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Shape-based outlier detection in multivariate functional data2

Clément Lejeune,Josiane Mothe,Adil Soubki,Olivier Teste3

• A new method is introduced for detecting outliers in multivariate functional data based on the curve shape that such4

data depict. Few work address the problem of outlier detection in multivariate functional data, and our proposal relies5

on some curve shape features combined with state-of-the art outlier detection.6

• We represent the data through some functional approximations. We propose several interpretable transformations to7

map the resulting approximated functional data to a curve shape representation.8

• We prove through experimental studies on real and synthetic data that our approach can outperform the baselines. Also9

we show that our method performs well contrary to the baselines, whenever the proportion of outliers is high or low.10

We discuss some issues the baselines cannot circumvent.11

• We provide some recommendations regarding the kinds of curve shape representation to use with respect to the type of12

outlier that the data set entails.13
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ABSTRACT
Multivariate functional data refer to a population of multivariate functions generated by a system
involving dynamic parameters depending on continuous variables (e.g., multivariate time series).
Outlier detection in such a context is a challenging problem because both the individual behavior of
the parameters and the dynamic correlation between them are important. To address this problem,
recent work has focused on multivariate functional depth to identify the outliers in a given dataset.
However, most previous approaches fail when the outlyingness manifests itself in curve shape rather
than curve magnitude. In this paper, we propose identifying outliers in multivariate functional data by a
method whereby different outlying features are captured based on mapping functions from differential
geometry. In this regard, we extract shape features reflecting the outlyingness of a curve with a high
degree of interpretability. We conduct an experimental study on real and synthetic data sets and
compare the proposed method with functional-depth-based methods. The results demonstrate that
the proposed method, combined with state-of-the-art outlier detection algorithms, can outperform
the functional-depth-based methods. Moreover, in contrast with the baseline methods, it is efficient
regardless of the proportion of outliers.

1. Introduction14

High-dimensional data are defined as individual vectors15

representing a large number of measurements. They appear16

in various fields, such as biology, engineering, or medicine,17

where different sources of measurements are recorded. As18

a straightforward example of such data, we can consider a19

longitudinal study for analyzing the height of a human pop-20

ulation, such as the Berkley growth study [44], in which a21

physiological parameter or variable (also termed “source”) is22

measured for all subjects at various time instants. Depending23

on the population and the number of time instants, this col-24

lection may result in high-dimensional data. Such data can25

be seen as realizations of a univariate function depending on26

time. Although a continuous function depending on a single27

continuous variable (e.g., time, wavelength, or frequency)28

underlies the data, it is finely discretized, resulting in high-29

dimensional vectors. Such data are referred to as functional30

data.31

Functional data analysis (FDA) is a branch of modern32

statistics, the principle of which is the representation of high-33

dimensional measurement vectors through functions (see34

[32, 16] for a practical and theoretical introduction to FDA).35

Regarding data as functions enables recovering the true nature36

of the process underlying the function that generated the data.37

It also provides a smooth representation of the initial curves,38

which can be affected by measurement noise. Moreover,39

the FDA framework enables the handling of curves that are40

irregularly sampled or sampled on grids of different sizes,41
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where a grid refers to the discretization of a closed interval42

in which the continuous variable lies. This is achieved by43

evaluating the resulting functions on a common and arbitrary44

grid.45

Specifically, when a single variable is recorded at each46

observation point (as in the previous example), that is, the47

underlying function x(t) ∈ ℝ, where t lies in a closed in-48

terval  ⊂ ℝ, the resulting data are called univariate func-49

tional data. More generally, when p correlated variables are50

simultaneously recorded at each observation point, that is,51

X(t) = (x1(t), ..., xk(t), ..., xp(t)) ∈ ℝp, these data are called52

multivariate functional data. In the example, if weight was53

measured in addition to height, these data would result as54

realizations of a multivariate function (in this case bivari-55

ate). In the remainder of this paper, we use lower-case letters56

(x(t) ∈ ℝ) and capital letters (X(t) ∈ ℝp) to distinguish57

univariate from multivariate functional data.58

A typical task in FDA is outlier detection [22], which has59

several applications, for instance, in biology (to determine60

abnormal gene expression levels in time-course micro-array61

data [2]), in chemometrics (to determine the nature of an62

active substance produced by a chemical process based on63

near-infrared spectra data [22]), or in air pollution studies64

(to detect highly contaminated locations in urban areas [43]).65

In these fields, the data are typically functional and exhibit66

outlying behavior. Moreover, several parameters should be67

simultaneously recorded to accurately understand the studied68

process. Hence, outlier-detection methods should be specif-69

ically designed for multivariate functional data. Since the70

variables are cautiously selected by a domain expert, the outly-71

ing behavior can be detected through the potential correlation72

between them.73

The correlation between the p variables is important in74

multivariate functional data because it can reveal the outlying75
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Figure 1: Example of a bivariate (p = 2) functional dataset
(see the color version for greater clarity). (a) A dataset of
21 bivariate curves, with variables xi1(t), xi2(t), i = 1...21, is
plotted along the variable and the t ∈ [0, 1] axes. There are 20
inliers (black) and one shape outlier (red). (b) The dataset is
projected along the t axis; the red curve clearly shows an outlying
relationship between its variables, resulting in a different shape.
This is the “view” adopted in this study. In (c) and (d), the
variables xi1 and xi2 are plotted as two univariate functions with
respect to t. Determining the degree of difference of the red
curve without computing derived functions (e.g., derivative(s))
is not simple. Moreover, if the dataset is very large, the red
curve is totally mixed with the black curves, thus rendering
visual detection difficult.

behavior of the underlying process, as discussed in [22] and76

shown in Fig. 1. Thus, independently analyzing each variable77

implies that the potential correlation between the variables is78

not considered, as shown in Fig. 1 (with a bivariate functional79

dataset), where, in (a) and (b), the variables x1 and x2 appear80

correlated, whereas in (c) and (d), they individually exhibit81

correlation with respect to the continuum t.82

According to the definition by Aggarwal et al. in [1],83

an outlier is defined as a data point that is highly different84

from the others, based on some measure. Such a point often85

contains useful information regarding the abnormal behav-86

ior of the system described by the data. Outlier detection is87

aimed at determining an appropriate measure whereby out-88

liers may be differentiated from inliers with a high degree of89

interpretability. Based on this definition, outliers, compared90

with inliers, represent a small part of the dataset and are scat-91

tered. Moreover, if the data dimension is high, the data are92

more scattered in the space (i.e., curse of dimensionality),93

and therefore, the probability that the outliers are scattered is94

higher. Hence, outlier-detection tasks are as susceptible to95

the curse of dimensionality as other discrimination tasks that96

assume well-balanced classes. However, regarding some typi-97

cal algorithms for classification (e.g., logistic regression) and98

clustering (e.g., K-means and mean-shift), the rarity and scat-99

tering of outliers may render these algorithms inefficient for100

outlier detection, owing to the well-known class imbalance101

problem [25].102

Previous work on outlier detection in functional data pri-103

marily focused on the univariate case [17, 7, 28], whereas the104

multivariate case is more recent [4, 24, 29, 22, 26, 8]. Mul-105

tivariate functional outliers can be characterized by deviations106

in the correlation between the variables x1(t), ..., xk(t), ..., xp(t)107

and, potentially, in their correlation with t. There can be108

scattering among functional outliers depending on how out-109

lyingness is expressed. According to the functional-outlier110

taxonomy by Hubert et al. [22], there are two general classes:111

isolated and persistent outliers. An isolated outlier exhibits112

extreme behavior in a small part of the domain  , resulting in113

a narrow peak in at least one of the variables. By contrast, a114

persistent outlier is defined as a sample in which outlyingness115

manifests itself in a large part of the domain. Among persis-116

tent outliers, three classes were distinguished by Hubert et117

al. as follows [22]: (i) A shift outlier exhibits a pattern com-118

parable to that of a regular curve up to a random horizontal119

translation. (ii) A magnitude outlier differs in terms of range.120

(iii) A shape outlier exhibits outlyingness in local features121

without deviating from the regular curves at any point of the122

domain.123

The detection of shape outliers is quite recent and is at-124

tracting increasing attention in FDA [29, 2, 26, 8]. Persis-125

tent shape outliers are difficult to detect in a curve popula-126

tion because the shapes are often non-linearly discriminant127

(Fig. 1(b)) and exhibit larger variability than isolated outliers.128

Considering curve discrimination in terms of shape, one can129

augment the curve variables by using differential analysis.130

This refers to adding derivatives or integrals (computed with131

respect to t) for each initial variable. Hence, curve shape pro-132

vides information regarding “hidden outlying features” of the133

curve variables and the outlying relationship between them.134

However, as mentioned previously, the joint analysis of the p135

variables becomes complex as p increases (see Fig. 1). In the136

present study, we address this problem by using differential137

geometry. Specifically, we use aggregation functions (termed138

mapping functions) of the variables. Thereby, we implicitly139

consider the correlation of the variables through geometrical140

characterizations of curve shape. In contrast with current141

functional-outlier detection methods, which consider curve142

shape differently and only base the final detection on the143

resulting depth values (Section 2), we use both functional144

curve-shape features and state-of-the-art outlier-detection al-145

gorithms. Thus, the originality of the proposed approach lies146

in the shape characterization of the initial curves through the147

proposed mapping functions, combined with state-of-the-art148

outlier-detection algorithms.149

Throughout this paper, we use the term mapping function150

to refer to analytic aggregation functions that enable cap-151

turing curve-shape features, such as curvature, length (i.e.,152

perimeter of a shape), or tangential velocity, and consider all153

the variables, as a curve is viewed as a path. More precisely,154

a mapping function aggregates the variables through different155

interpretable combinations of the derivatives of the variables.156
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Mapping functions have been used in shape analysis [40],157

that is, for curves lying in a two- or three-dimensional space158

(e.g., extracted from images), but not in the detection of mul-159

tivariate functional outliers.160

In this paper, to capture the potential outlyingness of the161

curves through their shape, we propose mapping functions162

among those used in differential geometric-method in shape163

analysis [40]. These functions map multivariate to univariate164

curves; however, for efficient computation, they require the165

curves to be smooth. Although this is the case for multivari-166

ate functional data, raw data are often noisy when sampled,167

and we use the functional-data representation to recover the168

smooth version of the curves. Then, using the proposed map-169

ping functions, we map the functional representation (in the170

form of a curve) so that some of its shape features capture171

curve outlyingness. Finally, based on this new representation,172

we use outlier-detection algorithms to assess the outlying-173

ness of each sample and determine a threshold for flagging174

outliers.175

The contributions of this study are summarized as fol-176

lows:177

(i) We propose an end-to-endmethod for detecting outliers178

through their curve shape, which is characterized by179

geometrical transformations. The method is based on180

the functional representation of the data.181

(ii) We propose different mapping functions to capture182

different types of outlyingness based on curve shape.183

(iii) We demonstrate that the proposedmethod is superior to184

previous outlier-detection algorithms and, in contrast185

to baseline methods, performs well regardless of the186

proportion of outliers.187

The rest of the paper is organized as follows. In Section 2,188

we review related work on outlier detection in both univariate189

and multivariate functional data. In Section 3, we discuss190

curve representations in the functional-data framework. In191

Section 4, we present the mapping functions that can capture192

shape outlyingness from the obtained functional representa-193

tion. The experimental results are presented and discussed194

in Section 5. Finally, Section 6 concludes this paper.195

2. Related work196

2.1. Depth-based univariate functional-outlier197

detection198

The detection of outliers in functional data is a recent199

topic and has primarily been addressed by extending statisti-200

cal depth1 to functional depth. Statistical depth measures the201

centrality of a sample relative to a dataset by providing an202

outward-center ordering of the samples through a score lying203

in [0, 1]. A value close to zero implies that the sample is204

more likely to be an outlier [45]. Statistical depth has several205

1statistical depth was not specifically proposed for functional but for
multivariate data. However, we distinguish between univariate functional
depth and multivariate functional depth, which were proposed specifically
for functional data.

