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1 Introduction

Hydraulic fracturing, also called fracking, is a signi�cant technological advance for the

oil and gas industry. Fracking allows extraction companies to recover what is called

shale oil 1 from deposits that were inoperable just a few decades ago. In a context of his-

torically low interest rates due to unconventional monetary policies, this advance has

encouraged the US and some large foreign banks to invest massively in the shale indus-

try, a sector expected to o�er a strong pro�tability potential. 2 As a result, the extraction

of shale oil in the US has grown dramatically over the last few years and is expected to

further increase. Estimates from the US Energy Information Administration suggested

that, in 2013, the US produced approximately 3.5 million barrels per day (Mb/d) of shale

oil (Ne� and Coleman, 2014), three times higher than the amount produced in 2010. By

2020, the US shale oil production is estimated to reach 4.8 Mb/d, which is approximately

one-third of the total US oil supply. Nevertheless, fracking technology has also added

new costs to the oil extraction process. Compared to conventional oil, shale oil drilling

and extraction are far more labour and capital-intensive, making the process necessarily

costlier. 3 Thus, US shale production requires signi�cant investments. The funding re-

quirement, coupled with easy access to low-cost debt, has lead shale companies to rely

extensively upon borrowing mostly from banks. Loans to oil and gas (O&G hereafter)

companies have almost tripled in recent years. Many of these loans were extended to

smaller oil companies, in particular, those engaged in shale oil exploration and produc-

tion. By 2014, the aggregate net debt of O&G companies had already exceeded $175

billion, an approximately 250% increase from its 2005 level (Azar, 2017).

Unsurprisingly, the oil price collapse of 2014-2015 worsened the �nancial health of the

US shale industry. In fact, shale oil has a shorter lead time between drilling and pro-

1. The term "shale oil" does not have a precise geological de�nition but is commonly used by the oil
industry and by government agencies to refer generically to crude oil produced from shale, sandstone,
and carbonate formations characterised by low permeability.

2. Indeed, the breakeven price of US shale oil was $80 per barrel in 2010, and several analyses suggested
that it could further decrease due to the new technological developments (Kleinberg et al., 2018). The
breakeven point (also called the breakeven cost or breakeven price) is de�ned as the oil price needed to
maintain the economic viability of the preponderance of US tight oil projects.

3. Shale oil is more expensive to extract than conventional oil, with production costs per barrel ranging
from $40 to more than $90. Worldwide, conventional oil production typically costs between $30 to $40 a
barrel, while production in Saudi Arabia generally costs less than $10 per barrel (Aguilera, 2014).
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duction relative to conventional oil, making it more responsive to oil price �uctuations.

Lower oil prices have reduced the revenues and cash �ow generated by the latter, which

creates di�culties servicing their loans. In addition, this low price environment impaired

companies’ O&G reserves, wiping out more than $160 billion of their equity book value

(Azar, 2017). In the meantime, Moody’s rating agency downgraded more than 100 en-

ergy companies that held $27 billion in debt since December 2015. While some drilling

companies have shown resilience in this lower price environment, there has been a sub-

stantial increase in the number of bankruptcies, from 0 in June 2014 to 82 in May 2016

(Baumeister and Kilian, 2016).

Simultaneously, there were growing concerns about US bank reserves capacity to face

non-performing loans to the O&G sector, even though these loans accounted for at most

5% of total loans at the major US banks (Baumeister and Kilian, 2016). Baumeister and

Kilian (2016) documented that the values of major US banks’ stocks, which initially ap-

preciated amid falling oil prices, sharply decreased to a trough by early 2016, before re-

bounding following the partial recovery of oil prices. While many major US banks have

attempted to allay fears of non-performing O&G loans by increasing their reserves, in-

vestors worry that conditions could deteriorate even more in the event of an oil market

crisis, resulting in a further decline in oil prices. Such fears were recently underscored by

two major events. First, the coronavirus pandemic has caused demand for oil to decline

so rapidly that the US has seen its oil storage capacity �ll up. At the same time, Russia

and OPEC �ooded the world with oversupply. Consequently, oil prices have collapsed

to critical levels, turning the US oil market on its head. For the �rst time, the benchmark

for US oil prices, the West Texas Intermediate (WTI) crude oil futures contract, traded

at negative prices, spreading fears beyond the US banking sector to the broader stock

market.

One question that emerged from both analysts and investors is whether the strengthe-

ning of the link between the banking sector and the oil market alongside the devel-

opment of this industry could lead to higher instability in both oil and �nancial mar-

kets. As previously stated, the decline in the price of oil is synonymous with more chal-

lenges for oil companies to honour their debt obligations, with potentially adverse ef-

fects on US banks’ asset quality. However, if banks cut o� their loans to O&G industries,
2



turbulence in the oil market would be unavoidable given the �nancial fragility of the US

shale industry.

Against this background, this study assesses whether the closer link between the bank-

ing and O&G sectors in the US could represent a potential new driver of banking and/or

oil crises. In particular, to evaluate this potential risk transmission, we investigate the

existence of volatility spillovers between stock returns of the four major US banks and

oil prices. To the best of our knowledge, this is the �rst study to address this issue, which

has remained unexplored to date. However, it is of critical importance as such volatility

spillovers could re�ect the potential existence of new crisis transmission channels driven

by the interactions between these two sectors.

To conduct our analysis, we use intraday data (1-minute spot prices) of stock market

indexes of the four major US banks (Bank of America, Citigroup, JP Morgan Chase, and

Wells Fargo) and the West Texas Intermediate (WTI) oil price from January 2006 to June

2016. These high-frequency data allow us to build a daily realised volatility measure and

to obtain an accurate estimate of the integrated variance. To assess volatility spillovers,

we then use Vector AutoRegressive Fractionally Integrated Moving Average (VARFIMA)

models introduced by Chiriac and Voev (2011). These models provide a suitable frame-

work for capturing long memory dynamics of stock and oil price volatilities and iden-

tifying the interrelationship between them. Finally, to provide a comprehensive picture

of volatility spillovers between the oil market and US banking sector, we also estimate

volatility impulse response functions, following the methodology proposed by Chung

(2001).

Our empirical results provide evidence of volatility spillovers between the oil market

and US banking sector. Impulse response functions show that a standard positive shock

in the volatility of oil prices has a positive impact on the volatility of US banks’ stock

prices. Responses of oil price volatility to a shock in the volatility of US banks’ stock

prices are also signi�cant. Interestingly, these responses are more pronounced during

the period when US banks have become more involved in O&G industries, supporting

the potential contribution of shale oil revolution in developing new linkages between oil

prices and the US banking sector. These results are robust to the use of an alternative
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model of volatility transmission.

