

11
ð1Þ

The constant conversion factor 11 mg N/mg Chla is used to obtain

the chlorophyll concentration in mg/m3, the standard unit of data

produced from satellite, from the phytoplankton.



The physical component of the model was initialized in 1973 from

climatology following Sakov et al. (2012). Then, the coupled ocean-ice

model was run until the end of 1999. The ecosystem component of

the model was activated on 1 January 2000. The initialization of

NORWECOM was done using climatological values of nutrients and

oxygen while all other variables were set to a constant low value.

Finally, the fully coupled ocean-ice-ecosystem model was run until 1

September 2006, the date of the ensemble generation (see § 2.3 for

more details). Nutrients and oxygen concentrations are relaxed to cli-

matology at the lateral boundaries. The model includes an additional

barotropic water flux of 0.8 Sv through the Bering Strait, representing

the inflow of Pacific water. This inflow is balanced by an outflow at

the southern boundary of the domain in the Atlantic Ocean. At the

surface, the model is forced with 6-hourly atmospheric fluxes from

ERA Interim forcing (Dee, 2011). The river forcings are generated

using a hydrological model – (TRIP; Oki and Sud, 1998). The river

outflow calculated by TRIP is combined with data from Global Nutrient

Export fromWatersheds (GlobalNEWS; Beusen et al., 2009; Seitzinger

et al., 2005, 2010) and used as nutrient river input to the model. Sea

surface salinity is relaxed back to the climatology with a relaxation

timescale of 200 days, while no relaxation is applied to the sea surface

temperature.

2.2. Assimilated observations

Despite previous studies (e.g. Berline et al., 2007; Ford et al., 2012)

reporting potential negative impacts of data assimilation in the physical

component of the coupled model on the distribution of nutrients

(typically nitrate), improvements are still expected in the Arctic Ocean

due to a more realistic positioning of the ice-edge, which control the

position of ice-edge blooms (Engelsen et al., 2002). Samuelsen et al.

(2009) with an older version of the TOPAZ system, showed that the

largest impact of assimilating physical data on the ecosystem compo-

nent was near the ice edge. However, the study could not conclude on

the quality of the ecosystem state variables due to a lack of independent

data for validation. We therefore expect a positive effect of assimilating
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both physical and ocean color observations in the vicinity of sea ice and

possibly a degradation of nutrients.

The observations consist of GlobColour 8-day averaged chlorophyll-

a maps (CHLA), along-track Sea Level Anomalies (SLA) from satellite

altimeters, Sea Surface Temperature (SST) from NOAA, and ice concen-

trations (ICEC) from OSI-SAF. The system uses weekly assimilation

cycles, and assimilates the gridded SST and ICEC for the day of the anal-

ysis, the gridded CHLA for the 8-day window including the day of the

analysis and along-track SLA for the week prior to the day of the analy-

sis. It results in an overlapping of the 8-daywindows of the CHLA obser-

vations which means that during the year some observations are

assimilated twice.

The ocean color data used for assimilation are the GlobColour2GSM-

derived CHL1 products obtained from MERIS, MODIS and SeaWiFS

instruments. They correspond to an 8-day averaged chlorophyll-a con-

centration for case I water at 25 km resolution. Their spatial coverage

varies strongly with seasons resulting in absence of observations for

the Arctic Ocean in winter. Chlorophyll-a concentrations are assumed

to be log-normally distributed (Campbell, 1995) and the observations

are thus log-transformed before assimilation. The standard deviation

of these log-transformed observations is assumed equal to 0.35, so the

observation error equals 35% of the observation values (Gregg and

Casey, 2004). Locally the true errors can be larger than 35%, resulting

in a large underestimation of the observation error that can impair the

quality of the estimated variables. This is the case in the Arctic Ocean

in 2010 for which erroneously high concentrations occur due to a deg-

radation in the quality of the MODIS Aqua ocean color product for this

version of the GlobColour data set (Meister and Franz, 2014). Further-

more, the algorithm used for deriving chlorophyll estimates in case I

water is unsuited to coastal waters. In compensation, observations in

waters shallower than 300 m and less than 50 km away from the

coast are not assimilated in the first 6 months of 2008 in order to pre-

vent overfitting to observations of poor quality. However, such criterion

exclude large areas of interest (e.g. North Sea, Chukchi Sea, Hudson Bay)

that would benefit from assimilating case I water chlorophyll concen-

trations. So, all the observations located at least 50 km away from the

coast are assimilated from 1 July 2008. It means that the estimation of

the ecosystem parameters starts in these areas with a 6-month delay

compared to other North Atlantic open ocean areas (this delay is shorter

at high latitudes because there are no observations duringwinter time).

Except for the SST product, the physical observations correspond to the

ones assimilated in TOPAZ4 (Sakov et al., 2012). The use of version 2 of

the Reynolds SST product (Reynolds and Smith, 1994) from theNational

Climatic Data Center3 (NCDC), with a resolution of approximately

100 km, is motivated by the coarse resolution of the model. We refer to

Sakov et al. (2012) for more details regarding the observations of SLA

and ice concentration as well as the calibration of their error variances.

For all types of observations, a preprocessing step is performed and

includes a range check and a horizontal superobing (averaging of the

observations present in the same model grid point).

2.3. Data assimilation system

The data assimilation system is derived from the TOPAZ4 system

(Sakov et al., 2012) and uses a deterministic scheme of the EnKF

(DEnKF, Sakov and Oke, 2008). The choice of this filter is motivated by

the overestimation of the posterior error variance, which is an apprecia-

ble property when estimating parameters as it prevents the spread of

the parameter ensemble from being reduced too quickly. Indeed, better

performances of the DEnKF compared to the stochastic EnKF (Burgers

et al., 1998; Evensen, 2003) have been reported by Simon and Bertino

(2012) in their experiments of combined state parameter estimation

in a simple NPZ model.

The analysis is performed in themodel grid space on a weekly basis.

The weekly cycles follow the availability of the physical observations,

and thedate of the analysis is used to definewhich 8-day averaged chlo-

rophyll data set is assimilated. The analysis is divided into two steps. In a

first step, the physical data (SST, TSLA and ice concentration) are assim-

ilated in the physical component (HYCOM) of the coupled model, and

the biological component is not included in the analysis state vector.

