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. Highlights

- Shape-based outlier detection in multivariate functional data

3 Clément Lejeune,Josiane Mothe,Adil Soubki,Olivier Teste

a e A new method is introduced for detecting outliers in multivariate functional data based on the curve shape that such
5 data depict. Few work address the problem of outlier detection in multivariate functional data, and our proposal relies
6 on some curve shape features combined with state-of-the art outlier detection.

7 e We represent the data through some functional approximations. We propose several interpretable transformations to

8 map the resulting approximated functional data to a curve shape representation.

° e We prove through experimental studies on real and synthetic data that our approach can outperform the baselines. Also
10 we show that our method performs well contrary to the baselines, whenever the proportion of outliers is high or low.
11 We discuss some issues the baselines cannot circumvent.

12 e We provide some recommendations regarding the kinds of curve shape representation to use with respect to the type of
13 outlier that the data set entails.
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ABSTRACT

Multivariate functional data refer to a population of multivariate functions generated by a system
involving dynamic parameters depending on continuous variables (e.g., multivariate time series).
Outlier detection in such a context is a challenging problem because both the individual behavior of
the parameters and the dynamic correlation between them are important. To address this problem,
recent work has focused on multivariate functional depth to identify the outliers in a given dataset.
However, most previous approaches fail when the outlyingness manifests itself in curve shape rather
than curve magnitude. In this paper, we propose identifying outliers in multivariate functional data by a
method whereby different outlying features are captured based on mapping functions from differential
geometry. In this regard, we extract shape features reflecting the outlyingness of a curve with a high
degree of interpretability. We conduct an experimental study on real and synthetic data sets and
compare the proposed method with functional-depth-based methods. The results demonstrate that
the proposed method, combined with state-of-the-art outlier detection algorithms, can outperform
the functional-depth-based methods. Moreover, in contrast with the baseline methods, it is efficient

regardless of the proportion of outliers.

1. Introduction

42

43
High-dimensional data are defined as individual vectors

representing a large number of measurements. They appear

in various fields, such as biology, engineering, or med1c1ne
46

where different sources of measurements are recorded. As

. . a7
a straightforward example of such data, we can consider a w

longitudinal study for analyzing the height of a human pop-,

ulation, such as the Berkley growth study [44], in which a :
physiological parameter or variable (also termed “source”) is o
measured for all subjects at various time instants. Depending o

on the population and the number of time instants, this col-

lection may result in high-dimensional data. Such data can j
be seen as realizations of a univariate function depending on -
time. Although a continuous function depending on a single o
continuous variable (e.g., time, wavelength, or frequency) o
underlies the data, it is finely discretized, resulting in high—58
dimensional vectors. Such data are referred to as functional .

data.

Functional data analysis (FDA) is a branch of modern *

statistics, the principle of which is the representation of hlgh-

dimensional measurement vectors through functions (see ;
[32, 16] for a practical and theoretical introduction to FDA). o
Regarding data as functions enables recovering the true nature o
of the process underlying the function that generated the data

It also provides a smooth representation of the initial curves

. . 67
which can be affected by measurement noise. Moreover,

the FDA framework enables the handling of curves that are

irregularly sampled or sampled on grids of different 51zes o
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where a grid refers to the discretization of a closed interval
in which the continuous variable lies. This is achieved by
evaluating the resulting functions on a common and arbitrary
grid.

Specifically, when a single variable is recorded at each
observation point (as in the previous example), that is, the
underlying function x(#) € R, where ¢ lies in a closed in-
terval T C R, the resulting data are called univariate func-
tional data. More generally, when p correlated variables are
simultaneously recorded at each observation point, that is,
X(1) = (x1(8), ooy X4 (1), ..., X, (1)) € RP, these data are called
multivariate functional data. In the example, if weight was
measured in addition to height, these data would result as
realizations of a multivariate function (in this case bivari-
ate). In the remainder of this paper, we use lower-case letters
(x(r) € R) and capital letters (X(#) € RP) to distinguish
univariate from multivariate functional data.

A typical task in FDA is outlier detection [22], which has
several applications, for instance, in biology (to determine
abnormal gene expression levels in time-course micro-array
data [2]), in chemometrics (to determine the nature of an
active substance produced by a chemical process based on
near-infrared spectra data [22]), or in air pollution studies
(to detect highly contaminated locations in urban areas [43]).
In these fields, the data are typically functional and exhibit
outlying behavior. Moreover, several parameters should be
simultaneously recorded to accurately understand the studied
process. Hence, outlier-detection methods should be specif-
ically designed for multivariate functional data. Since the
variables are cautiously selected by a domain expert, the outly-
ing behavior can be detected through the potential correlation
between them.

The correlation between the p variables is important in
multivariate functional data because it can reveal the outlying
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Figure 1: Example of a bivariate (p = 2) functional dataset ™
(see the color version for greater clarity). (a) A dataset of*
21 bivariate curves, with variables x; (1), x,(?), i = 1..21, is*°
plotted along the variable and the ¢ € [0, 1] axes. There are 20+
inliers (black) and one shape outlier (red). (b) The dataset is22
projected along the ¢t axis; the red curve clearly shows an outlying2s
relationship between its variables, resulting in a different shapei2a
This is the “view" adopted in this study. In (c) and (d), the.s
variables x;, and x;, are plotted as two univariate functions with,,
respect to t. Determining the degree of difference of the red .
curve without computing derived functions (e.g., derivative(s)cj)128
is not simple. Moreover, if the dataset is very large, the re

curve is totally mixed with the black curves, thus rendering

visual detection difficult. 130
131

132

behavior of the underlying process, as discussed in [22] and"**
shown in Fig. 1. Thus, independently analyzing each variable**
implies that the potential correlation between the variables is*®
not considered, as shown in Fig. 1 (with a bivariate functionaf*®
dataset), where, in (a) and (b), the variables x; and x, appear*”
correlated, whereas in (c) and (d), they individually exhibit*®
correlation with respect to the continuum ¢. 130

According to the definition by Aggarwal et al. in [1]3*°
an outlier is defined as a data point that is highly different**
from the others, based on some measure. Such a point often'**
contains useful information regarding the abnormal behav**?
ior of the system described by the data. Outlier detection is"**
aimed at determining an appropriate measure whereby out:*®
liers may be differentiated from inliers with a high degree of**°
interpretability. Based on this definition, outliers, compared*’
with inliers, represent a small part of the dataset and are scat=**
tered. Moreover, if the data dimension is high, the data are*®
more scattered in the space (i.e., curse of dimensionality):*°
and therefore, the probability that the outliers are scattered is**
higher. Hence, outlier-detection tasks are as susceptible to**
the curse of dimensionality as other discrimination tasks that*®
assume well-balanced classes. However, regarding some typi***
cal algorithms for classification (e.g., logistic regression) and*®

clustering (e.g., K-means and mean-shift), the rarity and scat**®

tering of outliers may render these algorithms inefficient for
outlier detection, owing to the well-known class imbalance
problem [25].

Previous work on outlier detection in functional data pri-
marily focused on the univariate case [17, 7, 28], whereas the
multivariate case is more recent [4, 24, 29, 22, 26, 8]. Mul-
tivariate functional outliers can be characterized by deviations
in the correlation between the variables x; (), ..., x4 (1), ..., X, ()
and, potentially, in their correlation with ¢. There can be
scattering among functional outliers depending on how out-
lyingness is expressed. According to the functional-outlier
taxonomy by Hubert et al. [22], there are two general classes:
isolated and persistent outliers. An isolated outlier exhibits
extreme behavior in a small part of the domain 7, resulting in
a narrow peak in at least one of the variables. By contrast, a
persistent outlier is defined as a sample in which outlyingness
manifests itself in a large part of the domain. Among persis-
tent outliers, three classes were distinguished by Hubert et
al. as follows [22]: (i) A shift outlier exhibits a pattern com-
parable to that of a regular curve up to a random horizontal
translation. (ii) A magnitude outlier differs in terms of range.
(ii1) A shape outlier exhibits outlyingness in local features
without deviating from the regular curves at any point of the
domain.

The detection of shape outliers is quite recent and is at-
tracting increasing attention in FDA [29, 2, 26, 8]. Persis-
tent shape outliers are difficult to detect in a curve popula-
tion because the shapes are often non-linearly discriminant
(Fig. 1(b)) and exhibit larger variability than isolated outliers.
Considering curve discrimination in terms of shape, one can
augment the curve variables by using differential analysis.
This refers to adding derivatives or integrals (computed with
respect to ¢) for each initial variable. Hence, curve shape pro-
vides information regarding “hidden outlying features” of the
curve variables and the outlying relationship between them.
However, as mentioned previously, the joint analysis of the p
variables becomes complex as p increases (see Fig. 1). In the
present study, we address this problem by using differential
geometry. Specifically, we use aggregation functions (termed
mapping functions) of the variables. Thereby, we implicitly
consider the correlation of the variables through geometrical
characterizations of curve shape. In contrast with current
functional-outlier detection methods, which consider curve
shape differently and only base the final detection on the
resulting depth values (Section 2), we use both functional
curve-shape features and state-of-the-art outlier-detection al-
gorithms. Thus, the originality of the proposed approach lies
in the shape characterization of the initial curves through the
proposed mapping functions, combined with state-of-the-art
outlier-detection algorithms.

Throughout this paper, we use the term mapping function
to refer to analytic aggregation functions that enable cap-
turing curve-shape features, such as curvature, length (i.e.,
perimeter of a shape), or tangential velocity, and consider all
the variables, as a curve is viewed as a path. More precisely,
a mapping function aggregates the variables through different
interpretable combinations of the derivatives of the variables.
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Mapping functions have been used in shape analysis [40]z06
that is, for curves lying in a two- or three-dimensional spaces.or
(e.g., extracted from images), but not in the detection of mulzos
tivariate functional outliers. 200

In this paper, to capture the potential outlyingness of thexo
curves through their shape, we propose mapping functionsi
among those used in differential geometric-method in shape:-
analysis [40]. These functions map multivariate to univariate:s
curves; however, for efficient computation, they require the:a
curves to be smooth. Although this is the case for multivarizis
ate functional data, raw data are often noisy when sampledsis
and we use the functional-data representation to recover the:s
smooth version of the curves. Then, using the proposed mapz1s
ping functions, we map the functional representation (in the:s
form of a curve) so that some of its shape features capture:o
curve outlyingness. Finally, based on this new representationzz:
we use outlier-detection algorithms to assess the outlyingsz-
ness of each sample and determine a threshold for flagging:s

outliers. 224
The contributions of this study are summarized as folszs
lows: 226

227
(i) We propose an end-to-end method for detecting outliers

through their curve shape, which is characterized by,
geometrical transformations. The method is based on, |

the functional representation of the data. o

(i) We propose different mapping functions to capture®?

different types of outlyingness based on curve shape.?**
234

(iii) We demonstrate that the proposed method is superior teess
previous outlier-detection algorithms and, in contrastss
to baseline methods, performs well regardless of thess
proportion of outliers. 238

The rest of the paper is organized as follows. In Section 2::
we review related work on outlier detection in both univariate
and multivariate functional data. In Section 3, we discuss
curve representations in the functional-data framework. In
Section 4, we present the mapping functions that can capture
shape outlyingness from the obtained functional representa- -
tion. The experimental results are presented and discussed Lo

in Section 5. Finally, Section 6 concludes this paper. sar

248

2. Related work 200

2.1. Depth-based univariate functional-outlier
detection 252

The detection of outliers in functional data is a recent,,
topic and has primarily been addressed by extending statistis_,
cal depth' to functional depth. Statistical depth measures the,
centrality of a sample relative to a dataset by providing an,_,
outward-center ordering of the samples through a score lying,,
in [0, 1]. A value close to zero implies that the sample is,,
more likely to be an outlier [45]. Statistical depth has several,,

251

Lstatistical depth was not specifically proposed for functional but fo®°
multivariate data. However, we distinguish between univariate functionake1
depth and multivariate functional depth, which were proposed specifically,,
for functional data.

theoretical properties (see [49] for details): (i) It attains its
maximum value for the most centered (i.e., most represen-
tative) sample. (ii) It decreases monotonically and vanishes
as the sample moves away from the center (up to infinity).
(iii) It does not depend on the dataset scale. Therefore, given
an outlyingness threshold, samples with a depth value close
to O can be flagged as outliers. This type of measure has been
extended to functional data and used for classification [6],
ranking [17, 7], as well as outlier detection [14].

