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Keywords: 

A new method is introduced for detecting outliers in multivariate functional data based on the curve shape that such 4 data depict. Few work address the problem of outlier detection in multivariate functional data, and our proposal relies 5 on some curve shape features combined with state-of-the art outlier detection.

6

• We represent the data through some functional approximations. We propose several interpretable transformations to 7 map the resulting approximated functional data to a curve shape representation.

8

• We prove through experimental studies on real and synthetic data that our approach can outperform the baselines. Also 9 we show that our method performs well contrary to the baselines, whenever the proportion of outliers is high or low.

10

We discuss some issues the baselines cannot circumvent.

11

• We provide some recommendations regarding the kinds of curve shape representation to use with respect to the type of 12 outlier that the data set entails.

Introduction

High-dimensional data are defined as individual vectors representing a large number of measurements. They appear in various fields, such as biology, engineering, or medicine, where different sources of measurements are recorded. As a straightforward example of such data, we can consider a longitudinal study for analyzing the height of a human population, such as the Berkley growth study [START_REF] Tuddenham | Physical growth of california boys and girls from birth to eighteen years. Publications in child development[END_REF], in which a physiological parameter or variable (also termed "source") is measured for all subjects at various time instants. Depending on the population and the number of time instants, this collection may result in high-dimensional data. Such data can be seen as realizations of a univariate function depending on time. Although a continuous function depending on a single continuous variable (e.g., time, wavelength, or frequency) underlies the data, it is finely discretized, resulting in highdimensional vectors. Such data are referred to as functional data.

Functional data analysis (FDA) is a branch of modern statistics, the principle of which is the representation of highdimensional measurement vectors through functions (see [START_REF] Ramsay | Functional Data Analysis[END_REF][START_REF] Ferraty | Nonparametric functional data analysis: 1472 theory and practice[END_REF] for a practical and theoretical introduction to FDA).

Regarding data as functions enables recovering the true nature of the process underlying the function that generated the data.

It also provides a smooth representation of the initial curves, which can be affected by measurement noise. Moreover, the FDA framework enables the handling of curves that are irregularly sampled or sampled on grids of different sizes, The dataset is projected along the axis; the red curve clearly shows an outlying relationship between its variables, resulting in a different shape. This is the "view" adopted in this study. In (c) and (d), the variables 1 and 2 are plotted as two univariate functions with respect to . Determining the degree of difference of the red curve without computing derived functions (e.g., derivative(s)) is not simple. Moreover, if the dataset is very large, the red curve is totally mixed with the black curves, thus rendering visual detection difficult.

variable, as this generalization is the sum of the individual 300 univariate functional depths. To address this, the entire shape 301 of the curve should be considered.

302

A few studies incorporate curve shape into a multivariate 303 functional depth measure. Recently, Kuhnt and Rehage [START_REF] Kuhnt | An angle-based multivariate functional pseudo-depth for shape outlier detection[END_REF] 304 proposed the functional tangential-angle ( ) pseudo-305 depth, which considers curve shape based on the intersection 306 angles of the centered variables (i.e., the variables are scaled 307 so that their integral over  values is 0). More precisely, for 308 each variable, computes the intersection angles of 309 a given sample with all the other samples ∀ ≠ , and 310 then averages these angles over the number of intersection an-311 gles of and over the variables = 1... . Thus, 312 separately considers the shape for each variable with respect 313 to , but not the shape between the variables.

314

More recently, Dai and Genton [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF] proposed the direc-315 tional outlyingness measure ( . ), which considers curve 316 shape through the weighted pointwise direction in ℝ of the 317 vector ( ) toward the median of the distribution of ( ).

318

The purpose of the weights is the up-weighting of the direc-319 tions in which the outlyingness of ( ) is likely to appear. through a bootstrap procedure as in the univariate case [START_REF] Febrero | Outlier 1466 detection in functional data by depth measures , with application to 1467 identify abnormal NO x levels[END_REF].

346

It can also be computed from a training dataset based on the 347 receiver operating characteristic (ROC) curve.

348

In the experimental study (Section 5), we use the 

∀ ∈  , ̃ ( ) = ∑ =1 ( ) = ⊤ ( ) (1) 
where 

( ) = { ( )} 1≤ ≤ is

442

The choice of the basis is data-dependent. As suggested 443 by Ramsay and Silverman [START_REF] Ramsay | Functional Data Analysis[END_REF], when the data are smooth and 444 periodic, the Fourier basis should be selected; when the data 445 are smooth, a spline basis is suitable. A spline is a piecewise-446 polynomial function of order at least three [START_REF] De Boor | A practical guide to splines[END_REF]. If the data 447 have irregularities, a wavelet basis should be preferred [START_REF] Nason | Wavelet Methods in Statistics with R[END_REF].

448

See [START_REF] Ramsay | Functional Data Analysis with R and MATLAB[END_REF] for other examples and details on the choice of the to over-fitting [START_REF] Ramsay | Functional Data Analysis[END_REF]. By contrast, an appropriate choice of The linearity of the basis expansion function with respect 468 to the coefficient vector ⊤ enables its efficient estimation

469

(assuming the data were sampled with a noise , that is,

470 ( ) = ̃ ( ) + , where is independent of ̃ ( ))
471 by minimizing the least-squares criteria:

472 ( ) = ∑ =1 ( ( ) -̃ ( )) 2 (2) 
or equivalently, with vector notation,

473 ( ) = ‖ ( • ) - ‖ 2 (3) 
where ‖⋅‖ stands for the to with respect to leads to the following minimizer:

482 * = ( ⊤ ) -1 ⊤ ( • ) (4) 
which is known as the classical least-squares solution [START_REF] Hastie | The Elements of Statis-1485 tical Learning[END_REF].

483

However, as the data are fitted according to the basis following minimizer [START_REF] Hastie | The Elements of Statis-1485 tical Learning[END_REF][START_REF] Ramsay | Functional Data Analysis[END_REF]: 

513 * , = ( ⊤ + ) -1 ⊤ ( • ) (7 
∀ ∈  , ̃ ( ) = ∑ =1 ( ) = ∑ =1 ( ) (8) 
(ii) The second method is to estimate the underlying func-

538

tions by evaluating all the approximation functions on 539 the same grid  . Thus, from these estimates, one can 540 compute derived functions, such as integral or deriva-541 tives, using numerical methods, such as quadrature or finite difference schemes, respectively [START_REF] Stoer | Introduction to numerical analysis[END_REF]. These methods are easy to implement, but they do not consider the basis functions and require that the arbitrary grid be sufficiently fine (so that the approximation functions are evaluated at a large number of observation points).

Thus, if the derivatives of the basis functions are known (as is the case for splines, Fourier basis functions, etc.), the derivatives of ̃ are also known and need not be estimated from the raw data or the smooth reconstructions of the original data from ̃ by a noise-sensitive and costly method such as finite differences. This example demonstrates the flexibility of the linear basis expansion for computing derived functions in FDA. Then, a derived function, for instance 1 ̃ , can be evaluated on an arbitrary grid. Such an approach is different from estimating the derivatives from an evaluation of ̃ on the grid by using finite differences.