The instances of negative layer thickness or ice concentration, should

they occur, are corrected in a post-processing procedure. The biological

variables are tracer concentrations, so that any update of the layer thick-

ness during the assimilation of physical data does also change the tracer

mass in the layer. In order to ensure the conservation of the amount of

species for each tracer at each horizontal grid point (conservation in

thewater column), a vertical remapping of the tracer is also performed.

This remapping uses the WENO polynomial interpolations (Jiang and

Shu, 1996) that are already embedded in HYCOM. This approach can re-

sult in a large local increase (resp. decrease) of the tracer concentrations

in cells affected by a strong reduction (resp. increase) of their volume

before assimilating ocean color observations as highlighted in § 3.2.

However, it has no impact on the innovations – the differences between

themodeled and observed surface chlorophyll-a concentrations – in the

second step due to the choice of the hybrid coordinate system. Because

the top 5 layers are z-layers, the volume of their cells does not change in

the physical analysis step and the surface chlorophyll-a concentrations

are the samebefore and after assimilatingphysical data. It results in eco-

system analysis steps that compute the innovations using the forecast

concentrations. As suggested more recently by Janjić et al. (2014), the

introduction of the constraint of mass conservation in the estimation

process could be a more elegant solution for remedying the issue of

mass conservation with ensemble-based Kalman filter (if practically

tractable).

In the second step, surface chlorophyll concentration data are assim-

ilated in the biological component (NORWECOM) of the coupledmodel.

The dynamics of the physical ocean is thus not corrected via assimilation

of biological data. The estimation of four parameters – the mortality

rates of two groups of phytoplankton and zooplankton – is done by aug-

menting the biogeochemical state vector with these parameters. The

latter state vector is thus made of eleven 3D state variables and four

2D parameters. These parameters have been chosen due to the large

uncertainties they introduce in the closure of the ecosystem model.

Biological state variables and parameters are log-transformed prior to

assimilation in order to prevent issues arising from the positiveness of

the variables. The choice of the logarithmic function rather than empir-

ical anamorphosis functions was motivated by the constraints resulting

from the near operational framework of the study: the robustness of the

transformation when applied to bounded parameters (the potential

discontinuities of the distribution at the bounds are not handled by the

piecewise linear anamorphosis function and require an extrapolation

of the distribution near the bounds) and the promising results obtained

in a previous simpler application (Simon and Bertino, 2012).

The assimilation uses a distance-based localization method known

as local analysis (Evensen, 2003; Sakov and Bertino, 2011). A local

analysis is computed for onehorizontal grid point at a time, using obser-

vations from a spatial window around it. A smoothing procedure is part

of the local analysis, and it consists ofmultiplying local ensemble anom-

alies by a quasi-Gaussian, isotropic, distance-dependent localization

function (Gaspari and Cohn, 1999). The localization radius is constant

and is set to 300 km for the assimilation of physical data following

Sakov et al. (2012) and 200 km for the assimilation of ocean color

data. The localization radius for physical assimilation is higher in order

to avoid the generation of gravity waves. Furthermore, a lower localiza-

tion radius in the assimilation of ocean color is coherentwith the greater

differences between local ecosystem in coastal and open seas. Finally,

the use of an ensemble of small size compared to the dimension of

the problem leads to an underestimation of the error variances

(Houtekamer and Mitchell, 1998). A solution for this issue consists of

2 http://www.globcolour.info.
3 www.ncdc.noaa.gov.



multiplying the empirical covariance matrix (or anomalies) by a scaling

factor called inflation (Anderson and Anderson, 1999; Hamill et al.,

2001). Inflation is introduced both for the state variables and parameters

for which observations are only assimilated locally: the values are 1.01

for both the physical and biogeochemical state variables and 1.06 for

the NORWECOM parameters.

Random perturbations are introduced to the atmospheric forcing in

order to emulate uncertainties in the surface forcing. The random per-

turbations are generated by a spectral method (Evensen, 2003) using

a spatial decorrelation radius of 250 km. The decorrelation time-scale

is two days. The standard deviations of the perturbed fields follow

those proposed by Sakov et al. (2012). These perturbations induce

small differences within members of the ensemble, in particular in the

mixed layer depths, the mixed layer temperature and position of the

ice edge. The perturbations induced in the physical dynamics then

cascade into the ecosystem component of the coupledmodel. However,

biological parameters are not perturbed during the forecast steps and

remain constant between two analyses (justifying the larger inflation

factors for the parameters).

The initial ensemble is generated on 1 September 2006 so that it

contains explicit variability both in the interior of the ocean and at the

surface. It consists of the model snapshot taken from the free run

model simulation described in § 2.1. Using this snapshot, 100 initial

states are produced by perturbing the layer and ice thickness by 10%

with a decorrelation length scale of 50 km. The perturbation of layer

thickness also has a vertical decorrelation distance of three layers. The

parameter ensemble is initialized by assuming that the parameters are

log-normally distributed around their nominal values (5% per day for

both phytoplanktonmortality rates and 20% per day for both zooplank-

ton mortality rates) with a 50% error. The initial ensemble is then inte-

grated for threemonths to damp dynamical instabilities that result from

the perturbations. After generating the initial ensemble, the data assim-

ilation system was spun up with only assimilation of physical variables

during a period of one year, for the calendar year of 2007. During that

time, the ecosystemmodel was kept in free run mode. The assimilation

of chlorophyll concentration data starts gradually on 1st January 2008.

At that date, the spread of the ensemble could be very large compared

to the observation error due to the use of perturbed parameters and

atmospheric forcing that enhanced the error growth during one year.

In order to prevent an initial shock of the ecosystem due to strong

corrections (that could result in a filter divergence and/or an overfitting

to the observations), the observation error is multiplied by a factor 8

during the first month (January). Then, this factor is divided by two

every month and reaches the value one in April 2008. This approach

has an impact on the state and parameter estimation because it artifi-

cially decreases the amplitude of the corrections during this 3-month

initialization period. For that reason, the discussion of the results in § 3.1

does not take into account the values estimated during this period

despite significant corrections (see for instance Fig. 3 and the zooplankton

mortality rates on 5 March 2008).

Finally, due to the large computational costs and long time required

for running the system over long periods, somemodifications and fixes

have been applied to the system during the experiments instead of

parallel experiments. These changes are summarized in Appendix A.