theoretical properties (see [49] for details): (i) It attains its206

maximum value for the most centered (i.e., most represen-207

tative) sample. (ii) It decreases monotonically and vanishes208

as the sample moves away from the center (up to infinity).209

(iii) It does not depend on the dataset scale. Therefore, given210

an outlyingness threshold, samples with a depth value close211

to 0 can be flagged as outliers. This type of measure has been212

extended to functional data and used for classification [6],213

ranking [17, 7], as well as outlier detection [14].214

However, most of the existing functional depths are appli-215

cable to univariate functional data only. For instance, given a216

functional sample, the integrated depth [17], modified band217

depth, and modified epigraph index [28] evaluate depth point-218

wise, that is, at each observation point t ∈  , and then these219

depth values are averaged by integration over  to provide a220

global outward-center score. The integrated depth measures221

the proportion of a curve that is closest to the median curve of222

the dataset, where the median curve is computed pointwise.223

The modified band depth measures the average proportion of224

the curve that takes values within the range of all pairwise225

sample combinations, where “proportion of a curve” refers to226

the size of the interval  where the curve outlies the dataset.227

The modified epigraph index has a similar principle: It mea-228

sures the proportion of the curve that takes values smaller229

than the other values of the dataset. Thus, the functional230

depth intuitively measures the centrality of the curve, regard-231

ing its global shape with respect to the dataset, see [28] for232

details. The bivariate random projection depth by Cuevas233

and Febrero in [6] considers specific shape information by234

projecting the curve and its first derivative onto random direc-235

tions (e.g., directions generated according to a unit-variance236

Gaussian process), resulting in several bivariate vectors; a237

bivariate statistical depth function is then applied to these238

vectors and averaged over the random projections. Based on239

any of these functional depths, an outlyingness threshold is240

necessary for outlier detection. If the depth-value distribution241

is known, which is rare in practice, one can select the thresh-242

old as a small probability quantile (e.g., a sample with depth243

value lower than the 5%-quantile of this distribution is likely244

an outlier). Febrero et al. proposed in [14] estimating this245

threshold as the first percentile of the empirical distribution246

of the depth values through a bootstrap procedure.247

Unfortunately, apart from the statistical point of view,248

these approaches do not facilitate the understanding of the249

nature of outlyingness. Accordingly, techniques have been250

developed for visually detecting univariate functional out-251

liers. Arribas-Gil and Romo defined the outliergram in [2]252

to represent each sample as a bivariate vector with the mod-253

ified band-depth and epigraph values. They demonstrated254

that these depths are quadratically related. Hence, in a two-255

dimensional plot, inlier samples lie on a parabola, whereas256

outliers are likely to be far from it. Sun and Genton [42]257

proposed the functional boxplot to summarize the empirical258

distribution of the functional data as classical boxplots com-259

puted pointwise. It was designed to visualize a univariate260

functional dataset, in the same spirit as that of the classical261

boxplot. In their method, the central region of the pointwise262
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boxplots is defined as the region in ℝ where the 50% high-263

est depth-score samples {xi(t)}i≤ (i.e., the most central) lie264

according to the band-depth ranks [28]. The fences of the265

boxplots are defined by inflating 1.5 times the height of the266

central region. Thus, the continuum of the pointwise boxplots267

provides a functional boxplot. The outliers are then identi-268

fied as samples falling outside the fences. In this functional269

boxplot, inliers and outliers rely heavily on curve magnitude.270

Thus, curve shape largely fails to be considered a potential271

outlyingness feature. In [23], Hyndman and Shang applied272

robust principal component analysis by considering the sam-273

ples to be high-dimensional vectors and represented each274

sample as a bivariate vector containing the first and second275

principal scores. Subsequently, outliers were identified as276

samples outside certain high-density regions that were de-277

termined using the empirical distribution of these bivariate278

vectors.279

2.2. Depth-based multivariate functional outlier280

detection281

Depth-based outlier detection methods for multivariate282

functional data are more recent. In [4], Claeskens et al. gen-283

eralized any given univariate functional depth to the case of284

multivariate functional data. This corresponds to a weighted285

sum of a given univariate functional depth applied to each286

variable (x̃1(t), ...x̃k(t), ...x̃p(t)) pointwise and then integrated287

over  . The selection of the weight function was also dis-288

cussed. As a special case, in [24], Ieva and Paganoni pro-289

posed the multivariate band depth by using the modified band290

depth as the given univariate functional depth; the weights291

associated to the variables are constant with respect to t.292

In [22], Hubert et al. noted that the generalization by293

Claeskens et al. [4] does not always allow the detection of294

all types of functional outliers, namely, shape outliers. Indeed,295

low-depth samples stand near the boundary of the dataset but296

may not be outliers. Conversely, high-depth samples may297

present outlyingness in their curve shape because, pointwise,298

the curve does not exhibit any significant deviance in each299

variable, as this generalization is the sum of the individual300

univariate functional depths. To address this, the entire shape301

of the curve should be considered.302

A few studies incorporate curve shape into a multivariate303

functional depth measure. Recently, Kuhnt and Rehage [26]304

proposed the functional tangential-angle (FUNTA) pseudo-305

depth, which considers curve shape based on the intersection306

angles of the centered variables (i.e., the variables are scaled307

so that their integral over  values is 0). More precisely, for308

each variable, FUNTA computes the intersection angles of309

a given sample xik with all the other samples xjk∀j ≠ i, and310

then averages these angles over the number of intersection an-311

gles of xik and over the variables k = 1...p. Thus, FUNTA312

separately considers the shape for each variable with respect313

to t, but not the shape between the p variables.314

More recently, Dai and Genton [8] proposed the direc-315

tional outlyingness measure (Dir.out), which considers curve316

shape through the weighted pointwise direction in ℝp of the317

vector X(t) toward the median of the distribution of X(t).318

The purpose of the weights is the up-weighting of the direc-319

tions in which the outlyingness of X(t) is likely to appear.320

In contrast with the aforementioned multivariate functional321

depths, which provide a score in [0, 1], the Dir.out depth322

returns a vector in ℝp × ℝ+ corresponding to the concate-323

nation of the mean directional outlyingness (in ℝp) and the324

total variance of the directional outlyingness (in ℝ+). A final325

outlyingness score is computed as the robust Mahalanobis326

distance between this vector and a mean vector of the same327

type computed on a subset of independent samples. Then,328

the upper tail of this distance distribution is approximated329

by an F -distribution, and the outlyingness threshold is de-330

fined as a high-probability quantile of this F -distribution.331

Hence, unlike in other multivariate functional depths, the332

outlyingness threshold provided by the Dir.out approach is333

not data-driven, as it is based on the (approximately) true334

distribution of the outlyingness scores. However, in this ap-335

proach, the parameters should be tuned by simulation and are336

difficult to interpret beyond the statistical framework.337

Multivariate functional depths are related to curve shape338

through the individual behavior of the curve variables. Here,339

we adopt a different approach, as we view a curve as a path340

in ℝp and process it as a geometrical shape.341

As all the aforementioned multivariate functional depths342

yield an outlyingness score with unknown distribution (ex-343

cept forDir.out), an outlyingness threshold can be computed344

from the resulting empirical distribution of the depth values345

through a bootstrap procedure as in the univariate case [14].346

It can also be computed from a training dataset based on the347

receiver operating characteristic (ROC) curve.348

In the experimental study (Section 5), we use theFUNTA349

andDir.out functional depths as baselines because they have350

been demonstrated to be promising for outlier detection in351

multivariate functional data by regarding outlyingness as a352

curve-shape feature.353

2.3. Geometry-based functional-outlier detection354

Representing functional data in a geometric framework355

is a recent idea, and few studies have considered such repre-356

sentations for outlier detection. Recently, in [48], Xie et al.357

proposed detecting outliers in univariate functional data by358

decomposing each univariate functional sample into three fea-359

tures: translation, phase, and amplitude. The authors defined360

the translation of a functional sample by its mean over the361

observation interval  . Both the amplitude and phase compo-362

nents are functional data extracted from the original samples.363

The amplitude component reflects the vertical variability of364

the functional data, whereas the phase component reflects the365

horizontal variability. Analogously to the functional boxplot366

by Sun and Genton [42] computed on the original dataset367

(although the computational methods are quite different), the368

authors proposed a method for constructing a functional box-369

plot for each of the three components so that outlying features370

may be identifying, and outliers may therefore be detected.371

Xie et al. extended this method to multivariate functional372

data and added other components such as shape orientation373

(reflecting rotational variability) [47]. They additionally pro-374
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Table 1
List of notations. A tilde always refers to objects related to
the approximation functions. tj can be an element of ti∙ as well
as an element of  . By abuse of notation, we also use ti∙ to
denote a vector of sampled observation points (t1,… , tmi ).

Notation Description
 ⊂ ℝ A closed real interval in which t lies
xik Univariate function underlying the

k-th variable of i for every t ∈ 
Xi = (xi1,… , xip) Multivariate function with p vari-

ables for every t ∈ 
tj ∈ {t1,… , tmi} = ti∙ An element of the observation

points ti∙ (i.e., the observed dis-
cretization of  with mi points)

Xi(tj) ∈ ℝp Measurement of Xi at the observa-
tion point tj

X̃i = (x̃i1,… , x̃ip) Approximated multivariate function
for every t ∈ 

̃ = {t1,… tJ} Arbitrary discretization of 

vided useful visualization techniques for identifying outlying375

features (in fact, they only focused on the bivariate, p = 2,376

and trivariate, p = 3, cases, which are shape data extracted377

from images). However, when the size of the dataset and378

the number of variables p increase, this method is compu-379

tationally costly, as the shape-based component-extraction380

procedures include several continuous optimization problems.381

Moreover, in these studies, the outlier-detection methods are382

based purely on the empirical distribution (through the func-383

tional boxplot) of the proposed geometrical features, whereas384

we map the original data to univariate functional data and385

subsequently use an outlier-detection algorithm. The latter386

can be seen as implicit non-parametric learning of the inlier387

distribution based on the functional data mapped to a geo-388

metric curve feature. Hence, we take advantage of both the389

geometrical mapping and the outlier-detection algorithm.390

3. Background in functional data391

This section is concerned with the handling of high-392

dimensional vectors of discrete noisy measurements that can393

be represented as smooth continuous functions; moreover,394

we discuss how such representations can be achieved. A list395

of notations is provided in Table 1. The functional data rep-396

resentation is twofold: (i) As the X̃is are smooth functions,397

the reconstructed data are noiseless. (ii) The reconstructed398

data are “aligned” in the sense that two reconstructed sample399

values X̃1(tj) and X̃2(tj) tj at tj are comparable, as they refer400

to the same evaluation point tj ∈ ̃ . This is not the case in401

raw data because one can have tm1 ≠ tm2 (the curves can be402

sampled on different grids).403

3.1. Functional-data representation404

The first step in FDA is to approximate an unknown405

smooth function Xi ∶ t → ℝp, which underlies the sample406

i, by another smooth approximation function X̃i(t), ∀t ∈  ,407

through mi discrete noisy measurements Xi(t1), ..., Xi(tmi );408

this is referred to as the functional approximation step. Its409

purpose is to remove the noise, thus allowing accurate eval-410

uations of some derived functions, such as combinations411

of derivatives and integral functions. This is necessary in412

our case, as the proposed mapping functions correspond to413

combinations of derivatives and integrals.414

We should first select a functional representation as an415

approximation function. As a function is intrinsically infinite-416

dimensional, in FDA, it is commonly assumed that the under-417

lying function can be approximated by a finite linear combi-418

nation of non-linear basis functions. Such an approximation419

is called a basis expansion function [32]. We assume that420

xik, the k-th variable (hence a univariate function) of Xi, is421

to be approximated. The intuition behind the basis expansion422

is to combine a small number of “specific functions” (a set423

of given functions), each of which can capture some local424

features of the underlying function xik, so that xik could be425

recovered with a small approximation error. This approxima-426

tion function can be formulated as427

∀t ∈  , x̃ik(t) =
Lik
∑

l=1
�ikl�l(t) = �⊤ik�(t) (1)