Our study contributes to the ongoing debate regarding the sustainability of the US frack-

ing industry by highlighting its potential role as a key driver of oil and �nancial insta-

bilities in the future. It also contributes to the empirical literature along two dimen-

sions. Firstly, we extend the existing studies assessing volatility spillovers between oil

and stock markets, 4 by highlighting the volatility interaction between oil prices and US

banks’ stock prices. We provide new insights into the dynamic link between oil prices

and the US banking system through two main channels. Following a strand of the lite-

rature (see for example Narayan and Sharma, 2014 and Broadstock and Filis, 2014), we

emphasise the crucial role that oil prices could play in worsening the �nancial health

of the banking sector through the deterioration of the creditworthiness of borrowers

(here O&G industries). Unlike the existing literature that only documents the existence

of volatility spillovers from oil prices to the banking sector, we go further by suggesting

the underlying mechanisms channelled through the shale oil industry. More impor-

tantly, we highlight the critical role that the US banking sector could play in triggering

turmoil in oil markets by disrupting the supply side of the oil market through decreasing

the amount of available credit to O&G industries.

We also contribute to the recent literature assessing the link between the oil sector and

the US economy (Baumeister and Kilian, 2016; Bjørnland and Zhulanova, 2019). Bjørn-

land and Zhulanova (2019) provide evidence of positive spillovers from an increase in

the real oil price to non-oil investment, employment, and production in the US - ef-

fects that were not present before the shale revolution. Baumeister and Kilian (2016)

explore the impact of the 2014-2016 oil price decline on the US real GDP growth and

�nd evidence of a net e�ect close to zero. In particular, their results suggested that this

decline positively a�ected the US economy by increasing real private consumption and

non-oil-related business investment, a positive e�ect counterbalanced by a substantial

reduction in real investment by the oil sector. By addressing the volatility interactions

of oil prices and the US banking sector, we explored the relationship between the oil sec-

4. For an extensive review of the literature on this topic, see a pioneering study by Jones and Kaul
(1996) as well as subsequent and more recent research (Sadorsky, 1999; Hammoudeh and Aleisa, 2004;
Malik and Ewing, 2009; Souček and Todorova, 2013; Narayan and Sharma, 2014; Broadstock and Filis,
2014; Ewing and Malik, 2016; Diaz and de Gracia, 2017; Pal and Mitra, 2019; Lv et al., 2020).
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tor and the US economy through �nancial spillovers. For instance, signi�cant spillovers

from a decline in oil prices to the major US banks’ stocks may decelerate the US economy

by a�ecting some key sectors of the latter. However, because the US shale industry re-

mains �nancially fragile and depends mainly on banks to �nance its activity, one would

expect a decline in real investment in the oil sector following a decrease of loans to O&G

companies. This situation could demonstrate adverse consequences on the US economy.

The rest of the paper is structured as follows. Section 2 provides empirical evidence on

the increased link between the oil market and US banking sector. Section 3 presents

the data and methodology used in this study. The results are displayed in Section 4. In

Section 5, we provide evidence for the robustness of our results. Section 6 provides some

concluding remarks.

2 Study motivation: stylized facts

The US has started extracting shale oil on a large scale from 2006, although the existence

of a vital shale oil resource has been known for decades. With a slight slowdown due to

the 2008 �nancial crisis, 5 it is only after 2010 that the U.S shale oil production increased,

creating a boom in domestic crude oil production. This boom is often referred to as the

shale or fracking revolution.

Figures 1 and 2 illustrate how the shale oil sector has contributed to the US oil boom.

These �gures demonstrate that the signi�cant growth in total US oil production from

2010 6 has been driven by shale oil. Indeed, production increased from 6.4 million barrels

per day in 2010 to a record 11.2 million barrels per day in 2018, with shale oil driving

more than 92% of this growth (Ne� and Coleman, 2014). Production from shale oil play 7

represented more than 50% of total US oil production in 2015. US crude oil production

growth between 2010 and 2014, 3.2 mb/d, largely exceeded the production expansion

5. During the crisis period, crude oil prices declined from a peak of $145 per barrel to $43 per barrel
from July 2008 to December 2008 (Sehgal and Pandey, 2015), and the shale oil sector’s promising future
was called into question because low oil prices seriously jeopardised the sector’s pro�tability.

6. This date certainly marks the start of the fracking revolution.
7. A shale oil play refers to a geographical area suitable for shale oil production, whereas oil �elds

refer to areas suitable for conventional crude oil production.
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in the rest of the world. As a result, the US has become the world’s largest crude oil

producer, and its dependence on oil imports has shrunk.

Two main factors drove the shale revolution. The �rst triggering event was technolo-

gical improvements in horizontal drilling and hydraulic fracturing. Indeed, producing

hydrocarbon from the source rock by combining hydraulic fracturing with horizontal

drilling made oil in nonporous shale technically exploitable. Due to these technological

developments, the breakeven price of US shale oil decreased from $80 in 2010 to $50 in

2016 (Kleinberg et al., 2018), improving the pro�tability of the unconventional oil extrac-

tion industry. The second catalyst was the era of unprecedented low interest rates that

followed the 2008 �nancial crisis. As a matter of fact, the US shale oil revolution has been

associated with a context of historically low-interest rates and sustained high oil prices.

Companies engaged in shale O&G exploration and production are typically rated be-

low investment grade by rating agencies such as Standard & Poor’s (S&P) and Moody’s,

making their access to debt markets relatively expensive compared with investment-

grade companies. In this context of low-interest rates, the �nancing structure known as

Reserve-Based Lending (RBL) 8 the main instrument providing access to low-cost bank

debt �nancings, 9 allowing the rapid expansion of shale oil and gas production in the US.

By 2014, the aggregate net debt of O&G companies had already exceeded $175 billion,

an approximately 250% increase from its 2005 level (Azar, 2017), which emphasised the

importance of the banking system during the shale revolution. Of note, the US shale in-

dustry remains �nancially fragile and depends mainly on banks to �nance their activity.

8. RBL is a bank-syndicated revolving credit facility secured by a company’s proven oil and gas re-
serves. As the collateral is the company’s O&G reserves, RBL �nancing requires engaging an independent
reserve and production engineer to support the bank’s calculations to determine the borrowing base,
which is the maximum credit that can be made available to the borrower by a lender calculated based on
the company’s reserves (Azar, 2017).

9. Note that unlike conventional O&G companies, which are traditionally deep-pocketed and largely
self-�nanced, shale companies tend to be heavily leveraged.
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Source: O�cial US. Energy Information Administration (EIA) estimates derived from state administrative data collected by Enverus.

7



Source: Companies’ annual reports. Notes: The data used to produce this chart were
extracted from companies’ annual reports from 2006 to 2017. Vertical axis: Calculated
as the amount of credit exposure to O&G industries divided by total loans multiplied
by 100. Credit exposure is net of risk participation and excludes the bene�t of credit
derivative hedges and collateral held against derivative receivables or loans.