However, most of the existing functional depths are appli-
cable to univariate functional data only. For instance, given a
functional sample, the integrated depth [17], modified band
depth, and modified epigraph index [28] evaluate depth point-
wise, that is, at each observation point ¢ € 7, and then these
depth values are averaged by integration over 7 to provide a
global outward-center score. The integrated depth measures
the proportion of a curve that is closest to the median curve of
the dataset, where the median curve is computed pointwise.
The modified band depth measures the average proportion of
the curve that takes values within the range of all pairwise
sample combinations, where “proportion of a curve” refers to
the size of the interval 7 where the curve outlies the dataset.
The modified epigraph index has a similar principle: It mea-
sures the proportion of the curve that takes values smaller
than the other values of the dataset. Thus, the functional
depth intuitively measures the centrality of the curve, regard-
ing its global shape with respect to the dataset, see [28] for
details. The bivariate random projection depth by Cuevas
and Febrero in [6] considers specific shape information by
projecting the curve and its first derivative onto random direc-
tions (e.g., directions generated according to a unit-variance
Gaussian process), resulting in several bivariate vectors; a
bivariate statistical depth function is then applied to these
vectors and averaged over the random projections. Based on
any of these functional depths, an outlyingness threshold is
necessary for outlier detection. If the depth-value distribution
is known, which is rare in practice, one can select the thresh-
old as a small probability quantile (e.g., a sample with depth
value lower than the 5%-quantile of this distribution is likely
an outlier). Febrero et al. proposed in [14] estimating this
threshold as the first percentile of the empirical distribution
of the depth values through a bootstrap procedure.

Unfortunately, apart from the statistical point of view,
these approaches do not facilitate the understanding of the
nature of outlyingness. Accordingly, techniques have been
developed for visually detecting univariate functional out-
liers. Arribas-Gil and Romo defined the outliergram in [2]
to represent each sample as a bivariate vector with the mod-
ified band-depth and epigraph values. They demonstrated
that these depths are quadratically related. Hence, in a two-
dimensional plot, inlier samples lie on a parabola, whereas
outliers are likely to be far from it. Sun and Genton [42]
proposed the functional boxplot to summarize the empirical
distribution of the functional data as classical boxplots com-
puted pointwise. It was designed to visualize a univariate
functional dataset, in the same spirit as that of the classical
boxplot. In their method, the central region of the pointwise
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boxplots is defined as the region in R where the 50% highsie
est depth-score samples {x;(r)};< (i.e., the most central) lieszo
according to the band-depth ranks [28]. The fences of thes:
boxplots are defined by inflating 1.5 times the height of thesz2
central region. Thus, the continuum of the pointwise boxplots:2s
provides a functional boxplot. The outliers are then identisza
fied as samples falling outside the fences. In this functionakzs
boxplot, inliers and outliers rely heavily on curve magnitudesze
Thus, curve shape largely fails to be considered a potentiakr
outlyingness feature. In [23], Hyndman and Shang applieds:s
robust principal component analysis by considering the samszo
ples to be high-dimensional vectors and represented eachsso
sample as a bivariate vector containing the first and seconds:
principal scores. Subsequently, outliers were identified assz
samples outside certain high-density regions that were desss
termined using the empirical distribution of these bivariatessa
vectors. 335
336
2.2. Depth-based multivariate functional outlier ..,
detection 338
Depth-based outlier detection methods for multivariatesse
functional data are more recent. In [4], Claeskens et al. gensao
eralized any given univariate functional depth to the case ofa:
multivariate functional data. This corresponds to a weightedsas2
sum of a given univariate functional depth applied to eachsas
variable (X(7), ...X (?), ...X ,(1)) pointwise and then integratecsas
over 7. The selection of the weight function was also dissas
cussed. As a special case, in [24], Ieva and Paganoni prosas
posed the multivariate band depth by using the modified bancsaz
depth as the given univariate functional depth; the weightsas
associated to the variables are constant with respectto 7. sae
In [22], Hubert et al. noted that the generalization bysso
Claeskens et al. [4] does not always allow the detection ofs1
all types of functional outliers, namely, shape outliers. Indeedss2
low-depth samples stand near the boundary of the dataset butss
may not be outliers. Conversely, high-depth samples may
present outlyingness in their curve shape because, pointwisesss
the curve does not exhibit any significant deviance in eacless
variable, as this generalization is the sum of the individuakss
univariate functional depths. To address this, the entire shapess?
of the curve should be considered. 358
A few studies incorporate curve shape into a multivariatesse
functional depth measure. Recently, Kuhnt and Rehage [26}so
proposed the functional tangential-angle (FU NT A) pseudoss:
depth, which considers curve shape based on the intersectiorss2
angles of the centered variables (i.e., the variables are scaledbss
so that their integral over 7 values is 0). More precisely, foses
each variable, FUNT A computes the intersection angles ofes
a given sample x;; with all the other samples x ;, Vj # i, ancss
then averages these angles over the number of intersection anaer
gles of x;; and over the variables k = 1...p. Thus, FUNT Ases
separately considers the shape for each variable with respectse
to ¢, but not the shape between the p variables. 370
More recently, Dai and Genton [8] proposed the direcs7:
tional outlyingness measure (Dir.out), which considers curverz
shape through the weighted pointwise direction in R? of thess
vector X (t) toward the median of the distribution of X (f)7s

The purpose of the weights is the up-weighting of the direc-
tions in which the outlyingness of X (¢) is likely to appear.
In contrast with the aforementioned multivariate functional
depths, which provide a score in [0, 1], the Dir.out depth
returns a vector in R? X R* corresponding to the concate-
nation of the mean directional outlyingness (in R”) and the
total variance of the directional outlyingness (in R*). A final
outlyingness score is computed as the robust Mahalanobis
distance between this vector and a mean vector of the same
type computed on a subset of independent samples. Then,
the upper tail of this distance distribution is approximated
by an F-distribution, and the outlyingness threshold is de-
fined as a high-probability quantile of this F-distribution.
Hence, unlike in other multivariate functional depths, the
outlyingness threshold provided by the Dir.out approach is
not data-driven, as it is based on the (approximately) true
distribution of the outlyingness scores. However, in this ap-
proach, the parameters should be tuned by simulation and are
difficult to interpret beyond the statistical framework.

Multivariate functional depths are related to curve shape
through the individual behavior of the curve variables. Here,
we adopt a different approach, as we view a curve as a path
in R? and process it as a geometrical shape.

As all the aforementioned multivariate functional depths
yield an outlyingness score with unknown distribution (ex-
cept for Dir.out), an outlyingness threshold can be computed
from the resulting empirical distribution of the depth values
through a bootstrap procedure as in the univariate case [14].
It can also be computed from a training dataset based on the
receiver operating characteristic (ROC) curve.

In the experimental study (Section 5), weusethe FUNT A
and Dir.out functional depths as baselines because they have
been demonstrated to be promising for outlier detection in
multivariate functional data by regarding outlyingness as a
curve-shape feature.

2.3. Geometry-based functional-outlier detection
Representing functional data in a geometric framework
is a recent idea, and few studies have considered such repre-
sentations for outlier detection. Recently, in [48], Xie ef al.
proposed detecting outliers in univariate functional data by
decomposing each univariate functional sample into three fea-
tures: translation, phase, and amplitude. The authors defined
the translation of a functional sample by its mean over the
observation interval 7. Both the amplitude and phase compo-
nents are functional data extracted from the original samples.
The amplitude component reflects the vertical variability of
the functional data, whereas the phase component reflects the
horizontal variability. Analogously to the functional boxplot
by Sun and Genton [42] computed on the original dataset
(although the computational methods are quite different), the
authors proposed a method for constructing a functional box-
plot for each of the three components so that outlying features
may be identifying, and outliers may therefore be detected.
Xie et al. extended this method to multivariate functional
data and added other components such as shape orientation
(reflecting rotational variability) [47]. They additionally pro-
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Table 1 410
List of notations. A tilde always refers to objects related to1
the approximation functions. ¢, can be an element of ¢, as welki2
as an element of 7. By abuse of notation, we also use 7; taus

denote a vector of sampled observation points (¢, ... o). a1a
Notation Description 418

TCcR A closed real interval in which ¢ lies | 416

Xk Univariate function underlying the | 417

k-th variable of i for everyr € T
Multivariate function with p vari-
ables for every 1€ T

An element of the observation
points 1, (i.e., the observed dis- | 421
cretization of 7 with m; points) 422
Measurement of X, at the observa-
tion point ¢;

Approximated multivariate function
for everyt e T 425
Arbitrary discretization of T 426

X, = (x50 %;,)

427

vided useful visualization techniques for identifying outlying
features (in fact, they only focused on the bivariate, p = 2,
and trivariate, p = 3, cases, which are shape data extracted
from images). However, when the size of the dataset and
the number of variables p increase, this method is compu-
tationally costly, as the shape-based component-extractiomnss
procedures include several continuous optimization problemssze
Moreover, in these studies, the outlier-detection methods aresse
based purely on the empirical distribution (through the funcss1
tional boxplot) of the proposed geometrical features, whereass2
we map the original data to univariate functional data anckss
subsequently use an outlier-detection algorithm. The lattemss
can be seen as implicit non-parametric learning of the inliemsss
distribution based on the functional data mapped to a geosss
metric curve feature. Hence, we take advantage of both thess?
geometrical mapping and the outlier-detection algorithm. 438

3. Background in functional data

This section is concerned with the handling of highssz
dimensional vectors of discrete noisy measurements that camas
be represented as smooth continuous functions; moreoversas
we discuss how such representations can be achieved. A listas
of notations is provided in Table 1. The functional data repsss
resentation is twofold: (i) As the X ;8 are smooth functionsgaz
the reconstructed data are noiseless. (ii) The reconstructedsas
data are “aligned” in the sense that two reconstructed samplesas
values X (t;) and X,(,) t; at 1, are comparable, as they refenso
to the same evaluation point 7; € 7. This is not the case irrs*
raw data because one can have 7, # 1, (the curves can bess2
sampled on different grids). 453

454
3.1. Functional-data representation 455

The first step in FDA is to approximate an unknowrss
smooth function X; : t — RP”, which underlies the sampless
i, by another smooth approximation function X [(1),Vt € Tass
through m; discrete noisy measurements X;(1y), ..., X;(t,, )#%°
this is referred to as the functional approximation step. Itseo

purpose is to remove the noise, thus allowing accurate eval-
uations of some derived functions, such as combinations
of derivatives and integral functions. This is necessary in
our case, as the proposed mapping functions correspond to
combinations of derivatives and integrals.