where �(t) = {�l(t)}1≤l≤Lik is a vector of orthonormal basis428

functions at t for some Lik ∈ ℕ∗ (referred to as the basis429

size) with fewer basis functions than sampled observation430

points (Lik ≪ mi), and �⊤ik = {�ikl}1≤l≤Lik is the coefficient431

vector, the element �ikl of which is the importance of the l-th432

basis function.433

Another choice of functional representation in FDA is to434

use non-parametric smoothing [16], which achieves a sim-435

ilar approximation, but its form is less tractable than that436

of the basis expansion function (for instance, to compute437

derivatives).438

According to Eq. (1), one should select (i) the basis439

{�l}1≤l≤Lik and (ii) the basis size Lik.440

The coefficient vector is computed from the data (see next441

paragraph).442

The choice of the basis is data-dependent. As suggested443

by Ramsay and Silverman [32], when the data are smooth and444

periodic, the Fourier basis should be selected; when the data445

are smooth, a spline basis is suitable. A spline is a piecewise-446

polynomial function of order at least three [9]. If the data447

have irregularities, a wavelet basis should be preferred [31].448

See [33] for other examples and details on the choice of the449

basis according to the data. The choice of the basis-size pa-450

rameter Lik depends on the selected basis. An inappropriate451

choice of the basis results in requiring a large Lik because452

each basis function will focus on an irrelevant part of the453

data variability (low bias and high variance or, high bias and454

low variance); the worst case is to capture the noise, leading455

to over-fitting [32]. By contrast, an appropriate choice of456

the basis functions results in a small Lik, that is, the basis is457

sufficiently rich to approximate an unknown function using458

few functions. Subsequently, once a suitable basis is selected,459

the bias–variance trade-off should be considered. This refers460
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to the balance between the approximation error and a rea-461

sonable Lik [32]. Such a balance is generally achieved by a462

grid search by cross-validation for each sample i and variable463

k. When �(t) and Lik are specified, a computing method464

is required to estimate the coefficient vector �ik, which is465

introduced in the next paragraph.466

3.2. Functional-data fitting467

The linearity of the basis expansion function with respect468

to the coefficient vector �⊤ik enables its efficient estimation469

(assuming the data were sampled with a noise �ij , that is,470

xik(tij) = x̃ik(tij) + �ij , where �ij is independent of x̃ik(tij))471

by minimizing the least-squares criteria:472

J (�ikl) =
mi
∑

j=1
(xik(tij) − x̃ik(tij))2 (2)

or equivalently, with vector notation,473

J (�ik) = ‖xik(ti∙ ) −�ik�ik‖2 (3)
where ‖⋅‖ stands for the l2-norm, and�ik = (�l(tij))1≤j≤mi,1≤l≤Lik474

is the mi × Lik matrix containing all the Lik basis functions475

evaluated at the observation points. Thus,�ik is a discretiza-476

tion over ti∙ of the vector of orthonormal basis functions477

a�(t) in Equation (1). As Lik ≪ mi and �ik has all its478

columns linearly independent, by the orthonormality of the479

basis functions (and thus orthonormality of the columns of480

�ik),�⊤
ik�ik is invertible. Hence, equating the gradient of481

J to 0 with respect to �ik leads to the following minimizer:482

�∗ik = (�
⊤
ik�ik)−1�⊤

ikxik(ti∙ ) (4)
which is known as the classical least-squares solution [20].483

However, as the data are fitted according to the basis484

functions, the smoothness of x̃ik depends greatly on the noise485

influence on the basis functions. Consequently, x̃ik may lack486

smoothness and overfit the data. To analyze such a noise487

influence, one can compute the derivative of x̃ik, which is488

“excessively” variable if a large amount of noise remains489

in the approximation function. To ensure smoothness, the490

least-squares criteria should be minimized by penalizing the491

derivative(s) of x̃ik with an amount �k > 0 as follows:492

J �k (�ikl) =
mi
∑

j=1
(xik(tij)−x̃ik(tij))2+�k ∫

(Dqx̃ik(t))2dt (5)

where Dq = dq(⋅)
dtq is the q-th derivative of x̃ik(t). More gen-493

erally, Dq can be any linear combination of derivatives of494

xik, that is, a linear differential operator [32]. A penaliza-495

tion term including derivatives is also known as a roughness496

penalty. The parameter �k is arbitrary and can be computed497

by cross-validation. This is detailed in Section 5.3. Eq. (5)498

can be written using vector notation as follows:499

J �k (�ik) = ‖xik(ti∙ ) −�ik�ik‖2 + �k�⊤ikRik�ik (6)
whereRik = (∫ Dq�j(t)Dq�m(t)dt)1≤j≤Lik,1≤m≤Lik is aLik×500

Lik positive semi-definite matrix. The matrix Rik contains501

the inner products of the q-th derivative of the Lik basis func-502

tions. This matrix can be computed provided that the q-th503

derivative of the basis functions exists. In practice, it is com-504

mon to choose q = 1 or q = 2 (i.e., to penalize the velocity505

or acceleration of x̃ik, or a combination of both).506

As J �k remains quadratic with respect to �ik, approxi-507

mating x̃ik with a roughness penalty is equivalent to ridge508

regression [21, 20]. Thus, the penalty term allows x̃ik to509

(i) be smooth, as defined by the operator Dq and, (ii) avoid510

over-fitting by pushing the coefficient vector toward 0. Equat-511

ing the gradient of J �k to 0 with respect to �ik leads to the512

following minimizer [20, 32]:513

�∗ik,� = (�
⊤
ik�ik + �kRik)−1�⊤

ikxik(ti∙ ) (7)
3.3. Approximation functions as building blocks514

Once the coefficient vectors have been estimated for the515

p variables of the n samples (with or without penalization),516

we can consider the approximations X̃ik to be smooth multi-517

variate functions that well recover the underlying functions.518

Although these functions can be theoretically evaluated at an519

infinite number of points in  , in practice, there are two meth-520

ods to handle the approximations computationally (e.g., to521

compute derived functions such as derivatives and integrals):522

(i) The first method is to compute the derived functions523

based on the basis functions. As the basis functions524

are known analytically, their derived functions can also525

be obtained analytically. Thus, by the linearity of the526

basis expansion, one can easily obtain the derived func-527

tions of the approximation functions (the integral and528

derivative are linear operators). We illustrate this us-529

ing the k-th derivative of the approximation function.530

We assume that an unknown function x is approxi-531

mated by x̃ through a basis expansion with a basis532

size L (in Eq. (1)), provided that the k-th derivative533

{Dk�l(t)}1≤l≤L of the basis functions exists, and the534

coefficient vector {�l}1≤l≤L is available (or has been535

estimated as in Eq. (4)). The k-th derivative of x̃ with536

respect to t is Dkx̃, where537

∀t ∈  , Dkx̃(t) = Dk

( L
∑

l=1
�l�l(t)

)

=
L
∑

l=1
�lD

k�l(t)

(8)

(ii) The second method is to estimate the underlying func-538

tions by evaluating all the approximation functions on539

the same grid ̃ . Thus, from these estimates, one can540

compute derived functions, such as integral or deriva-541

tives, using numerical methods, such as quadrature542
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or finite difference schemes, respectively [41]. These543

methods are easy to implement, but they do not con-544

sider the basis functions and require that the arbitrary545

grid be sufficiently fine (so that the approximation func-546

tions are evaluated at a large number of observation547

points).548

Thus, if the derivatives of the basis functions are known (as is549

the case for splines, Fourier basis functions, etc.), the deriva-550

tives of x̃ are also known and need not be estimated from551

the raw data or the smooth reconstructions of the original552

data from x̃ by a noise-sensitive and costly method such as553

finite differences. This example demonstrates the flexibility554

of the linear basis expansion for computing derived functions555

in FDA. Then, a derived function, for instance D1x̃, can be556

evaluated on an arbitrary grid. Such an approach is different557

from estimating the derivatives from an evaluation of x̃ on558

the grid by using finite differences.559

The first method is safer than the second because the an-560

alytic form of the basis functions is fully considered, and561

therefore the corresponding derived functions can be ob-562

tained accordingly. For instance, if the basis functions �l are563

B-splines (which are piecewise polynomial), we know the564

analytic form of D1x̃, as D1�l results in a piecewise polyno-565

mial as well. Thus, the evaluation ofD1x̃ by the first method566

provides more accurate estimates ofD1x (which is unknown)567

than numerical methods applied to x̃ evaluated on a fine grid568

of  .569

In the following part, we suggest some mapping func-570

tions for capturing functional outlyingness in the detection571

process. These mapping functions may have a complex ana-572

lytical form because they involve several derivative functions573

(primarily first and second derivatives, as well as integral574

functions). Therefore, it is mandatory to have accurate evalu-575

ations of derivative functions, and accordingly we follow the576

first method in the computational experiments.577

4. Shape-based representation for578

multivariate functional data579

We regard a multivariate curve as a path lying in a p-580

dimensional space, specifically ℝp (see Fig. 1(a) for an ex-581

ample in ℝ2), and derive mapping functions (aggregation582

functions of the variables), established in differential geom-583

etry, to capture shape features of the curves (e.g., length,584

velocity, or curvature) so that outlying features may be de-585

tected. These mapping functions have been used in shape586

analysis, for instance, to extract features based on the edge (a587

bivariate curve) of an object in an image [40].588

In this section, we investigate several mapping functions589

that enable the detection of multivariate functional outliers590

from the shape they exhibit inℝp. Such mappings jointly con-591

sider the p variables, as they aggregate, in several ways, some592

derivatives (with respect to t) of the curve variables. Hence,593

the individual and collective variations of the variables are594

considered. These mapping functions take each data sam-595

ple, represented by its smooth approximation function X̃i, as596

= 𝒙𝟏 𝒕 , 𝒙𝟐 𝒕

= 𝒙𝟏 𝒕𝟎 , 𝒙𝟐 𝒕𝟎

𝒅𝒙𝟏(𝒕𝟎) 𝒅𝒙𝟐(𝒕)

𝒅𝒙𝟐(𝒕𝟎)

𝒅𝒔(𝒕𝟎) 𝒅𝒔(𝒕)
…

𝒅𝒙𝟏(𝒕)

𝒙𝟐

𝒙𝟏

Figure 2: Arc-length mapping. The length of the curve between
two observation points t0 (dark-grey dot) and t (white dot) is
defined as the sum of infinitesimal length elements ds(t0)...ds(t)
along the curve (red diagonal arrows) for all t. The crossed-
circle dots represent such points between t0 and t.

input and return a univariate curve (i.e., the resulting aggre-597

gation) reflecting certain shape features. Hence, they provide598

a means to “summarize” the shape of a multivariate curve, in599

the sense given by the mapping function, and reduce the num-600

ber of functional variables to one. The univariate function601

returned by a mapping function is then fed into an outlier-602

detection algorithm; this is detailed in Section 5. In the sequel,603

we simplify the notations by referring to a functional-data604

sample as an arbitrary curve X = (x1...xk...xp) instead of605

X̃i = (x̃i1...x̃ik...x̃ip).606

4.1. Arc-length mapping607

The arc-length mapping function enables analyzing the
length of a curve between two points in  (see Fig. 2). Let
X(t) be an arbitrary curve depending on a continuous variable
t ∈  . For t0 ∈  and t0 < t, the length s(t) of the curve
that X(⋅) represents from t0 to t is

s(t) = ∫

t

t0
‖D1X(u)‖du = ∫

t

t0

√

√

√

√

p
∑

k=1

dxk(u)
du

2
du (9)

where ‖⋅‖ stands for the l2-norm in ℝp. Hence, the arc-608

length maps an original functional-data sample to univari-609

ate functional data that represent the increases in the cu-610

mulative length of the underlying curve from the starting-611

point X(t0) = ((x1(t0), x2(t0)) to an arbitrary point X(t) =612

((x1(t), x2(t)) for t > t0. Fig. 2 shows that the length of a613

bivariate curve between X(t0) and X(t) is the infinite sum614

from t0 to t of infinitesimal length elements ds(⋅) (aka in-615

tegral), corresponding to an infinitesimal length element in616

each direction (x1 and x2) in ℝ2. We note that this mapping617

always returns a positive increasing function, as it computes618

the cumulative length of the initial curve. Moreover, the619

arc-length mapping function is not influenced by a warping620

(i.e., a horizontal deformation) of the curve 2 [40]. This map-621

ping function can discern functional samples with a shape of622

2Let �(⋅) be a differentiable warping function i.e., a monotone non-
decreasing function defined in  →  . The arc-length mapping function on
a warped functional datumX is equal to the arc-length mapping function on
the initial unwrapped functional datum: s(�(t)) = ∫ tt0‖D