The first method is safer than the second because the analytic form of the basis functions is fully considered, and therefore the corresponding derived functions can be obtained accordingly. For instance, if the basis functions are B-splines (which are piecewise polynomial), we know the analytic form of 1 ̃ , as 1 results in a piecewise polynomial as well. Thus, the evaluation of 1 ̃ by the first method provides more accurate estimates of 1 (which is unknown) than numerical methods applied to ̃ evaluated on a fine grid of  .

In the following part, we suggest some mapping functions for capturing functional outlyingness in the detection process. These mapping functions may have a complex analytical form because they involve several derivative functions (primarily first and second derivatives, as well as integral functions). Therefore, it is mandatory to have accurate evaluations of derivative functions, and accordingly we follow the first method in the computational experiments.

Shape-based representation for multivariate functional data

We regard a multivariate curve as a path lying in adimensional space, specifically ℝ (see Fig. 1(a) for an example in ℝ 2 ), and derive mapping functions (aggregation functions of the variables), established in differential geometry, to capture shape features of the curves (e.g., length, velocity, or curvature) so that outlying features may be detected. These mapping functions have been used in shape analysis, for instance, to extract features based on the edge (a bivariate curve) of an object in an image [START_REF] Srivastava | Functional and Shape Data Analysis[END_REF].

In this section, we investigate several mapping functions that enable the detection of multivariate functional outliers from the shape they exhibit in ℝ . Such mappings jointly consider the variables, as they aggregate, in several ways, some derivatives (with respect to ) of the curve variables. Hence, the individual and collective variations of the variables are considered. These mapping functions take each data sample, represented by its smooth approximation function ̃ , as The arc-length mapping function enables analyzing the length of a curve between two points in  (see Fig. 2). Let ( ) be an arbitrary curve depending on a continuous variable ∈  . For 0 ∈  and 0 < , the length ( ) of the curve that (⋅) represents from 0 to is

( ) = ∫ 0 ‖ 1 ( )‖d = ∫ 0 √ √ √ √ ∑ =1 d ( ) d 2 d (9) 
where ‖⋅‖ stands for the 2 -norm in ℝ . Hence, the arc- Let (⋅) be a differentiable warping function i.e., a monotone nondecreasing function defined in  →  . The arc-length mapping function on a warped functional datum is equal to the arc-length mapping function on the initial unwrapped functional datum: different size, which is a global shape feature. Thereby, the detection of functional outliers can be improved when their underlying curve is longer or shorter than those of the other samples. For instance, an isolated outlier, which exhibits a peak for a small part of  , induces a sharp increase in its curve length, whereas the length of other curves increases more slowly.

( ( )) = ∫ 0 ‖ 1 ( ( ))‖d = ∫ 0 ⟨ 1 ( ( )), 1 ( ( ))⟩ 1∕2 d = ∫ 0 1 ( )⟨ 1 ( ), 1 ( )⟩ 1∕2 d ,

Velocity mapping

The velocity mapping function enables analyzing the instantaneous variations of the curve with respect to . It has a simple interpretation when corresponds to a time instant.

In this case, velocity measures how fast a point moves on the curve. More generally, it can be interpreted as the norm of the projection of the curve onto 1 ( ), the tangent vector to the curve at . In Fig. 3, the velocity mapping at of a bivariate curve is shown as the 2 -norm ‖ 1 ( )‖ of the tangent vector 1 ( ) (vector of the first-order derivatives of the curve variables 1 and 2 ). It is defined as 

( ) = ‖ 1 ( )‖ (10 

Curvature mapping

Curvature is a notion that relates to how "bended" a curve is, or geometrically, the degree to which a curve deviates from the tangent line at a given point. An alternative interpretation and as 1 Curvature is defined to be the inverse of the radius of the osculating circle. In this example, in a neighborhood of the curve at 1 (dark-grey dot), the tangent vector 1 ( 1 ) has almost the same direction; hence, the osculating circle has a large radius ( ( 1 ) = 1

( ) = d d , we have ∫ 0 1 ( )⟨ 1 ( ), 1 ( )⟩ 1∕2 d = ∫ 0 ⟨ 1 ( ), 1 ( )⟩ 1∕2 d = ∫ 0 ‖ 1 ( )‖d , which implies that ( ( )) = ( ).
( 1 ) ), resulting in a small curvature. In a neighborhood of the curve at (white dot), the tangent vector 1 ( ) quickly changes direction; hence, the osculating circle has a lower radius, that is, a higher curvature than at 1 . concerns the radius of the osculating circles. At a given point , a smaller radius of the osculating circle implies larger curvature. In fact, the radius of the osculating circle is equal to the inverse of the curvature at this point. The bivariate curve in Fig. 4 shows that at a neighborhood of 1 where the tangent vector 1 ( 1 ) has almost constant direction, the osculating circle has a larger radius ( 1 ) than the radius of the osculating circle at a neighborhood of where the direction of the tangent vector 1 ( ) changes quickly. Thus, the curvature mapping function allows analyzing the change of direction of the curve with respect to . Indeed, if the curve is a line, curvature is constant, and the curve directions remain constant as well. Curvature is defined as [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF] or equivalently,

( ) = ‖ 1 ( 1 ( ) ‖ 1 ( )‖ )‖ ‖ 1 ( )‖ ( 
( ) = √ ‖ 1 ( )‖ 2 ‖ 2 ( )‖ 2 -⟨ 1 ( ), 2 ( )⟩ 2 ‖ 1 ( )‖ 3 (12) 
where ⟨⋅, ⋅⟩ denotes the inner product in ℝ . We now provide 653 insight into the definition of in Eq. ( 11). 

Real data

ECG data

We tested the proposed approach on the real dataset used by Dai and Genton in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF]. The dataset consists of electrocardiogram (ECG) time series of the electrical activity (voltage) of heart changes [START_REF] Goldberger | Physiobank, physiotoolkit, and physionet: components of a new 1482 research resource for complex physiologic signals[END_REF]. Such data can reveal abnormalities in heart activity. The time series are univariate and were labeled by cardiologists as abnormal or normal. This dataset has been used for time-series classification [START_REF] Wei | Semi-supervised time series classification[END_REF]. We augmented the data set by bivariate time series to demonstrate the applicability of the method to multivariate time series.

There are a total of = 810 time series including 208 abnormal and 602 normal cases. All the time series have an equal size of = 86. In contrast with Dai and Genton in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF], who only considered the time series between the time stamps = 6 and = 80 to avoid boundary effects, we considered the entire time series to demonstrate the robustness and applicability of the proposed approach. Dai and Genton also augmented the univariate time series to multivariate by adding the first and the second derivatives. We did not follow this, as in the proposed approach, these aspects are considered (e.g., velocity mapping in Eq. ( 10) or curvature mapping in Eq. ( 11)); rather, we added the squared time series. Indeed, power is proportional to the square of voltage. Thus, in terms of interpretability, this data augmentation appears to be more relevant than that by the second derivative of voltage. We applied the same multivariate functional data augmentation to all ECG-data experiments and for all methods; we did not apply the derivative augmentation, as this would bias the interpretation of the results, that is, it would not be possible to discern whether the results were due to the specific augmentation or to the method. This would be of interest if the focus was specifically on the ECG data, but here, we use it as a real dataset example.

As in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF], to obtain a rare class of samples representing outliers, we randomly created a partition of 400 samples (i.e., the training set) out of the 810 samples by parameterizing the contamination level (i.e., the rate of abnormal samples) in this partition to 5%, 10%, 15%, 20%, and 25%. Then, for each contamination level, we evaluated the proposed method on the 410 remaining samples (i.e., the test set).