We should first select a functional representation as an
approximation function. As a function is intrinsically infinite-
dimensional, in FDA, it is commonly assumed that the under-
lying function can be approximated by a finite linear combi-
nation of non-linear basis functions. Such an approximation
is called a basis expansion function [32]. We assume that
X;i, the k-th variable (hence a univariate function) of X, is
to be approximated. The intuition behind the basis expansion
is to combine a small number of “specific functions” (a set
of given functions), each of which can capture some local
features of the underlying function x;;, so that x;; could be
recovered with a small approximation error. This approxima-
tion function can be formulated as

L,

Vi T, 5y (t) = ) (1) = o p0) (1)
=1

where @) = {¢;(D}1</< Ly is a vector of orthonormal basis
functions at ¢ for some L;;, € N* (referred to as the basis
size) with fewer basis functions than sampled observation
points (L;;, < m;), and a;( = {ay h1<i<r,, 18 the coefficient
vector, the element a;;; of which is the importance of the /-th
basis function.

Another choice of functional representation in FDA is to
use non-parametric smoothing [16], which achieves a sim-
ilar approximation, but its form is less tractable than that
of the basis expansion function (for instance, to compute
derivatives).

According to Eq. (1), one should select (i) the basis
{¢1}1<i<r,, and (ii) the basis size L;.

The coefficient vector is computed from the data (see next
paragraph).

The choice of the basis is data-dependent. As suggested
by Ramsay and Silverman [32], when the data are smooth and
periodic, the Fourier basis should be selected; when the data
are smooth, a spline basis is suitable. A spline is a piecewise-
polynomial function of order at least three [9]. If the data
have irregularities, a wavelet basis should be preferred [31].
See [33] for other examples and details on the choice of the
basis according to the data. The choice of the basis-size pa-
rameter L;;, depends on the selected basis. An inappropriate
choice of the basis results in requiring a large L;; because
each basis function will focus on an irrelevant part of the
data variability (low bias and high variance or, high bias and
low variance); the worst case is to capture the noise, leading
to over-fitting [32]. By contrast, an appropriate choice of
the basis functions results in a small L;;, that is, the basis is
sufficiently rich to approximate an unknown function using
few functions. Subsequently, once a suitable basis is selected,
the bias—variance trade-off should be considered. This refers
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to the balance between the approximation error and a rea-
sonable L;, [32]. Such a balance is generally achieved by a
grid search by cross-validation for each sample i and variable
k. When ¢(t) and L;, are specified, a computing method
is required to estimate the coefficient vector «;;, which i$°°

introduced in the next paragraph. 501
502

3.2. Functional-data fitting 503
The linearity of the basis expansion function with respectos

to the coefficient vector oc;;c enables its efficient estimatioreos
(assuming the data were sampled with a noise ¢; > that issoe
xic(t;;) = X (t;;) + €5, where ¢;; is independent of X (7;;)¥o7
by minimizing the least-squares criteria: 508

J (@) = Z(Xik(tij) — %)) (2312
j=1 513

or equivalently, with vector notation,
J(aj) = llxp (@) — D’ 3y

515

I @) = lxg(t;) = Ry |” + A Ry, (6)

where Ry = ([, D¢;()D¢,,(NdN) <j<p, 1<mer,, 183 LigX
L, positive semi-definite matrix. The matrix R;; contains
the inner products of the g-th derivative of the L;; basis func-
tions. This matrix can be computed provided that the g-th
derivative of the basis functions exists. In practice, it is com-
mon to choose ¢ = 1 or g = 2 (i.e., to penalize the velocity
or acceleration of X;;, or a combination of both).

As J A remains quadratic with respect to ¢, approxi-
mating X;;, with a roughness penalty is equivalent to ridge
regression [21, 20]. Thus, the penalty term allows X;; to
(i) be smooth, as defined by the operator D? and, (ii) avoid
over-fitting by pushing the coefficient vector toward 0. Equat-
ing the gradient of J; to 0 with respect to a;; leads to the
following minimizer [20, 32]:

“jk,z = (q);c(pik + AkRik)_lq’;cxik(tt.)

@)

3.3. Approximation functions as building blocks
Once the coefficient vectors have been estimated for the

where ||-|| stands for the /,-norm, and @;; = (¢;(7;;))1<j<m, 181« p Variables of the n samples (with or without penalization),

is the m; X L;;, matrix containing all the L;, basis functions:,
evaluated at the observation points. Thus, ®;, is a discretizasis
tion over 7; of the vector of orthonormal basis functions:e
ag(t) in Equation (1). As L;; <« m; and ®;;, has all itsx
columns linearly independent, by the orthonormality of the.
basis functions (and thus orthonormality of the columns of.-
D), (I)I(d)ik is invertible. Hence, equating the gradient of

J to 0 with respect to a;;, leads to the following minimizer:***
524

525
526

“)

527

af = (@] ®,;)" @ X, (1)
which is known as the classical least-squares solution [20]. **®
However, as the data are fitted according to the basis***
functions, the smoothness of X;; depends greatly on the nois¢*°
influence on the basis functions. Consequently, X;, may lack**
smoothness and overfit the data. To analyze such a noisé€>*
influence, one can compute the derivative of X;,, which i$*?
“excessively” variable if a large amount of noise remains’>*
in the approximation function. To ensure smoothness, thé*®
least-squares criteria should be minimized by penalizing the>®
derivative(s) of X;; with an amount 4; > 0 as follows: 837

I () = Z(xik(tij)_iik(tij))z"')’k /T(in,-k(t))zdt (5)

j=1

where DY = % is the g-th derivative of X;,(f). More gen-

erally, DY can be any linear combination of derivatives of__
X, that is, a linear differential operator [32]. A penalizag39
tion term including derivatives is also known as a roughness

540

penalty. The parameter 4, is arbitrary and can be computed,, |

by cross-validation. This is detailed in Section 5.3. Eq. (5),,
can be written using vector notation as follows:

we can consider the approximations X;, to be smooth multi-
variate functions that well recover the underlying functions.
Although these functions can be theoretically evaluated at an
infinite number of points in 7, in practice, there are two meth-
ods to handle the approximations computationally (e.g., to
compute derived functions such as derivatives and integrals):

(i) The first method is to compute the derived functions
based on the basis functions. As the basis functions
are known analytically, their derived functions can also
be obtained analytically. Thus, by the linearity of the
basis expansion, one can easily obtain the derived func-
tions of the approximation functions (the integral and
derivative are linear operators). We illustrate this us-
ing the k-th derivative of the approximation function.
We assume that an unknown function x is approxi-
mated by X through a basis expansion with a basis
size L (in Eq. (1)), provided that the k-th derivative
{ Dk, (1)} 1<i<r, Of the basis functions exists, and the
coefficient vector {a;} ;< is available (or has been
estimated as in Eq. (4))._’l:he k-th derivative of X with
respect to ¢ is D%, where

L L
Vie T, Dks(t) = D* [ D (1) | = D oy D py(0)
1=1 =1
¢))
(i) The second method is to estimate the underlying func-
tions by evaluating all the approximation functions on
the same grid T. Thus, from these estimates, one can
compute derived functions, such as integral or deriva-
tives, using numerical methods, such as quadrature
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or finite difference schemes, respectively [41]. These
methods are easy to implement, but they do not con-
sider the basis functions and require that the arbitrary
grid be sufficiently fine (so that the approximation func-
tions are evaluated at a large number of observation
points).

Thus, if the derivatives of the basis functions are known (as is
the case for splines, Fourier basis functions, etc.), the deriva-
tives of X are also known and need not be estimated from
the raw data or the smooth reconstructions of the original
data from X by a noise-sensitive and costly method such as
finite differences. This example demonstrates the flexibility
of the linear basis expansion for computing derived functions
in FDA. Then, a derived function, for instance D!%, can be
evaluated on an arbitrary grid. Such an approach is different
from estimating the derivatives from an evaluation of ¥ on_
the grid by using finite differences. v

The first method is safer than the second because the an-
alytic form of the basis functions is fully considered, and
therefore the corresponding derived functions can be ob—01
tained accordingly. For instance, if the basis functions ¢, are
B-splines (which are plecew1se polynomial), we know the
analytic form of D'%, as D' ¢, results in a piecewise polyno- *
mial as well. Thus, the evaluation of D'% by the first method i
provides more accurate estimates of D!x (which is unknown)
than numerical methods applied to % evaluated on a fine grid®®
of T. wor

In the following part, we suggest some mapping func-
tions for capturing functional outlyingness in the detection
process. These mapping functions may have a complex ana-
lytical form because they involve several derivative functions
(primarily first and second derivatives, as well as integral
functions). Therefore, it is mandatory to have accurate evalu-
ations of derivative functions, and accordingly we follow the
first method in the computational experiments.