1X(�(u))‖du =

∫ tt0 ⟨D
1X(�(u)), D1X(�(u))⟩1∕2du = ∫ tt0 D

1�(u)⟨D1X(�), D1X(�)⟩1∕2du,
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𝒙𝟐

𝒙𝟏

𝝍 𝒕
=

𝑫𝟏𝑿 𝒕
𝟐

𝒅𝒙𝟏(𝒕)

𝒅𝒙𝟐(𝒕)

= 𝒙𝟏 𝒕 , 𝒙𝟐 𝒕

Figure 3: Velocity mapping. The norm of the tangent vector
D1X(t) (red diagonal arrow), the components of which are
infinitesimal variations (dx1(t), dx2(t)) (shown by the horizontal
and vertical red arrows) of the variables of the curve allows the
computation of the speed at which the curve “progresses.”

different size, which is a global shape feature. Thereby, the623

detection of functional outliers can be improved when their624

underlying curve is longer or shorter than those of the other625

samples. For instance, an isolated outlier, which exhibits a626

peak for a small part of  , induces a sharp increase in its627

curve length, whereas the length of other curves increases628

more slowly.629

4.2. Velocity mapping630

The velocity mapping function enables analyzing the631

instantaneous variations of the curve with respect to t. It has632

a simple interpretation when t corresponds to a time instant.633

In this case, velocity measures how fast a point moves on the634

curve. More generally, it can be interpreted as the norm of635

the projection of the curve onto D1Y (t), the tangent vector636

to the curve at t. In Fig. 3, the velocity mapping at t of a637

bivariate curve is shown as the l2-norm ‖D1X(t)‖ of the638

tangent vector D1X(t) (vector of the first-order derivatives639

of the curve variables x1 and x2). It is defined as640

 (t) = ‖D1X(t)‖ (10)
and is related to the arc-length mapping by  (t) = ds

dt , or641

conversely, by s(t) = ∫ tt0  (t)dt; however, these mappings642

capture different features. Indeed, the arc-length mapping643

outputs an increasing function and thus “memorizes” the lo-644

cal variations of the curve as t increases, whereas the velocity645

mapping characterizes the local variations (i.e., pointwise)646

with respect to t. The function returned by the velocity map-647

ping may be regarded as a measure of the variation of the648

arc-length mapping. Thus, the velocity mapping can be used649

to identify the local outlyingness of a sample (isolated out-650

lier).651

4.3. Curvature mapping652

Curvature is a notion that relates to how “bended” a curve
is, or geometrically, the degree to which a curve deviates from
the tangent line at a given point. An alternative interpretation
and as D1�(u) = d�

du , we have ∫ tt0 D
1�(u)⟨D1X(�), D1X(�)⟩1∕2du =

∫ tt0 ⟨D
1X(�), D1X(�)⟩1∕2d� = ∫ tt0‖D

1X(�)‖d�, which implies that
s(�(t)) = s(t).

𝑫𝟏𝑿(𝒕𝟏)

𝑫𝟏𝑿(𝒕)

𝒙𝟐

𝒙𝟏

= 𝒙𝟏 𝒕 , 𝒙𝟐 𝒕
= 𝒙𝟏 𝒕𝟏 , 𝒙𝟐 𝒕𝟏

𝒓 𝒕𝟏

Figure 4: Curvature mapping. Curvature is defined to be the
inverse of the radius of the osculating circle. In this example, in
a neighborhood of the curve at t1 (dark-grey dot), the tangent
vector D1X(t1) has almost the same direction; hence, the
osculating circle has a large radius (r(t1) =

1
�(t1)

), resulting in a
small curvature. In a neighborhood of the curve at t (white dot),
the tangent vector D1X(t) quickly changes direction; hence, the
osculating circle has a lower radius, that is, a higher curvature
than at t1.

concerns the radius of the osculating circles. At a given
point t, a smaller radius of the osculating circle implies larger
curvature. In fact, the radius of the osculating circle is equal
to the inverse of the curvature at this point. The bivariate
curve in Fig. 4 shows that at a neighborhood of t1 wherethe tangent vectorD1X(t1) has almost constant direction, the
osculating circle has a larger radius r(t1) than the radius of theosculating circle at a neighborhood of t where the direction
of the tangent vector D1X(t) changes quickly. Thus, the
curvature mapping function allows analyzing the change of
direction of the curve with respect to t. Indeed, if the curve is
a line, curvature is constant, and the curve directions remain
constant as well. Curvature is defined as

�(t) =
‖D1( D1X(t)

‖D1X(t)‖ )‖

‖D1X(t)‖
(11)

or equivalently,

�(t) =

√

‖D1X(t)‖2‖D2X(t)‖2 − ⟨D1X(t), D2X(t)⟩2

‖D1X(t)‖3
(12)

where ⟨⋅, ⋅⟩ denotes the inner product in ℝp. We now provide653

insight into the definition of � in Eq. (11). D1X(t)
‖D1X(t)‖ is the di-654

rection vector (i.e., the normalized tangent vector); therefore,655

D1 D1X(t)
‖D1X(t)‖ is the rate of change of the direction vector, and656

the normalization ‖D1X(t)‖ relates to the rate of change of657

the direction with respect to the tangent vector. Consequently,658

the curvature mapping can detect functional outliers with a659

curve that exhibits a differently bended shape than those of660

the other samples.661

5. Experimental study662

We conducted an experimental study on real and synthetic663

datasets to demonstrate the effectiveness of the proposed map-664

ping functions in improving outlier detection in multivariate665
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functional data. The detection performance was evaluated in666

terms of the true detection rate (i.e., the proportion of outliers667

correctly detected), false detection rate (i.e., the proportion668

of outliers falsely detected), and area under the ROC curve669

(AUC).670

5.1. Real data671

5.1.1. ECG data672

We tested the proposed approach on the real dataset used673

by Dai and Genton in [8]. The dataset consists of electrocar-674

diogram (ECG) time series of the electrical activity (voltage)675

of heart changes [19]. Such data can reveal abnormalities676

in heart activity. The time series are univariate and were677

labeled by cardiologists as abnormal or normal. This dataset678

has been used for time-series classification [46]. We aug-679

mented the data set by bivariate time series to demonstrate680

the applicability of the method to multivariate time series.681

There are a total of n = 810 time series including 208682

abnormal and 602 normal cases. All the time series have an683

equal size of mi = 86. In contrast with Dai and Genton in684

[8], who only considered the time series between the time685

stamps t = 6 and t = 80 to avoid boundary effects, we con-686

sidered the entire time series to demonstrate the robustness687

and applicability of the proposed approach. Dai and Genton688

also augmented the univariate time series to multivariate by689

adding the first and the second derivatives. We did not follow690

this, as in the proposed approach, these aspects are consid-691

ered (e.g., velocity mapping in Eq. (10) or curvature mapping692

in Eq. (11)); rather, we added the squared time series. Indeed,693

power is proportional to the square of voltage. Thus, in terms694

of interpretability, this data augmentation appears to be more695

relevant than that by the second derivative of voltage. We696

applied the same multivariate functional data augmentation697

to all ECG-data experiments and for all methods; we did not698

apply the derivative augmentation, as this would bias the699

interpretation of the results, that is, it would not be possible700

to discern whether the results were due to the specific aug-701

mentation or to the method. This would be of interest if the702

focus was specifically on the ECG data, but here, we use it703

as a real dataset example.704

As in [8], to obtain a rare class of samples representing705

outliers, we randomly created a partition of 400 samples (i.e.,706

the training set) out of the 810 samples by parameterizing707

the contamination level (i.e., the rate of abnormal samples)708

in this partition to 5%, 10%, 15%, 20%, and 25%. Then, for709

each contamination level, we evaluated the proposed method710

on the 410 remaining samples (i.e., the test set).711

5.1.2. Pen-digits data712

We also tested the proposed method on another real data-713

set consisting of n = 10992 bivariate time series representing714

pen digits (PenDig) [12]. The digits are labeled according715

to their class (i.e., from 0 to 9). Each digit has mi = 8 ob-716

servation points regularly sampled on both the horizontal717

and vertical coordinates. As this initial dataset cannot be718

considered high-dimensional, we upsampled it by linear in-719

terpolation to m′ = 200 on the two coordinates before fitting720

the approximation functions.721

To simulate the outlier classes, we considered a single722

digit to be the outlier class, and the nine other classes to be723

the inlier class, as in [36]. The training set was generated724

using 75% of the entire dataset with a contamination level725

equal to c = 5% (i.e., 5% of the training set are outliers).726

Each digit was separately considered the outlier class, and727

thus the experiment was conducted in 10 independent ways.728

Then, for each case of outlier class, we assessed the proposed729

method on the test set.730

5.2. Synthetic data731

We simulated multivariate functional data sets according732

to the five models proposed by Dai and Genton in [8]. To the733

best of our knowledge, this is the most recent study concerned734

with outlier detection in multivariate functional data provid-735

ing performance results (detection rates). For each of the five736

simulation models, n = 150 bivariate curves were generated737

on a regular grid of size m = 200 in the real interval [0, 1].738

Among the n curves, c = 10% (referred to as the contamina-739

tion level) were outliers. Regardless of the simulation model,740

all uncontaminated curves were simulated according to a741

unique uncontaminated model U (except model 5). Hence,742

the models 1, 2, 3, 4 had a common uncontaminated model U743

(Eq. (13)) and different contamination modelsXc1,Xc2,Xc3,744

Xc4, respectively, which generated the two classes of outliers745

(isolated and persistent). We recall that, compared with the746

rest of the dataset, isolated outliers exhibit outlying behavior747

in a small part of the domain  , whereas persistent outliers748

exhibit outlying behavior in a large part of  . Testing the749

proposed approach and the baselines using different types750

of outliers enables assessing the efficiency of each mapping751

function in a given context.752

The uncontaminated model was simulated according to753

a bivariate Gaussian process (�(t),Σ(s, t)) [34], with a754

constant mean function �(t) = 0, and a cross-covariance755

function Ckr between the two variables indexed by k and r,756

as follows:757

Ckr(s, t) = �kr�k�r(|s−t|; �kr, �kr) k, r = 1, 2 and s, t ∈ [0, 1]
where �12 is the correlation between the variables x1 and

x2, �11 = �22 is the variance of each variable, �1 and �2 arethe marginal variances,
(ℎ; �kr, �kr) = 21−�Γ(�)−1(�|ℎ|)��(�|ℎ|) is the Matérn
class function [30] (� is a modified Bessel function [3]),
�kr > 0 is a smoothness parameter, and �kr > 0 is a range
parameter. For this simulation, we used the same parameter
setting as in [8]: �12 = 0.6, �11 = �22 = 1, �1 = �2 = 1,
�11 = 1.2, �22 = 0, 6, �12 = �21 = 1, �11 = 0.02, �22 =
0.01, and �12 = �21 = 0.016. This covariance function
is implemented in the R package [37]. We summarize the
uncontaminated model U (t) = (u1(t), u2(t))⊤ as follows:

U (t) ∼  =
(

�(t) = (0, 0)⊤; Σ(s, t) =
(

C11 C12
C21 C22

))

