
HAL Id: hal-02960569
https://hal.science/hal-02960569v1

Submitted on 8 Oct 2020 (v1), last revised 18 Oct 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Exploration of Homomorphic Encryption
Scheme Input Parameters

Cyrielle Feron, Loïc Lagadec, Vianney Lapotre

To cite this version:
Cyrielle Feron, Loïc Lagadec, Vianney Lapotre. Automated Exploration of Homomorphic Encryp-
tion Scheme Input Parameters . Journal of Information Security and Applications, 2020, 55. �hal-
02960569v1�

https://hal.science/hal-02960569v1
https://hal.archives-ouvertes.fr

Automated Exploration of Homomorphic Encryption Scheme Input Parameters

Cyrielle FERONa, Löıc LAGADECa, Vianney LAPOTREb

aUMR 6285, ENSTA Bretagne, 29806, Brest Cedex 9, France
bUMR 6285, Univ. Bretagne-Sud, F-56100, Lorient, France

Abstract

Homomorphic Encryption (HE) aims to perform computations on encrypted data. Still in research stage, a lot of HE
schemes have been created but their comparison remains costly as execution exhibits prohibitive costs. PAnTHErS is a
HE schemes modeler. Modeling with a common formalism allows the evaluation of input parameters variation impact
on performances of a HE scheme execution i.e. on its execution time and its memory cost. However, choosing a values
interval that makes sense during the exploration phase still requires high expertise. This may prevent the tool from
a large adoption by novice users. In this paper, we remind functionalities of PAnTHErS and present an automated
exploration method. This exploration method will offer designers a simplified access to PAnTHErS functionalities.

Keywords: Homomorphic Encryption, Analysis, Modeling, Exploration

1. Introduction

Currently, Internet of things tends to increase the num-
ber of mobile data terminals as smartphones or tablets.
Since their computational resources are limited, many ser-
vices are deported in the cloud. This approach raises data
security issues due to the fact that third parties may need
to access sensitive or personal data for delivering services
to the final user. Homomorphic encryption aims at an-
swering these issues.

Homomorphic Encryption (HE) allows delegating com-
putations on confidential data to a third party without
loss of confidentiality. Figure 1 shows how a user can use
a cloud computing service to modify his data with HE.
User’s data are secured during both transfers and compu-
tations.

To emphasis the interest of HE, let’s consider a simple
privacy and trust oriented example. Bob wants to use
an health related application on his smartphone. He first
has to enter his weight, his heart rate, etc. Then, the
application (securely) transfers those data D to a server in
charge of computing a personalized fitness program. In the
context of classical cryptography, Bob provides his plain-
data and has to trust the application. This is a major
concern if he wants his data to be kept confidential.

However, HE solves this problem by keeping Bob’s data
D encrypted during the whole process. The considered
application receives HE encrypted data Enc(D) from Bob
and has a function f to apply on it. This function can
run on a distant server. The server processes f(Enc(D))
and returns the result to Bob. Bob is then able to de-
crypt the result by processing Dec(f(Enc(D))) and then
retrieves the processed data. Indeed, when a HE is used,

Figure 1: Homomorphic Encryption (HE) principle.

the equality

Dec(f(Enc(D))) = f(Dec(Enc(D))) (1)

is true, and by definition, Dec(Enc(D)) = D. So, Bob
recovers

Dec(f(Enc(D))) = f(Dec(Enc(D))) = f(D) (2)

where f(D) represents the answer of the application i.e.
the referenced number of the proposed fitness program.
On Figure 1, encryption is represented as a locked padlock
and decryption by an open padlock and function f by the
box Computations.

Unfortunately, despite all reported efforts in that field
of cryptography, HE is still not usable in real cases. In-
deed, expansion factor of ciphertext is important and so,
length of encrypted data is huge compared to the plain
data length. Moreover, significant encrypted data implies
computational complexity and memory consumption is-
sues. The cloud or the distant server must have enough
resources to serve all users in terms of memory space and
computational capacity. These issues prevent HE from
a massive adoption despite its good properties regarding
privacy, security and trust.

In this context, the adoption of HE relies on the capac-
ity of the application designer to identify the scheme that

Preprint submitted to Elsevier October 6, 2020

best fits a given application. For that purpose, several cri-
teria are fixed by the application and server requirements.
These criteria can include maximal execution time, multi-
plicative depth i.e. the maximal number of homomorphic
operations that can be processed on encrypted data, mem-
ory space and security.

Due to memory and complexity issues, the analysis of
all HE schemes in the literature implies considerable soft-
ware executions time. For instance, in FV scheme [1], key
generation and encryption of one bit takes 0.044 seconds
with the tool Cingulata [2]. Encrypted result (resp. keys)
has a size of 6 153 bytes (resp. 20.4 KB). On the other
side, AES-CBC encryption with OpenSSL 1.0.1t takes less
than 0.001 seconds to return a ciphertext (resp. key) of 32
bytes (resp. 16 bytes). Furthermore, design space explo-
ration of homomorphic schemes means varying the input
parameters of the HE scheme, which are at least three.
As HE is very memory and time consuming, HE analy-
sis by software simulations is not scalable. Besides, some
HE schemes have several variants making exploration even
more time consuming.

In this work, the tool PAnTHErS is presented: PAn-
THErS helps the designer analyzing such HE schemes. Al-
ready usable by HE experts, PAnTHErS is extended by an
exploration method for non-specialists. This exploration
method allows to find the most interesting scheme and in-
put parameters optimizing both complexity and memory
cost for a given application.

The remainder of this paper is organized as follows.
Section 2 presents some related work. Section 3 intro-
duces the tool PAnTHErS. Then, Section 4 details the
exploration method we implemented in PAnTHErS. Sec-
tion 5 applies exploration method on four HE applications
including one in a medical context. Section 6 recaps the
different usages of PAnTHErS. Finally, Section 7 draws
some conclusions and presents future work.

2. Related Work

In 1978, Rivest et al. [3] introduced the problem of
creating a homomorphic encryption scheme which per-
mits computations on encrypted data. At the time, they
talked about privacy homomorphism. On the one hand,
RSA cryptosystem [4] created by Rivest, Adleman and
Shamir appears to be multiplicatively homomorphic. On
the other hand, some schemes are additively homomor-
phic like Paillier cryptosystem [5]. Interest of full HE is to
be multiplicatively and additively homomorphic. In 2009,
Gentry constructed the first Fully Homomorphic Encryp-
tion (FHE) [6], which is based on ideal lattices. Since
Gentry’s work, numerous HE schemes have been created.
FHE is achieved with Somewhat Homomorphic Encryp-
tion (SHE) scheme (bounded computation depth) com-
bined with bootstrapping technique.

A SHE scheme only has a limited number of multiplica-
tions that can be applied on encrypted data: this number
is called the multiplicative depth. Essentially, HE schemes

rely on summing a noise to plaintext to produce a cipher-
text. The final result can be decrypted only if the noise
is below scheme specific threshold. Thus, noise expan-
sion has to be controlled. In 2009, Gentry [6] used, on a
SHE scheme, the bootstrapping technique that decreases
(or ”refreshes”) noise in ciphertexts, without requiring the
plaintext. He obtained a FHE scheme which can produce
an unlimited number of multiplications.

More efficient noise management techniques have been
introduced for HE schemes as modulus switching [7]. Also,
ciphertext maintenance is needed during computations in
order to preserve consistency (key switching [7], scale in-
variance technique [8], dimension modulus reduction [9],
relinearization [9]). Moreover, SHE was combined with
symmetric-key encryption to make trans-ciphering [10] in
order to reduce the size of encrypted data that has to be
transferred to the remote server.

Not all created schemes rely on ideal lattices like the
one by Gentry. They are based on different hardness as-
sumptions. HE schemes over the integers [11, 12, 13, 14,
15] are all based on the approximate-GCD problem. The
idea of the approximate-GCD problem is to find the ap-
proximate common divisor of n random integers which are
close multiples of the same large integer.