4. Shape-based representation for wos
multivariate functional data c00

We regard a multivariate curve as a path lying in a psto
dimensional space, specifically R? (see Fig. 1(a) for an exs1
ample in R?), and derive mapping functions (aggregatiors:z
functions of the variables), established in differential geoms:3
etry, to capture shape features of the curves (e.g., lengths4
velocity, or curvature) so that outlying features may be dess
tected. These mapping functions have been used in shapeste
analysis, for instance, to extract features based on the edge (&7
bivariate curve) of an object in an image [40]. o1s

In this section, we investigate several mapping functionse
that enable the detection of multivariate functional outliersze
from the shape they exhibit in R?. Such mappings jointly cons21
sider the p variables, as they aggregate, in several ways, somes2
derivatives (with respect to 7) of the curve variables. Hence,
the individual and collective variations of the variables are
considered. These mapping functions take each data sam-
ple, represented by its smooth approximation function X, as

X2
o = (x1(t),xz(t))
© = (x1(to), x2(to))

ds(ty) ds(t)

dxq(to)

dx;(tg)  dxq(t)

X1

Figure 2: Arc-length mapping. The length of the curve between
two observation points #, (dark-grey dot) and ¢ (white dot) is
defined as the sum of infinitesimal length elements ds(t,)...d s(¢)
along the curve (red diagonal arrows) for all 7. The crossed-
circle dots represent such points between 7, and ¢.

input and return a univariate curve (i.e., the resulting aggre-
gation) reflecting certain shape features. Hence, they provide
a means to “summarize” the shape of a multivariate curve, in
the sense given by the mapping function, and reduce the num-
ber of functional variables to one. The univariate function
returned by a mapping function is then fed into an outlier-
detection algorithm; this is detailed in Section 5. In the sequel,
we simplify the notations by referring to a functional-data
sample as an arbitrary curve X = (x}...x...x,) instead of
X; = (XX X))

4.1. Arc-length mapping

The arc-length mapping function enables analyzing the
length of a curve between two points in 7 (see Fig. 2). Let
X (¢) be an arbitrary curve depending on a continuous variable
t € T. Forty € T and ty < ¢, the length s(7) of the curve
that X (-) represents from #, to ¢ is

t t
s(t>=/ ||D1X<u>||du=/
to to

where ||-|| stands for the /,-norm in R?. Hence, the arc-
length maps an original functional-data sample to univari-
ate functional data that represent the increases in the cu-
mulative length of the underlying curve from the starting-
point X (#y) = ((x;(#g), x,(ty)) to an arbitrary point X (¢) =
((x1(#), x5(#)) for t > t,. Fig. 2 shows that the length of a
bivariate curve between X (¢,) and X(¢) is the infinite sum
from f,, to t of infinitesimal length elements ds(-) (aka in-
tegral), corresponding to an infinitesimal length element in
each direction (x; and x,) in R2. We note that this mapping
always returns a positive increasing function, as it computes
the cumulative length of the initial curve. Moreover, the
arc-length mapping function is not influenced by a warping
(i.e., a horizontal deformation) of the curve 2 [40]. This map-
ping function can discern functional samples with a shape of

2Let a(-) be a differentiable warping function i.e., a monotone non-
decreasing function defined in 7 — 7 . The arc-length mapping function on
a warped functional datum X is equal to the arc-length mapping function on
the initial unwrapped functional datum: s(a(?)) = /I(I)HDIX (a(u))||du =

/,3<D1X(a(u)), D' X (a(u)))/?du = /t(’) D'a(u)(D' X (a), D' X (a))'/?du,
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X2
0 = (x1(D), % (1))
P(t)

Ip*x@ |,
dez(t)

dxq(t)

X1

Figure 3: Velocity mapping. The norm of the tangent vector
D'X () (red diagonal arrow), the components of which are
infinitesimal variations (dx,(t), dx,(¢)) (shown by the horizontal
and vertical red arrows) of the variables of the curve allows the
computation of the speed at which the curve “progresses.”

different size, which is a global shape feature. Thereby, the
detection of functional outliers can be improved when their
underlying curve is longer or shorter than those of the other
samples. For instance, an isolated outlier, which exhibits a
peak for a small part of 7, induces a sharp increase in its
curve length, whereas the length of other curves increases
more slowly.

4.2. Velocity mapping

The velocity mapping function enables analyzing the
instantaneous variations of the curve with respect to ¢. It has
a simple interpretation when ¢ corresponds to a time instant.
In this case, velocity measures how fast a point moves on the
curve. More generally, it can be interpreted as the norm of
the projection of the curve onto D' Y (¢), the tangent vector
to the curve at ¢. In Fig. 3, the velocity mapping at ¢ of a
bivariate curve is shown as the l,-norm || D' X (¢)|| of the
tangent vector D! X (¢) (vector of the first-order derivatives
of the curve variables x; and x,). It is defined as

w(n) = ID' Xl (10)

and is related to the arc-length mapping by w(¢) = %, or

conversely, by s(t) = /z:) w(1)dt; however, these mappings

capture different features. Indeed, the arc-length mapping

outputs an increasing function and thus “memorizes” the lo-
cal variations of the curve as # increases, whereas the velocity**
mapping characterizes the local variations (i.e., pointwisepss
with respect to ¢. The function returned by the velocity mapszss
ping may be regarded as a measure of the variation of the

arc-length mapping. Thus, the velocity mapping can be used
to identify the local outlyingness of a sample (isolated out®*”
lier). ese
659
4.3. Curvature mapping o60
Curvature is a notion that relates to how “bended” a curvess?

is, or geometrically, the degree to which a curve deviates from
the tangent line at a given point. An alternative interpretation, ,

and as D'a() = &, we have Ji D'a(u)(D' X (@), D' X (@)!/*du =63
/,(’)(DIX(a),DlX(a))lﬂda /,(’)||D1X(a)||da, which implies thasea

s(a(?)) = s(2). 665

X2
© = (x;(t1), %,(ty))

D'X(ty)

X1

Figure 4: Curvature mapping. Curvature is defined to be the
inverse of the radius of the osculating circle. In this example, in
a neighborhood of the curve at ¢, (dark-grey dot), the tangent
vector D'X(t,) has almost the same direction; hence, the
osculating circle has a large radius (r(t,) = #})) resulting in a
small curvature. In a neighborhood of the curve at ¢ (white dot),
the tangent vector D' X (¢) quickly changes direction; hence, the
osculating circle has a lower radius, that is, a higher curvature
than at ¢,.

concerns the radius of the osculating circles. At a given
point ¢, a smaller radius of the osculating circle implies larger
curvature. In fact, the radius of the osculating circle is equal
to the inverse of the curvature at this point. The bivariate
curve in Fig. 4 shows that at a neighborhood of #; where
the tangent vector D'Xx (¢;) has almost constant direction, the
osculating circle has a larger radius (¢ ) than the radius of the
osculating circle at a neighborhood of  where the direction
of the tangent vector D' X(¢) changes quickly. Thus, the
curvature mapping function allows analyzing the change of
direction of the curve with respect to ¢. Indeed, if the curve is
a line, curvature is constant, and the curve directions remain
constant as well. Curvature is defined as
1 DX
1D Gorxaop!

1) =
KO = DX

an

or equivalently,

_ VIDIX@IPID>X 0> — (D' X (1), D> X (1))>

Kk (1)
ID'X 01
12)
where (-, -) denotes the inner product in R”. We now provide
1
insight into the definition of x in Eq. (11). ﬁ is the di-

rection vector (i.e., the normalized tangent vector); therefore,
1 DX
1D X @Il
the normalization || D' X ()| relates to the rate of change of
the direction with respect to the tangent vector. Consequently,
the curvature mapping can detect functional outliers with a
curve that exhibits a differently bended shape than those of
the other samples.

is the rate of change of the direction vector, and

5. Experimental study

We conducted an experimental study on real and synthetic
datasets to demonstrate the effectiveness of the proposed map-
ping functions in improving outlier detection in multivariate
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functional data. The detection performance was evaluated inv22
terms of the true detection rate (i.e., the proportion of outliers=s
correctly detected), false detection rate (i.e., the proportionza
of outliers falsely detected), and area under the ROC curverzs
(AUC) 726

727

5.1. Real data
5.1.1. ECG data 720

We tested the proposed approach on the real dataset used,,,
by Dai and Genton in [8]. The dataset consists of electrocar-
diogram (ECG) time series of the electrical activity (voltage),
of heart changes [19]. Such data can reveal abnormalities,s,
in heart activity. The time series are univariate and were,s;
labeled by cardiologists as abnormal or normal. This dataset,,,
has been used for time-series classification [46]. We augsss
mented the data set by bivariate time series to demonstrate,sq
the applicability of the method to multivariate time series. ,3,

There are a total of n = 810 time series including 2085,
abnormal and 602 normal cases. All the time series have an,,,
equal size of m; = 86. In contrast with Dai and Genton in,,
[8], who only considered the time series between the time,,,
stamps ¢ = 6 and ¢t = 80 to avoid boundary effects, we cons,,
sidered the entire time series to demonstrate the robustness,,;
and applicability of the proposed approach. Dai and Genton,,,
also augmented the univariate time series to multivariate by,
adding the first and the second derivatives. We did not follow,
this, as in the proposed approach, these aspects are consids,,
ered (e.g., velocity mapping in Eq. (10) or curvature mapping,s
in Eq. (11)); rather, we added the squared time series. Indeed,,,
power is proportional to the square of voltage. Thus, in terms,s,
of interpretability, this data augmentation appears to be more,s,
relevant than that by the second derivative of voltage. We,s,
applied the same multivariate functional data augmentation,s,
to all ECG-data experiments and for all methods; we did not,,
apply the derivative augmentation, as this would bias the,g
interpretation of the results, that is, it would not be possible,se
to discern whether the results were due to the specific augss,
mentation or to the method. This would be of interest if the
focus was specifically on the ECG data, but here, we use it
as a real dataset example.

As in [8], to obtain a rare class of samples representing
outliers, we randomly created a partition of 400 samples (i.e.,
the training set) out of the 810 samples by parameterizing
the contamination level (i.e., the rate of abnormal samples)
in this partition to 5%, 10%, 15%, 20%, and 25%. Then, for
each contamination level, we evaluated the proposed method
on the 410 remaining samples (i.e., the test set).

728

5.1.2. Pen-digits data

We also tested the proposed method on another real data-
set consisting of n = 10992 bivariate time series representing
pen digits (PenDig) [12]. The digits are labeled according
to their class (i.e., from 0 to 9). Each digit has m; = 8 ob-
servation points regularly sampled on both the horizontal
and vertical coordinates. As this initial dataset cannot be
considered high-dimensional, we upsampled it by linear in-
terpolation to m’ = 200 on the two coordinates before fitting
the approximation functions.

To simulate the outlier classes, we considered a single
digit to be the outlier class, and the nine other classes to be
the inlier class, as in [36]. The training set was generated
using 75% of the entire dataset with a contamination level
equal to ¢ = 5% (i.e., 5% of the training set are outliers).
Each digit was separately considered the outlier class, and
thus the experiment was conducted in 10 independent ways.
Then, for each case of outlier class, we assessed the proposed
method on the test set.

5.2. Synthetic data

We simulated multivariate functional data sets according
to the five models proposed by Dai and Genton in [8]. To the
best of our knowledge, this is the most recent study concerned
with outlier detection in multivariate functional data provid-
ing performance results (detection rates). For each of the five
simulation models, n = 150 bivariate curves were generated
on a regular grid of size m = 200 in the real interval [0, 1].
Among the n curves, ¢ = 10% (referred to as the contamina-
tion level) were outliers. Regardless of the simulation model,
all uncontaminated curves were simulated according to a
unique uncontaminated model U (except model 5). Hence,
the models 1, 2, 3, 4 had a common uncontaminated model U
(Eq. (13)) and different contamination models X .;, X5, X3,
X .4, respectively, which generated the two classes of outliers
(isolated and persistent). We recall that, compared with the
rest of the dataset, isolated outliers exhibit outlying behavior
in a small part of the domain 7', whereas persistent outliers
exhibit outlying behavior in a large part of 7. Testing the
proposed approach and the baselines using different types
of outliers enables assessing the efficiency of each mapping
function in a given context.