2.4. Validation

The validation is done by comparing the outputs of ecosystem com-

ponent of the data assimilation system to different observations. These

include the assimilated 8-day average chlorophyll concentration, inde-

pendent in-situ data at station M (66° N, 2° W) including time series

of chlorophyll, nitrate, silicate and phosphate concentrations. The latter

come from the MyOcean INS-TAC (Arctic) sources and have been

gathered and quality checked by the Norwegian Institute of Marine

Research (IMR).

We also performed a simulationwithout any data assimilation. Thus,

themodel was deterministically run from 1 September 2006 – from the

output file used in the generation of the ensemble – to 31 December

2010. This simulation is referred to as the “free run” in the rest of the

manuscript, and is used to assess the added value of data assimilation.

3. Results

3.1. Parameter estimation

The EnKF estimates the spatially varying biological parameters of the

NORWECOMmodel from January 2008 to December 2009. Due to local

collapses of the parameter ensemble in a few dynamical areas in late

2008, new values of the parameters have been drawn on 1 January

2009. This was done to increase the spread of the ensemble in these

areas (while preserving the mean) in order to further correct the

parameters in 2009. More details about this draw can be found in

Appendix A. At the end of 2009, the parameter values were frozen and

no longer updated for the rest of the experiment. At each grid point,

an averaging (both in space and time) of the values obtained after the

analysis during the period April 2008–March 2009 is performed to pro-

duce a set of weekly optimized parameter maps. This 3-month shift in

the parameters' yearly cycle ismotivated both by the exclusion of values

obtained during thewarm-up of the assimilation of chlorophyll-a obser-

vations (artificial increase in the observation error from January to

March 2008) and by the exclusion of constant values associated with

local filter divergences that occur again during spring 2009. These

maps are then used in 2010 to assess the performance of the data

assimilation system in a pure state estimation configuration.

3.1.1. Regional distribution of the estimated parameters

We are interested in the spatio-temporal evolution of the estimated

parameters. Fig. 3 shows the spatial distribution of both the diatom and

microzooplankton mortality rates after the analysis step on several

dates in 2008 and 2009. First, we note that the data assimilation leads

to strong corrections of both parameters compared to their prior values.

Thus, mortality rates larger than 70% per day or lower than 0.001% per

day occur locallywhile their prior values are equal to 5% or 20% depend-

ing on the plankton type (phyto- or zoo-). However, these changes in

the parameters can be locally non-monotonic and seasonal variations

are observed in some local regions (e.g. North Atlantic Subtropical

Gyral Provinces, Gulf Stream Province). This result strengthens the con-

clusions of recent works (Mattern et al., 2012; Roy et al., 2012) suggest-

ing the use of time-dependent parameters in biological ocean models.

Secondly, regional patterns clearly emerge from the series of maps

for both parameters. The differences in the regional evolution of the pa-

rameters seem to coincide with some of the biogeochemical provinces

defined by Longhurst (1995). In order to analyze locally the distribution

of the parameters, we define a partition of the North Atlantic and Arctic

Oceans based on Longhurst (1995). These regions are highlighted in

Fig. 1.

On the one hand, the parameters tend to converge towards constant

values in coastal regions like the Guiana Coastal Current, the Chukchi,

Beaufort and Barents Seas in the Arctic Ocean, the Baffin Bay, the Cana-

dian Archipelago, the Hudson Bay and the North Sea. The extreme

values that are reached may either be associated with a bias in the

model (e.g. erroneous nutrient inflow from the Pacific Ocean through

the Bering Strait), with erroneously large values in the observation

due to large concentrations of particles associated with river discharges

(e.g. from the Amazon), or with local differences in the ecosystem due

to the presence of sea ice for instance (e.g. Baffin Bay). However, the

lack of ocean color observations in the Arctic Ocean in fall and winter

implies that no corrections to the parameters can be made during

those seasons, which prevents their seasonal variations.

On the other hand, strong seasonal variations in the parameters are

observed in open-ocean areas like the North Atlantic Subtropical Gyral



Provinces (both East and West: STPE, STPW), the Eastern part of the

North Atlantic Tropical Gyral Province (TRPG), the Gulf StreamProvince

(GUSP) and the North Atlantic Drift Province (DRIP). Weaker seasonal

variations are seen in the Atlantic Arctic (ARCP) and Sub-Arctic

(SARP) Provinces. We refer to § 3.1.2 for more details about the time

evolution of the optimized parameters in the GUSP, DRIP, ARCP and
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Fig. 3. Parameter estimation: spatial distribution of the diatoms and microzooplankton mortality rates (ensemble mean at the date of the analysis).



SARP provinces. We note that the simulated chlorophyll concentrations

tend to be too low during the cold periods and too large during the

spring blooms when constant parameter values are used (not shown).

NORWECOM has been developed and tuned primarily for high-

latitude regions and thus represents the plankton community in the

Arctic Ocean and the Norwegian Seas better than other areas. In these

areas, the seasonal variations of the parameters could be explained by

a better modeling of the time-dependence of the ecosystem which is

not properly taken into account with constant parameters. However,

the corrections on the parameters atmiddle latitudes and in the tropical

regions do not highlight a specific time-dependence of the ecosystems,

but rather compensate for large model errors. For instance, two specific

important components in the tropics can bementioned: the abundance

of nitrogen fixing bacteria and the importance of themicrobial loop and

regenerated production. Neither of these processes are explicitly repre-

sented in this model, although remineralization of nutrients is parame-

terized in a simpleway. Nevertheless, this result suggests that the use of

time-dependent parameters is needed to better represent the local

dynamics of the ecosystems either for dynamically improving the

parameterizations or compensating for model errors associated with

unresolved processes.

Finally, we note a pattern of extreme low values of the diatommor-

tality rate in the STPE province and the GUSP province that does not

evolve in 2009. In that area, a filter divergence occurs at the end of

2008 for the diatom mortality rate component of the ensemble. The

strategy that we adopted to remedy this issue – a redraw of the param-

eters early 2009 based on the last value reached on 31 December 2008

and an assumption of lognormal distribution – is insufficient to recover

realistic parameters values. These locally low diatom mortality rate

values are responsible for the strong bloom during spring 2009 (see §

3.2.1). It results in a large increase of the error that cannot be corrected

by the assimilation due to the low spread of the diatom mortality rate

(weak corrections of the parameter). Further strategies for restarting

the parameter estimation after filter divergence should be investigated.