HE schemes on lattices are mainly based on Learn-
ing With Error (LWE) [16, 9, 8] and Ring-LWE (R-LWE)
[17, 7, 1] problems. Introduced by Regev [18] in 2005,
LWE problem is : given q and n, find s ∈ Zn

q from ”ap-
proximate” random linear equations on s. It means that
each equation of s is perturbed by a small amount of noise.
The R-LWE problem, also introduced by Regev [18], is ba-
sically to shift from Zn

q to the ring Zq[x]/〈xn + 1〉 in LWE
problem definition. These two problems are post-quantum
-meaning they resist to an attack by a quantum computer-
what makes them very interesting in cryptography.

A method for LWE-based HE schemes, called approx-
imate eigenvector, was introduced by Gentry, Sahai and
Waters in 2013 [19]. In their scheme, the secret key is an
approximate eigenvector of the ciphertext and the message
is the eigenvalue. Error is introduced in eigenvector to en-
force the security of the scheme on LWE. [20] is also based
on this method. Introduced by Hoffstein, Pipher and Sil-
verman in 1998 [21], NTRU is one of the first public-key
cryptosystems based on lattices. It was then taken in ref-
erence to make HE schemes by [22, 23].

Some implementations of HE are now open-sources.
HElib [24] is a well-known implementation of Brakerski,
Gentry and Vainkuntanathan’s scheme. HElib is a soft-
ware C++ library, implemented by Halevi and Shoup.
Also, a implementation of [11] by Coron et al. is avail-
able in Sage [25]. Aguilar-Melchor et al.[26] implemented
a C++ library called NFLlib [27]. This is a library for ideal
lattices cryptography in the polynomial ring Zp[x]/〈xn +
1〉. This library allows the creation of FV-NFLlib [28]
which is a implementation of [1] using NFLlib.

This section demonstrates that the quest for a practical

2

HE scheme has implied the creation of numerous schemes
having relatively similar properties. Still, computational
complexity and memory cost are the main issues of HE.
Despite HE schemes similarities, no generic method al-
lows analyzing or comparing HE schemes. Indeed, analyz-
ing HE schemes means executing them, leading to a pro-
hibitive cost while performing exploration and optimiza-
tion tasks. To deal with this issue, this paper proposes to
extend the PAnTHErS tool with an automated exploration
of HE scheme input parameters allowing the extraction of
an optimized configuration for a given application.

3. PAnTHErS

One limitation of HE is the hardness to estimate HE
schemes complexity and memory cost and so, comparing
them. Analysis requires HE experts to implement the
scheme (whichever the used language and the fixed tar-
get architecture). Once implemented, which implies costly
design and debug phases, numerous executions are still re-
quired to explore several input parameters impact.

PAnTHErS is an all-in-one solution to cut these costs.
First, PAnTHErS offers a library to easily integrate HE
schemes, alleviating the need for starting implementation
from scratch. This strongly promotes legacy reuse. Also,
thanks to a calibration phase, PAnTHErS provides facili-
ties for rapid evaluation which only require a limited num-
ber of executions. Those evaluations allow the user to de-
tect costly operations, highlighting algorithm sections on
which refactoring effort must focus. Also, analysis makes it
easier to choose which input parameters to concentrate on
– if not proper values to select - according to implementa-
tion design and user’s application needs. In addition, PAn-
THErS allows comparison of schemes, and provides visual
feedback, producing graphs showing complexity and mem-
ory cost. Thus, not only does the tool help HE experts to
analyze and compare schemes but, it also meets the needs
of designers, new to cryptography, wishing to use HE in
future applications.

Before analyzing HE schemes, schemes must first be
modeled into a common format. PAnTHErS (Prototyping
and Analysis Tool for Homomorphic Encryption Schemes)
aims at answering to this problem. The tool, illustrated in
Figure 2, is divided in several steps including a modeling
step, a theoretical analysis step and a calibration step.
This section presents those different steps which are fully
detailed in [29, 30].

3.1. Modeling

HE schemes are first modeled into a succession of al-
gorithms. Three types of algorithms exist: Atomics (each
one represents one operation), Specifics (representing se-
ries of instructions i.e. series of Atomics and/or Specifics)
and HE basics. HE basics represents the five functions
of a HE scheme: key generation, encryption, homomor-
phic addition, homomorphic multiplication and decryp-
tion. Specifics are composed of instructions which are

identical in several HE schemes and thus, they are usable
in different modeled schemes.

The created algorithms are stored in PAnTHErS li-
brary to be used in several scheme modeling. Then, the
more the library possesses algorithms, the more it is pos-
sible to reuse algorithmic sequences, allowing to speed up
modeling of new schemes.

Thanks to the modeling method (detailed in [29]), mod-
eled schemes can be analyzed on a common basis. From
models, PAnTHErS evaluates both computational com-
plexity and memory cost of HE schemes. Analysis re-
sults allow HE scheme comparison in order to find the
best scheme (i.e. implying the less complexity and/or the
lowest memory consumption).

3.2. Theoretical analysis

Scheme theoretical analysis, deeply described in [29], is
made in the worth case. Each algorithm A of PAnTHErS
library i.e. Atomic, Specific and HE basic, is linked to
two evaluation modules: computational complexity and
memory consumption.

Complexity analysis module follows complexity evolu-
tion by counting the number of operations that are per-
formed in A. In the case of memory analysis module, mem-
ory cost evolution is followed by listing (and updating the
list) containing information about variables that are cre-
ated or modified by A. At the end of an analysis, com-
plexity and memory analysis modules return respectively
the maximal number of multiplications performed during
scheme execution and the maximal number of 32-bit inte-
gers simultaneously stored during scheme execution.

With these modules, a HE scheme can be analyzed
without requiring its concrete execution. Results which
are returned by theoretical analysis show evolution of com-
putational complexity and memory cost in function of HE
scheme input parameter variations. These results provide
input parameter influence on the analyzed HE scheme flow.
Moreover, it is also possible to observe computational com-
plexity and memory cost after each call of algorithms that
compose the scheme. It highlights costly operations (for
instance, multiplication of polynomials), storage of tempo-
rary variables and outputs in a scheme (for example, keys,
plaintexts and ciphertexts). Thus, this information could
help designer while optimizing their scheme implementa-
tion.

However, theoretical analyses highlight input param-
eters influence on a scheme without reflecting a concrete
scheme execution on a given implementation. Consequently,
it is hard to estimate the scheme execution time from theo-
retical analysis of complexity. Moreover, theoretical anal-
yses which are made in the worst case do not provide a
satisfying representation of parameter concrete influence
during practical usage of HE schemes. For instance, worst
case analysis can show that a scheme S1 has a less im-
portant complexity than a scheme S2. Nonetheless, it is
possible that S1 execution will be longer than S2 execu-
tion. This situation is not sufficient because PAnTHErS

3

Figure 2: PAnTHErS overview.

aims at comparing several schemes between them. To do
so, we provided a module to estimate execution time of
schemes from theoretical analyses: this module is named
p-calibration.

3.3. Calibration

p-calibration [30] allows converting computational com-
plexity in execution time and performing evaluation of
memory consumption in mebibytes (MiB). p-calibration
is based on concrete executions of p sets of parameters
called referencing points. A p-calibration needs p con-
crete scheme executions with the chosen referencing points.
Then, computational complexity (resp. memory consump-
tion) first expressed in number of multiplications (resp.
number of 32-bits integers stored) is converted into exe-
cution time in seconds (resp. in MiB), based on concrete
execution results.

2-calibration definition for complexity: Let p1
and p2 be referencing points such as pi = (CompTheoi,
CompPraci) with CompTheo theoretical complexity anal-
ysis and CompPrac execution time obtained after scheme
execution. Referencing points are chosen considering the
analyzed chosen values interval I of one scheme input pa-
rameter. Referencing point p1 (resp. p2) then corresponds
to the complexity analysis of the parameter having the
lowest value (resp. highest value) in I.