The uncontaminated model was simulated according to
a bivariate Gaussian process GP(u(t), Z(s,t)) [34], with a
constant mean function u(t) = 0, and a cross-covariance
function C}, between the two variables indexed by k and r,
as follows:

C.(s,1) = pyor.0, M(|s=t|; vy, Br,) k,r=12ands,t €

where py, is the correlation between the variables x; and
X5, P11 = Pop 18 the variance of each variable, o, and o, are
the marginal variances,
M(h; vy, By,) = 21T ()1 (B AV K, (B] h|) is the Matérn
class function [30] (K, is a modified Bessel function [3]),
Vi, > 01is a smoothness parameter, and . > 0 is a range
parameter. For this simulation, we used the same parameter
setting as in [8]: pj, = 0.6, p;; = p22 =1,0; =0, = 1,
vit = 1.2, vy = 0,6, v = vy = L, iy = 002, fp; =
0.01, and f;, = p,; = 0.016. This covariance function
is implemented in the R package [37]. We summarize the
uncontaminated model U (¢) = (u, (1), u,(¢))" as follows:

Cll C12> >
C21 C22

13)

Ut)~GP = (M(t) =(0,0)"; (s, 1) = <
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The five contamination models are (we annotate the varisoo

ables with an index c referring to “contamination”): 810

1. Model 1 (persistent magnitude outlier): X, (¢) = 4U (IZ:

2. Model 2 (isolated outlier): X ,(t) = U@)(1+111,_,. /5 1)

where I is the indicator returning 1 if the indexed con®**

dition is true, and 0 otherwise, and Z is a unifornf*®

random variable in [0, 0.9]. 816
817

3. Model 3 (persistent magnitude outlier), the contaminasis
tion model is different for the two variables: X ;(f) =10
(XI,CS (l), x2’63(t))T, with Xl,c:;(t) = 1.7“1 (t) and x2,63(t92F
1.5uy(2).

4. Model 4 (isolated outlier): X (1) = U@)(1+41 7 ;. 710.1)>
with Z as in model 2.

5. Model 5 (persistent shape outlier), the new uncontam-
inated model is referred to as Y, and the contamina®**
tion model as X 5: Y (¢) = (y;(1), yz(t))T with y, (1) =2
u (t) + Z, cos(dxt) and y,(t) = uy(t) + Z, sin(4x1)3*?
where Z,, and Z, are independent uniform randon?**
variables in [2,3]. The contamination model X 5 i$*®
X1.05() = u (1) + Z; cos(4xt) and x, 5(1) = uy(t) +5*°
Z,, sin(4rxt), where Z,,, Z,, are uniform random vari#*”
ables on [4, 5]. 828

829

830

5.3. Experimental protocol
5.3.1. Functional approximation
Without loss of generality, we selected 7 = [0, 1] as thes32
domain (closed interval) of ¢ for all the data sets. We recalk33
that we represent all the curves in the common interval 7 bee34
cause we assume that the functional samples were generated®3®
by a random function depending on ¢ relating to the sames3¢
event in R”. For instance, when the samples are measure3”
ments of a given process depending on ¢, which represents3s
time, 7 can be viewed as the relative temporal range of the#s®
process (i.e., from the beginning at # = 0 to the end at t = 1)34°
and t € T = [0, 1] can be interpreted as the progress rate of4
the process. 842

831

843

Choice of the basis of functions For the ECG and the
PenDig datasets, we approximated each variable of the big*4
variate time series by a basis consisting of B-splines of orde®+s
eight (B-splines are piecewise-polynomial functions of ordes+e
at least three, and are located at a given observation poin®4?
t € T). Indeed, we noticed that in this dataset, the curves4s
exhibit a smooth pattern without periodicity; hence, the B
spline basis is a suitable choice (as recommended in [32]). 85°
For the synthetic dataset, we approximated each variabless*
of the bivariate time series by a Fourier (sine and cosine®?
functions) basis with a fundamental period of T = % = I**
(i.e., the length of 7). The Fourier basis was deemed suitable’®*
because we noticed low-frequency periodicity (induced by, __

the covariance function C, (s, )) over T . aso

Application of the functional-data fitting procedure W&’

now provide the computational details of the functional-data’
859

fitting. Following the recommendations in [33, 15], for all
datasets, we selected both the penalization 4, and the basis
size L;; for the variable k of sample i through a leave-one-
out cross-validation procedure over a given grid search for
A, and L;;,. We penalized both the first- and second-order
derivatives of % ;1. to gain smoothness in the mapping-function
output. We note that for all the samples of a given variable k,
we equally penalized the approximations X;; by the same A,
to compute the coefficient vector e, . Then, by computing
the coefficient vector a7, according to Eq. (7), we selected
the value of A, and L;, < m; that minimize the leave-one-out
cross-validation score CV; (L),

el . 2
V(L= (xik(tj) - fcl.kj(tj)> (14)
j=1
where Sci_kj corresponds to the approximation of x;;, by

L;; basis functions by omitting the pair (¢}, x;(7;)) in the
functional-fitting step, as in Eq. (5), where the penalization
is Ay.

For the ECG and PenDig datasets, the grid search of 4
and 4, was fixed on logarithmic scale in [-9, —1], with a
thickness of 0.1. The grid search of L; was fixed at the
integers between 35 and 60, that is, for a given integer L, €
[[35, 601, the L;; B-spline functions were regularly placed in
T.

For the synthetic datasets, the grid search of 4; and 4,
was fixed on logarithmic scale in [-9, —4], with a thickness
of 0.1. The grid search of L;, was fixed in [20, 25]], that is,
for a given integer L;; € [20,25]], the synthetic data were
approximated by the first L;;, frequencies 2z X F X 1,,,2x X
F x L;;.. Then, for each variable, we retained the coefficient
vector associated with both the optimal regularization and
basis-size parameters to recover the smooth approximation
function X; = (X1, %;).

Finally, we used the coefficient vector associated with
both the optimal regularization and basis-size parameters to
recover the smooth approximation functions X; on a given
grid and applied a mapping function to them.

5.3.2. Applying the mapping functions

We now explain the computational application of the
mapping functions and then how their output was fed to an
outlier-detection algorithm.

After computing the approximation functions X, we cen-
tered and scaled each variable x;;, with the empirical mean
and standard deviation functions computed from the training
set (see [32] for details on the computation of mean standard
deviation functions). This scaling prevents the mapping func-
tions from overweighting some variables with a wider range
than others. Indeed,

(i) The variables require to be scaled since the unit of
the output value of the arc-length mapping function
(Len,,,, in Eq. (9)) is intrinsically a length. Then,
we applied the three mapping functions introduced in
Section 4. As the arc-length mapping is the integral
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function of the velocity mapping, the arc-length mapeia
ping in Eq (9) was computed from the minimum of 7e1s
(i.e., t = 0) and was then integrated up to ¢ for all # € T e16
In these experiments, the integral was efficiently esez
timated by a Riemann sum, as in this study, all the:s
observation points were regularly sampled in 7, ancbe
therefore the sum converges to the integral. We note:zo
that if the observation points had been irregularly samez1
pled, the integral could have not been approximated:=
by a Riemannian sum, and numerical techniques, suchys
as Simpson’s or the trapezoidal rule, should have beerm-za
used instead [32]. 025

Regarding the velocity mapping V,,,,, in Eq. (10), thez :
first-order derivative of each variable of X; was comg,,
puted according to Eq. (8).

(ii)

929

(iii)

. . 930
Thg curvature mapping (Curv,,,,) requires t.he compu;31
tation of both first- and second-order derivatives. Thus,

we computed them as in Eq. (8) and combined them™
as in Eq. (11). o3

934

The approximation functions recover the functional dat#®

on the entire domain 7. Thus, the approximation functions*®
can be computed on an irregular grid, and therefore the com?23”
putation of the mapping functions should be carefully per23®
formed (e.g., (i) in the computation of an integral function)?3®
For both V,,,, and Curv,,,,, which are based on derivative*
functions only, simple and efficient derivative estimatiorf**
methods can be used, as mentioned in Section 3.3. 942
Each mapping function returns a univariate function. Thu8#?
applying a mapping function to all » approximation func2**
tions X, results in # univariate functional-data samples. We?*®
used the resulting univariate functional data in several outlier24®
detection algorithms. In practice, the functions returned by*”
a mapping function should be evaluated over a grid of ob2*®
servation points in 7 to obtain the output samples in vecto*®
form. As we selected 7 = [0, 1] for all datasets and the?>°
observation points are regular, the grid is a regular discretiza2®*

tion {#;...t;...t ; } of T with a thickness 0f§ (t; = 0 and for**

j>1,t ;= %). Hence, for the outlier-detection algorithms::
the data correspond to J-dimensional numerical vectors that, _
in turn, correspond to univariate functional data output by
a mapping function. We selected the thickness of the grid
as the original size of the time series for both the synthetic
and ECG datasets (ECG data set: J = m; = m = 86, PenDigjs‘3
dataset: J = m’ = 200, synthetic data sets: J = m = 200)éﬁo
An irregular grid can also be used to evaluate the approxi:-
mated functions, but the computation of the mappings should

be performed cautiously, as mentioned in (i) for Len,,,,.

964

5.3.3. Outlier detection from the functional output of a
mapping function oo

We detect outliers in the functional data returned by a°
mapping function using a state-of-the-art outlier-detection””
algorithm. To this end, we selected isolation forest (iFor) [27]:::

and a one-class support vector machine (OCSVM) [38]. iFor
is a bagging model that generates a large number of decision

6

trees grown on random subspaces. A subspace corresponds
to a subsample of features randomly selected from the full
feature space (here, {1...j...J }). Each tree isolates the data
samples based on a random split value of a randomly selected
feature from the subspace until all the data samples have been
isolated, or all the features of the subspace have been selected.
The sample outlyingness score returned by a tree is based on
the path length between the root node and the terminal node
of a tree. Outliers are samples that are easy to isolate and
thus have short path length in the trees. The path length is
normalized in [0, 1] so that if the score is close to 1, then the
sample is likely an outlier. OCSVM is a distance-based model
formulated as a constrained quadratic minimization problem,
the variables of which correspond to the radius and the center
of the smallest hypersphere containing the data. To allow
flexibility on the hypersphere boundary owing to the presence
of outliers in the training data, slack variables are introduced
in the objective function in addition to the two other variables.
The hyperparameter v corresponds to an upper bound on the
a priori proportion of outliers in the training set. A sample is
declared as an outlier if it lies outside the fitted hypersphere.
We used the radial-basis-kernel version of OCSVM with v
equal to the exact proportion of outliers in the training set.
The bandwidth hyperparameter of the radial basis kernel was
optimized by a 20-fold cross-validation procedure.