Pen-digits data

We also tested the proposed method on another real dataset consisting of = 10992 bivariate time series representing pen digits (PenDig) [START_REF] Dua | UCI machine learning repository[END_REF]. The digits are labeled according to their class (i.e., from 0 to 9 

( , ) = (| -|; , ) , = 1, 2 and , ∈ [0, 1]
where 12 is the correlation between the variables 1 and 2 , 11 = 22 is the variance of each variable, 1 and 2 are the marginal variances, (ℎ; , ) = 2 1-Γ( ) -1 ( |ℎ|)  ( |ℎ|) is the Matérn class function [START_REF] Matérn | Spatial variation[END_REF] ( is a modified Bessel function [START_REF] Bowman | Introduction to Bessel functions[END_REF]), > 0 is a smoothness parameter, and > 0 is a range parameter. For this simulation, we used the same parameter setting as in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF]: 12 = 0.6, 11 = 22 = 1, 1 = 2 = 1, 11 = 1.2, 22 = 0, 6, 12 = 21 = 1, 11 = 0.02, 22 = 0.01, and 12 = 21 = 0.016. This covariance function is implemented in the R package [START_REF] Schlather | Analysis, simulation and prediction of multivariate random fields with package randomfields[END_REF]. We summarize the uncontaminated model ( ) = ( 1 ( ), 2 ( )) ⊤ as follows: The five contamination models are (we annotate the variables with an index referring to "contamination"):

( ) ∼  = ( ) = (0, 0) ⊤ ; Σ( , ) =
1. Model 1 (persistent magnitude outlier): 1 ( ) = 4 ( ).

Model 2 (isolated outlier):

2 ( ) = ( )(1+11 < < +0.1 ),
where is the indicator returning 1 if the indexed condition is true, and 0 otherwise, and is a uniform random variable in [0, 0.9]. 

Experimental protocol

Functional approximation

Without loss of generality, we selected  = [0, 1] as the domain (closed interval) of for all the data sets. We recall that we represent all the curves in the common interval  because we assume that the functional samples were generated by a random function depending on relating to the same event in ℝ . For instance, when the samples are measurements of a given process depending on , which represents time,  can be viewed as the relative temporal range of the process (i.e., from the beginning at = 0 to the end at = 1),

and ∈  = [0, 1] can be interpreted as the progress rate of the process.

Choice of the basis of functions For the ECG and the

PenDig datasets, we approximated each variable of the bivariate time series by a basis consisting of B-splines of order eight (B-splines are piecewise-polynomial functions of order at least three, and are located at a given observation point ∈  ). Indeed, we noticed that in this dataset, the curves exhibit a smooth pattern without periodicity; hence, the Bspline basis is a suitable choice (as recommended in [START_REF] Ramsay | Functional Data Analysis[END_REF]).

For the synthetic dataset, we approximated each variable of the bivariate time series by a Fourier (sine and cosine functions) basis with a fundamental period of = 1 = 1 (i.e., the length of  ). The Fourier basis was deemed suitable because we noticed low-frequency periodicity (induced by the covariance function ( , )) over  .

Application of the functional-data fitting procedure

We now provide the computational details of the functional-data fitting. Following the recommendations in [START_REF] Ramsay | Functional Data Analysis with R and MATLAB[END_REF][START_REF] Febrero-Bande | Statistical Com-1469 puting in Functional Data Analysis : The R package fda.usc[END_REF], for all 809 datasets, we selected both the penalization and the basis 810 size for the variable of sample through a leave-one-811 out cross-validation procedure over a given grid search for 812 and . We penalized both the first-and second-order 813 derivatives of ̃ to gain smoothness in the mapping-function 814 output. We note that for all the samples of a given variable ,

815

we equally penalized the approximations ̃ by the same 816 to compute the coefficient vector * . Then, by computing 817 the coefficient vector * according to Eq. ( 7), we selected 818 the value of and < that minimize the leave-one-out

819 cross-validation score ( ), 820 
( ) = ∑ =1 ( ) -̃ -( ) 2 (14) 
where ̃ -corresponds to the approximation of by 821 basis functions by omitting the pair ( , ( )) in the 822 functional-fitting step, as in Eq. ( 5), where the penalization 823 is .

824

For the ECG and PenDig datasets, the grid search of 1 839

Finally, we used the coefficient vector associated with 840 both the optimal regularization and basis-size parameters to 841 recover the smooth approximation functions ̃ on a given 842 grid and applied a mapping function to them. used instead [START_REF] Ramsay | Functional Data Analysis[END_REF].

(ii) Regarding the velocity mapping in Eq. ( 10), the (iii) The curvature mapping ( ) requires the compuwe computed them as in Eq. ( 8) and combined them 877 as in Eq. ( 11).

878

The approximation functions recover the functional data 

903

An irregular grid can also be used to evaluate the approxi-904 mated functions, but the computation of the mappings should 905 be performed cautiously, as mentioned in (i) for . To this end, we selected isolation forest (iFor) [START_REF] Liu | Isolation Forest[END_REF] 911 and a one-class support vector machine (OCSVM) [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF]. iFor ( and , respectively), as a measure of discrimination be-957 tween outliers and inliers by the proposed approach, we also 958 computed from the labels of the test set.

959

The threshold-selection step is simple and is not part of 960 iFor [START_REF] Liu | Isolation Forest[END_REF] or OCSVM [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF], which are both unsupervised. We to demonstrate the complete application of the proposed method and compare it with the baselines. In fact, there are other methods for learning an outlyingness threshold, such as using a specific decision rule involving, e.g., an empirical quantile associated with a reference distribution of the outlyingness scores [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF], or threshold selection from the massvolume curve [START_REF] Clémençon | Mass Volume Curves and Anomaly Ranking[END_REF] when no outlier label is available, but this is beyond the scope of the present study, as we assume that the training set has low non-zero contamination level.

To assess the proposed method with respect to a ground truth and without considering a threshold, we also evaluate the results using , which is a measure of discrimination between outliers and inliers. It is a standard performance measure in outlier detection [START_REF] Erfani | 1463 High-dimensional and large-scale anomaly detection using a linear 1464 one-class SVM with deep learning[END_REF][START_REF] Liu | Isolation Forest[END_REF] and demonstrates that the proposed method can outperform the baselines regardless of the computed outlyingness threshold.

Baseline comparisons

We compared the proposed approach with two recent outlier-detection methods based on multivariate functional depth (Section 2).

The first baseline method is FUNTA, proposed by Kuhnt and Rehage in [START_REF] Kuhnt | An angle-based multivariate functional pseudo-depth for shape outlier detection[END_REF] (see Section 2). It only requires centering each variable of each sample to a zero mean. As FUNTA has been demonstrated to be robust to noise and can handle curves of different size, we used it on the raw data without any functional data approximation. For the computation of the outlyingness threshold, we applied the same procedure as in the proposed method, that is, we selected the best outlyingness threshold for the training set using ROC and applied it to the test set. We used the R implementation proposed in [START_REF] Rehage | Functional Tangential Angle Pseudo-Depth[END_REF].