2-calibration consists in finding y1 and y2 variables such
as: {

CompTheo1 × y1 + y2 = CompPrac1
CompTheo2 × y1 + y2 = CompPrac2

(3)

Then, all theoretical analyses CompTheoi linked to each
value in I (including CompTheo1 and CompTheo2) are
calibrated by computing y1 × CompTheoi + y2.

Error rate can be calculated between p-calibrated re-
sults and concrete execution times (resp. MiB). By taking
a bigger p, error rate can be reduced but p-calibration ex-
ecution is increased. Calibration experiments [30] showed
that for p = 2, 3 and 4:

• Average of error rates does not exceed 10 % for p = 2,
7 % for p = 3 and 8 % for p = 4.
• At least 95 % of calibrated results have an error rate

inferior to 20 % for p = 2, 12 % for p = 3 and 14 % for
p = 4.

Considering those error rates and p-calibration execu-
tion time, p = 2 is used in the exploration step (section
4). A user who prefers lower error rates (despite a greater
p-calibration execution time) can take a larger p.

When analyzing input parameters, the application de-
signer has to carefully select set of parameters that respect
the multiplicative depth required by the targeted applica-
tion. This task requires a good knowledge of HE schemes.
Thus, the designer has to be supported by a HE expert.

In order to make PAnTHErS usable by both HE ex-
pert and designers, we extend the tool with an exploration
phase presented in the next section.

4. Exploration

The analysis of HE schemes is realized by the tool PAn-
THErS [29]. First, a modeling step is necessary to repre-
sent a scheme into a succession of functions. Authors of
[29] explained how a HE expert can process theoretical
analyses on computational complexity and memory cost,
while in [30], they show calibration procedure which cal-
ibrates theoretical analyses into concrete results that are
expressed in seconds for execution time and mebibytes for
memory consumption.

This section introduces an input parameter exploration
method of HE schemes for a given application. This explo-
ration method allows experts and non-experts in cryptog-
raphy to elect the scheme along with input parameters that
better fit the given application i.e. resulting the lowest ex-
ecution time and/or the weakest memory consumption.

4.1. Exploration description

Exploration method consists in using modeling, analy-
sis and calibration methods, as explained in the previous
sections, in order to either reach the lowest cost in ex-
ecution time and memory usage or to trade between the

4

two metrics. Exploration is divided in five steps as follows.

Step 1: Application selection
This step fixes an application requirement for the ex-

ploration. Concretely, the user defines the minimum mul-
tiplicative depth d required by the considered application.
Alternatively, an interval of values for the multiplicative
depth can be defined. During the exploration, configura-
tions that do not provide the minimum required depth are
automatically discarded.

The following steps (2, 3 and 4) are automatically ex-
ecuted for every modeled scheme available in PAnTHErS
library. In our case, available schemes are FV [1], YASHE
[22] and F-NTRU [23]1.

Step 2: Find sets of parameters
From its input parameters, a scheme implies a fixed

multiplicative depth. Depth calculation is different for
each HE scheme. Indeed, depth depends on generated
noise in schemes. Authors give, in their articles, maximal
bounds produced after: an encryption, a homomorphic ad-
dition and a homomorphic multiplication. These bounds
allow calculating depth of the scheme from a fixed set of
input parameters. Depth calculations of FV, YASHE and
F-NTRU have been integrated in exploration method of
the PAnTHErS tool.

Step 2 consists in finding each set of input parameters
of the scheme S that implies the depth d of the application
(or one depth in the interval of values chosen in step 1).
For that, multiplicative depth of each set of input param-
eters is calculated. The sets of parameters which imply a
depth from the ones chosen in step 1 are stored in a list
named L.

Step 3: Theoretical analyses
List L, created in step 2, contains sets of valid parame-

ters. Each set of parameters of L is theoretically analyzed
as presented in 3.2.

Step 4: Calibration
Theoretical analyses are then calibrated with p-calibra-

tion method. p-calibration starts by executing p times the
application with scheme S considering different sets of in-
put parameters. Then, theoretical analyses are converted
in concrete results (computational complexity is converted
in execution time in seconds and memory consumption in
mebibytes).

During step 4, only 2-calibrations are executed. In-
deed, p = 2 has been chosen due to its acceptable produced
error rates [30]. Moreover, a low value of p limits number
of required application executions and thus it allows per-
forming a faster exploration by reducing execution time of

1YASHE and F-NTRU are not secure since [31]. However, it does
not impact on this paper contributions, especially on exploration
feasibility.

step 4.

Step 4.1: Execution of the application with p refer-
enced points

In this step, the way we gather actual execution results
depends on the number of varying input parameters.

General case with n variable parameters: Let
J2 be the set which gathers sets of parameters named
ji = (p1, p2, ..., pn) which are chosen in step 2. Let ∀k ∈
{1, ..., n}, min(pk) = min{pk ∈ J2} and max(pk) = max
{pk ∈ J2} be the minimum and the maximum of each pa-
rameter used in ji ∈ J2. The executed sets of parameters
are the sets corresponding to one combination of min(pk)
and/or max(pk). Consequently, application will be exe-
cuted with 2n different sets of parameters jexec. The sets
of parameters jexec are not necessary included in J2. Af-
terwards, Jexec represents the set of all jexec.

F-NTRU case with n = 2: Parameters q (cipher-
texts module) and w (integer for words decomposition)
are input parameters in F-NTRU scheme. All ji ∈ J2
have (p1, p2) = (q, w) form. Minimum and maximum of
each parameter are found: min(q),max(q),min(w) and
max(w). Application is then executed with 2n = 22 = 4
different sets of parameters which are listed in equation 4.
The sets of parameters jexec in equation 4 are not neces-
sarily included in J2.

A = jexec1 = (min(q),min(w))
B = jexec2 = (max(q),min(w))
C = jexec3 = (max(q),max(w))
D = jexec4 = (min(q),max(w))

(4)

FV and YASHE case with n = 3: In addition to
q and w, parameter t (plaintexts module) is a variable in
FV and YASHE schemes. Each ji ∈ J2 has (p1, p2, p3) =
(q, w, t) form. Application is then executed with 2n = 23 =
8 different sets of parameters which are listed in equation
5.

A = jexec1 = (min(q),min(w),min(t))
B = jexec2 = (min(q),max(w),min(t))
C = jexec3 = (max(q),max(w),min(t))
D = jexec4 = (max(q),min(w),min(t))
E = jexec5 = (min(q),min(w),max(t))
F = jexec6 = (min(q),max(w),max(t))
G = jexec7 = (max(q),max(w),max(t))
H = jexec8 = (max(q),min(w),max(t))

(5)

Step 4.2: Conversion of theoretical analyses
After executing sets of parameters in Jexec, theoretical

analyses of sets of parameters in J2 are then calibrated.
Accordingly, the applied process for calibration is repre-
sented in Figure 3.

Figure 3a (resp. Figure 3b) corresponds to n = 2 case
(resp. n = 3 case). In the two figures, blue cross refer to
sets of parameters in J2 and red points to sets of parame-
ters in Jexec. Coordinates of each red point are written in
Figures 3a and 3b. Dotted and solid lines symbolize limits

5

(a) Representation for 2 parameters variation (F-
NTRU).

(b) Representation for 3 parameters variation (FV and
YASHE).

Figure 3: Representation of sets of parameters in J2, represented
by blue points, and their calibration. Red points represents sets of
parameters in Jexec.

of the set J2. The goal, here, is to calibrate blue cross
within limits, thanks to their theoretical analysis and con-
crete application executions of each red point (i.e. each
set of parameters drawn as red point).

n = 2 case: On Figure 3a i.e. in the case where
(p1, p2) = (q, w), application is executed for each of the
four sets of parameters represented by red points. Two
first calibrations are processed between :
• point A = (min(q),min(w)) and point B = (max(q),

min(w)),
• point D = (min(q),max(w)) and point C = (max(q),

max(w)).
These two first calibrations are presented in Figure 3a

by an solid orange line (two opposite sides of the square).
During the two calibrations, w is fixed and q is varied.
In order to realize these calibrations, theoretical analyses
of all sets of parameters included between A and B and
between D and C must be first calculated.