For the ECG and PenDig datasets, we set the number of
trees to 1000, and the subsampling size to 32 [27]. For the
synthetic datasets, we also set the number of trees to 1000,
and the subsampling size to 16. We randomly split each
dataset into a training set and a test set. As in [8], the training
set represents 50% of the data for the ECG dataset. The train-
ing set for the PenDig dataset consists of 75% of the entire
dataset. The training set contains 60% of the data for the
synthetic data. The training set was used to both fit the model
(iFor and OCSVM) and select an outlyingness threshold from
the ROC curve that discriminates inliers from outliers. We
then computed the outlyingness score of the test samples
and achieved detection using the previously computed out-
lyingness threshold. Regarding OCSVM, we finetuned the
bandwidth hyperparameter of the radial basis kernel on the
training set through a 20-fold cross-validation procedure on
the grid {2723...279} for the ECG dataset as well as the syn-
thetic data. In addition to the true and false detection rates
(p. and p, respectively), as a measure of discrimination be-
tween outliers and inliers by the proposed approach, we also
computed AU C from the labels of the test set.

The threshold-selection step is simple and is not part of
iFor [27] or OCSVM [38], which are both unsupervised. We
assume that the training data is labeled even if there are few
outlier samples. In real-world applications, the user has some
knowledge about the training data and can thus label inliers
and some outliers. If the training set surely has no outlier,
the proposed method only requires the modification of the
threshold selection rule. This modification is easy because
both iFor and OCSVM are unsupervised methods and output
a normalized score. Using the detection rule obtained by the
threshold, we compute two performance measures p, and
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py to demonstrate the complete application of the proposeebzs
method and compare it with the baselines. In fact, there are.27
other methods for learning an outlyingness threshold, suchvzs
as using a specific decision rule involving, e.g., an empiri-
cal quantile associated with a reference distribution of th&¥*°
outlyingness scores [8], or threshold selection from the mas3®*®
volume curve [5] when no outlier label is available, but thit’**
is beyond the scope of the present study, as we assume thdf**
the training set has low non-zero contamination level. 1033
To assess the proposed method with respect to a groundf>*
truth and without considering a threshold, we also evaluatg0 -
the results using AU C, which is a measure of discriminatiop03 .
between outliers and inliers. It is a standard performancg,
measure in outlier detection [13, 27] and demonstrates that
the proposed method can outperform the baselines regardleswss

of the computed outlyingness threshold. 1039

1040
5.4. Baseline comparisons
We compared the proposed approach with two recentaz
outlier-detection methods based on multivariate functionabas
depth (Section 2).
The first baseline method is FUNTA, proposed by Kuhnbas
and Rehage in [26] (see Section 2). It only requires centeringas
each variable x;; of each sample to a zero mean. As FUNTApaz
has been demonstrated to be robust to noise and can handless
curves of different size, we used it on the raw data withouibae
any functional data approximation. For the computation ofso
the outlyingness threshold, we applied the same proceduresa
as in the proposed method, that is, we selected the best outly-
ingness threshold for the training set using ROC and applieebs2
it to the test set. We used the R implementation proposed irps3
[35].
The second baseline method is Dir.out proposed by Dapss
and Genton in [8] (see Section 2). We used the same paramess
eter setting as in [8] and did not perform any functional-datees?
approximation. In this method, the outlyingness score iwss
based on the robust Mahalanobis distance of the directionabse
outlyingness vector computed on a subset of the data; in theseo
present case, we computed it using the training data to obtairps:
comparable results and to assess the performance measurewe2
on the test set. The tail of the distribution of the distances iws3
approximated by an F-distribution with degrees of freedorress
(p + 1,m — p), where p is the number of curve variables,
and m is calculated through a simulation procedure (see [8]9%°
p- 7 for details). Consequently, the outlyingness threshold i¥°°
not data-driven and is computed as a quantile of probabilit}**”
99,3% of an F-distribution. Then, we used the outlyingnes¥*°®
threshold on the test set to asses performance. We used th¥*°
R implementation provided by the authors. 1070

1041

1044

1054

1071

1072

5.5. Experimental protocol application

The performance of the proposed approach was evaluatetP™
by simulation for both the real and the synthetic data. Th&7
simulation settings for the ECG and synthetic data were as i#P7®

[8]. We proceeded as follows: 1076
1077

(i) We randomly generated a train/test split. For the ECGy7s
data, the training set corresponds to 50% of the full,,

dataset, for the PenDig data, the training set is 75% of
the dataset, and for the synthetic data, the training set
represents 60% of the full dataset.
(i) We then applied the proposed and the baseline meth-
ods. Except for Dir.out (baseline), which does not
require outlyingness-threshold learning because the
outlyingness score follows a known distribution (see
Section 5.4), the outlyingness threshold was learnt on
the training set based on the ROC curve.
(iii)) We evaluated the performance in terms of the true
detection rate (p,), false detection rate (p ), and AUC
on the test set.

For the ECG dataset (resp., PenDig dataset), steps (i) to
(iii) were repeated 50 times for each case of the five contam-
ination levels (resp., for the 10 outlier classes) (see end of
Section 5.1), and 500 times for the synthetic data for each of
the five models (Section 5.2).

The two real datasets are not used to assess the same
properties of the proposed method. The ECG data are used
to demonstrate the robustness of the proposed method with
respect to different contamination levels for some given out-
liers, whereas the PenDig data are used to assess the detection
performance for different outliers and a given contamina-
tion level. Thus, we only compare these two in terms of
performance, in the comparison of the various methods in
Section 5.6.4.

5.6. Results and discussion

We report the results for the ECG dataset in Table 2,
where for each contamination level ¢ (columns) and for each
method (rows), we provide p,, p 5 and AU C (sub-columns).
The results for the PenDig dataset are shown in Table 3, where
for each case of outlier class (columns), that is, a single digit,
and for each method (rows), we provide the three performance
measures as in Table 2. The results for the synthetic data
are reported in Table 4, where for each model (columns) and
for each method (rows), we provide the three performance
measures as in Table 2. In these tables, the value in a cell
is the average of a performance measure over the number of
simulations. We discuss the results below.

5.6.1. ECG data

The results for the ECG data set (Table 2) demonstrate
that the proposed method outperforms the baselines with
Vnap and Curv,,,, (V,,,, and Curv,,,, rows with iFor and
OCSVM, which are described in Section 5.3.3).

It can be seen that both V,,,, and Curv,,,, (with iFor and
OCSVM), provide constant p,., p Iz and AUC values with
respect to the five contamination levels (V,,,, and Curv,,,,
rows). We highlight this in Fig. 5, where it can be seen that
the proposed method (except for Len,,,, with both iFor and
OCSVM) outperforms the baselines in terms of the three
performance measures, which remain constant as the contam-
ination level changes. This shows that the outlying features
captured by these mapping functions are more robust to the

contamination level than those captured by the baselines.
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Table 2
Results on the ECG dataset.

Outlier detection results for the ECG data set with five contamination levels ¢. For each contamination level (columns) and each
performance measure (sub-columns), we marked the best results in bold (i.e., highest correct detection rate p, and AUC, and

lowest false detection rate p,). For all the contamination levels, the proposed method achieves the best results with ¥,

Curv,

map*

« and the

We also notice that, in the proposed method, for a given mapping function and outlier-detection algorithm, performance

does not degrade when ¢ varies, whereas for FUNT A and Dir.out, performance degrades as ¢ increases. The proposes functions

outperform state-of-the-art methods when there are few outliers.

c=5% c=10% c=15% c=20% c=25%
Methods . Pr AUC . Pr AUC e Pr AUC e Pr AUC pe p; AUC
FUNTA (baseline) | 0.85 0.60 0.78 | 0.86 0.50 0.81 | 0.88 0.42 083 | 087 029 0.85 | 0.85 0.24 0.86
Dir.out (baseline) 0.88 0.18 090 | 084 016 089 | 075 0.14 089 |063 0.13 087 | 055 010 0.86
iFor(V,,.,) 090 012 096 | 092 0.12 09 | 092 012 09 | 092 013 095 | 091 013 0.9
iFor(Curv,,,) 089 007 098 |09 007 098 | 091 0.08 098 |09 008 097 | 091 0.08 0.97
iFor(Len,,,) 054 028 070 |049 024 069 | 045 020 068 | 042 019 066 | 043 023 0.65
OCSVM(V,,.,) 097 010 098 | 097 016 097 | 088 0.17 092 | 090 0.13 094 | 088 0.18 0.92
OCSVM(Curv,,,) | 096 017 095 | 096 021 093 | 090 020 091 | 091 022 091 |090 023 0.89
OCSVM(Len,,,) 079 020 086 | 071 023 0.78 | 054 021 067 |065 027 072 | 058 028 0.66
The outlier detection with OCSVM from V,,,,, and Curv 3338 such cases, we obtain the best results in terms of AUC with

does not present the same robustness to the contaminatiomo
level as that with iFor in terms of p f (OCSVM(Vmap) anghzo
OCSVM (Curv,,,), and Fig. 2). Indeed, p; increases as the

contamination level c increases. Accordingly, OCSVM ap222
pears to be more suitable for datasets containing a small numz222
ber of outliers. This was also observed in [11]. Despite the=3
lower robustness, OCSVM(V,,,,) and OCSVM(Curv,,,,,) ares2+
better than the baselines, which exhibit performance degradazzs
tion as the contamination level ¢ changes. Indeed, FU NT Aze
is approximately constant as c¢ increases but degrades for27
small values of ¢ in terms of p (FU NT A row, p ; columnsjzs
Conversely, Dir.out is as robust as OCSVM(V,,,,) in terms2e
of p; (we note that the range of p, is the same for Dir.ouss
and OCSVM(V,,,,,)) but degrades in terms of p. for higkes:
values of ¢ (Dir.out row, p, columns). Thus, we recommengsz
using OCSVM when the contamination level is low [1 1§33
Curv,,g,, for OCSVM and iFor, is the most efficient mappings+
function in terms of p, (p, columns, Curv,,,, rows), angss
Vinap 1s the most efficient in terms of p, (p, columns, V,, 113
rows). Len,,,, has the worst performance (Len,,,, rows, p3s7
and AUC columns). 1138

map

1139

5.6.2. PenDig data
From the results on the PenDig dataset in Table 3, it cama:

be seen that the proposed method always outperforms theisz
baselines in terms of AU C. This implies that the baselines argias
not as effective in capturing shape outlying features. Wheinaa
the outliers are ‘0’ digits, the results by the baselines argiss
consistent with the results on the synthetic data when somess
shape outliers are simulated (Model 5 in Table 4). This is nataz
surprising, as Model 5 generates bivariate functional outliersiss
with an elliptic shape in R?; hence, a zero-like shape (‘0°). Asuas
an AU C value close to 0.50 implies that the detector performsiso
as efficiently as a random method, we note that the ‘0’ outliesisa
case is the only in which the baselines are effective. Thes=
baseline methods cannot distinguish different shape outliersss
with abrupt shape irregularities such as (smooth) right angles;sa
for example, when the outlier is the ‘1°, ‘4, or ‘5’ digit. limss

1140

Vmap. For more regular shapes, such as ‘3’, ‘6°, ‘8’, and ‘9’,

the best results are achieved by Curv,,,,.