Figure 3 depicts the ratio of credit exposure to O&G industries for total loans of the

four most exposed US banks over the period 2006-2017 - JPMorgan Chase & Co, Bank of

America Corporation, Citigroup Inc., and Wells Fargo & Company. 10 Just before 2010,

the corresponding amount of credit to O&G for JPMorgan Chase & Co and Bank of Amer-

ica averaged barely 3.27% and 2.93% of the total wholesale exposure. Wells Fargo & Com-

pany’s exposure to O&G was approximately 1.14%, and Citigroup’s exposure amounted

to 0.61% of total wholesale exposure. Exposures to the O&G portfolio increased from

2010 to 2014 and then evolved nearly at a steady pace. For instance, JPMorgan Chase

& Co’ O&G loan portfolio totalled $23.322 billion (3.6% of total loans) on December 31,

2009, compared with $46.934 billion (5.46% of total loans) on December 31, 2013.

10. Credit exposure is net of risk participations and excludes the bene�t of credit derivatives used in
credit portfolio management activities held against derivative receivables or loans and liquid securities,
and other cash collateral held against derivative receivables.
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The close link between the US banking sector and the oil market has led to many debates,

especially regarding the fact that both major US banks’ exposure to O&G industries and

the exposure of shale O&G companies to low-cost bank debt �nancing could represent

the new drivers of a potential �nancial crisis. Indeed, in a low oil price environment,

oil companies would have not only di�culties in coping with their commitment but the

value of their loan guarantees would also decrease. As the banks use the oil reserves

as collateral for the loans, defaults in the oil sector could negatively impact the banking

sector, a cascade that could present similarities with the one that led to the subprime

crisis. 11 In turn, declining lending from US banks could impact drilling companies given

the capital-intensive and credit dependent nature of the shale oil extraction process.

Indeed, if US banks withdraw completely from O&G sectors, companies of the heartlands

of the shale revolution will drown. A decline in US oil production leading to inevitable

repercussions on the global oil market would follow. Nevertheless, no crisis has yet

occurred despite the prolonged period of low oil prices since 2014. Indeed, oil prices

declined dramatically in the second half of 2014, below the breakeven price, 12 that is, the

minimum price needed for drilling projects to be pro�table (Bidder et al., 2019). Although

drilling companies have shown some resilience to this low price environment, more

bankruptcies have been reported. Many companies producing shale O&G failed at the

end of 2015, leaving the banking sector a slate of debt (Azar, 2017).

At the same time, banks have coped with these losses relatively well. First, as Figure

4 shows, the four most exposed US banks increased the provision of expenses for loan

losses after the oil price decline. The deterioration in the O&G sector due to the oil shock

of 2014 was probably the factor that increased provision expenses to manage these losses.

Second, following the dramatic decline in oil prices in 2014, banks with high exposure

to O&G extracting industries signi�cantly adjusted their balance sheets. They tightened

credit supplies to O&G companies and expanded other types of lending and asset hold-

ings with a bias toward less risky securities (Bidder et al., 2019). However, the fact that

oil prices increased at the beginning of 2016, although remaining below historical levels

11. Indeed, one of the roots of the subprime crisis was the US housing ”bubble” since US banks used
homes as collateral for housing loans.

12. When the price of oil fell to $80 per barrel, the International Energy Agency (IEA) estimated that
only 4% of US shale oil projects were no longer pro�table.
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(under $50 a barrel) and highly volatile, prompted banks to reopen credit to O&G indus-

tries after two years of declines. Many O&G companies’ credit lines have been revalued

since autumn 2017 according to data collected by Reuters. The decline in drilling compa-

nies’ breakeven costs could also explain changes in banks’ risk aversion. Nevertheless,

we cannot exclude the possibility of a crisis in a scenario where the price of oil would

again decline below the breakeven point.

Source: Companies’ annual reports. Notes: The data used to produce this chart were
extracted from companies’ annual reports from 2014 to 2017. Vertical axis: Calculated
as the total provision expenses divided by total loans.
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3 Data and Methodology

In this section, we describe the data and present the methodologies used in the empirical

analysis.

3.1 Data

Our data set includes West Texas Intermediate (WTI) crude oil and US banks’ stock spot

prices. The data begins on January 3, 2006, ends on June 30, 2016, 13 is sampled at a high

frequency (1–minute) from 9:30 until 16:00 and is quoted in US dollars. The use of spot

prices is essential when analysing volatility because they re�ect the underlying assets

upon which derivatives are based (Vivian and Wohar, 2012).

The WTI crude oil price is sourced from Tick data. Assessing risk on shale oil activity

using WTI is relevant as the projected �ow of shale oil production depends not only on

the stock of recoverable shale oil below the ground but also on crude oil prices. The

sharp decline in the price of WTI crude oil from $106 in June 2014 to $47 in January

2015, followed by a recovery to $60 by June and another decrease below $50 in August

2015, serves as a reminder that the shale oil industry is exposed to downside crude oil

price risk (Kilian, 2016). To assess the banking sector’s �nancial health, we considered

the stock price index of four major US banks on the S&P 500 sourced from QuantQuote:

Bank of America, Citigroup, JP Morgan Chase, and Wells Fargo. Two criteria have guided

this choice: (i) the four selected banks have been the most exposed to O&G sectors over

the recent period; 14 (ii) they are recurrently identi�ed as global systemically important

banks by the Financial Stability Board, 15 and, they are thus likely to destabilise the whole

�nancial system in case of bankruptcy.

13. Our sample period begins in 2006 since the US has started to extract shale oil on a large scale during
this year. It ends in 2016 due to a lack of available data. Indeed, the dataset on the historical series of
intraday stocks used in this paper has a restricted policy and is not available free of charge.

14. See the companies’ (banks) annual reports.
15. At the end of each year, the Financial Stability Board publishes a list of global systemically impor-

tant banks using the prior year’s data, an assessment methodology designed by the Basel Committee on
Banking Supervision.
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3.2 Realised measures of volatility and covolatility

A variety of models has been developed to analyse the dynamics of volatility. 16 Re-

searches initiated by Andersen and Bollerslev (1998) suggest that intraday returns are

more precise than daily returns to estimate daily volatility. These authors have pro-

posed a new approach, more commonly known as "realised" volatility, that exploits the

information in high-frequency returns. Basically, the realised volatility approach 17 con-

sists of estimating volatility by summing the squares of returns sampled at very short

intervals. Subsequently, many related estimators have been proposed in the literature 18

to manage problems inherent in using high-frequency data such as non-synchronous

trading, market microstructure friction, or noise and the eventual presence of jumps. 19

In this paper, we rely on the multivariate kernel estimator introduced by Barndor�-

Nielsen et al. (2011) that has the double advantage of managing noise and asynchronicity

and guaranteeing the covariance matrix to be positive semi-de�nite. The authors assume

that the observed price process encompasses a latent e�cient price process plus a �nite

activity jump process. Their analysis suggests that rather than being viewed as an issue,

jumps must be associated with market information. In our study, we consider jumps as

macroeconomic or market news. For this reason, the realised kernel estimator, which is

not robust to the eventual presence of jumps, is preferable.