Finally, from the four executions and the calibrated
analysis, every theoretical analyses of blue cross, i.e. sets
of parameters in J2, can be calibrated. Each theoretical
analysis of a set of parameters (qi, wi) is calibrated by
taking (qi,min(w)) and (qi,max(w)) as referencing points.
These last points correspond either to concrete results that

are found after an execution or correspond to calibrated
analyses. On Figure 3a, when analyses of red points and
cross on solid lines are calibrated, then theoretical analyses
of all blue cross on squared area can be calibrated. In fact,
two 2-calibrations are processed successively: blue cross
calibration is executed after the first calibrations between
A and B and between D and C.

n = 3 case: On Figure 3b i.e. in the case where
(p1, p2, p3) = (q, w, t), application is executed with scheme
by taking each of the eight red points. By fixing p3 =
min(t) (resp. p3 = max(t)) and by varying only q and
w, theoretical analyses of points in ABCD face (resp. op-
posite face EFGH) represented in Figure 3b can be cali-
brated as explained in n = 2 case. Before the calibration,
theoretical analyses of all points in the two faces must be
calculated. At this point, every theoretical analyses of
points of (qi, wi, ti) form with ti = min(t) or ti = max(t)
are calibrated. Finally, each theoretical analysis of sets
of parameters of (qi, wi, ti) form with ti 6= min(t) and
ti 6= max(t) can be calibrated by taking (qi, wi,min(t))
and (qi, wi,max(t)) as referencing points. In this case,
three 2-calibrations are processed successively: blue cross
calibration is executed after ABCD and EFGH face cal-
ibration (corresponding to a n = 2 case calibration).

Step 5: Sorting and electing of best scheme and input
parameters

Previous steps allow to get calibrated analysis of ap-
plication for all schemes and for each set of parameters
implying one of the multiplicative depths chosen in step
1 (either depth of the application, either one value from
the chosen interval). The aim of step 5 is to elect the
scheme and its sets of parameters implying best results in
terms of execution time and/or memory consumption for
the chosen application.

Beforehand, user can choose between optimizing lowest
execution time or memory cost. In that case, parameters
are sorted in function of their associated calibrated com-
plexities (resp. memory cost). Then, the set of parameters
which has the lowest execution time (resp. memory cost)
is returned to the user.

If the user has no preference between complexity and
memory cost, then Pareto efficiency [32] is applied as de-
scribed in Definition 1.

Definition 1 (Pareto frontier in exploration method con-
text). Let J2 be the set gathering all explored sets of pa-
rameters and JP the set of points on Pareto frontier. Each
j ∈ J2 (resp. jP ∈ JP) produces an execution time tj
(resp. tP) and a memory cost mj (resp. mP). Then
∀j ∈ J2 such as j /∈ JP , it exists jP ∈ JP such as tP ≤ tj
and mP ≤ mj.

Figure 4 gives an example of the Pareto frontier. Each
set of parameters, represented by a square or a triangle,
is placed depending on application execution time and ap-
plication memory cost it implies. From Definition 1, sets
of parameters on Pareto frontier are those illustrated by a

6

Figure 4: Graphical representation of a Pareto efficiency example.
Each triangle and square represents a set of parameters in function
of its execution time and memory consumption. Green triangles are
sets of parameters on Pareto frontier.

green triangle on Figure 4. Graphically, it is possible to
verify that a set of parameters is on Pareto frontier or not.
For instance, the set of parameters A is on Pareto frontier
because no other set of parameters are on the area limited
by (0, 0), (tA, 0), (tA,mA) and (0,mA). This means that
no other set of parameters implies an execution time and
a memory consumption lower than A. On the other hand,
on Figure 4, a blue square is on the area limited by (0, 0),
(tB , 0), (tB ,mB) and (0,mB) ; thus, set of parameters B
is not on the Pareto frontier.

The sorting of the step 5 consists in finding sets of
parameters that are on the Pareto frontier. These sets of
parameters are then suggested to the user who will choose
one of them by favoring the best execution time or the
lowest memory cost.

4.2. Conclusion

The five steps of our exploration method do not re-
quire user intervention. User only gives application to be
analyzed (step 1). Then, exploration analyzes all combi-
nations of schemes and sets of parameters which respect
the application requirement (i.e. multiplicative depth) in
order to find the ones which imply the most interesting ex-
ecution times and memory costs. Pareto efficiency is used
to elect the best sets of parameters among those analyzed.
These sets of parameters and their estimations are then
shown to the user.

5. Use cases

Previous section describes the automated exploration
method. Exploration allows a non-expert in HE to identify
the most interesting scheme (implying the lowest execution
time and/or memory cost) for a given application.

Exploration can be applied on any kind of application.
In order to show exploration capabilities, four applications
have been considered, each one with a different numbers
of operations and a different multiplicative depth.

The first part of this section introduces the four appli-
cations while the second part presents the results obtained
by applying our proposed exploration method.

5.1. Applications definition

Four applications have been created in order to pro-
cess exploration method on different use cases. Applica-
tions exhibit different numbers of operations and different
multiplicative depth. Applications features are detailed in
Table 1.

Table 1: Applications information (number of called HE basic and
depth)

Applications FiveHB Pedagogic Croissant Medical
of KeyGen 1 1 1 1
of Encrypt 1 3 35 235

of Add 1 5 80 294
of Mult 1 12 14 106

of Decrypt 1 1 8 4

Total number of HE basics 5 22 138 640

Depth 1 10 6 12

5.1.1. Artificial applications

FiveHB application is a succession of the five HE basic
functions in the following order: key generation KeyGen,
encryption Encrypt, homomorphic addition Add, homo-
morphic multiplication Mult and decryption Decrypt.

Pedagogic application has an arbitrary number of ho-
momorphic operations. It does not process any useful
functionality for a user. It was only created to evaluate an
application having a more important depth than FiveHB
application. Pedagogic application thus has a depth of 10
against 1 only for FiveHB.

Pedagogic application has, as input parameters, three
plaintexts which are polynomials. The three plaintexts
m1, m2 and m3 are encrypted as c1, c2 and c3. Then, the
following operations are processed:

c = c31 · c22 · c23 · S · T · (S + c3) · (S + c2 + c3) (6)

with S = c1 · T + c1 + c2 and T = c1 · c2 + c3. Result c is
then decrypted.

5.1.2. Concrete applications

Croissant application allows to know how many decades
of kcal a person will consume by eating n croissants. Pa-
rameter n is considered has an 8-bit input parameter.

The computations performed by this application are
simple: knowing that eating a croissant implies consum-
ing 231 kcal, only a multiplication is necessary to obtain
the final quantity. Moreover, to make easier computations,
application rounds quantities to the decade of kcal. Thus,
a croissant is equivalent to 23 decades of kcal. Final appli-
cation consists in taking as input a quantity n of croissants
and then, this value is multiplied by 23.

FV [1] and YASHE [22] schemes have a variable named
t which is the plaintexts module (each plaintext is reduced
modulo t). This parameter is one explored parameter in
exploration method. Final result of Croissant application
must be an integer greater than 23. Thus, if t is chosen

7

Algorithm 1 C++ source code of Croissant application

1: Integer8 nb croissant, c;
2: cin>>nb croissant;
3: c = nb croissant*Integer8(23);
4: cout<<c;

small (e.g. t = 2), application will not decrypt the good
value because final result is reduced modulo t. On an other
hand, if t is chosen large (> 23), it must be taken larger
enough to correctly respond to the user. For instance,
if the user eats 5 croissants, application must return the
value 5 × 23 = 115 and so, scheme must use t > 115.
Consequently, in order to guarantee a good functioning,
the chosen value of t limits the maximal value of parameter
n which is input by the user.