The second baseline method is . proposed by Dai and Genton in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF] (see Section 2). We used the same parameter setting as in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF] and did not perform any functional-data approximation. In this method, the outlyingness score is based on the robust Mahalanobis distance of the directional outlyingness vector computed on a subset of the data; in the present case, we computed it using the training data to obtain comparable results and to assess the performance measures on the test set. The tail of the distribution of the distances is approximated by an -distribution with degrees of freedom

( + 1, -)
, where is the number of curve variables, and is calculated through a simulation procedure (see [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF],

p. 7 for details). Consequently, the outlyingness threshold is not data-driven and is computed as a quantile of probability 99, 3% of an -distribution. Then, we used the outlyingness threshold on the test set to asses performance. We used the R implementation provided by the authors.

Experimental protocol application

The performance of the proposed approach was evaluated by simulation for both the real and the synthetic data. The simulation settings for the ECG and synthetic data were as in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF]. We proceeded as follows: 

Results and discussion

1052

We report the results for the ECG dataset in Table 2,

1053
where for each contamination level (columns) and for each 1054 method (rows), we provide , , and (sub-columns).

1055

The results for the PenDig dataset are shown in Table 3, where 1056 for each case of outlier class (columns), that is, a single digit, 1057 and for each method (rows), we provide the three performance 1058 measures as in Table 2. The results for the synthetic data 1059 are reported in Table 4, where for each model (columns) and 1060 for each method (rows), we provide the three performance 1061 measures as in Table 2. In these tables, the value in a cell 1062 is the average of a performance measure over the number of 1063 simulations. We discuss the results below. 

ECG data 1065

The results for the ECG data set ( rows). We highlight this in Fig. 5, where it can be seen that Outlier detection results for the ECG data set with five contamination levels . For each contamination level (columns) and each performance measure (sub-columns), we marked the best results in bold (i.e., highest correct detection rate and , and lowest false detection rate ). For all the contamination levels, the proposed method achieves the best results with and the . We also notice that, in the proposed method, for a given mapping function and outlier-detection algorithm, performance does not degrade when varies, whereas for and . , performance degrades as increases. The proposes functions outperform state-of-the-art methods when there are few outliers. The outlier detection with OCSVM from and does not present the same robustness to the contamination level as that with iFor in terms of (OCSVM( ) and OCSVM ( ), and Fig. 2). Indeed, increases as the contamination level increases. Accordingly, OCSVM appears to be more suitable for datasets containing a small number of outliers. This was also observed in [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF]. Despite the lower robustness, OCSVM( ) and OCSVM( ) are better than the baselines, which exhibit performance degradation as the contamination level changes. Indeed, is approximately constant as increases but degrades for small values of in terms of ( row, columns).

= 5% = 10% = 15% = 20% = 25% Methods (

Conversely,

. is as robust as OCSVM( ) in terms of (we note that the range of is the same for .

and OCSVM(

)) but degrades in terms of for high values of ( . row, columns). Thus, we recommend using OCSVM when the contamination level is low [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF].

, for OCSVM and iFor, is the most efficient mapping function in terms of ( columns, rows), and is the most efficient in terms of ( columns, rows). has the worst performance ( rows, and columns).

PenDig data

From the results on the PenDig dataset in Table 3, it can be seen that the proposed method always outperforms the baselines in terms of . This implies that the baselines are not as effective in capturing shape outlying features. When the outliers are '0' digits, the results by the baselines are consistent with the results on the synthetic data when some shape outliers are simulated (Model 5 in Table 4). This is not surprising, as Model 5 generates bivariate functional outliers with an elliptic shape in ℝ 2 ; hence, a zero-like shape ('0'). As an value close to 0.50 implies that the detector performs as efficiently as a random method, we note that the '0' outlier case is the only in which the baselines are effective. The baseline methods cannot distinguish different shape outliers with abrupt shape irregularities such as (smooth) right angles, for example, when the outlier is the ' , averaged over the number of simulations as functions of the contamination level ( = 5%, = 10%, = 15%, = 20%, and = 25%) for each method (proposed in blue, and baselines in red ). We notice that when the contamination level increases, the proposed method (except for iFor( ) and OCSVM(

)) outperforms the baselines in terms of , and . Moreover, performance does not degrade as the contamination level changes, in contrast with that of the baselines. In terms of , performs as well as and when used with both iFor and OCSVM but significantly degrades in terms of (i.e., it falsely detects outliers) for low contamination levels.

. performs as well as the proposed method in terms of but degrades in terms of for high contamination levels. Hence, performs well when the contamination level is high, and . performs well when the contamination level is low.

Table 3

Results for the PenDig dataset.

Outlier detection results for the PenDig dataset when each of the 10 classes ('0'...'9') is considered an outlier (columns), and the nine other classes inliers. For each case of outlier class and each performance measure (sub-columns), we marked the best results in bold. It can be seen that for the ten cases, the proposed method is considerably better than the baselines, which are inefficient for this dataset except when the outliers are '0' digits.

Outliers '0'

Outliers Results on the synthetic datasets.

Outlier detection results for the synthetic data generated by the five models (columns), as described in Section 5.2. We compared the proposed methods, iFor(⋅) and OCSVM(⋅), with the two baselines, and . , in terms of three performance measures (in sub-columns): correct detection rate ( ), false detection rate ( ), and . For each model and each performance metric, we marked in bold the best results (i.e., highest and , and lowest ). iFor with and has a similar performance as that of the state-of-the-art methods for most of the generating models. For Model 5, iFor( ) outperforms the baselines. MODEL because it is based on the intersection angles between the samples and is computed for each variable separately. Thus, it fails to consider the correlation between them (as explained in Section 1).

As and achieve satisfactory results, the geometric characterization (velocity and length) of the samples provides a different type of outlier detection. We note that functional-data approximation affects the geometric characterization. Indeed, functional approximation enables smoothing out a curve and properly extracting derivative-based features because the induced smoothing renders the samples differentiable (see Section 3.3); this is not a required property for the baselines . and . Here, we carefully monitor the functional-approximation step using leave-oneout cross-validation (Eq. 14). Thus, in contrast with the approximation step, the outlier-detection step depends greatly on the mapping-function computation.

We recommend using in the case of (potential) persistent magnitude or shape outliers. In practice, does not directly indicate whether a sample is a shape or magnitude outlier. However, as shape and magnitude are quite distinctive outlyingness classes, the class of such an outlier can be known a posteriori by visual inspection or by setting a magnitude threshold with respect to the magnitude of the outliers detected. If the outliers are suspected to be isolated, we recommend using and , as both mapping functions extract local curve features in ℝ . In the case of a low contamination level, both OCSVM and iFor are suitable (even though on the ECG data, OCSVM is better for small ), whereas for high contamination levels, iFor is better.

We demonstrated that each mapping function can detect multiple classes of outliers. However, identifying the class of an outlier detected by a given mapping function is not an easy task, and this issue will be addressed in future work.