Having synchronised the high-frequency vector returns, the class of positive semi-de�nite

multivariate realised Kernel (rK) takes the following form:

K(P ) =
∑n

h=−n k( h
H

)Γh (1),

where Γh =
∑n

j=h+1 riri′−h, for h ≥ 0 and the h-th realised autocovariance Γh = Γ−h.

16. These models include the ARCH model (Engle, 1982), GARCH model (Bollerslev, 1986), EGARCH
model (Nelson, 1991), fractionally integrated GARCH model (Baillie, 1996), and stochastic volatility speci-
�cations (Taylor, 1994). For their multivariate extension, we can refer to Bauwens, Laurent and Rombouts
(2006) and Asai et al. (2006) .

17. See McAleer and Medeiros (2008) for a review of the realised volatility approach.
18. See Barndor�-Nielsen and Shephard (2004b) (realised power and bipower variation robust to jumps),

Barndor�-Nielsen et al. (2008) (realised kernels estimator in the presence of noise), Zhang (2006) (multi-
scale approach to the presence of noise), Jacod et al. (2009) (pre-averaging estimators) and references
therein.

19. The multivariate extension of realised volatility was developed by Barndor�-Nielsen and Shephard
(2004a) and, as in the univariate case, robust estimators to noise and/or asynchronous observations have
been proposed by Hayashi and Yoshida (2005), Voev and Lunde (2007), Gri�n and Oomen (2011), Chris-
tensen et al. (2010), and Barndor�-Nielsen et al. (2011).
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ri is the 5-minute return of stock i, and k is a non-stochastic weight function. Following

Barndor�-Nielsen et al. (2011), k (.) : RRR →RRR, will be taken to be a Parzen window.

3.3 Multivariate model of volatility: A trivariate VARFIMA

To explore the volatility spillover between the oil market and US banking sector, we

use a Vector Autoregressive Fractionally Integrated Moving Average VARFIMA (p,d,q)

model introduced by Chiriac and Voev (2011).

Let Yt be the n x n resulting realised covariance matrix, where n represents the numbers

of assets considered. The Cholesky decomposition of the matrix Yt is given by the upper

triangular matrix Pt, for which P
′
tPt = Yt. Let Xt = vech(Pt) be the m x 1 vector ob-

tained by stacking the upper triangular components of the matrix Pt in a vector, where

m = n(n+1)
2

. Xt contains the realised volatilities and covolatilities. The parsimonious

version 20 of the original VARFIMA (p,d,q) model is de�ned as follows:

Φ(L)D(L)Xt = Θ(L)εt, εt ↪→ i.i.d(0,Σt) (2)

D(L) = diag { ∆d1 , ... ,∆dm }, where d1, ..., dm are degrees of fractional integration of each

element of Xt, ∆d = (1− L)d the fractional di�erence operator and L the lag operator.

Φ(L) = Im − Φ1L − Φ2L
2 − ... − ΦpL

p, Θ(L) = Im − Θ1L − Θ2L
2 − ... − ΘpL

q are

matrix lag polynomials with Φi, i=1,2,...,p and Θj , j=1,2,...,q the AR and MA coe�cients

matrices. Φ(L) and Θ(L) are assumed to be outside the unit circle, and Xt is stationary

if dk < 0.5, for all k=1, ..., m. If any dk ∈ [0.5, 1) the process is not covariance stationary,

but still mean-reverting.

To evaluate volatility transmission between the oil market and US banking sector’s stock

returns, for each US bank, we implement one trivariate VARFIMA(1,d,0) 21 models that

can be expressed as:

20. By parsimonious, we mean model without constant and/or other exogenous variables.
21. Of note, we implemented two models, VARFIMA (1,d,1), and a VARFIMA (1,d,0) as an alternative

model following the study of Sela and Hurvich (2009). The latter model was selected because it outper-
forms the �rst in terms of information criteria.
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∆dB X1,t = α1 ∆dB X1,t−1 + β1 ∆dO X2,t−1 + γ1 ∆dOB X3,t−1+ eB,t (3)

∆dO X2,t = α2 ∆dB X1,t−1 + β2 ∆dO X2,t−1 + γ2 ∆dOB X3,t−1 + eO,t (4)

∆dOB X3,t = α3 ∆dB X1,t−1 + β3 ∆dO X2,t−1 + γ3 ∆dOB X3,t−1 + eOB,t (5)

The equations (3), (4), and (5) describe how volatility and covolatility are transmitted

over time across the oil market and stock returns of each US bank considered.

X1,t and X2,t represent the realised return volatilities of the US banks’ stock prices and

oil price, respectively. X3,t is the realised return covolatility between the two series.

dO, dB , and dOB take into account the persistence or long-run dependency of volatility

series. eO,t, eB,t, and eOB,t refer to volatility and covolatility innovations.

The parameters of interest are �rst α1, β2, and γ3, which capture the direct e�ects of past

(co) volatility series on the current (co)volatility. β1 and α2 account, respectively, for

volatility spillovers from oil prices to the US banks’ stock prices and from the US banks’

stock prices to oil prices. γ1 and γ2 measure the impact of past oil-bank covolatility on

the volatilities of the US banks’ stock prices and oil prices, respectively. Finally, α3 and

β3 capture the e�ects exerted by the volatilities of the US banks’ stock prices and oil

prices on the co-volatility of the two series.

The VARFIMA model allows us to capture persistence in volatility series as well as short-

range dependence dynamics and to take into account volatility spillovers between series.

Additionally, we can generate impulse response functions using such a model.

Estimation of all of the model’s parameters is carried out using the conditional Gaus-

sian likelihood Durbin-Levinson (CLDL) algorithm of Tsay (2010). To examine how the

strengthening of the link between the oil market and US banking sector a�ects their

dynamic interrelationships, we divide our sample period into two sub-periods accord-

ing to the upward trend of US shale oil production and of US banks’ involvement in

O&G industries from 2010. We estimate our model for the whole period and for each

sub-period and test for Granger causality between the two series of volatility. Finally,

to complete our empirical analysis, we generate volatility impulse response functions

based on the methodology proposed by Chung (2001).
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4 Empirical results

4.1 Dynamics of volatility and covolatility

Before presenting the estimation results, we �rst report the dynamics of the volatility

series (Figure 5) and then the covolatility series (Figure 6).

As shown in Figure 5, oil prices are characterised by very high volatility over the whole

period, with a break in the trend identi�ed during the 2007–2008 global �nancial crisis.

Indeed, between March and August 2008, the crude oil price has more than doubled from

$US 71 to $US 147 before declining to approximately $ 40 at the end of the year (Sehgal

and Pandey, 2015). Volatilities of US banks’ stock prices share some standard features. US

banks’ stock prices have been weakly volatile before 2007. High volatility persistence is

then identi�ed between 2007 and 2010. This period was marked by excessive volatility of

US banks’ securities due to their heavy cumulative accounting losses and the uncertain

environment that prevailed at that time. From 2010, the volatility appeared to be lower

but slightly more important than that of the pre-crisis period.