A method to overcome this limitation is to perform
homomorphic operations on an application input bits. By
directly working on bits, there is no restriction on input
parameters. Nevertheless, this implies that t parameter
must always be equal to 2 because every output message
will be a single bit (either 0, either 1).

In order to apply this method, an application has to
be converted into a boolean circuit. The tool Cingulata
[2] allows to convert a C++ implemented application into
a boolean circuit. This circuit is only composed of OR,
XOR, AND and NOT gates. The application circuit is
then saved into a BLIF (Berkeley Logic Interchange For-
mat) file [33].

Others tools exist and can be use to perform a con-
version from high level application (C/C++ language) to
boolean circuit including, for example, the tool Madeo [34].

We implemented Croissant application in C++ as de-
scribed in Algorithm 1.

The tool Cingulata gives boolean circuit of Croissant
application from its C++ description. Cingulata returns
an optimized and a non-optimized version of the boolean
circuit. We consider the optimized version that we con-
vert into a succession of HE basics, that is suitable for
PAnTHErS. For that purpose, BLIF format is converted
in succession of XOR, AND, NOT and OR gates. Then,
each XOR gate (resp. AND) is converted in Add func-
tion (resp. Mult function). Furthermore, NOT(a) = a
XOR 1 is converted in Add(a, Encrypt(1)) and OR(a, b) =
AND(AND(a,b), XOR(a,b)) is converted in Mult(Mult(a,b),
Add(a,b)).

Number of HE basics highly increases when Croissant
application is converted in a boolean circuit. Indeed, C++
Croissant application calculates one multiplication between
two 8-bit integers. In homomorphic domain, this applica-
tion has a succession of 138 HE basics. If we take 16-bit
integers as inputs, the application would perform 262 HE
basics, roughly twice HE basics with 8-bit integers.

However, 8-bit integers usage reduces number of pos-
sible values for parameter n (number of croissants). As
it is implemented on 8 bits, Croissant application result

Algorithm 2 Medical application pseudo-code (described
in [35] and available in [2])

Require: gender, age, medicalHistory, smoker, diabetic,
HDLcholesterol, highBloodPressure, weight, alcohol-
Consumption, physicalActivity, height

Ensure: riskFactor (between 0 and 9)
1: riskFactor = 0
2: If gender == MAN AND age > 50:
3: riskFactor += 1
4: If gender == WOMAN AND age > 60:
5: riskFactor += 1
6: If medicalHistory:
7: riskFactor += 1
8: If smoker:
9: riskFactor += 1

10: If diabetic:
11: riskFactor += 1
12: If highBloodPressure:
13: riskFactor += 1
14: If HDLcholesterol < 40:
15: riskFactor += 1
16: If daily physicalActivity < 30 minutes:
17: riskFactor += 1
18: If weight - 10 ¿ height:
19: riskFactor += 1
20: If gender == MAN AND alcoholConsumption > 3

glasses/day:
21: riskFactor += 1
22: If gender == WOMAN AND alcoholConsumption >

2 glasses/day:
23: riskFactor += 1

will not exceed 256 decades of kcal, that is to say 11.13
croissants. Thus, in this use case, n is limited to 11.

Medical application is presented in [35]. This applica-
tion aims at computing a risk factor of cardiology disease
from medical information of a patient. Calculated risk fac-
tor is an integer between 0 (weak risk) and 9 (strong risk).
Medical application pseudo-code is written in Algorithm
2.

As for Croissant application, Medical application has
been converted into a boolean circuit by the tool Cingulata
[2] and t is fixed to 2 for equivalent reasons.

5.2. Application exploration results

This section introduces exploration method results of
three schemes (FV [1], YASHE [22] and F-NTRU [23]) on
the four applications: FiveHB, Pedagogic, Croissant and
Medical. Hardware and software configuration for exper-
iments is showed in Table 2. For each exploration, we
have allocated 2 cores and 128 GB of RAM. The Sage 8.0
[36] open-source computer program has been launched in
a Docker container. The ranges of parameters exploration
for each scheme of each application are defined in Table 3.

8

Table 2: Hardware and software configuration of exploration execu-
tion environment.

Processors 8 × Intel Xeon E7-8890 v4 @ 2.20 GHz
Number of cores 8 × 24

RAM 192 × 32 Gb / DDR4
Operating system Red Hat Enterprise Linux 7.5 64-bit

Software environment
Sage 8.0

Python 2.7.10

Table 3: Minimum and maximum bounds reached by input param-
eters of each scheme.

Application Scheme
log(q) log(w) t

Min Max Min Max Min Max

FiveHB
FV 43 148 2 99 2 49

YASHE 45 162 2 99 2 49
F-NTRU 18 124 2 99 - -

Pedagogic
FV 297 418 2 99 2 14

YASHE 308 443 2 99 2 5
F-NTRU 102 149 2 7 - -

Croissant
FV 189 287 2 99 2 2

YASHE 196 308 2 99 2 2
F-NTRU 61 149 2 19 - -

Medical
FV 376 476 2 99 2 2

YASHE 389 499 2 99 2 2
F-NTRU 121 149 2 4 - -

Table 4 gives number of explored parameters, explo-
ration execution time and required time to perform all
concrete executions for each application. A speedup fac-
tor is defined for each application. This factor is the ratio
between concrete execution time and our exploration exe-
cution time.

Speedup factor ranges from 7.4 (FiveHB) to 41.8 (Ped-
agogic). Speedup of all gathered applications is 18.6. A
study per scheme of application speedup factor shows, in
Table 5, that in general F-NTRU (resp. YASHE) has the
lowest (resp. the highest) yield. For instance, speedup
factor of F-NTRU for Medical application is 5.9 and the
one of YASHE for the same application is 137.5. This
difference is mainly due to the number of analyzed sets of
parameters (only 26 for F-NTRU against 2936 for YASHE)
and to concrete execution times that are required for cal-
ibration: in average, an execution of Medical application
with F-NTRU scheme is 53 times slower than with YASHE
scheme.

5.2.1. Error rates study

Figure 5 illustrates spreading of error rate that were
noted between calibrated analysis of exploration and con-
crete executions. Error rates of Figure 5 are showed by
application exploration i.e. all schemes combined.

More than 95 % of error rates, for each application,
are under 45 %. Moreover, the average of error rates for
calibrated complexity (resp. memory cost) is :
• 14.7 % (resp. 16.6 %) for FiveHB application,
• 7.5 % (resp. 3.8 %) for Pedagogic application,
• 7.4 % (resp. 5.1 %) for Croissant application,
• 7.5 % (resp. 1.3 %) for Medical application.

All those means combined are under 17 %. Consider-
ing application error rates for each separated scheme, the
observations on error rates above are also verified except
for Croissant application with F-NTRU scheme. For this
specific case, more than 50 % of error rates produced by
the exploration are superior to 45 % for calibrated com-
plexity. Regarding memory cost, only 70 % of values are
actually inferior to 45 %.

Those error rates can be decreased by executing appli-
cation with more referencing points. As we took p = 2, the
number of referencing points is limited to 4 for F-NTRU
and 8 for FV and YASHE (see section 4) but it could be
higher, depending on the total number of sets of parame-
ters to explore or depending on the size of interval of var-
ied parameters. By having a large number of referencing
points, p-calibration will be thinner and thus will induce
lower error rates. However, the more there is referencing
points, the longer will be the exploration execution.

5.2.2. Optimal sets of parameters study

Sets of parameters obtained by application exploration
are listed in Table 6. Selected sets of parameters by ex-
ploration are for YASHE scheme in the case of FiveHB
application and for FV scheme in the case all the three
other applications.