(13)
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The five contamination models are (we annotate the vari-758

ables with an index c referring to “contamination”):759

1. Model 1 (persistentmagnitude outlier): Xc1(t) = 4U (t).760

2. Model 2 (isolated outlier): Xc2(t) = U (t)(1+11IZ<t<Z+0.1),761

where I is the indicator returning 1 if the indexed con-762

dition is true, and 0 otherwise, and Z is a uniform763

random variable in [0, 0.9].764

3. Model 3 (persistent magnitude outlier), the contamina-765

tion model is different for the two variables: Xc3(t) =766

(x1,c3(t), x2,c3(t))⊤, with x1,c3(t) = 1.7u1(t) and x2,c3(t) =767

1.5u2(t).768

4. Model 4 (isolated outlier): Xc4(t) = U (t)(1+4IZ<t<Z+0.1),769

with Z as in model 2.770

5. Model 5 (persistent shape outlier), the new uncontam-771

inated model is referred to as Y , and the contamina-772

tion model as Xc5: Y (t) = (y1(t), y2(t))⊤ with y1(t) =773

u1(t) +Z11 cos(4�t) and y2(t) = u2(t) +Z12 sin(4�t),774

where Z11 and Z12 are independent uniform random775

variables in [2, 3]. The contamination model Xc5 is776

x1,c5(t) = u1(t) + Z21 cos(4�t) and x2,c5(t) = u2(t) +777

Z22 sin(4�t), whereZ21,Z22 are uniform random vari-778

ables on [4, 5].779

5.3. Experimental protocol780

5.3.1. Functional approximation781

Without loss of generality, we selected  = [0, 1] as the782

domain (closed interval) of t for all the data sets. We recall783

that we represent all the curves in the common interval  be-784

cause we assume that the functional samples were generated785

by a random function depending on t relating to the same786

event in ℝp. For instance, when the samples are measure-787

ments of a given process depending on t, which represents788

time,  can be viewed as the relative temporal range of the789

process (i.e., from the beginning at t = 0 to the end at t = 1),790

and t ∈  = [0, 1] can be interpreted as the progress rate of791

the process.792

Choice of the basis of functions For the ECG and the793

PenDig datasets, we approximated each variable of the bi-794

variate time series by a basis consisting of B-splines of order795

eight (B-splines are piecewise-polynomial functions of order796

at least three, and are located at a given observation point797

t ∈  ). Indeed, we noticed that in this dataset, the curves798

exhibit a smooth pattern without periodicity; hence, the B-799

spline basis is a suitable choice (as recommended in [32]).800

For the synthetic dataset, we approximated each variable801

of the bivariate time series by a Fourier (sine and cosine802

functions) basis with a fundamental period of T = 1
F = 1803

(i.e., the length of  ). The Fourier basis was deemed suitable804

because we noticed low-frequency periodicity (induced by805

the covariance function Ckr(s, t)) over  .806

Application of the functional-data fitting procedure We807

now provide the computational details of the functional-data808

fitting. Following the recommendations in [33, 15], for all809

datasets, we selected both the penalization �k and the basis810

size Lik for the variable k of sample i through a leave-one-811

out cross-validation procedure over a given grid search for812

�k and Lik. We penalized both the first- and second-order813

derivatives of x̃ik to gain smoothness in the mapping-function814

output. We note that for all the samples of a given variable k,815

we equally penalized the approximations x̃ik by the same �k816

to compute the coefficient vector �∗ik. Then, by computing817

the coefficient vector �∗ik according to Eq. (7), we selected818

the value of �k and Lik < mi that minimize the leave-one-out819

cross-validation score CV�k (Lik),820

CV�k (Lik) =
mi
∑

j=1

(

xik(tj) − x̃
−j
ik (tj)

)2 (14)

where x̃−jik corresponds to the approximation of xik by821

Lik basis functions by omitting the pair (tj , xik(tj)) in the822

functional-fitting step, as in Eq. (5), where the penalization823

is �k.824

For the ECG and PenDig datasets, the grid search of �1825

and �2 was fixed on logarithmic scale in [−9,−1], with a826

thickness of 0.1. The grid search of Lik was fixed at the827

integers between 35 and 60, that is, for a given integer Lik ∈828

[[35, 60]], the Lik B-spline functions were regularly placed in829

 .830

For the synthetic datasets, the grid search of �1 and �2831

was fixed on logarithmic scale in [−9,−4], with a thickness832

of 0.1. The grid search of Lik was fixed in [[20, 25]], that is,833

for a given integer Lik ∈ [[20, 25]], the synthetic data were834

approximated by the first Lik frequencies 2� ×F ×1, , , 2� ×835

F × Lik. Then, for each variable, we retained the coefficient836

vector associated with both the optimal regularization and837

basis-size parameters to recover the smooth approximation838

function X̃i = (x̃i1, x̃i2).839

Finally, we used the coefficient vector associated with840

both the optimal regularization and basis-size parameters to841

recover the smooth approximation functions X̃i on a given842

grid and applied a mapping function to them.843

5.3.2. Applying the mapping functions844

We now explain the computational application of the845

mapping functions and then how their output was fed to an846

outlier-detection algorithm.847

After computing the approximation functions X̃i, we cen-848

tered and scaled each variable xik with the empirical mean849

and standard deviation functions computed from the training850

set (see [32] for details on the computation of mean standard851

deviation functions). This scaling prevents the mapping func-852

tions from overweighting some variables with a wider range853

than others. Indeed,854

(i) The variables require to be scaled since the unit of855

the output value of the arc-length mapping function856

(Lenmap in Eq. (9)) is intrinsically a length. Then,857

we applied the three mapping functions introduced in858

Section 4. As the arc-length mapping is the integral859
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function of the velocity mapping, the arc-length map-860

ping in Eq (9) was computed from the minimum of 861

(i.e., t = 0) and was then integrated up to t for all t ∈  .862

In these experiments, the integral was efficiently es-863

timated by a Riemann sum, as in this study, all the864

observation points were regularly sampled in  , and865

therefore the sum converges to the integral. We note866

that if the observation points had been irregularly sam-867

pled, the integral could have not been approximated868

by a Riemannian sum, and numerical techniques, such869

as Simpson’s or the trapezoidal rule, should have been870

used instead [32].871

(ii) Regarding the velocity mapping Vmap in Eq. (10), the872

first-order derivative of each variable of X̃i was com-873

puted according to Eq. (8).874

(iii) The curvature mapping (Curvmap) requires the compu-875

tation of both first- and second-order derivatives. Thus,876

we computed them as in Eq. (8) and combined them877

as in Eq. (11).878

The approximation functions recover the functional data879

on the entire domain  . Thus, the approximation functions880

can be computed on an irregular grid, and therefore the com-881

putation of the mapping functions should be carefully per-882

formed (e.g., (i) in the computation of an integral function).883

For both Vmap and Curvmap, which are based on derivative884

functions only, simple and efficient derivative estimation885

methods can be used, as mentioned in Section 3.3.886

Eachmapping function returns a univariate function. Thus,887

applying a mapping function to all n approximation func-888

tions X̃i results in n univariate functional-data samples. We889

used the resulting univariate functional data in several outlier-890

detection algorithms. In practice, the functions returned by891

a mapping function should be evaluated over a grid of ob-892

servation points in  to obtain the output samples in vector893

form. As we selected  = [0, 1] for all datasets and the894

observation points are regular, the grid is a regular discretiza-895

tion {t1...tj ...tJ} of  with a thickness of 1J (t1 = 0 and for896

j > 1, tj =
j
J ). Hence, for the outlier-detection algorithms,897

the data correspond to J -dimensional numerical vectors that,898

in turn, correspond to univariate functional data output by899

a mapping function. We selected the thickness of the grid900

as the original size of the time series for both the synthetic901

and ECG datasets (ECG data set: J = mi = m = 86, PenDig902

dataset: J = m′ = 200, synthetic data sets: J = m = 200).903

An irregular grid can also be used to evaluate the approxi-904

mated functions, but the computation of the mappings should905

be performed cautiously, as mentioned in (i) for Lenmap.906

5.3.3. Outlier detection from the functional output of a907

mapping function908

We detect outliers in the functional data returned by a909

mapping function using a state-of-the-art outlier-detection910

algorithm. To this end, we selected isolation forest (iFor) [27]911

and a one-class support vector machine (OCSVM) [38]. iFor912

is a bagging model that generates a large number of decision913

trees grown on random subspaces. A subspace corresponds914

to a subsample of features randomly selected from the full915

feature space (here, {1...j...J}). Each tree isolates the data916

samples based on a random split value of a randomly selected917

feature from the subspace until all the data samples have been918

isolated, or all the features of the subspace have been selected.919

The sample outlyingness score returned by a tree is based on920

the path length between the root node and the terminal node921

of a tree. Outliers are samples that are easy to isolate and922

thus have short path length in the trees. The path length is923

normalized in [0, 1] so that if the score is close to 1, then the924

sample is likely an outlier. OCSVM is a distance-basedmodel925

formulated as a constrained quadratic minimization problem,926

the variables of which correspond to the radius and the center927

of the smallest hypersphere containing the data. To allow928

flexibility on the hypersphere boundary owing to the presence929

of outliers in the training data, slack variables are introduced930

in the objective function in addition to the two other variables.931

The hyperparameter � corresponds to an upper bound on the932

a priori proportion of outliers in the training set. A sample is933

declared as an outlier if it lies outside the fitted hypersphere.934

We used the radial-basis-kernel version of OCSVM with �935

equal to the exact proportion of outliers in the training set.936

The bandwidth hyperparameter of the radial basis kernel was937

optimized by a 20-fold cross-validation procedure.938

For the ECG and PenDig datasets, we set the number of939

trees to 1000, and the subsampling size to 32 [27]. For the940

synthetic datasets, we also set the number of trees to 1000,941

and the subsampling size to 16. We randomly split each942

dataset into a training set and a test set. As in [8], the training943

set represents 50% of the data for the ECG dataset. The train-944

ing set for the PenDig dataset consists of 75% of the entire945

dataset. The training set contains 60% of the data for the946

synthetic data. The training set was used to both fit the model947

(iFor and OCSVM) and select an outlyingness threshold from948

the ROC curve that discriminates inliers from outliers. We949

then computed the outlyingness score of the test samples950

and achieved detection using the previously computed out-951

lyingness threshold. Regarding OCSVM, we finetuned the952

bandwidth hyperparameter of the radial basis kernel on the953

training set through a 20-fold cross-validation procedure on954

the grid {2−25...2−5} for the ECG dataset as well as the syn-955

thetic data. In addition to the true and false detection rates956

(�c and �f , respectively), as a measure of discrimination be-957

tween outliers and inliers by the proposed approach, we also958

computed AUC from the labels of the test set.959

The threshold-selection step is simple and is not part of960

iFor [27] or OCSVM [38], which are both unsupervised. We961

assume that the training data is labeled even if there are few962

outlier samples. In real-world applications, the user has some963

knowledge about the training data and can thus label inliers964

and some outliers. If the training set surely has no outlier,965

the proposed method only requires the modification of the966

threshold selection rule. This modification is easy because967

both iFor and OCSVM are unsupervised methods and output968

a normalized score. Using the detection rule obtained by the969

threshold, we compute two performance measures �c and970
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�f to demonstrate the complete application of the proposed971