As demonstrated in Figure 6, the following characteristics of covolatilities between the

oil price and US banks’ stock prices can be highlighted. Covolatilities were close to

zero before 2007 and after 2010, but they were very high at the heart of the �nancial

crisis until 2010. In terms of variability, relative to the pre-crisis period, the correlation

between oil price and US banks’ stock price volatilities increased from 2010, showing

an increased link between the oil market and US banking sector corresponding to the

strong implication of the banking sector in the shale industry.

4.2 Estimation results

Table 1 reports the estimation results of each trivariate VARFIMA (1,d,0) model for the

two sub-periods: the pre-oil exposure of US banks (Jan 3, 2006–Dec 31, 2009) and the

post-oil exposure (Jan 4, 2010–June 30, 2016). The results of the estimation run on the

whole period are reported in Table A.1 of the Appendix.
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Source: Author’s calculations
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Source: Author’s calculations

The volatility series of the oil prices and US banks’ stock prices are a�ected by their

past values, as indicated by the signi�cance at the 5% level of the coe�cients α1 and β2.

This result shows a high degree of persistence in volatility series. No signi�cant e�ects

of past covolatility on oil prices as well as on the US banks’ stock prices volatilities are

evidenced. We also �nd that the covolatility serie does not signi�cantly depend on its

previous value. Second, our �ndings reveal in all cases (that is, for each model and the

whole period, as well as for the two sub-periods) signi�cant volatility spillovers between
17



the oil market and US banking sector as evidenced by the signi�cance at the 5% level of

the coe�cients β1 and α2. The Granger causality test con�rms these results. Focusing

on the coe�cients’ values, it appears that this transmission e�ect is more important

over the second period, that is, when banks became more exposed to the oil shale sector.

However, the volatility response of US banks’ stock prices to a shock in oil price volatility

remains weak.

Our �ndings on bidirectional volatility transmission between oil prices and US banking

sector are in line with those of many previous studies that evidenced signi�cant vola-

tility spillovers between oil prices and stock markets. For instance, a pioneering study

by Jones and Kaul (1996), as well as subsequent and more recent studies (Sadorsky,

1999; Souček and Todorova, 2013; Ewing and Malik, 2016), have provided strong evi-

dence of signi�cant oil shocks e�ects on stock markets. Following a sector-by-sector

perspective, some studies have shown the existence of volatility spillovers between the

oil market and the stock returns of several sectors, including energy companies, �nan-

cials, industrials, consumer services, health, technology, automobile and Parts, Basic

Materials, Telecommunications, and Utilities (Hammoudeh and Aleisa, 2004; Malik and

Ewing, 2009; Narayan and Sharma, 2014; Broadstock and Filis, 2014; Diaz and de Gracia,

2017; Pal and Mitra, 2019; Lv et al., 2020).

One channel through which oil market volatility spreads to the US banking sector is by

exposing the major US banks involved in O&G industries to adverse shocks in oil prices.

Indeed, the decline in the price of oil is synonymous with more challenges for oil com-

panies to honour their debt obligations, re�ecting a higher potential risk of bankruptcy.

By sending a wrong signal, these risks of default can imply deterioration in the value

of the banks’ portfolio assets, leading investors to make massive withdrawals, further

weakening the banks’ balance sheets. Additionally, because most exposed banks are

systemic, they are more disruptive to �nancial markets as was the case during the sub-

prime crisis. Thus, our results provide evidence of the crucial role that oil prices play

in triggering banking sector stress. They are in line with those of Narayan and Sharma

(2014) and Broadstock and Filis (2014), providing su�cient evidence of the US banks’

stock sensitivity to oil price movements.
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Of note, if the e�ect of a volatility shock of oil price on the banking system is weak, it is

undoubtedly due to the reduction in loans granted to O&G companies (Bidder et al., 2019)

as well as the increase of the provision expenses for loans losses following the dramatic

decline in oil prices. Indeed, following the dramatic decline in oil prices in 2014, banks

with high exposure to O&G extracting industries signi�cantly adjusted their balance

sheets. They tightened credit supplies to O&G companies and developed other types of

loans and asset holdings with a preference for less risky securities. However, the fact

that oil prices increased at the beginning of 2016, although remaining below historical

levels (under $50 a barrel) and highly volatile, has prompted banks to reopen credit to

O&G industries after declining for two years. Many O&G companies’ credit lines have

been revalued since autumn 2017 according to data collected by Reuters. The decline in

drilling companies’ breakeven costs could also explain changes in banks’ risk aversion.

Nevertheless, as banks tend to minimise risk during �ourishing periods of oil prices,

we cannot exclude the possibility of a banking crisis due to turmoil in the oil market,

in a scenario in which oil prices could fall below the breakeven point for an extended

period. Both the coronavirus pandemic and Russia/OPEC price war are clear examples

of adverse scenarios that may depress oil prices for a considerable period of time.

Volatility spillovers from the US banking sector to the oil market introduce an addi-

tional source of disturbance that can be explained by the �nancial characteristics of in-

dependent producers operating in the US shale industry. Indeed, to date, the national oil

companies’ �nancial resources insulated the oil market from turbulence in the banking

system. The shale industry, which is mainly characterised by small, heavily indebted,

and independent producers, has introduced a credit channel to the oil market with the

following potential consequences. A shock on the volatility of the banks’ stock prices has

an immediate e�ect on the prices of their assets, which become valued below their fun-

damental value. To address uncertainties around the value of their assets, banks may be

forced to urgently restructure their balance sheets to manage spiralling downside liquid-

ity. This process can lead to a considerable decrease in the amount of loans granted and

a swift increase in interest rates by banks (Bidder et al., 2019). This situation will make

the funding of future drilling and production during a low oil price environment more

challenging, particularly for small and midsize companies due to the capital-intensive
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nature of shale. The worst-case scenario for US oil producers would be a drop in oil

prices, coupled with a gradual increase in interest rates. Consequently, a decline in the

US oil production will occur and undoubtedly a�ect the total oil production and thus

oil prices volatility, since the US is at present one of the largest oil producers. A vola-

tility shock of the US banks’ stock prices appears, therefore, as a potential root cause of

turmoil in the oil market.

4.3 Volatility impulse response functions

To support our �ndings of signi�cant spillovers between the oil market and US ban-

king sector, we also conduct an impulse response analysis by investigating volatility

impulse response functions (VIRFs) over the two sub-periods for a 100-day horizon.