Optimal sets of parameters are obtained after concrete
execution of all schemes for each application. As for se-
lected sets of parameters, those optimal points are sets of
parameters for YASHE in the case of FiveHB application
and for FV scheme in the case all the three other appli-
cations. FV scheme offers a faster calculation and less
memory consumption than YASHE and F-NTRU scheme
for more realistic applications.

Figure 6 illustrates spreading of analysis of explored
sets of parameters (blue cross). Each set of parameters is
place on graph in function of its concrete execution time
(horizontal axis) and its actual memory cost (vertical axis).
On the figure, red squares are sets of parameters of opti-
mal points i.e. on the Pareto frontier of concrete execution
results. Green circles are sets of parameters elected by ex-
ploration method i.e. on the Pareto frontier of exploration
results. Those last points are placed depending on their
concrete execution time and memory cost.

A set of parameters or optimal point is a set of param-
eters implying a weak memory consumption and/or a low
execution time or a compromise between both. In other
words, optimal points are placed in the bottom-left corner
of graphs in Figure 6. Sets of parameters that are obtained
by exploration are actually well placed in the bottom-left
corner on graphs in Figure 6 and so, are close to optimal
points. In order to evaluate the efficiency of the explo-
ration method and the closeness of points, we calculated
the distance between selected exploration points and opti-
mal executed points.

The points in P are optimal if they are on the Pareto
frontier. Points that are chosen in second position are
points on the second Pareto frontier i.e. points on the

9

Table 4: Information about exploration execution for each application.

Application
Number Time for Exploration time of Total time

Speedup
of sets finding sets all sets of parameters of execution

FiveHB 186082 5 h 20 min 3 sec 19 h 45 min 46 sec 147 h 7 min 26 sec 7.4
Pedagogic 22969 2 h 49 min 37 sec 24 h 29 min 36 sec 1024 h 31 min 17 sec 41.8
Croissant 5684 2 h 27 min 41 sec 29 h 53 min 17 sec 289 h 16 min 2 sec 9.7
Medical 5808 1 h 32 min 44 sec 319 h 29 min 6 sec 5872 h 9 min 56 sec 18.4

TOTAL 220543 12 h 10 min 5 sec 393 h 37 min 45 sec 7333 h 4 min 42 sec 18.6

Table 5: Exploration speedup for each application depending on ex-
plored schemes.

hhhhhhhhhhhhhhhScheme
Application

FiveHB Pedagogic Croissant Medical

FV 1.8 19.9 16.4 36.2
YASHE 13.3 61.0 73.6 137.5
F-NTRU 4.1 8.8 6.3 5.9

Pareto frontier of all executed sets of parameters J exec
2

minus points in the first Pareto frontier P. And so on, we
can define the n-th Pareto frontier, detailed below.

Definition 2 (n-th Pareto frontier). Let P1 be the set of
points on the Pareto frontier of J exec

2 . Let P1 = Front-
Pareto(J exec

2) with FrontPareto(E) which returns the set
of points on the Pareto frontier of the set E. The set of
points on the n-th Pareto frontier is:

Pn = FrontPareto

(
J exec
2 \

n−1⋃
i=1

Pi

)
. (7)

From the index of Pareto frontier explained above, we
calculated a ranking position for sets of parameters as de-
fined as below.

Definition 3 (Ranking of a set of parameters). Let j be
a set of parameters in Pn with Pn the set of points on the
n-th Pareto frontier. The ranking position of j is:

Card

(
n−1⋃
i=1

Pi

)
+ 1, (8)

with Card(E) the cardinal number of the set E.

This ranking position c allows to tell if a set of param-
eters j is the c-th chosen points on a total of Card(J exec

2)
points. In other words, the set of parameters j is placed
at p % in the total points ranking with:

p =
c− 1

Card(J exec
2)

× 100 (9)

Table 6 gives ranking of each exploration result. The
ranking of sets of parameters is determined from concrete
execution results (execution time and memory cost) and
their index of Pareto frontier (Definition 2). This ranking
is calculated, on the one hand, with equation 8 (index of

ranking on the total of explored sets of parameters) and,
on the other hand, with equation 9 (index of ranking in
percentages, e.g. 0 % is the first ranking place and 100 %
the last one).

Table 6 also informs about the distance between:
• execution time of a set of parameters and minimal

execution time of optimal points,
• memory consumption of a set of parameters and min-

imal memory cost of optimal points.
For the four gathered application, 6 sets of parameters

on 7 are placed in the six first percents of all explored sets
of parameters. Among those sets of parameters, 4 are in
the first three percents.

The results presented in this section show that the pro-
posed exploration method provides a good solution for a
designer to fastly determine, for a given application, the
HE scheme and its input parameters providing interesting
performances. Moreover, if required, the p-calibration step
can be tuned to provide a configuration even closer from
the actual optimal.

6. PAnTHErS usage

The tool PAnTHErS is freely available [37]. It now
gathers modeled schemes, theoretical analysis method, p-
calibration and exploration method. It is implemented in
Python using Sage [36]. PAnTHErS aims at answering to
two types of users’ profiles: designer and HE expert.

This section presents goals of the two users and how
they can use the tool PAnTHErS in order to accomplish
their aims.

6.1. Designer

A designer wants to use HE in his future application.
This user has no specific skills in cryptography. The appli-
cation designer/programmer needs HE in order to secure
data of his clients.

In order to choose the HE scheme, the designer uses
PAnTHErS and its exploration method. The designer
must define his application in the tool as a succession of HE
basic functions. The designer can use the tool Cingulata
[2] to convert his C++ application into a boolean circuit.
Each boolean operation can be easily interpreted has HE
basic functions (e.g. XOR corresponds to homomorphic
addition). Finally, the designer launches the exploration

10

Table 6: Results returned by exploration for each application, ranking of exploration selected points and distance from those selected points
to optimal results.

Application Scheme log(q) log(w) t
Time (s) Memory cost (MiB) Ranking Distance with optimal point

Estim. Exec. Error Estim. Exec. Error Position In % Time (s) Memory cost (MiB)

FiveHB
YASHE 46 10 2 0.13 0.13 10.8 % 2.77 2.5 10.9 % 1/186082 0 0 0
YASHE 75 38 3 1.77 1.73 1.79 % 2.77 4.5 38.51 % 867/186082 0.47 1.61 2

Pedagogic
FV 297 23 2 10.42 10.26 1.62 % 99.37 93.8 5.94 % 119/22969 0.51 0.12 16.8
FV 339 68 2 10.75 11.53 6.78 % 83.93 80.2 4.66 % 736/22969 3.2 1.39 3.2

Croissant FV 243 81 2 12.91 13.15 1.82 % 39.26 39.8 1.37 % 309/5684 5.42 1.63 4.3

Medical
FV 393 44 2 167.25 175.23 4.55 % 269.55 265.5 1.53 % 1734/5808 29.84 24.27 30.9
FV 437 88 2 171.02 167.45 2.14 % 237.29 240 1.13 % 133/5808 2.27 16.49 5.4

Table 7: Returned results after concrete execution of all sets of pa-
rameters of FV, YASHE and F-NTRU for the four studying appli-
cations.

Application Scheme log(q) log(w) t Time (s) Memory cost (MiB)

FiveHB YASHE 46 10 2 0.13 2.5

Pedagogic

FV 307 35 2 10.32 83.6
FV 310 35 2 10.14 84.1
FV 312 40 2 10.39 79.9
FV 313 38 2 10.26 83.6
FV 314 40 2 10.37 81.1
FV 315 40 2 10.38 80.3
FV 315 43 2 10.37 80.6
FV 320 46 2 10.51 79.4
FV 328 56 2 11.37 77
FV 331 57 2 10.87 79.3
FV 337 57 3 10.95 78.3
FV 338 63 2 11.08 77
FV 342 70 2 11.01 77.4

Croissant
FV 253 89 2 11.80 35.5
FV 265 94 2 11.51 37.2
FV 276 99 2 11.68 36.5

Medical

FV 412 58 2 150.95 258.7
FV 449 84 2 153.47 245.3
FV 449 90 2 155.00 234.6
FV 451 98 2 154.39 235.8
FV 460 99 2 153.50 237.3

method which will return the most interesting scheme and
input parameters.