5.6.3. Synthetic data

For isolated outliers (Table 4, Model 2 and Model 4
columns), the results on the synthetic datasets demonstrate
that these outliers are well detected by the baseline methods
as well as the proposed with Len,,,,, and V,,,, with iFor. In-
deed, as an isolated outlier exhibits large deviation in a small
part of 7, its underlying curve is longer than that of most
samples. Moreover, in these models, as the first derivative is
considered, the velocity quickly changes in the part of the do-
main where the isolated outlyingness occurs; thus, the V,,,,
function is an appropriate candidate for detecting isolated
outliers. Dir.out has the best performance in terms of both
p and p ;. Regarding Model 2, the proposed model outper-
forms FUNT A with Len,,,,, and V,,,, with iFor. Curv,,,,
exhibits poor performance for the two models. This implies
that it is ineffective in detecting isolated outliers. Indeed, the
contamination models (Model 2 and Model 4, Section 5.2)
generate stationary functional data (constant mean and only
lag-dependent covariance) except in the part of 7 where
the outlyingness occurs (here, a short peak). Thus, consid-
ering the second-order variations (second-order derivatives
in Eq. (11)) is irrelevant and leads to high p values (p,
columns and Curv,,,, rows). Moreover, there is a low corre-
lation between the curve variables, and thus Curv,,,,, which
captures deeper correlation features (bending in the curve,
see Eq. (11)) is not appropriate in this case.

For persistent magnitude outliers (Table 4, Model 1 and
Model 3 columns), Dir.out and FU NT A yield the best re-
sults in terms of both p. and p,. We obtain highly similar
results for Model 1 with V,,,,, and Len,,,, with iFor. Never-
theless, V,,,, is not as efficient for Model 3 as for Model 1.
Indeed, Model 1 has high contamination (high, short peak),
resulting in high velocity mapping values, and we recall that
velocity and curvature relate to local variations of the curves.

Consequently, as magnitude outlyingness is a global shape
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Figure 5: Performance on ECG data. The three performance measures p,, p;, and AUC, averaged over the number of simulations
as functions of the contamination level (¢ = 5%, ¢ = 10%, ¢ = 15%, ¢ = 20%, and ¢ = 25%) for each method (proposed in blue,

and baselines in red). We notice that when the contamination level ¢ increases, the proposed method (except for iFor(Len

ma)
p

and OCSVM(Len,,,,)) outperforms the baselines in terms of p,, p, and AUC. Moreover, performance does not degrade as

the contamination level changes, in contrast with that of the baselines. In terms of p,, FUNT A performs as well as V,
when used with both iFor and OCSVM but significantly degrades in terms of p, (i.e., it falsely detects outliers) for

Curv,,,

. and

low contamination levels. Dir.out performs as well as the proposed method in terms of p, but degrades in terms of p, for high
contamination levels. Hence, FUNT A performs well when the contamination level is high, and Dir.out performs well when the

contamination level is low.

Table 3
Results for the PenDig dataset.

Outlier detection results for the PenDig dataset when each of the 10 classes (‘0"...9") is considered an outlier (columns), and the
nine other classes inliers. For each case of outlier class and each performance measure (sub-columns), we marked the best results
in bold. It can be seen that for the ten cases, the proposed method is considerably better than the baselines, which are inefficient

for this dataset except when the outliers are ‘0’ digits.

Outliers '0’ Outliers '1’ Outliers '2’ Outliers '3’ Outliers '4’
Methods p. Pr AUC Pe Pr AUC . Pr AUC P. Pr AUC pe or AUC
FUNTA (baseline) | 0.40 0.22 0.60 0.01 0.21 0.51 0.22 0.19 0.58 0.23 020 0.52 0.23 0.21 0.53
Dir.out (baseline) 072 001 082 | 024 0.02 052 | 075 042 060 | 000 002 055 |0.00 0.02 058
iFor(VmaP) 0.78 0.05 0.87 0.44 038 0.79 086 0.15 0.63 0.61 0.45 0.66 0.74 0.09 0.77
iFor(Curuv,,,) 0.82 012 092 | 043 060 061 | 087 047 057 | 057 038 0.69 |08l 033 063
iFor(Len,,,) 063 026 059 | 046 056 064 | 059 012 065 | 029 023 064 |078 045 0.56
OCSVM(V,,.,) 0.82 002 085 | 050 051 075 | 077 035 060 | 053 041 066 | 078 0.18 0.74
ocCsvM(Curv,,,) | 0.80 011 091 | 050 0.60 070 | 0.55 023 059 | 056 044 068 | 0.61 0.15 0.66
OCSVM(Len,,,) 081 010 075 | 037 042 070 | 084 0.18 076 | 054 042 067 | 083 025 0.69

Outliers '5’ Outliers '6’ Outliers '7’ Outliers '8’ Outliers '9’
Methods . Pr AUC e Pr AUC e Pr AUC e Pr AUC pe Pr AUC
FUNTA (baseline) | 0.49 0.22 0.60 0.01 0.02 0.51 0.22 0.00 0.58 0.23  0.01 0.51 0.23 0.21 0.53
Dir.out (baseline) 0.43 034 059 0.43 0.17 0.52 0.43 0.16 0.65 0.43 0.17 0.60 0.43 034 0.61
iFor(V,.,) 069 026 069 | 056 036 061 |093 030 060 | 047 030 067 | 092 051 0.64
iFor(Curv,,,) 062 029 061 | 054 028 063 |093 021 0.8 | 048 020 077 |079 026 0.73
iFor(Len,,,) 042 013 061 | 047 021 0.64 | 097 029 065 | 040 008 077 | 074 040 0.63
OCSVM(V,,.,) 059 004 073 | 055 038 056 | 087 022 060 | 058 045 063 |070 025 0.70
OCsvM(Curv,,,) | 058 018 064 | 061 040 061 | 086 019 062 | 056 044 066 | 062 0.14 0.72
OCSVM(Len,,,) 0.67 030 062 | 0.62 047 057 | 079 013 061 | 051 024 060 |0.88 046 0.67

feature, Len,,,, is better than V., and Curv,,,, for detectinge For persistent shape outliers (Table 4, Model 5 column),

persistent magnitude outliers (Model 1 and Model 3 columns;e=
iFor(Len,,, p) row). This indicates that for detecting persistentes
magnitude outliers, the proposed approach is more reliableies
with Len,,, than Curv,,,, and V,

map map map* 1165

the proposed method outperforms the baselines with iFor(Len
yields results similar to those of Dir.out
in terms of p, and AUC. Table 4 shows that the state-of-
the-art FU NT A totally fails to capture shape outlyingness

Furthermore, V,,, »
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Table 4
Results on the synthetic datasets.

Outlier detection results for the synthetic data generated by the five models (columns), as described in Section 5.2. We compared
the proposed methods, iFor(-) and OCSVM(-), with the two baselines, FUNTA and Dir.out, in terms of three performance
measures (in sub-columns): correct detection rate (p,), false detection rate (p,), and AUC. For each model and each performance

metric, we marked in bold the best results (i.e., highest p, and AUC, and lowest p).

iFor with V,

wap and Len, . has a similar

performance as that of the state-of-the-art methods for most of the generating models. For Model 5, iFor(Len,,,) outperforms
the baselines.
MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5

Methods 2 Pr AUC Pe Pr AUC e Pr AUC e Pr AUC Pe or AUC
FUNTA (baseline) | 1.00 0.00 1.00 [ 092 0.02 099 | 096 0.00 1.00 | 0.80 0.04 099 | 058 0.31 0.73
Dir.out (baseline) 1.00 0.00 1.00 | 1.00 0.00 100 | 091 0.00 100 | 098 000 1.00 | 0.88 0.00 1.00
iFor(V,,.,) 099 000 100 | 091 002 100 | 069 025 082 |077 016 092 | 083 0.13 0.94
iFor(Curv,,,) 0.61 030 075 | 057 048 060 | 059 039 067 |057 048 061 |073 024 0.85
iFor(Len, ,,) 100 0.00 1.00 | 095 0.00 1.00 | 0.83 008 096 | 0.85 007 097 | 096 001 100
OCSVM(V,,.,) 079 022 087 |08 019 091 | 068 035 074 |065 014 084 | 042 014 0.77
OCSVM(Curv,,,) 049 034 065 | 060 052 062 | 048 038 063 | 042 044 061 | 043 037 0.65
OCSVM(Len,,,) 0.66 010 082 | 083 007 091 | 059 0.16 078 | 062 0.07 084 |050 0.06 0.83

because it is based on the intersection angles between theoa
samples and is computed for each variable separately. Thuszos
it fails to consider the correlation between them (as explainegkos
in Section 1).
As V,,,, and Len,,,, achieve satisfactory results, the geazos
metric characterization (velocity and length) of the samplegoe
provides a different type of outlier detection. We note thatio
functional-data approximation affects the geometric charagz11
terization. Indeed, functional approximation enables smoothzi2
ing out a curve and properly extracting derivative-based fea=1s
tures because the induced smoothing renders the samplegia
differentiable (see Section 3.3); this is not a required propertyeis
for the baselines Dir.out and FUNT A. Here, we carefullyzie
monitor the functional-approximation step using leave-onez=iz
out cross-validation (Eq. 14). Thus, in contrast with the ap=1s
proximation step, the outlier-detection step depends greatlyzio
on the mapping-function computation.
We recommend using Len,,,, in the case of (potentiakpz:
persistent magnitude or shape outliers. In practice, Len,, ;z22
does not directly indicate whether a sample is a shape or
magnitude outlier. However, as shape and magnitude aré
quite distinctive outlyingness classes, the class of such afi
outlier can be known a posteriori by visual inspection or by
setting a magnitude threshold with respect to the magnitude~°
of the outliers detected. If the outliers are suspected to be
isolated, we recommend using V,,,, and Curv,,,,, as both ™
mapping functions extract local curve features in R?. In the ™
case of a low contamination level, both OCSVM and iFor>"
are suitable (even though on the ECG data, OCSVM is better
for small ¢), whereas for high contamination levels, iFor s
better. 1
We demonstrated that each mapping function can detect
multiple classes of outliers. However, identifying the class
of an outlier detected by a given mapping function is not afi
easy task, and this issue will be addressed in future work. “**

1207

1220

3

1238

1239

5.6.4. Statistical assessment of the results
We followed the hypothesis-testing procedure recom;,,
mended by Demsar [10] to compare the statistical signif]

241

cance of the results obtained from all the methods tested on
various datasets to assess statistical relevance. Demsar pro-
vided an evaluation protocol for a more general assessment
of the difference between several classifiers used on multiple
benchmark datasets. The protocol consists of two steps: First,
a global significance test is conducted to determine whether
there is a difference among the evaluated methods. If this is
the case, the methods are pairwise compared to evaluate the
gain of one over another.