Statistical assessment of the results

We followed the hypothesis-testing procedure recommended by Demsar [START_REF] Demsar | Statistical Comparisons of Classifiers over Multiple Data Sets[END_REF] the three performance measures , , and separately.
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As described in [START_REF] Demsar | Statistical Comparisons of Classifiers over Multiple Data Sets[END_REF][START_REF] García | Advanced 1476 nonparametric tests for multiple comparisons in the design of experi-1477 ments in computational intelligence and data mining: Experimental 1478 analysis of power[END_REF], there are several ways of conducting 1219 the tests in the evaluation protocol, and we primarily applied 1220 it as Erfani et al. in [START_REF] Erfani | 1463 High-dimensional and large-scale anomaly detection using a linear 1464 one-class SVM with deep learning[END_REF]. Specifically, we applied the protocol 1221 as follows:

1222 (i) First, the Friedman test [START_REF] Sheskin | Handbook of parametric and nonparametric statistical procedures[END_REF] was applied to detect the Figure 6: Ranking of the methods (1 is the best, 8 the worst) for , , and based on the post-hoc Friedman's aligned rank test, considering the five contamination levels in the ECG data (upper bar plot) and the PenDig data (lower bar plot). For and , the ranking is given in decreasing order (i.e., for high and values, the rank tends to 1); for , the ranking is given in increasing order (i.e., for low values, the rank tends to 1). The -axis represents the average ranking over the five models, and the integers on the top of the bars represent the final ranking. If there are ties, we take the average ranking.

given in Tables 8,9, and 10 for , , and , respectively. We notice that . is significantly equivalent to iFor( ), OCSVM( ), , and iFor( ),

and these methods are ranked first, second, and third on average, respectively (Fig. 7). Thus, on the synthetic dataset, the baseline methods are slightly better than the proposed method; however, based on the pairwise comparison tests, the best methods ( ( ) and ( )) are statistically equivalent. As discussed in the two previous paragraphs, the proposed method is superior on real datasets. Moreover, in the iFor rows and OCSVM columns, it can be seen that there is a pairwise equivalence between iFor and OCSVM for ( ) and ( ), that is, these two outlier-detection algorithms are empirically consistent for a given mapping function. Therefore, we have equivalent methods to achieve state-of-the-art results (which cannot be improved, except for MODEL 5) for the synthetic data.

Overall assessment. Tables 5,6, and 7 (in the iFor rows The main difference between the synthetic and the real Notation is the same as in Table 5. 

= = = ≠ * = = = . (baseline) - x ≠ * ≠ * = ≠ * ≠ * = iFor( ) - - x = ≠ * = = ≠ * iFor( ) - - - x ≠ * = = ≠ * iFor( ) - - - - x ≠ * ≠ * = OCSVM( ) - - - - - x = ≠ * OCSVM( ) - - - - - - x ≠ * OCSVM( ) - - - - - - - x . iFor( ) iFor( ) iFor( ) OCSVM( ) OCSVM( ) OCSVM( ) (baseline) x = ≠ * ≠ * ≠ * ≠ * ≠ * ≠ * . (baseline) - x ≠ * ≠ * = ≠ * ≠ * ≠ * iFor( ) - - x = ≠ * = = = iFor( ) - - - x = = = = iFor( ) - - - - x = = = OCSVM( ) - - - - - x = = OCSVM( ) - - - - - - x = OCSVM( ) - - - - - - - x

Conclusion

In this paper, we proposed a method to improve the detection of different types of outliers in multivariate functional data, based on curve shape. We assumed that the original discrete curves can be well approximated by finite functional basis expansions, where the basis is specified. Based on the smooth reconstruction provided by the fitted basis expansion, we used the arc-length, velocity, and curvature mapping functions to capture latent shape features. Then, we detected the outliers from the mapped curves using outlier-detection algorithms.

Through an experimental study on real and synthetic datasets, we demonstrated that the proposed approach outperforms multivariate functional depth baselines on real data and can perform similarly on synthetic data (except for persistent 1403 shape outliers, where the proposed method performs better).

1404

We demonstrated that, compared with the baselines, the pro- Figure 7: Ranking of the methods (1 is the best, 8 is the worst) on the synthetic datasets for , , and based on the post-hoc Friedman's aligned rank test. For and , the ranking is given in decreasing order (i.e., for high and values, the rank is close to 1), and for , the ranking is given in increasing order (i.e., for low values, the rank is close to 1). The -axis represents the average ranking over the five models, and the integers on the top of the bars represent the final ranking. If there are ties, we take the average ranking. The baseline methods are slightly better than the proposed method, but the best results by the proposed method ( ( ) and ( )) are statistically equivalent to those by the baseline, as demonstrated by the pairwise comparison tests in Tables 8,9, and 10. potential mixture proportions when a sample lies in multiple classes.

We did not assume any weighting of the curve variables in the mapping functions; this is left as future work. This weighting could be user-driven, as proposed for functional depth in [4], or data-driven. It is conceivable that this can enhance outlier detection in the presence of non-outlying curve variables (when increases). Another possible improvement would be to combine mapping functions in the same detector so that multiple outlier classes may be detected in the same dataset. 

Table 9

Significance of the pairwise comparisons for the correct detection rate on the synthetic dataset.

Notation is the same as in Table 5 . 

Table 10

Significance of the pairwise comparisons for on the synthetic dataset.

Notation is the same as in Table 

2 Figure 1 :

 21 Figure 1: Example of a bivariate ( = 2) functional dataset (see the color version for greater clarity). (a) A dataset of 21 bivariate curves, with variables 1 ( ), 2 ( ), = 1...21, is plotted along the variable and the ∈ [0, 1] axes. There are 20 inliers (black) and one shape outlier (red). (b)The dataset is projected along the axis; the red curve clearly shows an outlying relationship between its variables, resulting in a different shape. This is the "view" adopted in this study. In (c) and (d), the variables 1 and 2 are plotted as two univariate functions with respect to . Determining the degree of difference of the red curve without computing derived functions (e.g., derivative(s)) is not simple. Moreover, if the dataset is very large, the red curve is totally mixed with the black curves, thus rendering visual detection difficult.

349 and.

 349 functional depths as baselines because they have 350 been demonstrated to be promising for outlier detection in 351 multivariate functional data by regarding outlyingness as a 352 curve-shape feature.

353 2 . 3 .

 23 Geometry-based functional-outlier detection 354 Representing functional data in a geometric framework 355 is a recent idea, and few studies have considered such repre-356 sentations for outlier detection. Recently, in [48], Xie et al. 357 proposed detecting outliers in univariate functional data by 358 decomposing each univariate functional sample into three fea-359 tures: translation, phase, and amplitude. The authors defined 360 the translation of a functional sample by its mean over the 361 observation interval  . Both the amplitude and phase compo-362 nents are functional data extracted from the original samples. 363 The amplitude component reflects the vertical variability of 364 the functional data, whereas the phase component reflects the 365 horizontal variability. Analogously to the functional boxplot 366 by Sun and Genton [42] computed on the original dataset

449

  basis according to the data. The choice of the basis-size pa-450 rameter depends on the selected basis. An inappropriate 451 choice of the basis results in requiring a large because 452 each basis function will focus on an irrelevant part of the 453 data variability (low bias and high variance or, high bias and 454 low variance); the worst case is to capture the noise, leading 455

Figure 2 :

 2 Figure2: Arc-length mapping. The length of the curve between two observation points 0 (dark-grey dot) and (white dot) is defined as the sum of infinitesimal length elements ( 0 )... ( ) along the curve (red diagonal arrows) for all . The crossedcircle dots represent such points between 0 and .

606 4 . 1 .