PAnTHErS is accessible and easy to use (especially for
exploration) thanks to its graphical interface, implemented
with TKinter library [38].

6.2. HE expert

A HE expert aims at analyzing and/or improving his
scheme. Indeed, the analysis of a scheme allows the ex-
pert to profile his internal functions in terms of execution
time and memory consumption. Thus, the expert could
optimize those functions, for example through paralleliza-
tion or hardware acceleration. Moreover, HE expert could
compare his scheme performances versus those of other
schemes which are already available in PAnTHErS library.

In order to analyze and/or compare schemes, HE ex-
pert can use the PAnTHErS graphical interface to perform
fine grained analyses. Moreover, tutorials [39] are available
to help an expert who would like to add a new scheme into
PAnTHErS.

Adding HE schemes consists in implementing classical
algorithms (for instance those referred in section 2) but by
using Atomic functions of PAnTHErS. Those functions act
as substitutes for the implemented algorithm’s elementary
operations (e.g. addition, multiplication,...). Sage library

[36] allows the user to create mathematics sets such as
polynomial rings or fields. PAnTHErS supports user de-
sign of Atomic (or Specific) functions that are supported
by Sage library. Thus, PAnTHErS easily allows the mod-
eling of all kinds of HE schemes (based on LWE, NTRU,
approximate-GCD) as well as algorithms from other ap-
plication domains.

The HE expert will not find in PAnTHErS a turnkey
solution, but, instead an open and extensible platform:
new metrics, new analyses, new external modules can be
added or plugged in, with potential reuse of existing ones.

A first new metric that would make sense is noise analy-
sis to help calculating multiplicative depth of new schemes
without even having the mathematical equation. This
analysis could help HE experts in their scheme creation
with function per function analysis.

7. Conclusion and future work

Through a modeling and analysis tool named PAn-
THErS, a user (designer or HE expert) is now able to ana-
lyze a HE scheme or an application. PAnTHErS offers the
possibility to launch several types of analysis: theoretical
or concrete, for a scheme or an application, partial explo-
ration (one parameter variation) or complete exploration
(all parameters variation). The user chooses what kind of
analysis best fits his needs.

The new functionality of PAnTHErS, the exploration
method, allows, for a given application, to analyze every
HE schemes and sets of input parameters implying the
application multiplicative depth. Thus, it enables to elect
scheme inducing the most interesting results (a low execu-
tion time, a weak memory consumption or any tradeoff in
between).

This method has been tested on four applications, ex-
hibiting different features. Exploration highlights YASHE
[22] for FiveHB application and FV [1] for the three other
applications. Comparing to application concrete execu-
tions with scheme and sets of parameters to explore, ex-
ploration of all sets of parameters is from 7.4 to 41.8 times
faster (see Table 4 in section 5.2).

Among 7 sets of parameters selected by exploration
(four gathered applications), 6 are close to optimal i.e.
placed in the first six percents of sets of parameters rank-
ing. The ranking is determined from concrete execution

11

results. Only one set of parameters has a deceptive rank-
ing: it is out of the 20 first percents.

In the short term, future work will focus on refining
calibration step on the exploration method by increasing
the number of referencing points. In the long term, an
interfacing between PAnTHErS and Cingulata [2] could
be first created to easily add new applications into PAn-
THErS in order to explore and/or analyze them. Secondly,
execution of applications and schemes could benefit from
hardware acceleration. For instance, Migliore et al. [40]
created a co-design approach to speedup polynomials mul-
tiplication. PAnTHErS could take benefit from this work
for faster evaluations.

References

[1] J. Fan, F. Vercauteren, Somewhat Practical Fully Homomor-
phic Encryption, IACR Cryptology ePrint Archive 2012 (2012)
144.

[2] CEA-LIST Crypto Team, Cingulata: open-source compiler
toolchain, https://github.com/CEA-LIST/Cingulata/, commit
fbc40d9e9948630047e4a60312c925594d14fc46, 2017.

[3] R. L. Rivest, L. Adleman, M. L. Dertouzos, On data banks and
privacy homomorphisms, Foundations of secure computation
4 (1978) 169–180. URL: https://pdfs.semanticscholar.org/
3c87/22737ef9f37b7a1da6ab81b54224a3c64f72.pdf.

[4] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Communica-
tions of the ACM 21 (1978) 120–126. URL: http://dl.acm.org/
citation.cfm?id=359342.

[5] P. Paillier, Public-key cryptosystems based on composite degree
residuosity classes, in: International Conference on the The-
ory and Applications of Cryptographic Techniques, Springer,
1999, pp. 223–238. URL: http://link.springer.com/chapter/
10.1007/3-540-48910-X_16.

[6] C. Gentry, Fully homomorphic encryption using ideal lattices.,
in: STOC, 2009, pp. 169–178.

[7] Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) Fully
Homomorphic Encryption without Bootstrapping, in: ITCS,
2012.

[8] Z. Brakerski, Fully Homomorphic Encryption without Mod-
ulus Switching from Classical GapSVP, in: Proc. CRYPTO,
Santa Barbara, CA, USA, 2012, pp. 868–886. doi:10.1007/
978-3-642-32009-5_50.

[9] Z. Brakerski, V. Vaikuntanathan, Efficient Fully Homomorphic
Encryption from (Standard) LWE, FOCS 2011 (2011) 97–106.
doi:10.1109/FOCS.2011.12.

[10] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-
Plasencia, P. Paillier, R. Sirdey, Stream Ciphers: A Practical
Solution for Efficient Homomorphic-Ciphertext Compression,
in: FSE, 2016.

[11] M. V. Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully
Homomorphic Encryption over the Integers, in: Proc. EU-
ROCRYPT, French Riviera, 2010, pp. 24–43. doi:10.1007/
978-3-642-13190-5_2.

[12] J. Coron, A. Mandal, D. Naccache, M. Tibouchi, Fully Ho-
momorphic Encryption over the Integers with Shorter Public
Keys, in: Proc. CRYPTO, Santa Barbara, CA, USA, 2011, pp.
487–504. doi:10.1007/978-3-642-22792-9_28.

[13] J. Coron, D. Naccache, M. Tibouchi, Public Key Compression
and Modulus Switching for Fully Homomorphic Encryption over
the Integers, in: Proc. EUROCRYPT, Cambridge, UK, 2012,
pp. 446–464. doi:10.1007/978-3-642-29011-4_27.

[14] J. H. Cheon, J. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Ti-
bouchi, A. Yun, Batch Fully Homomorphic Encryption over the
Integers, in: Proc. EUROCRYPT, Athens, Greece, 2013, pp.
315–335. doi:10.1007/978-3-642-38348-9_20.

[15] J. Coron, T. Lepoint, M. Tibouchi, Scale-Invariant Fully Ho-
momorphic Encryption over the Integers, in: Proc. Public-Key
Cryptography - PKC, Buenos Aires, Argentina, 2014, pp. 311–
328. doi:10.1007/978-3-642-54631-0_18.

[16] R. Lindner, C. Peikert, Better Key Sizes (and Attacks)
for LWE-Based Encryption, in: Proc. - CT-RSA 2011,
San Francisco, CA, USA, 2011, pp. 319–339. doi:10.1007/
978-3-642-19074-2_21.

[17] Z. Brakerski, V. Vaikuntanathan, Fully Homomorphic Encryp-
tion from Ring-LWE and Security for Key Dependent Messages,
in: Proc. CRYPTO, Santa Barbara, CA, USA, 2011, pp. 505–
524. doi:10.1007/978-3-642-22792-9_29.