These VIRFs, displayed in Figures B.1 to B.8 in the Appendix, allow us to examine the

response of oil price volatility to a volatility shock from US banks’ stock prices (and

inversely) and how rapidly do these volatility shocks dissipate. Two main �ndings

emerge from the analysis of VIRFs. First, the results are very similar among the four

US banks considered. Second, over the �rst sub-period, a shock on oil price volatility

seems to have a negligible e�ect on the volatility of the US banks’ stock prices. Con-

versely, over the second sub-period, oil price volatility signi�cantly, although weakly,

in�uences the volatility of US banks’ stock prices. Indeed, following the shock, volatil-

ities of the US banks’ returns recede from their expected value (the horizontal line at

0.00) and return after approximately 80 days. Moreover, this e�ect is more pronounced

in the second sub-period when banks have become more involved in O&G sectors. Turn-

ing now to the volatility spillover from the US banking sector to the oil market, it ap-

pears that a volatility shock of the US banks’ stock prices alters the expected value of

oil return volatility in the two sub-periods. In particular, the shock’s e�ect dissipates

more slowly (after 100 days), and in terms of magnitude, the response during the sec-

ond sub-period is higher than before. In short, the VIRFs’ visualisation corroborates the

existence of signi�cant volatility between oil prices and US banks’ stock prices as evi-

denced by the estimation results.
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Table 1: Estimates of trivariate VARFIMA (1, d, 0) models by sub-period.

Parameters Before banks’oil exposure After banks’oil exposure
January 3, 2006–December 31, 2009 January 4, 2010–June 30, 2016

JPM BAC CITIG WFC JPM BAC CITIG WFC
α1 0.88626∗∗∗ 0.90272∗∗∗ 0.91057∗∗∗ 0.90069∗∗ 0.89354∗∗∗ 0.88430∗∗∗ 0.81619∗∗∗ 0.89561∗∗

β1 0.00713∗∗∗ 0.00591∗∗∗ 0.00676∗∗∗ 0.00585∗∗ 0.01039∗∗∗ 0.01197∗∗∗ 0.02549∗∗∗ 0.01109∗∗

γ1 0.10504 0.10289 -0.06615 -0.03355 0.09216 0.02510 0.51255 0.13217
α2 0.38686∗∗∗ 0.33304∗∗∗ 0.22593∗∗∗ 0.27880∗∗ 0.52087∗∗∗ 0.51956∗∗∗ 0.36492∗∗∗ 0.41003∗∗

β2 0.94294∗∗∗ 0.94378∗∗∗ 0.94843∗∗∗ 0.95155∗∗ 0.93150∗∗∗ 0.93643∗∗∗ 0.93985∗∗∗ 0.93943∗∗

γ2 -0.96757∗ -0.94239 -0.13810 0.12455 0.76790∗ -0.31183 -0.41009 -0.05438
α3 0.00126 -0.00249 0.00891 0.00013 0.01137∗ 0.01069∗∗ -0.00401 0.00524
β3 -0.00014 0.00004 -0.00031 -0.00001 -0.00075 -0.00044 0.0012 -0.00017
γ3 0.04223 0.04062 0.05602 0.07287 0.00911 0.04294 -0.02875 -0.04915
dB 0.4504∗∗ 0.4357∗∗ 0.4754∗∗∗ 0.47545∗∗ 0.5256∗∗ 0.4720∗∗∗ 0.4828∗∗∗ 0.5315∗∗

d0 0.48735∗∗∗ 0.48735∗∗∗ 0.48735∗∗∗ 0.48735∗∗ 0.48735∗∗∗ 0.48735∗∗∗ 0.48735∗∗∗ 0.48735∗∗

d0B 0.02215 0.0117∗∗∗ 0.0361∗ 0.0292∗∗∗ 0.002169 0.0054 0.1181 0.04665∗∗∗

Granger-causality Test (H0):
X1 does not granger cause X2 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
X2 does not granger cause X1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0004 0.0003

Note: This table provides the results of the trivariate VARFIMA model estimates run on the two sub-periods as speci�ed in the section devoted to the
methodology. There are a total of 1008 and 1635 observations for sub-periods 1 and 2, respectively. The abbreviations JPM, BAC, CITIG, and WFC stand for
JPMorgan Chase & Co, Bank of America Corporation, Citigroup Inc., and Wells Fargo & Company, respectively. Reported values for the Granger-causality
test are P-values. ***, **, and * denote rejection of the null hypothesis of non-signi�cance at 1%, 5%, or 10% critical levels.
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The volatility transmission is especially more important in terms of magnitude since

2010 when banks have become more involved in the shale oil industry. This �nding sug-

gests that because of the strong implication of the banking sector in the shale industry,

the major US banks, and therefore the US �nancial system, have become more sensitive

to a shock on oil price volatility and inversely.

5 Robustness check

To ensure that our results are robust, we undertake an additional assessment by esti-

mating a vector heterogeneous autoregressive model (VHAR), a multivariate version of

the HAR model of Corsi (2009), 22 similar to the model proposed by Bubák et al. (2011)

and Todorova et al. (2014). The VHAR model ensures �exible speci�cations for realised

volatility series. Therefore, it can identify short-, mid-, and long-term factors and can

introduce spillover e�ects between volatilities as the VARFIMA framework.

We estimate bivariate VHAR models (models for two volatility series) based on the rea-

lised volatility series of each of the four banks’ stock prices and oil prices for the whole

period and two sub-periods. The bivariate VHAR for the volatility series is expressed as

follows:

XD
t = δ0 + δ1 XD

t−1 + δ5 XW
t−1|t−5 + δ22 XM

t−1|t−22 + µt, t = 1, 2, ..., T, (6)

with XW
t−1|t−5 = 1

5

∑4
j=0X

D
t−1−j and XM

t−1|t−22 = 1
22

∑21
j=0X

D
t−1−j (7)

whereH = {D,W,M } respectively denotes time horizons of one day, one week (5 days a

week), and one month (assuming 22 days within a month). XH
t = (XH

1,t, X
H
2,t)
′ whereX1,t

and X2,t represent the realised volatility series of the bank’stock prices and oil prices,

respectively.

22. Motivated by the heterogeneous market hypothesis, Corsi (2009) proposed an autoregressive model
for realised volatility considering volatility series over di�erent time horizons. The speci�cation is based
on the idea that each volatility component in the cascade corresponds to a market component that forms
expectations for the next period volatility based on the observation of the current realised volatility and
the expectation for the longer horizon volatility.
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δ1, δ5, and δ22 are 2 x 2 coe�cients matrices and δ0 = (δ1,0, δ2,0)
′ is the vector of intercepts.

In addition to the vector of intercepts, the system in (6) involves n2 x 3 parameters to

estimate.

Following Corsi et al. (2008), to account for volatility clustering in the realised volatility,

the vector of innovation term µt is assumed to follow a GARCH (1,1) process.

µt =
√
htvt with ht = ω + α v2t−1 + β ht−1 (8), and vt ↪→ N(0,1) (9)

Note that the VHAR estimation requires the time series to be stationary. Thus, we rely on

the Augmented Dickey–Fuller, the Elliott–Rothenberg–Stock and Zivot-Andrews unit

root tests. 23 The results of the unit root tests are summarised in Table A.2 (see Appendix

A). These results indicate that all of the daily log realised volatility series are stationary

in level.