method and compare it with the baselines. In fact, there are972

other methods for learning an outlyingness threshold, such973

as using a specific decision rule involving, e.g., an empiri-974

cal quantile associated with a reference distribution of the975

outlyingness scores [8], or threshold selection from the mass-976

volume curve [5] when no outlier label is available, but this977

is beyond the scope of the present study, as we assume that978

the training set has low non-zero contamination level.979

To assess the proposed method with respect to a ground980

truth and without considering a threshold, we also evaluate981

the results using AUC , which is a measure of discrimination982

between outliers and inliers. It is a standard performance983

measure in outlier detection [13, 27] and demonstrates that984

the proposed method can outperform the baselines regardless985

of the computed outlyingness threshold.986

5.4. Baseline comparisons987

We compared the proposed approach with two recent988

outlier-detection methods based on multivariate functional989

depth (Section 2).990

The first baseline method is FUNTA, proposed by Kuhnt991

and Rehage in [26] (see Section 2). It only requires centering992

each variable xik of each sample to a zero mean. As FUNTA993

has been demonstrated to be robust to noise and can handle994

curves of different size, we used it on the raw data without995

any functional data approximation. For the computation of996

the outlyingness threshold, we applied the same procedure997

as in the proposed method, that is, we selected the best outly-998

ingness threshold for the training set using ROC and applied999

it to the test set. We used the R implementation proposed in1000

[35].1001

The second baseline method is Dir.out proposed by Dai1002

and Genton in [8] (see Section 2). We used the same param-1003

eter setting as in [8] and did not perform any functional-data1004

approximation. In this method, the outlyingness score is1005

based on the robust Mahalanobis distance of the directional1006

outlyingness vector computed on a subset of the data; in the1007

present case, we computed it using the training data to obtain1008

comparable results and to assess the performance measures1009

on the test set. The tail of the distribution of the distances is1010

approximated by an F -distribution with degrees of freedom1011

(p + 1, m − p), where p is the number of curve variables,1012

and m is calculated through a simulation procedure (see [8],1013

p. 7 for details). Consequently, the outlyingness threshold is1014

not data-driven and is computed as a quantile of probability1015

99, 3% of an F -distribution. Then, we used the outlyingness1016

threshold on the test set to asses performance. We used the1017

R implementation provided by the authors.1018

5.5. Experimental protocol application1019

The performance of the proposed approach was evaluated1020

by simulation for both the real and the synthetic data. The1021

simulation settings for the ECG and synthetic data were as in1022

[8]. We proceeded as follows:1023

(i) We randomly generated a train/test split. For the ECG1024

data, the training set corresponds to 50% of the full1025

dataset, for the PenDig data, the training set is 75% of1026

the dataset, and for the synthetic data, the training set1027

represents 60% of the full dataset.1028

(ii) We then applied the proposed and the baseline meth-1029

ods. Except for Dir.out (baseline), which does not1030

require outlyingness-threshold learning because the1031

outlyingness score follows a known distribution (see1032

Section 5.4), the outlyingness threshold was learnt on1033

the training set based on the ROC curve.1034

(iii) We evaluated the performance in terms of the true1035

detection rate (�c), false detection rate (�f ), and AUC1036

on the test set.1037

For the ECG dataset (resp., PenDig dataset), steps (i) to1038

(iii) were repeated 50 times for each case of the five contam-1039

ination levels (resp., for the 10 outlier classes) (see end of1040

Section 5.1), and 500 times for the synthetic data for each of1041

the five models (Section 5.2).1042

The two real datasets are not used to assess the same1043

properties of the proposed method. The ECG data are used1044

to demonstrate the robustness of the proposed method with1045

respect to different contamination levels for some given out-1046

liers, whereas the PenDig data are used to assess the detection1047

performance for different outliers and a given contamina-1048

tion level. Thus, we only compare these two in terms of1049

performance, in the comparison of the various methods in1050

Section 5.6.4.1051

5.6. Results and discussion1052

We report the results for the ECG dataset in Table 2,1053

where for each contamination level c (columns) and for each1054

method (rows), we provide �c , �f , and AUC (sub-columns).1055

The results for the PenDig dataset are shown in Table 3, where1056

for each case of outlier class (columns), that is, a single digit,1057

and for eachmethod (rows), we provide the three performance1058

measures as in Table 2. The results for the synthetic data1059

are reported in Table 4, where for each model (columns) and1060

for each method (rows), we provide the three performance1061

measures as in Table 2. In these tables, the value in a cell1062

is the average of a performance measure over the number of1063

simulations. We discuss the results below.1064

5.6.1. ECG data1065

The results for the ECG data set (Table 2) demonstrate1066

that the proposed method outperforms the baselines with1067

Vmap and Curvmap (Vmap and Curvmap rows with iFor and1068

OCSVM, which are described in Section 5.3.3).1069

It can be seen that both Vmap and Curvmap (with iFor and1070

OCSVM), provide constant �c , �f , and AUC values with1071

respect to the five contamination levels (Vmap and Curvmap1072

rows). We highlight this in Fig. 5, where it can be seen that1073

the proposed method (except for Lenmap with both iFor and1074

OCSVM) outperforms the baselines in terms of the three1075

performance measures, which remain constant as the contam-1076

ination level changes. This shows that the outlying features1077

captured by these mapping functions are more robust to the1078

contamination level than those captured by the baselines.1079
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Table 2
Results on the ECG dataset.

Outlier detection results for the ECG data set with five contamination levels c. For each contamination level (columns) and each
performance measure (sub-columns), we marked the best results in bold (i.e., highest correct detection rate �c and AUC, and
lowest false detection rate �f ). For all the contamination levels, the proposed method achieves the best results with Vmap and the
Curvmap. We also notice that, in the proposed method, for a given mapping function and outlier-detection algorithm, performance
does not degrade when c varies, whereas for FUNTA and Dir.out, performance degrades as c increases. The proposes functions
outperform state-of-the-art methods when there are few outliers.

c = 5% c = 10% c = 15% c = 20% c = 25%
Methods �c �f AUC �c �f AUC �c �f AUC �c �f AUC �c �f AUC

FUNTA (baseline) 0.85 0.60 0.78 0.86 0.50 0.81 0.88 0.42 0.83 0.87 0.29 0.85 0.85 0.24 0.86
Dir.out (baseline) 0.88 0.18 0.90 0.84 0.16 0.89 0.75 0.14 0.89 0.63 0.13 0.87 0.55 0.10 0.86

iFor(Vmap) 0.90 0.12 0.96 0.92 0.12 0.96 0.92 0.12 0.96 0.92 0.13 0.95 0.91 0.13 0.95
iFor(Curvmap) 0.89 0.07 0.98 0.90 0.07 0.98 0.91 0.08 0.98 0.90 0.08 0.97 0.91 0.08 0.97
iFor(Lenmap) 0.54 0.28 0.70 0.49 0.24 0.69 0.45 0.20 0.68 0.42 0.19 0.66 0.43 0.23 0.65
OCSVM(Vmap) 0.97 0.10 0.98 0.97 0.16 0.97 0.88 0.17 0.92 0.90 0.13 0.94 0.88 0.18 0.92

OCSVM(Curvmap) 0.96 0.17 0.95 0.96 0.21 0.93 0.90 0.20 0.91 0.91 0.22 0.91 0.90 0.23 0.89
OCSVM(Lenmap) 0.79 0.20 0.86 0.71 0.23 0.78 0.54 0.21 0.67 0.65 0.27 0.72 0.58 0.28 0.66

The outlier detectionwithOCSVM fromVmap andCurvmap1080

does not present the same robustness to the contamination1081

level as that with iFor in terms of �f (OCSVM(Vmap) and1082

OCSVM (Curvmap), and Fig. 2). Indeed, �f increases as the1083

contamination level c increases. Accordingly, OCSVM ap-1084

pears to be more suitable for datasets containing a small num-1085

ber of outliers. This was also observed in [11]. Despite the1086

lower robustness, OCSVM(Vmap) and OCSVM(Curvmap) are1087

better than the baselines, which exhibit performance degrada-1088

tion as the contamination level c changes. Indeed, FUNTA1089

is approximately constant as c increases but degrades for1090

small values of c in terms of �f (FUNTA row, �f columns).1091

Conversely, Dir.out is as robust as OCSVM(Vmap) in terms1092

of �f (we note that the range of �f is the same for Dir.out1093

and OCSVM(Vmap)) but degrades in terms of �c for high1094

values of c (Dir.out row, �c columns). Thus, we recommend1095

using OCSVM when the contamination level is low [11].1096

Curvmap, for OCSVM and iFor, is the most efficient mapping1097

function in terms of �f (�f columns, Curvmap rows), and1098

Vmap is the most efficient in terms of �c (�c columns, Vmap1099

rows). Lenmap has the worst performance (Lenmap rows, �c1100

and AUC columns).1101

5.6.2. PenDig data1102

From the results on the PenDig dataset in Table 3, it can1103

be seen that the proposed method always outperforms the1104

baselines in terms ofAUC . This implies that the baselines are1105

not as effective in capturing shape outlying features. When1106

the outliers are ‘0’ digits, the results by the baselines are1107

consistent with the results on the synthetic data when some1108

shape outliers are simulated (Model 5 in Table 4). This is not1109

surprising, as Model 5 generates bivariate functional outliers1110

with an elliptic shape inℝ2; hence, a zero-like shape (‘0’). As1111

anAUC value close to 0.50 implies that the detector performs1112

as efficiently as a random method, we note that the ‘0’ outlier1113

case is the only in which the baselines are effective. The1114

baseline methods cannot distinguish different shape outliers1115

with abrupt shape irregularities such as (smooth) right angles,1116

for example, when the outlier is the ‘1’, ‘4’, or ‘5’ digit. In1117

such cases, we obtain the best results in terms of AUC with1118

Vmap. For more regular shapes, such as ‘3’, ‘6’, ‘8’, and ‘9’,1119

the best results are achieved by Curvmap.1120

5.6.3. Synthetic data1121

For isolated outliers (Table 4, Model 2 and Model 41122

columns), the results on the synthetic datasets demonstrate1123

that these outliers are well detected by the baseline methods1124

as well as the proposed with Lenmap, and Vmap with iFor. In-1125

deed, as an isolated outlier exhibits large deviation in a small1126

part of  , its underlying curve is longer than that of most1127

samples. Moreover, in these models, as the first derivative is1128

considered, the velocity quickly changes in the part of the do-1129

main where the isolated outlyingness occurs; thus, the Vmap1130

function is an appropriate candidate for detecting isolated1131

outliers. Dir.out has the best performance in terms of both1132

�c and �f . Regarding Model 2, the proposed model outper-1133

forms FUNTA with Lenmap, and Vmap with iFor. Curvmap1134

exhibits poor performance for the two models. This implies1135

that it is ineffective in detecting isolated outliers. Indeed, the1136

contamination models (Model 2 and Model 4, Section 5.2)1137

generate stationary functional data (constant mean and only1138

lag-dependent covariance) except in the part of  where1139

the outlyingness occurs (here, a short peak). Thus, consid-1140

ering the second-order variations (second-order derivatives1141

in Eq. (11)) is irrelevant and leads to high �f values (�f1142

columns and Curvmap rows). Moreover, there is a low corre-1143

lation between the curve variables, and thus Curvmap, which1144

captures deeper correlation features (bending in the curve,1145

see Eq. (11)) is not appropriate in this case.1146

For persistent magnitude outliers (Table 4, Model 1 and1147

Model 3 columns), Dir.out and FUNTA yield the best re-1148

sults in terms of both �c and �f . We obtain highly similar1149

results for Model 1 with Vmap, and Lenmap with iFor. Never-1150

theless, Vmap is not as efficient for Model 3 as for Model 1.1151

Indeed, Model 1 has high contamination (high, short peak),1152

resulting in high velocity mapping values, and we recall that1153

velocity and curvature relate to local variations of the curves.1154

Consequently, as magnitude outlyingness is a global shape1155
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Figure 5: Performance on ECG data. The three performance measures �c , �f , and AUC, averaged over the number of simulations
as functions of the contamination level (c = 5%, c = 10%, c = 15%, c = 20%, and c = 25%) for each method (proposed in blue,
and baselines in red). We notice that when the contamination level c increases, the proposed method (except for iFor(Lenmap)
and OCSVM(Lenmap)) outperforms the baselines in terms of �c , �f and AUC. Moreover, performance does not degrade as
the contamination level changes, in contrast with that of the baselines. In terms of �c , FUNTA performs as well as Vmap and
Curvmap when used with both iFor and OCSVM but significantly degrades in terms of �f (i.e., it falsely detects outliers) for
low contamination levels. Dir.out performs as well as the proposed method in terms of �f but degrades in terms of �c for high
contamination levels. Hence, FUNTA performs well when the contamination level is high, and Dir.out performs well when the
contamination level is low.

Table 3
Results for the PenDig dataset.

Outlier detection results for the PenDig dataset when each of the 10 classes (‘0’...‘9’) is considered an outlier (columns), and the
nine other classes inliers. For each case of outlier class and each performance measure (sub-columns), we marked the best results
in bold. It can be seen that for the ten cases, the proposed method is considerably better than the baselines, which are inefficient
for this dataset except when the outliers are ‘0’ digits.