[18] O. Regev, On lattices, learning with errors, random linear codes,
and cryptography, in: Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA,
May 22-24, 2005, 2005, pp. 84–93. URL: http://doi.acm.org/
10.1145/1060590.1060603. doi:10.1145/1060590.1060603.

[19] C. Gentry, A. Sahai, B. Waters, Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-
Faster, Attribute-Based, in: Proc. CRYPTO, Santa Barbara,
CA, USA, 2013, pp. 75–92. doi:10.1007/978-3-642-40041-4_5.

[20] Z. Brakerski, V. Vaikuntanathan, Lattice-based FHE as se-
cure as PKE, in: Proc. Innovations in Theoretical Computer
Science, Princeton, NJ, USA, 2014, pp. 1–12. doi:10.1145/
2554797.2554799.

[21] J. Hoffstein, J. Pipher, J. H. Silverman, NTRU: A ring-
based public key cryptosystem, in: Algorithmic Number The-
ory, Third International Symposium, ANTS-III, Portland, Ore-
gon, USA, June 21-25, 1998, Proceedings, 1998, pp. 267–288.
doi:10.1007/BFb0054868.

[22] J. W. Bos, K. E. Lauter, J. Loftus, M. Naehrig, Improved Secu-
rity for a Ring-Based Fully Homomorphic Encryption Scheme,
in: Cryptography and Coding IMA, 2013.

[23] Y. Doröz, B. Sunar, Flattening NTRU for evaluation key free
homomorphic encryption, IACR Cryptology ePrint Archive
(2016).

[24] S. Halevi, V. Shoup, HElib - An implementation of homomor-
phic encryption, https://github.com/shaih/HElib, 2014.

[25] J.-S. Coron et al., An implementation of the DGHV fully ho-
momorphic scheme, https://github.com/coron/fhe, 2012.

[26] C. A. Melchor, J. Barrier, S. Guelton, A. Guinet, M. Killijian,
T. Lepoint, Nfllib: Ntt-based fast lattice library, in: Topics in
Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the
RSA Conference 2016, San Francisco, CA, USA, February 29
- March 4, 2016, Proceedings, 2016, pp. 341–356. doi:10.1007/
978-3-319-29485-8_20.

[27] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O.
Killijian, T. Lepoint, Nfllib: Ntt-based fast lattice library, in:
Cryptographers’ Track at the RSA Conference, Springer, 2016,
pp. 341–356.

[28] CryptoExperts, FV-NFL : Library implementing the Fan-
Vercauteren homomorphic encryption scheme, https://

github.com/CryptoExperts/FV-NFLlib#fv-nfllib, 2016.
[29] C. Feron, V. Lapotre, L. Lagadec, PAnTHErS: A Prototyping

and Analysis Tool for Homomorphic Encryption Schemes, in:
Proceedings of the 14th International Joint Conference on e-
Business and Telecommunications (ICETE 2017) - Volume 4:
SECRYPT, Madrid, Spain, 2017, pp. 359–366.

[30] C. Feron, V. Lapotre, L. Lagadec, Fast evaluation of homo-
morphic encryption schemes based on ring-lwe, in: New Tech-
nologies, Mobility and Security (NTMS), 2018 9th IFIP Inter-
national Conference on, IEEE, 2018, pp. 1–5.

[31] M. Albrecht, S. Bai, L. Ducas, A subfield lattice attack on over-
stretched ntru assumptions, in: Annual Cryptology Conference,
Springer, 2016, pp. 153–178.

[32] V. Pareto, Cours d’économie politique, volume 1, Librairie
Droz, 1964.

[33] U. o. C. Berkeley, Berkeley logic interchange format (blif), Oct
Tools Distribution 2 (1992) 197–247.

[34] L. Lagadec, B. Pottier, O. Villellas-Guillen, An lut-based
high level synthesis framework for reconfigurable architectures,

12

https://github.com/CEA-LIST/Cingulata/
https://pdfs.semanticscholar.org/3c87/22737ef9f37b7a1da6ab81b54224a3c64f72.pdf
https://pdfs.semanticscholar.org/3c87/22737ef9f37b7a1da6ab81b54224a3c64f72.pdf
http://dl.acm.org/citation.cfm?id=359342
http://dl.acm.org/citation.cfm?id=359342
http://link.springer.com/chapter/10.1007/3-540-48910-X_16
http://link.springer.com/chapter/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1109/FOCS.2011.12
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://dx.doi.org/10.1007/978-3-642-38348-9_20
http://dx.doi.org/10.1007/978-3-642-54631-0_18
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://doi.acm.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1145/2554797.2554799
http://dx.doi.org/10.1145/2554797.2554799
http://dx.doi.org/10.1007/BFb0054868
https://github.com/shaih/HElib
https://github.com/coron/fhe
http://dx.doi.org/10.1007/978-3-319-29485-8_20
http://dx.doi.org/10.1007/978-3-319-29485-8_20
https://github.com/CryptoExperts/FV-NFLlib#fv-nfllib
https://github.com/CryptoExperts/FV-NFLlib#fv-nfllib

Domain-Specific Processors: Systems, Architectures, Modeling,
and Simulation (2003) 19–39.

[35] S. Carpov, T. H. Nguyen, R. Sirdey, G. Constantino, F. Mar-
tinelli, Practical privacy-preserving medical diagnosis using ho-
momorphic encryption, in: Cloud Computing (CLOUD), 2016
IEEE 9th International Conference on, IEEE, 2016, pp. 593–
599.

[36] W. A. Stein, T. Abbott, M. Abshoff, SageMath, http://www.

sagemath.org/, 2016.
[37] C. Feron, PAnTHErS (Prototyping and Analysis Tool for Homo-

morphic Encryption Schemes), https://github.com/cferon/

PAnTHErS, 2018.
[38] J. W. Shipman, Tkinter 8.4 reference: a gui for python, New

Mexico Tech Computer Center (2013).
[39] C. Feron, PAnTHErS: User Guide, Technical Report, EN-

STA Bretagne ; Lab-STICC, 2018. URL: https://hal.

archives-ouvertes.fr/hal-01867913.
[40] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine,

G. Gogniat, Hardware/software co-design of an accelerator for
FV homomorphic encryption scheme using karatsuba algorithm,
IEEE Trans. Computers 67 (2018) 335–347. doi:10.1109/TC.
2016.2645204.

 0

 5

 10

 15

 20

 25

 30

Complexity Memory cost

%

(a) FiveHB (98 %).

 0

 5

 10

 15

 20

 25

 30

Complexity Memory cost

%

(b) Pedagogic (99 %).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Complexity Memory cost

%

(c) Croissant (97 %).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Complexity Memory cost

%

(d) Medical (99 %).

Figure 5: Boxplot of error rates representing differences between ex-
ploration results and concrete execution results, for each application
and each calibrated theoretical analysis (complexity and memory
cost).

13

http://www.sagemath.org/
http://www.sagemath.org/
https://github.com/cferon/PAnTHErS
https://github.com/cferon/PAnTHErS
https://hal.archives-ouvertes.fr/hal-01867913
https://hal.archives-ouvertes.fr/hal-01867913
http://dx.doi.org/10.1109/TC.2016.2645204
http://dx.doi.org/10.1109/TC.2016.2645204

(a) FiveHB.

(b) Pedagogic.

(c) Croissant.

(d) Medical.

Figure 6: Identification of returned exploration points. Blue cross
are analysis results that are obtained after concrete execution of sets
of parameters. Red squares are optimal points and green circles are
exploration selected points.

14

	Introduction
	Related Work
	PAnTHErS
	Modeling
	Theoretical analysis
	Calibration

	Exploration
	Exploration description
	Conclusion

	Use cases
	Applications definition
	Artificial applications
	Concrete applications

	Application exploration results
	Error rates study
	Optimal sets of parameters study

	PAnTHErS usage
	Designer
	HE expert

	Conclusion and future work