3.1.2. An example of local evolution of the optimized parameters used in

2010

We consider the following question: What is the value of re-using

parameters estimated in a year during the next year? In analogy with

a steady-state Kalman Filter, this approach could save significant com-

puter power. Thus, we are interested in the local evolution of theweekly

maps built from the optimized parameters and used in 2010 (i.e., no pa-

rameter estimation). Within each Longhurst-based province defined in

Fig. 1, we computed the spatial mean value and standard deviation of

the four parameters and focused on their yearly evolution. We recall

that these weekly maps (52 in total) have been produced from the

daily average outputs of the model during the period April 2008–

March 2009 by averaging the values of the parameters both in space

and time. The temporal averaging is done over an 11-week window

centered on a targetedweekwith theweights [1 2… 6… 2 1] assuming

periodicity in time (the values in January 2009 are assumed to be repre-

sentative of the values in January 2008). Depending on the area, this as-

sumption cannot be fulfilled by the parameters resulting in strong

discontinuities in their values between the end of March and the begin-

ning of April. For instance, the values of the flagellate mortality rate in

late March 2009 are 10 times larger than the values obtained in early

April 2008 in the Gulf Stream Province. In all of these cases, the applica-

tion of the temporal averaging smoothes the strong discontinuities in

the parameters' time series, and further prevents a shock of the ecosys-

tem in early spring of the 2010 run. The spatial averaging is done by

applying a full weighting restriction operator (for more details, see

Trottenberg et al. (2001)) followed by a linear interpolation, both with

a resolution ratio equal to 3. This procedure filters out the high frequen-

cies (small scales) that lie in the null space of the restriction operator.

Figs. 4 and 5 represent the temporal evolution of the spatial mean

values and standard deviations of all parameters in the Gulf Stream

Province (GUSP), the North Atlantic Drift Province (DRIP), the Atlantic

Arctic Province (ARPC) and the Atlantic Sub-Arctic Province (SARP). In

these provinces, the assimilation of data led either to seasonal variations

in the parameters, or to convergence towards larger values during the

estimation process (Fig. 3). First, we note that the parameters are

corrected rather severely, with the exception of the mesozooplankton

mortality rate in the ARCP and SARP provinces. However, their strong

decrease during the period from late February to early May (marked

by dashed lines) should not be considered meaningful for most of the

parameters. During this period, values from March 2009 and April

2008 are used to build the time series of weekly optimized parameters.

Strong variations of the parameters highlight discontinuities in the time

series, and the limits of our assumption of periodicity.

With the exception of this period, we note first that the dynamics of

the flagellate loss rates differ from the others in most provinces. Indeed,

the flagellate loss rate tends to converge towards large values in the

GUSP, ARCP and SARP provinces, and most likely in the DRIP province

as well, while the diatoms, micro- and mesozooplankton loss rates ex-

hibit seasonal variations in most of the provinces. Fig. 6 shows the tem-

poral evolution of surface diatoms, flagellates and chlorophyll-a

concentrations in these four provinces from April 2008 to March 2009.

The jigsaw is typical of the Kalman filter corrections done in the succes-

sive analysis steps. The strong decreases in both phytoplankton concen-

trations confirm that the model is too productive during the spring

bloom. Furthermore, the analysis steps tend to reduce theflagellate con-

centrations from April to May 2008 until fall 2008. This is in agreement

with the large increase in the flagellate loss rate that starts in spring and

the stabilization around large values that follows in summer/fall. In the

sameway, the large corrections leading to a decrease in the diatom con-

centrations during the spring bloom, can be associatedwith the large in-

crease in the diatom loss rate. Furthermore, the small increase in the

diatom concentrations in the GUSP province starting early Fall 2008

can be associated with the strong decrease in the diatom loss rate,

resulting in seasonal variations in this province. Finally, we note that

both zooplankton loss rates exhibit seasonal variations in the four prov-

inces. This could either be associatedwith temporal changes in the biol-

ogy or else betrays a model bias (too strong production during spring

and too low production in winter) and/or assimilation biases as well.

3.1.3. Definition of regional provinces based on a clustering analysis of the

estimated parameters

Estimating spatially distributed parameters in near operational data

assimilation systems can result in an increase of the dimension of the

problem, and thus the computational cost. A solution for reducing the

dimension of the problem consists of defining provinces to which one

associates spatially constant parameters. A priori strategies can be

based on uniform partitions of the spatial domain (Losa et al., 2004),

the use of the Longhurst provinces (Doron et al., 2013), or geophysical

considerations – for instance the distinction between estuaries, coastal

water and open oceans (Mattern et al., 2012). However, estimating pa-

rameters over long periods, as we did, leads to the production of a large

data set that can be helpful for defining a posteriori clusters that could

define the parameter grid for future parameter estimation experiments.

So, our aim is to explore the ability to exploit the data produced by the

parameter estimation (e.g. the weekly maps of optimized parameters),

in order to define consistent provinces using the information provided

by both the model and the observations.

As both geographical and biological information have to be consid-

ered, the clustering is processed in two steps. First, a K-means method

(MacQueen, 1967) is applied to the optimized parameters to generate

a partition of the estimated parameters in the North Atlantic and Arctic

Oceans. The procedure follows a simple and easy way to classify a given

set of parameters into an – a priori fixed – number of clusters. The main

idea is to define k centroids – one for each cluster which represents the

mean of the estimated parameters assigned in the same cluster. The

number of clusters k is defined so as to minimize the within-cluster



sum of squares. Second, because the estimated parameter clusters could

gather different geographical regions that do not intersect, the contours

of each estimated parameter cluster are extracted. As the clusters could

have arbitrary shapes, spectral clustering (Ng et al., 2002) is applied to de-

fine geometrically separated clusters. It selects the dominant eigenvectors

of a parameterized Gaussian affinity matrix in order to build a low-

dimensional data space wherein the geometrical data are grouped into

clusters (Mouysset et al., 2014). The final clustering result is a partition

of the oceans into geographical patches that have distinct parameter sets.

Fig. 7 shows the 13 provinces obtained from our clustering analysis

over the whole domain including coastal areas and the 7 provinces in

open waters that we derived from the Longhurst provinces (Fig. 1).