 41 Arc-length mapping607

608

  length maps an original functional-data sample to univari-609 ate functional data that represent the increases in the cu-610 mulative length of the underlying curve from the starting-611 point ( 0 ) = (( 1 ( 0 ), 2 ( 0 )) to an arbitrary point ( ) = 612 (( 1 ( ), 2 ( )) for > 0 . Fig. 2 shows that the length of a 613 bivariate curve between ( 0 ) and ( ) is the infinite sum 614 from 0 to of infinitesimal length elements (⋅) (aka in-615 tegral), corresponding to an infinitesimal length element in 616 each direction ( 1 and 2 ) in ℝ 2 . We note that this mapping 617 always returns a positive increasing function, as it computes 618 the cumulative length of the initial curve. Moreover, the 619 arc-length mapping function is not influenced by a warping 620 (i.e., a horizontal deformation) of the curve 2 [40]. This map-621 ping function can discern functional samples with a shape of 622 2

Figure 3 :

 3 Figure 3: Velocity mapping. The norm of the tangent vector 1 ( ) (red diagonal arrow), the components of which are infinitesimal variations ( 1 ( ), 2 ( )) (shown by the horizontal and vertical red arrows) of the variables of the curve allows the computation of the speed at which the curve "progresses."

  ) and is related to the arc-length mapping by ( ) = d d , or conversely, by ( ) = ∫ 0 ( )d ; however, these mappings capture different features. Indeed, the arc-length mapping outputs an increasing function and thus "memorizes" the local variations of the curve as increases, whereas the velocity mapping characterizes the local variations (i.e., pointwise) with respect to . The function returned by the velocity mapping may be regarded as a measure of the variation of the arc-length mapping. Thus, the velocity mapping can be used to identify the local outlyingness of a sample (isolated outlier).

Figure 4 :

 4 Figure4: Curvature mapping. Curvature is defined to be the inverse of the radius of the osculating circle. In this example, in a neighborhood of the curve at 1 (dark-grey dot), the tangent vector1 ( 1 ) has almost the same direction; hence, the osculating circle has a large radius ( ( 1 ) = 1( 1 ) ), resulting in a small curvature. In a neighborhood of the curve at (white dot), the tangent vector 1 ( ) quickly changes direction; hence, the osculating circle has a lower radius, that is, a higher curvature than at 1 .

‖ 1 (‖ 1 (

 11 )‖ is the di-654 rection vector (i.e., the normalized tangent vector); therefore, )‖ is the rate of change of the direction vector, and 656 the normalization ‖ 1 ( )‖ relates to the rate of change of 657 the direction with respect to the tangent vector. Consequently, 658 the curvature mapping can detect functional outliers with a 659 curve that exhibits a differently bended shape than those of 660 the other samples.

661 5 .

 5 Experimental study 662We conducted an experimental study on real and synthetic 663 datasets to demonstrate the effectiveness of the proposed map-664 ping functions in improving outlier detection in multivariate functional data. The detection performance was evaluated in terms of the true detection rate (i.e., the proportion of outliers correctly detected), false detection rate (i.e., the proportion of outliers falsely detected), and area under the ROC curve ().

First
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3 .

 3 Model 3 (persistent magnitude outlier), the contamination model is different for the two variables: 3 ( ) = ( 1, 3 ( ), 2, 3 ( )) ⊤ , with 1, 3 ( ) = 1.7 1 ( ) and 2, 3 ( ) = 1.5 2 ( ).

4 . 5 .

 45 Model 4 (isolated outlier): 4 ( ) = ( )(1+4 < < +0.1 ), with as in model 2. Model 5 (persistent shape outlier), the new uncontaminated model is referred to as , and the contamination model as 5 : ( ) = ( 1 ( ), 2 ( )) ⊤ with 1 ( ) = 1 ( ) + 11 cos(4 ) and 2 ( ) = 2 ( ) + 12 sin(4 ), where 11 and 12 are independent uniform random variables in [2, 3]. The contamination model 5 is 1, 5 ( ) = 1 ( ) + 21 cos(4 ) and 2, 5 ( ) = 2 ( ) + 22 sin(4 ), where 21 , 22 are uniform random variables on [4, 5].

825 and 2

 2 was fixed on logarithmic scale in [-9, -1], with a 826 thickness of 0.1. The grid search of was fixed at the 827 integers between 35 and 60, that is, for a given integer ∈ 828 [[35, 60]], the B-spline functions were regularly placed in 829  . 830 For the synthetic datasets, the grid search of 1 and 2 831 was fixed on logarithmic scale in [-9, -4], with a thickness 832 of 0.1. The grid search of was fixed in [[20, 25]], that is, 833 for a given integer ∈ [[20, 25]], the synthetic data were 834 approximated by the first frequencies 2 × × 1, , , 2 × 835 × . Then, for each variable, we retained the coefficient 836 vector associated with both the optimal regularization and 837 basis-size parameters to recover the smooth approximation 838 function ̃ = ( ̃ 1 , ̃ 2 ).

843 5 . 3 . 2 .Section 4 .

 5324 Applying the mapping functions 844We now explain the computational application of the 845 mapping functions and then how their output was fed to an 846 outlier-detection algorithm.847After computing the approximation functions ̃ , we cen-848 tered and scaled each variable with the empirical mean 849 and standard deviation functions computed from the training 850 set (see [32] for details on the computation of mean standard 851 deviation functions). This scaling prevents the mapping func-852 tions from overweighting some variables with a wider range 853 than others. Indeed, 854 (i) The variables require to be scaled since the unit of 855 the output value of the arc-length mapping function 856 ( in Eq. (9)) is intrinsically a length. Then, 857 we applied the three mapping functions introduced in 858 As the arc-length mapping is the integral function of the velocity mapping, the arc-length mapping in Eq (9) was computed from the minimum of  861 (i.e., = 0) and was then integrated up to for all ∈  . 862 In these experiments, the integral was efficiently es-863 timated by a Riemann sum, as in this study, all the observation points were regularly sampled in  , and 865 therefore the sum converges to the integral. We note 866 that if the observation points had been irregularly sam-867 pled, the integral could have not been approximated 868 by a Riemannian sum, and numerical techniques, such 869 as Simpson's or the trapezoidal rule, should have been 870
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  on the entire domain  . Thus, the approximation functions 880 can be computed on an irregular grid, and therefore the com-881 putation of the mapping functions should be carefully per-882 formed (e.g., (i) in the computation of an integral function). 883 For both and , which are based on derivative 884 functions only, simple and efficient derivative estimation 885 methods can be used, as mentioned in Section 3.3. 886 Each mapping function returns a univariate function. Thus, 887 applying a mapping function to all approximation func-888 tions ̃ results in univariate functional-data samples. We 889 used the resulting univariate functional data in several outlier-890 detection algorithms. In practice, the functions returned by 891 a mapping function should be evaluated over a grid of ob-892 servation points in  to obtain the output samples in vector 893 form. As we selected  = [0, 1] for all datasets and the 894 observation points are regular, the grid is a regular discretiza-895 tion { 1 ... ... } of  with a thickness of 1 ( 1 = 0 and for 896 > 1, = ). Hence, for the outlier-detection algorithms, 897 the data correspond to -dimensional numerical vectors that, 898 in turn, correspond to univariate functional data output by 899 a mapping function. We selected the thickness of the grid 900 as the original size of the time series for both the synthetic 901 and ECG datasets (ECG data set: = = = 86, PenDig 902 dataset: = ′ = 200, synthetic data sets: = = 200).