The results of the bivariate VHAR estimates are reported in Tables 2 and 3. We also per-

form Granger Causality tests to assess whether the explanatory power of the volatility

equation of the banks’ stock prices increases with the inclusion of the realised volatility

of oil price, and vice versa. 24 As expected, both US banks’ stock prices and oil price

volatilities are mostly a�ected by their own volatility components (short-, mid-, and

long term). We also provide evidence of signi�cant volatility spillovers between the

oil market and US banking sector regardless of the time horizon, while the transmis-

sion e�ect appears to be strongest over the second sub-period. Regarding the results of

Granger causality tests, including both volatility components of banks’ stock prices and

oil prices as additional variables seems to increase the explanatory power. Therefore,

these �ndings are in line with those obtained by estimating the VARFIMA models.

23. We employ the Zivot-Andrews test to take into account structural breaks and to ensure the robust-
ness of our results.

24. The results of VHAR models run on the whole sample as well as Granger causality test results have
been deliberately omitted. They are available upon request.

23



Table 2: Estimates of bivariate VHAR models (sub-period 1).

Before banks’oil exposure

January 3, 2006–December 31, 2009

JPM WTI BAC WTI CITIG WTI WFC WTI

Mean

equation

δ0 0.03*** 0.02*** 0.16*** 0.04** 0.14*** 0.02*** 0.13*** 0.03**

δi,1 0.30*** 0.31*** 0.40*** 0.31*** 0.46*** 0.31*** 0.45*** 0.31***

δi,5 0.78*** 0.65*** 0.38*** 0.65*** 0.31*** 0.65*** 0.33*** 0.65**

δi,22 0.08*** 0.02*** 0.20*** 0.02*** 0.21*** 0.02*** 0.19*** 0.02***

δj,1 0.01*** 0.001*** 0.05** 0.01*** 0.01** 0.01*** 0.03*** 0.01***

δj,5 0.01** 0.03** 0.02*** 0.02** 0.05*** 0.01*** 0.08** 0.02***

δj,22 0.02** 0.04*** 0.003** 0.02** 0.05*** 0.04** 0.06*** 0.05**

Variance

equation

ω 0.002*** 0.01*** 0.01*** 0.004** 0.001*** 0.004** 0.02*** 0.004***

α 0.03*** 0.06*** 0.03*** 0.06*** 0.02*** 0.06*** 0.01*** 0.05***

β 0.93*** 0.86*** 0.90*** 0.87*** 0.96*** 0.87*** 0.80*** 0.87***

R2 0.90 0.90 0.86 0.90 0.85 0.90 0.87 0.90

Note: This table provides the results of bivariate VHAR models estimates run on the sub-period 1.

There is a total of 986 observations for sub-period 1. The abbreviations JPM, BAC, CITIG, and WFC

stand for JPMorgan Chase & Co, Bank of America Corporation, Citigroup Inc., and Wells Fargo

& Company, respectively. Parameters associated with the volatility components of the bivariate

VHAR are reported as follows: δk,h (k = i, j with i, j = 1, 2 and i 6= j). ***, **, and * denote

rejection of the null hypothesis of non-signi�cance at 1%, 5%, or 10% critical level.
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Table 3: Estimates of bivariate VHAR models (sub-period 2).

After banks’oil exposure

January 4, 2010–June 30, 2016

JPM WTI BAC WTI CITIG WTI WFC WTI

Mean

equation

δ0 0.47*** 0.16*** 0.47*** 0.08*** 0.47*** 0.16*** 0.39*** 0.16***

δi,1 0.37*** 0.22*** 0.34*** 0.23*** 0.37*** 0.23*** 0.38*** 0.23***

δi,5 0.19*** 0.70*** 0.20*** 0.70*** 0.20*** O.69*** 0.22*** 0.70***

δi,22 0.34*** 0.06*** 0.36*** 0.04*** 0.34*** 0.06*** 0.33*** 0.06***

δj,1 0.02*** 0.02** 0.09*** 0.02** 0.05*** 0.02* 0.07** 0.03**

δj,5 0.05*** 0.03*** 0.08** 0.03*** 0.10*** 0.03*** 0.12*** 0.03***

δj,22 0.05*** 0.07** 0.03*** 0.04*** 0.06*** 0.07** 0.07*** 0.03***

Variance

equation

ω 0.08*** 0.003*** 0.09*** 0.002*** 0.08*** 0.003*** 0.07*** 0.002***

α 0.06*** 0.05*** 0.16*** 0.05*** 0.06*** 0.06*** 0.09*** 0.06***

β 0.08*** 0.91*** 0.14*** 0.91*** 0.08*** 0.91*** 0.03*** 0.91***

R2 0.54 0.83 0.50 0.87 0.54 0.83 0.64 0.83

Note: This table provides the results of bivariate VHAR models estimates run on the sub-period 2.

There is a total of 1613 observations for sub-period 2. The abbreviations JPM, BAC, CITIG, and WFC

stand for JPMorgan Chase & Co, Bank of America Corporation, Citigroup Inc., and Wells Fargo &

Company, respectively. Parameters associated with the volatility components of the bivariate VHAR

are reported as follows: δk,h (k = i, j with i, j = 1, 2 and i 6= j). ***, **, and * denote respectively

rejection of the null hypothesis of non-signi�cance at 1%, 5%, or 10% critical level.
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6 Conclusion

Since the banking sector has become increasingly involved in the shale industry, the question

of volatility spillovers between the oil market and US banking sector has become a matter of

considerable concern for bank regulators and investors for several reasons. First, billions of

dollars in debt to O&G industries have accumulated in the US banks’ debt portfolio. Second, the

decline in oil prices made the potential pro�tability of the shale industry uncertain, deferring

the debts held by oil companies. This strengthening link between the oil market and US banking

sector is thus likely to trigger another signi�cant �nancial crisis.

To provide more precise insights into this issue, we investigate volatility spillovers between the

oil market and US banking sector, by focusing on the four US banks most exposed to the oil

market from January 2006 to June 2016, and by estimating several trivariate VARFIMA models.

Our �ndings complement the existing literature along two dimensions. First, while the literature

shows the sensitivity of the US banking sector to volatility in the oil market, we evidence an

increase of this sensitivity over the period during which banks have become more exposed to the

oil shale sector. This result points to a new potential banking crisis transmission channel through

greater exposure of banks to the oil shale industry. Our second contribution to the literature

relates to the role that the banking sector could play in triggering turmoil in oil markets, an issue

that had not been previously considered. We found that the response of oil price volatility to a

shock on the volatility of US banks’ stock prices is positive and signi�cant, suggesting that the

oil market’s supply side is not resilient to banking shocks and that a crisis in the oil market could

stem from a volatility shock on the US banking sector.