Each color and number highlights a regional province, except for the

cyan color (province 1) that corresponds to areas for which few or no

corrections were applied to the parameters during the assimilation

due to lack of observations (area under the ice in the Arctic Ocean and

some coastal areas).

First we note that the clustering analysis leads to regional provinces

that are consistent with the Longhurst provinces in the northern part of

the domain. Even if they do not exactly match, most of the Longhurst-

based provinces clearly emerge from the clustering analysis. Thus, clus-

ters can be associated with the Gulf Stream Province (cluster 10), the

North Atlantic Drift Province (cluster 8), the North Atlantic Subtropical

Gyral Province (bothWest and East, clusters 11 and 12) and the Atlantic

Arctic Province (cluster 5). The analysis of the local evolution of the pa-

rameters allows the detection of differences in the plankton dynamics

due to the ice coverage – see for instance the two different clusters

highlighting the seasonally ice covered Baffin Bay (cluster 4) and the

open Labrador Sea (cluster 5) – or between the two sides of the Gulf

Stream (clusters 9 and 10). Other coastal Longhurst provinces (not

shown in Fig. 1) like the North Sea (cluster 7) are also highlighted by

the clustering analysis.

However, important differences arise as well. First, the Boreal

Province is now divided into four clusters: the Beaufort Sea (cluster

2), the Hudson Bay (cluster 3), the Baffin Bay (cluster 4) and the part

of the Boreal Province for which few or almost no observationswere as-

similated (cluster 1). These differences (for instance erroneous nutrient

input specified at the Bering Strait and the Hudson River) can be attrib-

uted to various sources of model errors, but they can also suggest that

the Arctic Ocean presents various ecosystems and so, a refinement of

the Boreal Province should be considered. For instance, the annual

mean values of the parameters (not shown) suggest that the cluster

highlighting the Beaufort Sea ismostly characterized by a large increase

in the diatom loss rate and almost no changes in the flagellate loss rate,

while the cluster highlighting the Baffin Bay is characterized by an in-

crease in the loss rate of both zooplankton groups, as is the Hudson Bay

cluster. Similarly, we note the occurrence of a small cluster (6) associated

with the Seas west of Scotland, suggesting that the Northeast Atlantic

Continental Shelf province could be divided into two sub-provinces

when estimating parameters: the North Sea and the seas west of

Scotland. Further work based on the analysis of in-situ data should be

done to determine if the different clusters highlight biological dynamics

specific to these areas. However, this is out of the scope of the present

study. Another aspect that needs further investigation is the dynamic

definition of the provinces in the Arctic Ocean. For instance, the spatial

domain of the provinces could evolve in time accordingly to the evolu-

tion of the ice extent. This would better take into account current

changes in the ice coverage in the Arctic Ocean.

Moving southward, we note that the analysis of the parameters does

not highlight differences between the Atlantic Arctic Province and the At-

lantic Sub-Arctic Province. Both provinces aremerged into cluster (5) that

extends from the Labrador Sea to Svalbard. The Barents Sea does not

belong to this province and is rather associated with the Boreal Arctic

Province. This is probably due to the small amount of observations that

Fig. 4.Optimized parameters: The temporal evolution of the four loss terms in the Gulf Stream Province (GUSP) and the Atlantic Drift Province (DRIP). The dark gray line shows the base

value for the parameter. The transparent areas highlight the period for which values from 2008 to 2009 were simultaneously used to build the optimized set of parameters (temporal

averaging assuming one-year periodicity).



have been assimilated in that area, or else the coarsemodel resolution. Fi-

nally, the clustering analysis leads to a big province (cluster 13) covering

the Gulf of Mexico, the Caribbean, the Guyana Current Coastal and the

Eastern part of theNorthAtlantic Tropical Gyral Province. In this province,

the parameters tend to converge towards extreme values (either low or

high) possibly due to model errors. As stated earlier, the model targets

high latitude ecosystem dynamics and does not explicitly represent im-

portant processes in the Tropics. Again due to a large model error, we

note a large cluster (12) covering the western part of the North Atlantic

Tropical Gyral Province, connecting the North Atlantic Subtropical Gyral

Province (East), for which the parameters tend to exhibit strong seasonal

variations. Thus, clustering analysis leads to a split of the Longhurst-based

North Atlantic Tropical Gyral Province into two largeWest and East prov-

inces based on the differences in the spatio-temporal evolution of the pa-

rameters. Thus, the results show that model error should be considered

when defining a priori spatial partition of the model parameters.

3.2. State estimation

We are now interested in the quality of the estimation of the ecosys-

tem state variables. The output of the data assimilation solution is

compared to both assimilated and independent in-situ observations.

3.2.1. Validation against assimilated observations

The assessment of the quality of the estimation is done by comput-

ing the time evolution of the root mean square error (RMS) and stan-

dard deviation of the ensemble (STD):

RMS tnð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

#Ω

X

k∈Ω
y tn; kð Þ−H xð Þ tn;kð Þ
# $2

r

STD tnð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N−1

1

#Ω

X

k∈Ω

XN

m¼1
xm tn;kð Þ−x tn; kð Þð Þ

2

r ð2Þ

withΩ is the domain of computation, #Ω is the number of grid points of

the domain, N is the number of members, y denotes the observations

(e.g. chlorophyll concentration), HðxÞ corresponds to the ensemble

mean of the observed variables (e.g. chlorophyll concentration), and x

refers to the ensemble mean.

The domain-averaged RMS error and STD time series are shown in

Fig. 8. These quantities are computed at the date of the analysis from re-

start files of the model and the assimilated observations. Two values of

RMS error and STD are calculated on each date: the first uses the fore-

cast ensemble (before the analysis step) and the second is based on

the analysis ensemble. This explains the high frequency peaks that we

observe in Fig. 8 reflecting the decrease of the errors due to the analysis

step. To illustrate, wefirst note a seasonal peakof errors during the sum-

mer phytoplankton bloom. The first peak corresponds to the physical

data assimilation-only in 2007 and the following peaks refer to the as-

similation of chlorophyll concentration data from 2008 to 2010 with

the characteristic see-saw evolution. It is worth noting that the assimi-

lation of chlorophyll concentration data has proven effective in the

first year (2008): even in a 7-day window, the forecast errors remain

well below the errors obtained when assimilating the physical data

only or those obtained from a free-run simulation (no data assimila-

tion). The errors predicted by the EnKF (blue line) correlate well with

the variations of the actual errors, but underestimate the errors by half

in the main bloom period (from May to August), indicating that the

model and measurement errors are well tuned for late summer and

winter conditions, but that additional sources of errors could be consid-

ered for the summer (e.g. the optical properties of the water).