Outliers ’0’ Outliers ’1’ Outliers ’2’ Outliers ’3’ Outliers ’4’
Methods �c �f AUC �c �f AUC �c �f AUC �c �f AUC �c �f AUC

FUNTA (baseline) 0.49 0.22 0.60 0.01 0.21 0.51 0.22 0.19 0.58 0.23 0.20 0.52 0.23 0.21 0.53
Dir.out (baseline) 0.72 0.01 0.82 0.24 0.02 0.52 0.75 0.42 0.60 0.00 0.02 0.55 0.00 0.02 0.58

iFor(Vmap) 0.78 0.05 0.87 0.44 0.38 0.79 0.86 0.15 0.63 0.61 0.45 0.66 0.74 0.09 0.77
iFor(Curvmap) 0.82 0.12 0.92 0.43 0.60 0.61 0.87 0.47 0.57 0.57 0.38 0.69 0.81 0.33 0.63
iFor(Lenmap) 0.63 0.26 0.59 0.46 0.56 0.64 0.59 0.12 0.65 0.29 0.23 0.64 0.78 0.45 0.56
OCSVM(Vmap) 0.82 0.02 0.85 0.50 0.51 0.75 0.77 0.35 0.60 0.53 0.41 0.66 0.78 0.18 0.74

OCSVM(Curvmap) 0.80 0.11 0.91 0.50 0.60 0.70 0.55 0.23 0.59 0.56 0.44 0.68 0.61 0.15 0.66
OCSVM(Lenmap) 0.81 0.10 0.75 0.37 0.42 0.70 0.84 0.18 0.76 0.54 0.42 0.67 0.83 0.25 0.69

Outliers ’5’ Outliers ’6’ Outliers ’7’ Outliers ’8’ Outliers ’9’
Methods �c �f AUC �c �f AUC �c �f AUC �c �f AUC �c �f AUC

FUNTA (baseline) 0.49 0.22 0.60 0.01 0.02 0.51 0.22 0.00 0.58 0.23 0.01 0.51 0.23 0.21 0.53
Dir.out (baseline) 0.43 0.34 0.59 0.43 0.17 0.52 0.43 0.16 0.65 0.43 0.17 0.60 0.43 0.34 0.61

iFor(Vmap) 0.69 0.26 0.69 0.56 0.36 0.61 0.93 0.30 0.60 0.47 0.30 0.67 0.92 0.51 0.64
iFor(Curvmap) 0.62 0.29 0.61 0.54 0.28 0.63 0.93 0.21 0.68 0.48 0.20 0.77 0.79 0.26 0.73
iFor(Lenmap) 0.42 0.13 0.61 0.47 0.21 0.64 0.97 0.29 0.65 0.40 0.08 0.77 0.74 0.40 0.63
OCSVM(Vmap) 0.59 0.04 0.73 0.55 0.38 0.56 0.87 0.22 0.60 0.58 0.45 0.63 0.70 0.25 0.70

OCSVM(Curvmap) 0.58 0.18 0.64 0.61 0.40 0.61 0.86 0.19 0.62 0.56 0.44 0.66 0.62 0.14 0.72
OCSVM(Lenmap) 0.67 0.30 0.62 0.62 0.47 0.57 0.79 0.13 0.61 0.51 0.24 0.60 0.88 0.46 0.67

feature, Lenmap is better than Vmap and Curvmap for detecting1156

persistent magnitude outliers (Model 1 and Model 3 columns,1157

iFor(Lenmap) row). This indicates that for detecting persistent1158

magnitude outliers, the proposed approach is more reliable1159

with Lenmap than Curvmap and Vmap.1160

For persistent shape outliers (Table 4, Model 5 column),1161

the proposedmethod outperforms the baselines with iFor(Lenmap).1162

Furthermore, Vmap yields results similar to those of Dir.out1163

in terms of �c and AUC . Table 4 shows that the state-of-1164

the-art FUNTA totally fails to capture shape outlyingness1165
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Table 4
Results on the synthetic datasets.

Outlier detection results for the synthetic data generated by the five models (columns), as described in Section 5.2. We compared
the proposed methods, iFor(⋅) and OCSVM(⋅), with the two baselines, FUNTA and Dir.out, in terms of three performance
measures (in sub-columns): correct detection rate (�c), false detection rate (�f ), and AUC. For each model and each performance
metric, we marked in bold the best results (i.e., highest �c and AUC, and lowest �f ). iFor with Vmap and Lenmap has a similar
performance as that of the state-of-the-art methods for most of the generating models. For Model 5, iFor(Lenmap) outperforms
the baselines.

MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5
Methods �c �f AUC �c �f AUC �c �f AUC �c �f AUC �c �f AUC

FUNTA (baseline) 1.00 0.00 1.00 0.92 0.02 0.99 0.96 0.00 1.00 0.89 0.04 0.99 0.58 0.31 0.73
Dir.out (baseline) 1.00 0.00 1.00 1.00 0.00 1.00 0.91 0.00 1.00 0.98 0.00 1.00 0.88 0.00 1.00

iFor(Vmap) 0.99 0.00 1.00 0.91 0.02 1.00 0.69 0.25 0.82 0.77 0.16 0.92 0.83 0.13 0.94
iFor(Curvmap) 0.61 0.30 0.75 0.57 0.48 0.60 0.59 0.39 0.67 0.57 0.48 0.61 0.73 0.24 0.85
iFor(Lenmap) 1.00 0.00 1.00 0.95 0.00 1.00 0.83 0.08 0.96 0.85 0.07 0.97 0.96 0.01 1.00
OCSVM(Vmap) 0.79 0.22 0.87 0.82 0.19 0.91 0.68 0.35 0.74 0.65 0.14 0.84 0.42 0.14 0.77

OCSVM(Curvmap) 0.49 0.34 0.65 0.60 0.52 0.62 0.48 0.38 0.63 0.42 0.44 0.61 0.43 0.37 0.65
OCSVM(Lenmap) 0.66 0.10 0.82 0.83 0.07 0.91 0.59 0.16 0.78 0.62 0.07 0.84 0.50 0.06 0.83

because it is based on the intersection angles between the1166

samples and is computed for each variable separately. Thus,1167

it fails to consider the correlation between them (as explained1168

in Section 1).1169

As Vmap and Lenmap achieve satisfactory results, the geo-1170

metric characterization (velocity and length) of the samples1171

provides a different type of outlier detection. We note that1172

functional-data approximation affects the geometric charac-1173

terization. Indeed, functional approximation enables smooth-1174

ing out a curve and properly extracting derivative-based fea-1175

tures because the induced smoothing renders the samples1176

differentiable (see Section 3.3); this is not a required property1177

for the baselines Dir.out and FUNTA. Here, we carefully1178

monitor the functional-approximation step using leave-one-1179

out cross-validation (Eq. 14). Thus, in contrast with the ap-1180

proximation step, the outlier-detection step depends greatly1181

on the mapping-function computation.1182

We recommend using Lenmap in the case of (potential)1183

persistent magnitude or shape outliers. In practice, Lenmap1184

does not directly indicate whether a sample is a shape or1185

magnitude outlier. However, as shape and magnitude are1186

quite distinctive outlyingness classes, the class of such an1187

outlier can be known a posteriori by visual inspection or by1188

setting a magnitude threshold with respect to the magnitude1189

of the outliers detected. If the outliers are suspected to be1190

isolated, we recommend using Vmap and Curvmap, as both1191

mapping functions extract local curve features in ℝp. In the1192

case of a low contamination level, both OCSVM and iFor1193

are suitable (even though on the ECG data, OCSVM is better1194

for small c), whereas for high contamination levels, iFor is1195

better.1196

We demonstrated that each mapping function can detect1197

multiple classes of outliers. However, identifying the class1198

of an outlier detected by a given mapping function is not an1199

easy task, and this issue will be addressed in future work.1200

5.6.4. Statistical assessment of the results1201

We followed the hypothesis-testing procedure recom-1202

mended by Demsar [10] to compare the statistical signifi-1203

cance of the results obtained from all the methods tested on1204

various datasets to assess statistical relevance. Demsar pro-1205

vided an evaluation protocol for a more general assessment1206

of the difference between several classifiers used on multiple1207

benchmark datasets. The protocol consists of two steps: First,1208

a global significance test is conducted to determine whether1209

there is a difference among the evaluated methods. If this is1210

the case, the methods are pairwise compared to evaluate the1211

gain of one over another.1212

We applied Demsar’s protocol because the present detec-1213

tion task reduces to a two-class classification in the evaluation1214

step (outliers/inliers). Erfani et al. [13] also used the same1215

evaluation protocol to assess the statistical significance of1216

several outlier detection methods. We applied the protocol for1217

the three performance measures �c , �f , and AUC separately.1218

As described in [10, 18], there are several ways of conducting1219

the tests in the evaluation protocol, and we primarily applied1220

it as Erfani et al. in [13]. Specifically, we applied the protocol1221

as follows:1222

(i) First, the Friedman test [39] was applied to detect the1223

global statistical significance for each of the three per-1224

formance measures among all the methods on all the1225

datasets. The Friedman test can be viewed as the non-1226

parametric version of ANOVA (where, here, a group1227

refers to a method, and the samples in the group refer1228

to the performance of the method on the datasets), as it1229

is based on the ranks and thus does not make the Gaus-1230

sian assumption for the performance measures for each1231

method [10]. We conducted the Friedman test with the1232

Iman–Davenport correction [39], as recommended in1233

[10], to handle the well-known family-wise error rate,1234

which can bias the p-value in a multiple-hypothesis1235

test. We recall that in the present context, the family-1236

wise error rate refers to the probability of erroneously1237

asserting that one method is more reliable for detecting1238

outliers than some of the others.1239

(ii) Second, if statistical significance was detected by the1240

Friedman test, we performed a post-hoc test to deter-1241
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mine which methods are different. More precisely, the1242