906 5 . 3 . 3 .

 533 Outlier detection from the functional output of a 907 mapping function 908 We detect outliers in the functional data returned by a 909 mapping function using a state-of-the-art outlier-detection 910 algorithm.

912 is a bagging

  model that generates a large number of decision 913 trees grown on random subspaces. A subspace corresponds 914 to a subsample of features randomly selected from the full 915 feature space (here, {1... ... }). Each tree isolates the data 916 samples based on a random split value of a randomly selected 917 feature from the subspace until all the data samples have been 918 isolated, or all the features of the subspace have been selected.919The sample outlyingness score returned by a tree is based on 920 the path length between the root node and the terminal node 921 of a tree. Outliers are samples that are easy to isolate and 922 thus have short path length in the trees. The path length is 923 normalized in [0, 1] so that if the score is close to 1, then the 924 sample is likely an outlier. OCSVM is a distance-based model 925 formulated as a constrained quadratic minimization problem, 926 the variables of which correspond to the radius and the center 927 of the smallest hypersphere containing the data. To allow 928 flexibility on the hypersphere boundary owing to the presence 929 of outliers in the training data, slack variables are introduced 930 in the objective function in addition to the two other variables. 931 The hyperparameter corresponds to an upper bound on the 932 a priori proportion of outliers in the training set. A sample is 933 declared as an outlier if it lies outside the fitted hypersphere. 934 We used the radial-basis-kernel version of OCSVM with 935 equal to the exact proportion of outliers in the training set. 936 The bandwidth hyperparameter of the radial basis kernel was 937 optimized by a 20-fold cross-validation procedure. 938 For the ECG and PenDig datasets, we set the number of 939 trees to 1000, and the subsampling size to 32 [27]. For the 940 synthetic datasets, we also set the number of trees to 1000, 941 and the subsampling size to 16. We randomly split each 942 dataset into a training set and a test set. As in [8], the training 943 set represents 50% of the data for the ECG dataset. The train-944 ing set for the PenDig dataset consists of 75% of the entire 945 dataset. The training set contains 60% of the data for the 946 synthetic data. The training set was used to both fit the model 947 (iFor and OCSVM) and select an outlyingness threshold from 948 the ROC curve that discriminates inliers from outliers. We 949 then computed the outlyingness score of the test samples 950 and achieved detection using the previously computed out-951 lyingness threshold. Regarding OCSVM, we finetuned the 952 bandwidth hyperparameter of the radial basis kernel on the 953 training set through a 20-fold cross-validation procedure on 954 the grid {2 -25 ...2 -5 } for the ECG dataset as well as the syn-955 thetic data. In addition to the true and false detection rates 956

961

  assume that the training data is labeled even if there are few 962 outlier samples. In real-world applications, the user has some 963 knowledge about the training data and can thus label inliers 964 and some outliers. If the training set surely has no outlier, 965 the proposed method only requires the modification of the 966 threshold selection rule. This modification is easy because 967 both iFor and OCSVM are unsupervised methods and output 968 a normalized score. Using the detection rule obtained by the 969 threshold, we compute two performance measures and

  (i) We randomly generated a train/test split. For the ECG data, the training set corresponds to 50% of the full dataset, for the PenDig data, the training set is 75% of 1026 the dataset, and for the synthetic data, the training set 1027 represents 60% of the full dataset. 1028 (ii) We then applied the proposed and the baseline meth-1029 ods. Except for . (baseline), which does not 1030 require outlyingness-threshold learning because the 1031 outlyingness score follows a known distribution (see 1032 Section 5.4), the outlyingness threshold was learnt on 1033 the training set based on the ROC curve. 1034 (iii) We evaluated the performance in terms of the true 1035 detection rate ( ), false detection rate ( ), and 1036 on the test set. 1037 For the ECG dataset (resp., PenDig dataset), steps (i) to 1038 (iii) were repeated 50 times for each case of the five contam-1039 ination levels (resp., for the 10 outlier classes) (see end of 1040 Section 5.1), and 500 times for the synthetic data for each of 1041 the five models (Section 5.2). 1042 The two real datasets are not used to assess the same 1043 properties of the proposed method. The ECG data are used 1044 to demonstrate the robustness of the proposed method with 1045 respect to different contamination levels for some given out-1046 liers, whereas the PenDig data are used to assess the detection 1047 performance for different outliers and a given contamina-1048 tion level. Thus, we only compare these two in terms of 1049 performance, in the comparison of the various methods in 1050 Section 5.6.4.

  1051

  1064

1073

  the proposed method (except for with both iFor and 1074 OCSVM) outperforms the baselines in terms of the three 1075 performance measures, which remain constant as the contam-1076 ination level changes. This shows that the outlying features 1077 captured by these mapping functions are more robust to the 1078 contamination level than those captured by the baselines.

Figure 5 :

 5 Figure 5: Performance on ECG data. The three performance measures , , and, averaged over the number of simulations as functions of the contamination level ( = 5%, = 10%, = 15%, = 20%, and = 25%) for each method (proposed in blue, and baselines in red ). We notice that when the contamination level increases, the proposed method (except for iFor( ) and OCSVM()) outperforms the baselines in terms of , and . Moreover, performance does not degrade as the contamination level changes, in contrast with that of the baselines. In terms of , performs as well as and when used with both iFor and OCSVM but significantly degrades in terms of (i.e., it falsely detects outliers) for low contamination levels.. performs as well as the proposed method in terms of but degrades in terms of for high contamination levels. Hence, performs well when the contamination level is high, and . performs well when the contamination level is low.

1223

  global statistical significance for each of the three per-1224 formance measures among all the methods on all the 1225 datasets. The Friedman test can be viewed as the non-1226 parametric version of ANOVA (where, here, a group

  1370 and OCSVM columns) show the pairwise consistency be-1371 tween the iFor and OCSVM algorithms for each mapping 1372 function. The same holds for the synthetic data. Thus, for 1373 a given dataset and mapping function, iFor and OCSVM 1374 achieve statistically the same performance results. This im-1375 plies that the detection performance relies more on the out-1376 lying features provided by the mapping function than on the 1377 capacity of the outlier-detection algorithm to discover outly-1378 ing features itself.

  1379

1405

  posed approach is robust to the variation of the contamination 1406 level. The results are consistent on both synthetic and real 1407 data. 1408 We also discussed the ability of each of mapping function 1409 to capture outlying features depending on the type of the out-1410 liers to be detected. In future work, we will investigate more 1411 deeply the identifiability of the class(es) of outliers detected 1412 with respect to a given mapping function. Moreover, the used 1413 taxonomy [22] does not cover outliers that represent a mix-1414 ture of multiple classes of outlyingness. Hence, a further step 1415 would be to identify both the outlyingness class(es) and the

  Multivariate Functional Halfspace Depth. Journal of the American Statistical Association 109, 411-423. URL: http://cran.r-project. org/package=MFHD.
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Table 1

 1 List of notations. A tilde always refers to objects related to the approximation functions. can be an element of• as well as an element of  . By abuse of notation, we also use• to denote a vector of sampled observation points ( 1 , … , ).