One can also notice a large growth of the RMS errors during the

bloom period in 2009. This is mostly due to the erroneous large concen-

trations located in a few restricted areas of the domain (e.g. the STPW

province around 30°N), as shown in Fig. 9. In these areas, the parameter

estimation leads to a combination of values that encourages the

Fig. 5.Optimizedparameters: The temporal evolution of the four loss terms in theAtlanticArctic Province (ARPC) and theAtlantic Sub-Arctic Province (SARP). Thedark gray line shows the

base value for the parameter. The transparent areas highlight the period forwhich values from 2008 to 2009were simultaneously used to build the optimized set of parameters (temporal

averaging assuming one-year periodicity).



phytoplankton growth – low phytoplankton and large zooplankton

mortality rates (see Fig. 3) – due to too-low chlorophyll concentrations

inwinter 2008–2009. However, the spread of the ensemble is locally too

small in early spring and hence, it does not allow for large corrections of

parameter values that would be required during the spring bloom in

2009 (too-large chlorophyll concentration). This local filter divergence

does not occur in the Arctic Ocean (the targeted area of the MyOcean

pilot reanalysis) in 2009 and we note that the assimilation of ocean

color data results in a large reduction of the RMS error in this area also

in 2009. The reader may refer to Appendix B for more details on the

evaluation of the surface chlorophyll in the MyOcean pilot reanalysis

product.

In the year 2010, the parameters are assumed equal to the weekly

averaged values estimated from April 2008 to March 2009. After two

years of parameter estimation, the spread of the ensemble appears to

be too small in some local areas and not allowing for large corrections

anymore. The use of optimized time varying parameters is expected to

lead to better results compared to the ones we could have obtained

with parameters resulting from a locally-diverged filter. Yet, the RMS

errors seem to increase back to the high levels obtained with the free

run or before assimilating chlorophyll concentration data. This could

be related to the poor quality of the data assimilated during that year

asmentioned in § 2.2. So, sparse erroneous large values occur in theArc-

tic with a spatial distribution that changes every week. This leads to an

underestimation of the observation error in thefilter and results in erro-

neous large increase in the chlorophyll concentration in the vicinity of

these observations, and large increase in the RMS error at the next

cycle due to changes in the position of these artifacts. This issue stresses

the need for reliable uncertainty estimates on operational satellite prod-

ucts. Furthermore, the increase in the RMS error in 2010 could also be

related to the inability of the model to simulate the unusually strong

negative North Atlantic Oscillation (NAO) that occurred in 2010 and

was responsible for a “highly anomalous phytoplankton bloom”

(Henson et al., 2013). This also highlights the fact that estimating

biological model parameters is a critical aspect of data assimilation in

biological models.

3.2.2. Validation against independent in-situ observations

Data assimilation results are compared to in-situ data for chlorophyll

and nutrients available at stationM (66° N, 2°W) in the Norwegian Sea.

The model values used were those of the grid cell and layer containing

the measurement – no interpolation was done. The model daily aver-

ages were compared to the in-situ data, and if there were more than

one measurement at any grid-cell during one day, we used instead the

mean of these measurements. The observations of station M are the

only time-series measurements available for the reanalysis period, but

unfortunately data for the last year (2010) are not available yet. Further-

more, data can be missing in December and/or January depending on

the year, resulting in an incomplete time-series for the period 2007–

2009.

Figs. 10 and 11 show the monthly time series of mean value and

standard deviation of surface chlorophyll, nitrate, phosphate and silicate

concentrations from 2007 to 2009. First we note that assimilating only

physical data in 2007 leads to an improved surface chlorophyll concen-

tration compared to the free-run simulation during the entire year,

despite a larger overestimation of the chlorophyll concentration in

April andMay. This improvement may be due to a more realistic repre-

sentation of the mixed layer. Indeed, the assimilation improved the

model representation of surface temperature and surface salinity (not

shown) when compared to in-situ measurements (only available for

Fig. 6.Model daily averages: temporal evolution of the spatial mean surface diatoms (black), flagellates (red) and chlorophyll-a (green) concentrations plus/minus a standard deviation

in the Gulf Stream Province (GUSP), the Atlantic Drift Province (DRIFT), the Atlantic Arctic Province (ARPC) and the Atlantic Sub-Arctic Province (SARP) from April 2008 to March 2009.



2007 and 2008). The assimilation of surface chlorophyll concentrations

in 2008 and 2009 results in a significant reduction of the bias in the data

assimilation as compared to the free run. Themean chlorophyll concen-

trations are weaker during the bloom and the standard deviations are

closer to the observed ones for most of the months.

One particular point of interest for the in-situ comparison is the

effect of chlorophyll assimilation on the concentrations of nutrients.

From the surface nutrients, we see that the data assimilation simulation

tends to be slower inmixing the nutrients back to the surface during the

winter, otherwise the two runs are fairly similar. The difference in

winter concentration can be observed also in 2007 (when biological

assimilation is not performed) and is probably a result of assimilating

physical variables. During the spring bloom inMarch and April, primar-

ily dominated by diatoms, we see a change of the silicate concentration

between the free run and assimilation runs. Nevertheless, during the

summer period silicate concentrations are the same (depleted to near

0) in both runs while the observations show that not all of the silicate

is depleted. We also note that the nitrate and phosphate concentrations

from the assimilation run are higher at the surface from those of the free

run during the summer of 2009. This is an effect of the flagellate bloom

that has been suppressed by the assimilation during summer, resulting

in surface nitrate and phosphate concentrations that are in better

agreement with the observations in late 2009 compared to the free

run simulation.

Fig. 8. Surface chlorophyll concentration: time evolution of the RMS error and standard deviation computed from the assimilated observation at the date of the analysis (both forecast and

analysis). The green diamond highlights the date of the first biological analysis. Chlorophyll observation in area shallower than 300 m are introduced in July 2008 (black diamond).