post-hoc test is based on the p-values returned by a1243

pairwise-comparison test applied to all pairwise com-1244

parisons of the methods. A nonparametric test can1245

be selected for the pairwise comparisons (owing to1246

the absence of the Gaussian assumption), such as the1247

post-hoc Friedman’s aligned ranked test [18]. As the1248

all-pairwise-comparisons test is a special case of a1249

multiple-hypothesis test, it also suffers from the family1250

error rate and requires a correction procedure. Thus,1251

we used the Finner correction as recommended in [18].1252

We separately applied this evaluation protocol to the three1253

performance measures for the five contamination levels of the1254

ECG data, the 10 outlier classes of the PenDig dataset, and the1255

synthetic data to compare the methods on two distinct types of1256

data and to demonstrate the benefit of the proposed approach1257

on real data. Moreover, this enables assessing the difference1258

of the methods in a given context (i.e., when the outlier class1259

is known). For all datasets, we used a significance level of1260

0.1, as in [13].1261

We report the average ranking (vertical axis) of all meth-1262

ods (horizontal axis) applied to the ECG and PenDig datasets1263

(resp., synthetic data) for each performance measure (colors)1264

in a vertical-bar plot in Fig. 6 (resp., Fig. 7). Each bar has a1265

height equal to its average rank (1 is the best, 8 is the worst)1266

based on the post-hoc Friedman’s aligned rank test across1267

the five contamination levels (resp., five models). For �c and1268

AUC , the ranking is given in decreasing order, and for �f ,1269

the ranking is given in increasing order. The above number of1270

bars refers to the global ranking (i.e., ranks from the average1271

ranks).1272

As the Friedman test yielded a significant result for the1273

two real datasets and the synthetic data, for each performance1274

measure (p-values are given in the discussion), we report the1275

significance (based on the p-values) of all the pairwise com-1276

parison tests. The significance of the pairwise comparison1277

tests of �c , �f , and AUC for the ECG and PenDig datasets1278

is given in Tables 5, 6, and 7, and for the synthetic data, in1279

Tables 8, 9, and 10. The significance (at level 0.1) of a test1280

is indicated by ≠∗ , and non-significance is indicated by = .1281

ECG data. The Friedman test rejects the null hypothesis1282

of equivalence of the methods for the three performance1283

measures at a significance level of 0.1. The p-values are1284

3.0 × 10−10 for the correction detection rate �c , 3.0 × 10−101285

for the false detection rate �f , and 2.2 × 10−16 for AUC .1286

Thus, we conducted a post-hoc test. Fig. 6 shows the average1287

ranking of the methods based on the Friedman’s aligned rank1288

test (from the best 1 to the worst 8). The p-value of each1289

pairwise comparison in the post-hoc test is given in Tables 5,1290

6, and 7 for the correction detection rate, the false detection1291

rate, and AUC , respectively, where a cell indicates whether1292

the resulting p-value of the pairwise comparison test of the1293

methods in the corresponding row and column is significant.1294

The symbol= indicates a p-value greater than the significance1295

level of 0.1, allowing the acceptance of the null hypothesis1296

of equivalence of the two methods; rejection is indicated by1297

≠∗.1298

Based on the results in Fig. 6 and Tables 5, 6, and 7,1299

it is seen that both Vmap and Curvmap outperform the base-1300

lines in terms of the three performance measures. We notice1301

that Dir.out is not significantly better than the methods with1302

the worst performance (i.e., iFor(Lenmap), FUNTA, and1303

OCSVM(Lenmap)). FUNTA is not significantly different1304

from iFor(Curvmap) and OCSVM(Curvmap) (Tables 5 and1305

7, FUNTA rows and columns). Thus, by considering the1306

results on the ECG data (Table 2 and Fig. 5), which demon-1307

strate that FUNTA is almost as effective as iFor(Curvmap)1308

and OCSVM(Curvmap) in terms of �c when the contamina-1309

tion level is high (c ≥ 15%), this qualitative comparison1310

is confirmed by the non-significance of the difference with1311

OCSVM(Curvmap). However, in terms of �f , FUNTA is in-1312

effective and is outperformed by iFor(Vmap), iFor(Curvmap),1313

Dir.out, and OCSVM(Curvmap) (Table 6). Even though1314

Lenmap yields the worst results among the three proposed1315

mapping functions with both iFor and OCSVM (Table 2,1316

Fig 6), it is not significantly different fromDir.out (seeDir.out1317

columns and Lenmap rows in Tables 5 and 7).1318

PenDig data. The Friedman test rejects the null hypothesis1319

of equivalence of the methods for the three performance1320

measures at a significance level of 0.1. The p-values are1321

1.5×10−1 for the correct detection rate, 2.8×10−9 for the false1322

detection rate, and 1.1×10−4 for AUC . We note that there is1323

consistency with respect to the ECG data except for the false1324

detection rate �f . Indeed, both Vmap andCurvmap outperform1325

the baselines in terms of �c and AUC (Tables 5 and 7).1326

Moreover, among the three mapping functions,Lenmap yields1327

the worst results and is not different from Dir.out. However,1328

there is an inconsistency regarding �f in the PenDig data1329

with respect to the ECG data (Fig. 6 and Table 6). Hence,1330

as the proposed method is not ranked first in terms of the1331

false detection rate, it may be claimed that it recognizes the1332

outliers but tends to be excessively severe.1333

We note that this conclusion regarding the correct and1334

false detection rates is drawn according to the adopted out-1335

lyingness thresholding rule, which can be modified, as dis-1336

cussed at the end of Section 5.3.3.1337

From the global ranking (Fig. 6) and the pairwise compar-1338

ison tests, it may be concluded that the proposed method out-1339

performs the baselines on both the ECG and PenDig datasets.1340

Synthetic data. Regarding the synthetic data, the Friedman1341

test rejects the null hypothesis of equivalence of the methods1342

for the three performances measures at a significance level of1343

0.1. The p-value is 2.4 × 10−10 for the correct detection rate,1344

2.4 × 10−10 for the false detection rate, and 1.0 × 10−6 for1345

AUC . As the p-values are significantly low, we can conduct1346

a post-hoc test to compare the methods pairwise and assess1347

the gain of one over another. Fig. 7 shows the average ranking1348

of the methods according to the post-hoc Friedman’s aligned1349

rank test.1350

The significance of each pairwise comparison (based on1351

the p-value) in the post-hoc (Friedman’s aligned rank) test is1352
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Figure 6: Ranking of the methods (1 is the best, 8 the worst) for �c , �f , and AUC based
on the post-hoc Friedman’s aligned rank test, considering the five contamination levels in
the ECG data (upper bar plot) and the PenDig data (lower bar plot). For �c and AUC, the
ranking is given in decreasing order (i.e., for high �c and AUC values, the rank tends to 1);
for �f , the ranking is given in increasing order (i.e., for low �f values, the rank tends to 1).
The y-axis represents the average ranking over the five models, and the integers on the top
of the bars represent the final ranking. If there are ties, we take the average ranking.

given in Tables 8, 9, and 10 for �c , �f , and AUC , respec-1353

tively. We notice that Dir.out is significantly equivalent to1354

iFor(Lenmap), OCSVM(Lenmap),FUNTA, and iFor(V map),1355

and these methods are ranked first, second, and third on aver-1356

age, respectively (Fig. 7). Thus, on the synthetic dataset, the1357

baselinemethods are slightly better than the proposedmethod;1358

however, based on the pairwise comparison tests, the best1359

methods (iF or(Lenmap) and OCSVM(Lenmap)) are statisti-1360

cally equivalent. As discussed in the two previous paragraphs,1361

the proposed method is superior on real datasets. Moreover,1362

in the iFor rows and OCSVM columns, it can be seen that1363

there is a pairwise equivalence between iFor and OCSVM1364

for (Lenmap) and (Vmap), that is, these two outlier-detection1365

algorithms are empirically consistent for a given mapping1366

function. Therefore, we have equivalent methods to achieve1367

state-of-the-art results (which cannot be improved, except for1368

MODEL 5) for the synthetic data.1369

Overall assessment. Tables 5, 6, and 7 (in the iFor rows1370

and OCSVM columns) show the pairwise consistency be-1371

tween the iFor and OCSVM algorithms for each mapping1372

function. The same holds for the synthetic data. Thus, for1373

a given dataset and mapping function, iFor and OCSVM1374

achieve statistically the same performance results. This im-1375

plies that the detection performance relies more on the out-1376

lying features provided by the mapping function than on the1377

capacity of the outlier-detection algorithm to discover outly-1378

ing features itself.1379

The main difference between the synthetic and the real1380

data lies in the relationship between the variables, which is1381

weak in the synthetic data (the correlation between the two1382

variables is �12 = 0.6, Eq. (13)), whereas it is stronger in1383

the real data. For Models 1–5, among the proposed mapping1384

functions, Lenmap achieves the best results and appears to1385

be suitable for outlier detection if the variables are weakly1386

correlated, whereas Vmap and Curvmap are preferable if the1387

correlation between the variables is strong.1388
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Table 5
Significance of the pairwise comparisons for the correct detection rate �c on the ECG (upper
table) and PenDig (lower table) datasets. The statistical significance of the difference of
two given methods at level 0.1 is indicated by ≠∗ , and by = otherwise.

≠∗ indicates that the corresponding methods in the row and the column of the cell are significantly different at a level of 0.1, and
= indicates that they are not. The lower triangular part was replaced by dashes because it is equal to the upper part.

FUNTA Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)
FUNTA (baseline) x = = = ≠∗ = = =
Dir.out (baseline) - x ≠∗ ≠∗ = ≠∗ ≠∗ =

iFor(Vmap) - - x = ≠∗ = = ≠∗
iFor(Curvmap) - - - x ≠∗ = = ≠∗
iFor(Lenmap) - - - - x ≠∗ ≠∗ =
OCSVM(Vmap) - - - - - x = ≠∗

OCSVM(Curvmap) - - - - - - x ≠∗
OCSVM(Lenmap) - - - - - - - x

FUNTA Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)
FUNTA (baseline) x = ≠∗ ≠∗ ≠∗ ≠∗ ≠∗ ≠∗
Dir.out (baseline) - x ≠∗ ≠∗ = ≠∗ ≠∗ ≠∗

iFor(Vmap) - - x = ≠∗ = = =
iFor(Curvmap) - - - x = = = =
iFor(Lenmap) - - - - x = = =
OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =
OCSVM(Lenmap) - - - - - - - x

Table 6
Significance of the pairwise comparisons for the false detection rate �f on the ECG (upper
table) and PenDig (lower table) datasets.

Notation is the same as in Table 5.
FUNTA Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)

FUNTA (baseline) x = = = ≠∗ = = =
Dir.out (baseline) - x ≠∗ ≠∗ = ≠∗ ≠∗ =

iFor(Vmap) - - x = ≠∗ = = ≠∗
iFor(Curvmap) - - - x ≠∗ = = ≠∗
iFor(Lenmap) - - - - x ≠∗ ≠∗ =
OCSVM(Vmap) - - - - - x = ≠∗

OCSVM(Curvmap) - - - - - - x ≠∗
OCSVM(Lenmap) - - - - - - - x

FUNTA Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)
FUNTA (baseline) x = ≠∗ ≠∗ ≠∗ ≠∗ ≠∗ ≠∗
Dir.out (baseline) - x ≠∗ ≠∗ = = ≠∗ =

iFor(Vmap) - - x = = = = =
iFor(Curvmap) - - - x = = = =
iFor(Lenmap) - - - - x = = =
OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =
OCSVM(Lenmap) - - - - - - - x

6. Conclusion1389

In this paper, we proposed a method to improve the detec-1390

tion of different types of outliers in multivariate functional1391

data, based on curve shape. We assumed that the original1392

discrete curves can be well approximated by finite functional1393

basis expansions, where the basis is specified. Based on the1394

smooth reconstruction provided by the fitted basis expan-1395

sion, we used the arc-length, velocity, and curvature mapping1396

functions to capture latent shape features. Then, we detected1397

the outliers from the mapped curves using outlier-detection1398

algorithms.1399

Through an experimental study on real and synthetic1400

datasets, we demonstrated that the proposed approach outper-1401

forms multivariate functional depth baselines on real data and1402

can perform similarly on synthetic data (except for persistent1403

shape outliers, where the proposed method performs better).1404

We demonstrated that, compared with the baselines, the pro-1405

posed approach is robust to the variation of the contamination1406

level. The results are consistent on both synthetic and real1407

data.1408

We also discussed the ability of each of mapping function1409

to capture outlying features depending on the type of the out-1410

liers to be detected. In future work, we will investigate more1411

deeply the identifiability of the class(es) of outliers detected1412

with respect to a given mapping function. Moreover, the used1413

taxonomy [22] does not cover outliers that represent a mix-1414

ture of multiple classes of outlyingness. Hence, a further step1415

would be to identify both the outlyingness class(es) and the1416

First Author et al.: Preprint submitted to Elsevier Page 18 of 21



Short Title of the Article

Table 7
Significance of the pairwise comparisons for AUC on the ECG (upper table) and PenDig
(lower table) datasets.

Notation is the same as in Table 5
FUNTA Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)

FUNTA (baseline) x = = = ≠∗ = = =
Dir.out (baseline) - x ≠∗ ≠∗ = ≠∗ ≠∗ =

iFor(Vmap) - - x = ≠∗ = = ≠∗
iFor(Curvmap) - - - x ≠∗ = = ≠∗
iFor(Lenmap) - - - - x ≠∗ ≠∗ =
OCSVM(Vmap) - - - - - x = ≠∗

OCSVM(Curvmap) - - - - - - x ≠∗
OCSVM(Lenmap) - - - - - - - x

FUNTA Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)
FUNTA (baseline) x = ≠∗ ≠∗ ≠∗ ≠∗ ≠∗ ≠∗
Dir.out (baseline) - x ≠∗ = = = = =

iFor(Vmap) - - x = = = = =
iFor(Curvmap) - - - x = = = =
iFor(Lenmap) - - - - x = = =
OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =
OCSVM(Lenmap) - - - - - - - x
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Figure 7: Ranking of the methods (1 is the best, 8 is the worst) on the synthetic datasets
for �c , �f , and AUC based on the post-hoc Friedman’s aligned rank test. For �c and AUC,
the ranking is given in decreasing order (i.e., for high �c and AUC values, the rank is close
to 1), and for �f , the ranking is given in increasing order (i.e., for low �f values, the rank is
close to 1). The y-axis represents the average ranking over the five models, and the integers
on the top of the bars represent the final ranking. If there are ties, we take the average
ranking. The baseline methods are slightly better than the proposed method, but the
best results by the proposed method (iF or(Lenmap) and OCSVM(Lenmap)) are statistically
equivalent to those by the baseline, as demonstrated by the pairwise comparison tests in
Tables 8,9, and 10.

potential mixture proportions when a sample lies in multiple1417

classes.1418

We did not assume any weighting of the curve variables1419

in the mapping functions; this is left as future work. This1420

weighting could be user-driven, as proposed for functional1421

depth in [4], or data-driven. It is conceivable that this can en-1422

hance outlier detection in the presence of non-outlying curve1423

variables (when p increases). Another possible improvement1424

would be to combine mapping functions in the same detector1425

so that multiple outlier classes may be detected in the same1426

dataset.1427
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