	Notation		Description
	 ⊂ ℝ		A closed real interval in which lies
			Univariate function underlying the
			-th variable of for every ∈ 
	= ( 1 , … , )		Multivariate function with	vari-
			ables for every ∈ 
	∈ { 1 , … , } =	•	An element of the observation points • (i.e., the observed dis-cretization of  with points)
	( ) ∈ ℝ		Measurement of	at the observa-
			tion point
	̃ = ( ̃ 1 , … , ̃ )		Approximated multivariate function
			for every ∈ 
	 = { 1 , … }		Arbitrary discretization of 
	vided useful visualization techniques for identifying outlying

403 3.1. Functional-data representation 404 The first step in FDA is to approximate an unknown 405 smooth function ∶ → ℝ , which underlies the sample 406 , by another smooth approximation function ̃ ( ), ∀ ∈  , 407 through discrete noisy measurements ( 1 ), ..., ( ); 408 this is referred to as the functional approximation step. Its 409 purpose is to remove the noise, thus allowing accurate eval-410 uations of some derived functions, such as combinations 411 of derivatives and integral functions. This is necessary in 412 our case, as the proposed mapping functions correspond to 413 combinations of derivatives and integrals. 414 We should first select a functional representation as an 415 approximation function. As a function is intrinsically infinite-

Functional-data fitting 467

  

	461		
	462	sonable	[32]. Such a balance is generally achieved by a
	463	grid search by cross-validation for each sample and variable
	464	. When ( ) and	are specified, a computing method
	465	is required to estimate the coefficient vector	, which is
		introduced in the next paragraph.

456

the basis functions results in a small , that is, the basis is 457 sufficiently rich to approximate an unknown function using 458 few functions. Subsequently, once a suitable basis is selected, 459 the bias-variance trade-off should be considered. This refers to the balance between the approximation error and a rea-466 3.2.

) 3.3. Approximation functions as building blocks 514

  

	515	Once the coefficient vectors have been estimated for the
	516	variables of the samples (with or without penalization),
	517	we can consider the approximations ̃ to be smooth multi-
	518	variate functions that well recover the underlying functions.
	519	Although these functions can be theoretically evaluated at an
	520	infinite number of points in  , in practice, there are two meth-
	521	ods to handle the approximations computationally (e.g., to
	522	compute derived functions such as derivatives and integrals):
	523	(i) The first method is to compute the derived functions
	524	based on the basis functions. As the basis functions
	525	are known analytically, their derived functions can also
	526	be obtained analytically. Thus, by the linearity of the
	527	basis expansion, one can easily obtain the derived func-
	528	tions of the approximation functions (the integral and
	529	derivative are linear operators). We illustrate this us-
	530	ing the -th derivative of the approximation function.
	531	We assume that an unknown function is approxi-
	532	mated by ̃ through a basis expansion with a basis
	533	size (in Eq. (1)), provided that the -th derivative
	534	{	( )} 1≤ ≤ of the basis functions exists, and the
	535	coefficient vector { } 1≤ ≤ is available (or has been
	536	estimated as in Eq. (4)). The -th derivative of ̃ with
	537	respect to is	̃ , where

  = 𝒙 𝟏 𝒕 , 𝒙 𝟐 𝒕 = 𝒙 𝟏 𝒕 𝟎 , 𝒙 𝟐 𝒕 𝟎

	𝒙 𝟐		
	𝒅𝒔(𝒕 𝟎 ) 𝒅𝒔(𝒕) …	
	𝒅𝒙 𝟏 (𝒕 𝟎 )		𝒅𝒙 𝟐 (𝒕)
	𝒅𝒙 𝟐 (𝒕 𝟎 )	𝒅𝒙 𝟏 (𝒕)	𝒙 𝟏

Table 2

 2 

	1066					) demonstrate
	1067	that the proposed method outperforms the baselines with
	1068	and	(	and	rows with iFor and
	1069	OCSVM, which are described in Section 5.3.3).
	1070	It can be seen that both	and	(with iFor and
	1071	OCSVM), provide constant , , and	values with
	1072	respect to the five contamination levels (	and

Table 2

 2 Results on the ECG dataset.

Table 4

 4 

Table 5

 5 Significance of the pairwise comparisons for the correct detection rate on the ECG (upper table) and PenDig (lower table) datasets. The statistical significance of the difference of two given methods at level 0.1 is indicated by ≠ * , and by = otherwise.≠ * indicates that the corresponding methods in the row and the column of the cell are significantly different at a level of 0.1, and = indicates that they are not. The lower triangular part was replaced by dashes because it is equal to the upper part.

		.	iFor(	) iFor(	) iFor(	) OCSVM(	) OCSVM(	) OCSVM(	)
	(baseline)	x						

Table 6

 6 Significance of the pairwise comparisons for the false detection rate on the ECG (upper table) and PenDig (lower table) datasets.

Table 7

 7 Significance of the pairwise comparisons for on the ECG (upper table) and PenDig (lower table) datasets.Notation is the same as in Table5

Table 8

 8 Significance of the pairwise comparisons for the correct detection rate on the synthetic dataset.Notation is the same as in Table5
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first-order derivative of each variable of ̃ was com-873 puted according to Eq. [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF]. tation of both first-and second-order derivatives. Thus, mine which methods are different. More precisely, the post-hoc test is based on the -values returned by a pairwise-comparison test applied to all pairwise comparisons of the methods. A nonparametric test can be selected for the pairwise comparisons (owing to the absence of the Gaussian assumption), such as the post-hoc Friedman's aligned ranked test [START_REF] García | Advanced 1476 nonparametric tests for multiple comparisons in the design of experi-1477 ments in computational intelligence and data mining: Experimental 1478 analysis of power[END_REF]. As the all-pairwise-comparisons test is a special case of a multiple-hypothesis test, it also suffers from the family error rate and requires a correction procedure. Thus, we used the Finner correction as recommended in [START_REF] García | Advanced 1476 nonparametric tests for multiple comparisons in the design of experi-1477 ments in computational intelligence and data mining: Experimental 1478 analysis of power[END_REF].

We separately applied this evaluation protocol to the three performance measures for the five contamination levels of the ECG data, the 10 outlier classes of the PenDig dataset, and the synthetic data to compare the methods on two distinct types of data and to demonstrate the benefit of the proposed approach on real data. Moreover, this enables assessing the difference of the methods in a given context (i.e., when the outlier class is known). For all datasets, we used a significance level of 0.1, as in [START_REF] Erfani | 1463 High-dimensional and large-scale anomaly detection using a linear 1464 one-class SVM with deep learning[END_REF].

We report the average ranking (vertical axis) of all methods (horizontal axis) applied to the ECG and PenDig datasets (resp., synthetic data) for each performance measure (colors) in a vertical-bar plot in Fig. 6 (resp., Fig. 7). Each bar has a height equal to its average rank (1 is the best, 8 is the worst) based on the post-hoc Friedman's aligned rank test across the five contamination levels (resp., five models). For and , the ranking is given in decreasing order, and for , the ranking is given in increasing order. The above number of bars refers to the global ranking (i.e., ranks from the average ranks).

As the Friedman test yielded a significant result for the two real datasets and the synthetic data, for each performance for the false detection rate , and 2.2 × 10 -16 for .

Thus, we conducted a post-hoc test. Based on the results in Fig. 6 and Tables 5,6 5 and7). 5 and7).