Our results have profound policy implications as they imply broader reforms than speci�c macro-

prudential policies to prevent or limit these potential systemic risks. Measures should be taken

to reduce banks’ exposure to the shale oil sector and more generally to the energy sector. Spe-

ci�cally, banks should become more selective in funding O&G companies. This provision was

already established in the plan outlined by the Federal Reserve to limit Wall Street bets on the

energy sector. This plan includes some measures that make shale sector investments less pro-

�table by forcing banks to invest in this costlier energy sector to hold more capital against such

investments (Azar, 2017). Another issue that remains unresolved relates to the exposure of shale

oil companies to bank interest rate �uctuations. In particular, there is evidence regarding the

close links between the US banking sector and oil market that more diversi�ed funding is re-

quired for shale oil companies to become more resilient to changes in banks’ risk aversion or
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monetary policy shocks. Consequently, shale oil companies should reduce their credit exposure

to the banking sector in favour of self-�nancing in line with conventional oil companies.
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Appendix A

Table A.1: Estimates of trivariate VARFIMA (1, d, 0) models for the whole period.

Parameters JPM BAC CITIG WFC

α1 0.89795∗∗∗ 0.89574∗∗∗ 0.84956∗∗∗ 0.90549∗∗

β1 0.00820∗∗∗ 0.00858∗∗ 0.01623∗∗ 0.00784∗∗

γ1 0.09642 0.04243 0.38314 0.09823

α2 0.39003∗∗∗ 0.34127∗∗∗ 0.22983∗∗∗ 0.28801∗∗∗

β2 0.94100∗∗∗ 0.94498∗∗∗ 0.94855∗∗∗ 0.94963∗∗∗

γ2 0.29624 -0.49218 -0.33761 -0.02680

α3 0.00889∗∗∗ 0.00865∗ -0.00042 0.00438

β3 -0.00055 -0.00043 0.00055 -0.00017

γ3 0.01858 0.04432 -0.00713 -0.02230

dB -0.4476∗∗ 0.4777∗ 0.4738∗∗∗ 0.5372∗∗∗

dO 0.4738∗∗∗ 0.4738∗∗∗ 0.4738∗∗∗ 0.4738∗∗∗

dOB 0.00835∗ 0.0118∗∗∗ 0.0136∗ -0.02665∗∗∗

Granger-causality Test (H0):

X1 does not granger cause X2 0.0001 0.0001 0.0001 0.0001

X2 does not granger cause X1 0.0001 0.0001 0.0001 0.0001

Note: This table provides the results of the estimation of the bivariate VARFIMA models run on the whole

study period. The abbreviations JPM, BAC, CITIG, and WFC stand for JPMorgan Chase & Co, Bank of

America Corporation, Citigroup Inc., and Wells Fargo & Company, respectively. Reported values for the

Granger-causality test are P-values. ***, **, and * denote respectively rejection of the null hypothesis of

non-signi�cance at 1%, 5%, or 10% critical level.
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Table A.2: Results of the unit root tests.

Unit Root tests

ADF ERS ZA

Whole sample: January 3, 2006–June 30, 2016

JPM 4.87*** 4.43*** 9.47***

BAC 4.59*** 4.11*** 9.46***

CITIG 4.01*** 4.27*** 6.77***

WFC 3.57*** 3.58*** 8.73***

OIL 4.16*** 4.20** 7.97**

Sub-period 1: January 3, 2006–December 31, 2009

JPM 3.19** 3.63*** 6.02***

BAC 0.68 2.08** 5.98***

CITIG 3.20** 2.46** 6.14***

WFC 2.90** 3.43** 6.16***

OIL 0.59 2.47 5.38**

Sub-period 2: January 4, 2010–June 30, 2016

JPM 10.19*** 5.43*** 10.44***

BAC 7.93*** 7.59*** 10.59***

CITIG 10.20*** 5.54*** 10.44***

WFC 8.34*** 7.69*** 10.20***

OIL 3.48*** 3.23** 4.96**

Note: This table provides the t-Statistics associated with the unit root tests run on the daily log reali-

sed volatility. ADF, ERS, and ZA stand for the Augmented Dickey–Fuller, Elliott–Rothenberg–Stock

and Zivot-Andrews tests for stationarity, respectively. The t-Statistics are compared with the criti-

cal values tabulated by the di�erent authors. ***, **, and * denote rejection of the null hypothesis of

non-signi�cance at 1%, 5%, or 10% critical level.
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Appendix B

Figure B.1: Orthogonalised VIRFs of oil price and JP Morgan before exposure. Notes: As
a reminder, X1,t and X2,t represent the realised return volatilities of respectively bank
stock price and oil price. The bold line is the orthogonalised impulse response, and the
two light lines build the 95% con�dence interval.
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Figure B.2: Orthogonalised VIRFs of oil price and JP Morgan after exposure. Notes: As a
reminder, X1,t and X2,t represent the realised return volatilities of the bank stock price
and oil price, respectively. The bold line is the orthogonalised impulse response, and the
two light lines build the 95% con�dence interval.
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Figure B.3: Orthogonalised VIRFs of oil price and Bank of America before exposure.
Notes: As a reminder, X1,t and X2,t represent the realised return volatilities of the bank
stock price and oil price, respectively. The bold line is the orthogonalised impulse re-
sponse, and the two light lines build the 95% con�dence interval.
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Figure B.4: Orthogonalised VIRFs of oil price and Bank of America after exposure. Notes:
As a reminder, X1,t and X2,t represent the realised return volatilities of the bank stock
price and oil price, respectively. The bold line is the orthogonalised impulse response,
and the two light lines build the 95% con�dence interval.
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Figure B.5: Orthogonalised VIRFs of oil price and Citigroup before exposure. Notes: As a
reminder, X1,t and X2,t represent the realised return volatilities of the bank stock price
and oil price, respectively. The bold line is the orthogonalised impulse response, and the
two light lines build the 95% con�dence interval.
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Figure B.6: Orthogonalised VIRFs of oil price and Citigroup after exposure. Notes: As a
reminder, X1,t and X2,t represent the realised return volatilities of the bank stock price
and oil price, respectively. The bold line is the orthogonalised impulse response, and the
two light lines build the 95% con�dence interval.
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Figure B.7: Orthogonalised VIRFs of oil price and Wells Fargo & Co before exposure.
Notes: As a reminder, X1,t and X2,t represent the realised return volatilities of the bank
stock price and oil price, respectively. The bold line is the orthogonalised impulse re-
sponse, and the two light lines build the 95% con�dence interval.
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Figure B.8: Orthogonalised VIRFs of oil price and Wells Fargo & Co after exposure. Notes:
As a reminder, X1,t and X2,t represent the realised return volatilities of the bank stock
price and oil price, respectively. The bold line is the orthogonalised impulse response,
and the two light lines build the 95% con�dence interval.
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