No parameter estimation in 2010 (magenta diamond).
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In the depth interval 300–700 m (Fig. 12), the concentrations of sil-

icate andnitrate are persistently lower than theobserved concentration.

There are no large differences between the free run and the assimilation

run and we can conclude that the assimilation does not affect the

concentration of nutrients very much, however negative effect cannot

be detected. On the contrary, in the depth interval 700–1300 m

(Fig. 13)we note that the concentrations of nutrients in the assimilation

run are almost always lower than the concentrations of nutrients in the

free run except for the last months of 2009. This is a direct consequence

of the assimilation shock that occurred at the first analysis in January

2007 (when only physical data are assimilated): the large corrections

of the layer thickness that occur at depth result in a significant decrease

of the concentration tracers (around 10%) in the few layers associated

with the depth interval 700–1300mdue to the remapping of the tracers

Fig. 9. 29 July 2009: surface chlorophyll-a concentration estimated from the mean of the ensemble and satellite observations.
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Fig. 10. StationM:monthlymean value and standard deviation of chlorophyll (left) and nitrate (right) concentrations from2007 to 2009 in the depth interval 0–30m. In-situ observations

are in green, the free run simulation is in black and the data assimilation simulation is in red. Satellite-derived chlorophyll concentrations are assimilated from 2008.



on the corrected vertical isopycnalmesh. Afterwards, almost 3 years are

needed to obtain nutrient concentrations that are close to their initial

values. However, the initial shift in the nutrient concentrations in this

interval depth (due to the assimilation shock) seems to have little im-

pact on the surface processes. We do not observe negative trends or a

large shift in the nutrient concentrations in the depth interval 300–

700 m. Nevertheless, the nutrient response at depth is a slow process,

hence no definite conclusion can be drawn until a longer simulation

has been produced and a longer in-situ time-series has been obtained

and used for validation.

4. Conclusion

We investigated the possibility of estimating both biological param-

eters and model state variables with ensemble-based Kalman filters in

pre-operational ocean ecosystem models over several years. For that

purpose, a combined state-parameter estimation experiment has been

conducted in a North Atlantic and Arctic Ocean configuration of the

coupled physical-ice-biogeochemical model HYCOM-NORWECOM

over the period 2007–2010. Physical and bio-remote sensing data

were assimilated every week with the deterministic ensemble Kalman

filter. Four biological parameters have been estimated at each grid

point during the period 2008–2009, leading to the definition of 2D

maps of weekly optimized parameters that were used in the model in

2010. However, the use of the optimized parameters in the last year of

simulation (2010) was not found very useful in improving the model

performance.

The assimilation of ocean color data led to large deviations of the

parameters from their nominal values. Depending on the area, we

note that the parameters tend either to converge towards values that

can be extreme (for instance in coastal areas or at Tropical latitudes)

or exhibit strong seasonal variations. In areas of the domain where the

model is reliable, these variations can be associatedwith a bettermodel-

ing of the time-dependence of the ecosystem, strengthening the recent

suggestions to use time-dependent parameters in biological ocean

models (Mattern et al., 2012; Roy et al., 2012). On the contrary, in

areas where the model is less reliable the variations are associated to

large model errors.

The study also suggests that regional patterns emerge from the 2D

maps of the parameters during the estimation. In order to identify prov-

inces that could be associatedwith these patterns, we performed a clus-

tering analysis of the 2D maps of the optimized parameters. The idea is

to identify provinces with which one could associate spatially constant

parameters that could be estimated in future experiments, in order to

reduce the dimension of the estimation problem. Most of the clusters

that we obtained can be associated with the observation-based

Longhurst provinces in the northern part of the domain. However, the

results of the clustering differ from the Longhurst provinces in the trop-

ical area, where the NORWECOMmodel presents large errors, since it is

specifically designed and tuned for high latitudes. This result suggests

that the use of a spatial parameter grid defined from observations (e.g.

the Longhurst provinces) might not be well adapted for parameter esti-

mation in areas with large model error. In our opinion, it is preferable,

first to estimate the parameters on a fine resolution partition of the

domain – for instance the model grid – over a period long enough to

catch seasonal cycles, and then, to define a posteriori provinces from a

clustering analysis of the long data set of parameters. This strategy

could provide thebasis for a – lowdimensional– definition of parameter

Fig. 11. Station Mike: monthly mean value and standard deviation of phosphate (left) and silicate (right) concentrations from 2007 to 2009 in the depth interval 0–30 m. In-situ

observations are in green, the free run simulation is in black and the data assimilation simulation is in red. Satellite-derived chlorophyll concentrations are assimilated from 2008.



space, based on data assimilation diagnostics. The new low-dimensional

parameter space should provide reasonable performances at a feasible

computational cost. This approach can be seen as a particular case of

the optimal design problem of the control space (Bocquet et al., 2011).

However, further investigations are required in order to provide a rigor-

ous framework to such use of clustering analysis. The results also

suggest a refinement of the original Longhurst Arctic province. Thus,

three distinct clusters can be associated with the Beaufort Sea, Baffin

Bay and Hudson Bay, suggesting differences between the ecosystem

dynamics of these three areas. Further comparisons to in-situ data –

when available – should be done in order to validate this assumption.

Furthermore, ice dynamics play a key role in the Arctic Ocean and its

ecosystem. Hence, the definition of the provinces in the Arctic Ocean

could be dynamic in the sense that their spatial domain could evolve

in time according to the evolution of the ice extent for instance.

Regarding the ecosystem state variables, the assimilation of satellite-

derived chlorophyll concentration leads to a significant reduction of the

RMS error of the surface chlorophyll during thefirst year (2008), as com-

pared to a free run simulation. However, we note an increase in the RMS

error in the assimilation solution in 2009due to localfilter divergences of

the parameter ensemble that enhances the primary production during

the spring bloom. The use of weekly 2D maps of optimized parameters

in 2010 combined with the state estimation leads to an RMS error that

is as large as the one obtained from the free run simulation. Two reasons

can explain this behavior: the underestimation of the observation error

in 2010 (erroneous large observations in the Arctic) and the inability of

the model to simulate the unusual strong negative NAO that occurred

in 2010 (Henson et al., 2013). This confirms that advanced data assimi-

lation methods like the EnKF require reliable uncertainty estimates,

both from the model and the observations. This stresses the need for

observation data sets that include the associated uncertainties.

However, we note a clear improvement of the monthly average

surface chlorophyll concentration due to the assimilation in the Arctic

Ocean. Comparisons to independent in-situ observations at station M

show that the assimilation improves the chlorophyll in the first 30 m

in 2008 and 2009, and the phosphate concentrations in 2009. However,

we note a slight damage in the nitrate and silicate concentrations in the

assimilation solution at that depth inwinter for the same period. Finally,

while we do not observe significant difference at intermediate depth

(300–700 m) between the assimilation and free run solutions, nutrient

concentrations significantly differ in the depth interval 700–1300m. At

that depth, the impact of the assimilation ismitigated:we note a shift in

themean concentrations (decrease compared to free run) due to an ini-

tial assimilation shock that takes almost three years to vanish. The com-

parison with in situ data reveals that the initial assimilation shock does

not have a significant impact on the surface nutrients at stationM.How-

ever, this might not be true in areas where the winter mixing is deep

enough to reach those layers strongly impacted by the assimilation of

physical data. Would the experiment have run for longer, there might

aswell been adverse impacts in areas downstreamof these large chang-

es. This points to a broader, methodological, problem linked to the

application of ensemble-based Kalman filters in isopycnic layered

ocean models. This requires further investigations on the use of data

assimilation in Lagrangian coordinatemodels, in particular the consistent

remapping of tracers that results from the assimilation updates of the 3D

spatial grid.

Finally, this study highlights that filter divergences in the parameter

component of the joint ensemble can have a strong impact on the

quality of the estimation of ocean ecosystem state variables. Large

corrections are applied to the parameters at each analysis step mostly

due to largemodel error. Because the parameters are kept constant dur-

ing the forecast steps (no evolution), a quick collapse of the parameter
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Fig. 12. StationM:monthlymean value and standard deviation of nitrate (left) and silicate (right) concentrations from 2007 to 2009 in the depth interval 300–700m. In-situ observations

are in green, the free run simulation is in black and the data assimilation simulation is in red. Satellite-derived chlorophyll concentrations are assimilated from 2008.



ensemble might take place. Therefore, estimating biological parameters

over a multiyear period requires investigating strategies for preventing

this assimilation bias. A promising solution consists of defining a model

dynamics for the parameters – a random walk (Roy et al., 2012) for

instance. Nevertheless, further investigations on the probabilistic

modeling of the parameter dynamics are required.
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Appendix A. Change Log

We list the twofixes introduced during the experiments. First, due to

a local collapse of the parameter ensemble (loss rate converging

towards 0% or 100%) in late 2008, new values of the parameters have

been drawn on 1 January 2009. The last analyzed mean and variance

(if above 25%) were used for defining the parameter of the log-normal

distribution. We also defined new minimum and maximum bounds

for the parameters (1% or 99%) in order to avoid numerical issues arising

from the values 0% or 100% (immortality or extinction).

Secondly, due to the occurrence of negative values in one type of

phosphate detritus during the forecast steps in 2009, a small correction

of the model formulation of the interactions between the phosphate

detritus and the zooplankton has been applied on 1 January 2009.

Appendix B. Evaluation of the surface chlorophyll in the MyOcean

pilot reanalysis product

Fig. B.14 shows the time evolution of the RMSE in themonthly aver-

aged chlorophyll concentration in theArctic (40°–90°N). This diagnostic

is computed from the GlobColour monthly average chlorophyll concen-

trations (resolution of 25 km) projected on themodel grid. Themonthly

average chlorophyll concentrations of the free-run and data assimila-

tion runs are computed from daily averagemodel outputs. Themonthly

average chlorophyll concentrations in the Arctic Ocean from the data

assimilation simulation are essentially a component of the MyOcean

product ARCTIC_REANALYSIS_BIO_002_005.4 The RMS error in the

chlorophyll concentration of the data assimilation simulation (red

curve) is compared to the one of the free-run simulation (blue).

The blue (resp. red) shaded areas highlight when the RMS error of the

data assimilation (resp. free-run) solution is better than the RMS error

of the free-run (resp. data assimilation) solution. The green curve

represents the percentage of grid points of the domain that are observed.

First, it is important to remember that a very small fraction of the

Arctic domain is observed in winter, mostly located near the Southern

border. It means that the impact of the better representation of the ice

coverage, thanks to the assimilation of physical data, on the surface

chlorophyll distribution cannot be assessed with satellite ocean color

data during the dark period. Even if the data assimilation and the free

run simulations present similar spatially-averaged errors, the large dif-

ferences in the location of the ice edge between the two simulation

4 Available at http://www.myocean.eu.
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Fig. 13. StationM:monthlymean value and standarddeviation of nitrate (left) and silicate (right) concentrations from2007 to 2009 in thedepth interval 700–1300m. In-situ observations

are in green, the free run simulation is in black and the data assimilation simulation is in red. Satellite-derived chlorophyll concentrations are assimilated from 2008.



results in significant differences in the chlorophyll distribution in the un-

observed part of the domain (not shown). Secondly, we note that both

spatially-averaged errors in the data assimilation and in the free-run sim-

ulations, evolve in a similarway in 2007whenno chlorophyll data are as-

similated. The assimilation of physical data leads to a slight improvement

in Junewhile larger errors are observed from July toOctober due to larger

chlorophyll concentrations in the data assimilation simulation.

However, the assimilation of chlorophyll data leads to a strong

decrease in the errors in 2008 and 2009. The largest peak of the errors

(June) is now three times lower than the one in the free run. The in-

crease in the forecast and analysis errors in 2009 (Fig. 8) computed for

the entire domain is not present in the Arctic when assimilating chloro-

phyll data. This can be explained both by the monthly averaging that

tends to hide errors (negative and positive biases compensate for each

other) and by the lack of observations in the Arctic during winter time

that prevents filter divergence for the parameter estimation (no strong

seasonal variations for the parameters in the Arctic as observed in the

southern part of the domain). However, we note that the error strongly

increases in 2010 when parameters are not estimated anymore. As

stated earlier, the quality of the observations, the unusually strong

NAO, and the changes in the strategy to enhance the model error

growth (no random biogeochemical parameters) can be blamed for

this increase in the error.
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