We applied Demsar’s protocol because the present detec-
tion task reduces to a two-class classification in the evaluation
step (outliers/inliers). Erfani ef al. [13] also used the same
evaluation protocol to assess the statistical significance of
several outlier detection methods. We applied the protocol for
the three performance measures p,, py, and AU C separately.
As described in [10, 18], there are several ways of conducting
the tests in the evaluation protocol, and we primarily applied
itas Erfani et al. in [13]. Specifically, we applied the protocol
as follows:

(i) First, the Friedman test [39] was applied to detect the
global statistical significance for each of the three per-
formance measures among all the methods on all the
datasets. The Friedman test can be viewed as the non-
parametric version of ANOVA (where, here, a group
refers to a method, and the samples in the group refer
to the performance of the method on the datasets), as it
is based on the ranks and thus does not make the Gaus-
sian assumption for the performance measures for each
method [10]. We conducted the Friedman test with the
Iman—Davenport correction [39], as recommended in
[10], to handle the well-known family-wise error rate,
which can bias the p-value in a multiple-hypothesis
test. We recall that in the present context, the family-
wise error rate refers to the probability of erroneously
asserting that one method is more reliable for detecting
outliers than some of the others.

(i1) Second, if statistical significance was detected by the
Friedman test, we performed a post-hoc test to deter-
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mine which methods are different. More precisely, the.os
post-hoc test is based on the p-values returned by geoe
pairwise-comparison test applied to all pairwise comsoo
parisons of the methods. A nonparametric test caiso:
be selected for the pairwise comparisons (owing tesoz
the absence of the Gaussian assumption), such as thesos
post-hoc Friedman’s aligned ranked test [18]. As thesos
all-pairwise-comparisons test is a special case of fsos
multiple-hypothesis test, it also suffers from the familysos
error rate and requires a correction procedure. Thusszoer
we used the Finner correction as recommended in [ 184s0s

We separately applied this evaluation protocol to the threzez:g
performance measures for the five contamination levels of the, |
ECG data, the 10 outlier classes of the PenDig dataset, and thg .
synthetic data to compare the methods on two distinct types of
data and to demonstrate the benefit of the proposed approach
on real data. Moreover, this enables assessing the difference, _
of the methods in a given context (i.e., when the outlier claslsm
is known). For all datasets, we used a significance level 01f3 .
0.1, asin [13]. a6

We report the average ranking (vertical axis) of all meth-
ods (horizontal axis) applied to the ECG and PenDig datasetg,,,
(resp., synthetic data) for each performance measure (colors),,
in a vertical-bar plot in Fig. 6 (resp., Fig. 7). Each bar has g,
height equal to its average rank (1 is the best, 8 is the worst),,.,
based on the post-hoc Friedman’s aligned rank test acrossg,,,
the five contamination levels (resp., five models). For p, ang,.,
AUC, the ranking is given in decreasing order, and for p 4,5,
the ranking is given in increasing order. The above number of;,,
bars refers to the global ranking (i.e., ranks from the averagg,,,
ranks). 1328

As the Friedman test yielded a significant result for thg,,,
two real datasets and the synthetic data, for each performancg,;,,
measure (p-values are given in the discussion), we report the,,,
significance (based on the p-values) of all the pairwise coms,,
parison tests. The significance of the pairwise comparisop,;,,
tests of p., ps, and AUC for the ECG and PenDig datasetg,,,
is given in Tables 5, 6, and 7, and for the synthetic data, ip,,,
Tables 8, 9, and 10. The significance (at level 0.1) of a tesf,,,
is indicated by #* , and non-significance is indicated by =,

ECG data. The Friedman test rejects the null hypothesiis::
of equivalence of the methods for the three performance,
measures at a significance level of 0.1. The p-values are

3.0 x 1071 for the correction detection rate p,, 3.0 x 10712,
for the false detection rate p,, and 2.2 X 107'¢ for AUG,,,
Thus, we conducted a post-hoc test. Fig. 6 shows the averagg,,,
ranking of the methods based on the Friedman’s aligned rank,,,
test (from the best 1 to the worst 8). The p-value of eacly,,
pairwise comparison in the post-hoc test is given in Tables 3,,,
6, and 7 for the correction detection rate, the false detection,,,
rate, and AU C, respectively, where a cell indicates whethep, ¢
the resulting p-value of the pairwise comparison test of thg,,,
methods in the corresponding row and column is significang,,,
The symbol = indicates a p-value greater than the significancg,,,
level of 0.1, allowing the acceptance of the null hypothesig,.,
of equivalence of the two methods; rejection is indicated by

#*.
Based on the results in Fig. 6 and Tables 5, 6, and 7,
it is seen that both V,,,, and Curv,,,, outperform the base-
lines in terms of the three performance measures. We notice
that Dir.out is not significantly better than the methods with
the worst performance (i.e., iFor(Lenmap), FUNTA, and
OCSVM(Len,,,,)). FUNT A is not significantly different
from iFor(Curv,,,,) and OCSVM(Curv,,,,) (Tables 5 and
7, FUNT A rows and columns). Thus, by considering the
results on the ECG data (Table 2 and Fig. 5), which demon-
strate that FU NT A is almost as effective as iFor(Curv,,,,)
and OCSVM(Curuv,,,,) in terms of p, when the contamina-
tion level is high (¢ > 15%), this qualitative comparison
is confirmed by the non-significance of the difference with
OCSVM(Curvmap). However, in terms of ps FUNTA is in-
effective and is outperformed by iFor(V,,,,,), iFor(Curv,,,,),
Dir.out, and OCSVM(Curvmap) (Table 6). Even though
Len,,,, yields the worst results among the three proposed
mapping functions with both iFor and OCSVM (Table 2,
Fig 6), it is not significantly different from Dir.out (see Dir.out

columns and Len,,,, rows in Tables 5 and 7).

PenDig data. The Friedman test rejects the null hypothesis
of equivalence of the methods for the three performance
measures at a significance level of 0.1. The p-values are
1.5%107! for the correct detection rate, 2.8x 102 for the false
detection rate, and 1.1 x 104 for AU C. We note that there is
consistency with respect to the ECG data except for the false
detectionrate p ;. Indeed, both V,,,, and Curv,,,, outperform
the baselines in terms of p, and AUC (Tables 5 and 7).
Moreover, among the three mapping functions, Len,,,, yields
the worst results and is not different from Dir.out. However,
there is an inconsistency regarding p in the PenDig data
with respect to the ECG data (Fig. 6 and Table 6). Hence,
as the proposed method is not ranked first in terms of the
false detection rate, it may be claimed that it recognizes the
outliers but tends to be excessively severe.

We note that this conclusion regarding the correct and
false detection rates is drawn according to the adopted out-
lyingness thresholding rule, which can be modified, as dis-
cussed at the end of Section 5.3.3.

From the global ranking (Fig. 6) and the pairwise compar-
ison tests, it may be concluded that the proposed method out-
performs the baselines on both the ECG and PenDig datasets.

Synthetic data. Regarding the synthetic data, the Friedman
test rejects the null hypothesis of equivalence of the methods
for the three performances measures at a significance level of
0.1. The p-value is 2.4 x 10710 for the correct detection rate,
2.4 x 10710 for the false detection rate, and 1.0 x 107 for
AUC. As the p-values are significantly low, we can conduct
a post-hoc test to compare the methods pairwise and assess
the gain of one over another. Fig. 7 shows the average ranking
of the methods according to the post-hoc Friedman’s aligned
rank test.

The significance of each pairwise comparison (based on
the p-value) in the post-hoc (Friedman’s aligned rank) test is
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Figure 6: Ranking of the methods (1 is the best, 8 the worst) for p,, p;, and AUC based
on the post-hoc Friedman's aligned rank test, considering the five contamination levels in
the ECG data (upper bar plot) and the PenDig data (lower bar plot). For p. and AUC, the
ranking is given in decreasing order (i.e., for high p, and AUC values, the rank tends to 1);
for p;, the ranking is given in increasing order (i.e., for low p, values, the rank tends to 1).
The y-axis represents the average ranking over the five models, and the integers on the top
of the bars represent the final ranking. If there are ties, we take the average ranking.

given in Tables 8, 9, and 10 for p,, Prs and AUC, respeasro
tively. We notice that Dir.out is significantly equivalent tesza
iFor(Len,,,,), OCSVM(Len,,,,), FUNT A, and iFor(V map3s-
and these methods are ranked first, second, and third on aversrs
age, respectively (Fig. 7). Thus, on the synthetic dataset, thesza
baseline methods are slightly better than the proposed methodszs
however, based on the pairwise comparison tests, the beskze
methods (i For(Len,,,,) and OCSV M (Len,,,,)) are statistiszz
cally equivalent. As discussed in the two previous paragraphsszs
the proposed method is superior on real datasets. Moreoversze
in the iFor rows and OCSVM columns, it can be seen thabso
there is a pairwise equivalence between iFor and OCSV Mse:
for (Len,,,,) and (V,,,,), that is, these two outlier-detectiomss:
algorithms are empirically consistent for a given mappingsss
function. Therefore, we have equivalent methods to achievesss
state-of-the-art results (which cannot be improved, except fosss
MODEL 5) for the synthetic data. 1386
1387

1388

Overall assessment. Tables 5, 6, and 7 (in the iFor rows
and OCSVM columns) show the pairwise consistency be-
tween the iFor and OCSVM algorithms for each mapping
function. The same holds for the synthetic data. Thus, for
a given dataset and mapping function, iFor and OCSVM
achieve statistically the same performance results. This im-
plies that the detection performance relies more on the out-
lying features provided by the mapping function than on the
capacity of the outlier-detection algorithm to discover outly-
ing features itself.

The main difference between the synthetic and the real
data lies in the relationship between the variables, which is
weak in the synthetic data (the correlation between the two
variables is p;, = 0.6, Eq. (13)), whereas it is stronger in
the real data. For Models 1-5, among the proposed mapping
functions, Len,,,, achieves the best results and appears to
be suitable for outlier detection if the variables are weakly
correlated, whereas V,, ., and Curv,,,, are preferable if the

map map
correlation between the variables is strong.
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Table 5

Significance of the pairwise comparisons for the correct detection rate p, on the ECG (upper
table) and PenDig (lower table) datasets. The statistical significance of the difference of
two given methods at level 0.1 is indicated by #* , and by = otherwise.

#* indicates that the corresponding methods in the row and the column of the cell are significantly different at a level of 0.1, and
= indicates that they are not. The lower triangular part was replaced by dashes because it is equal to the upper part.

FUNTA  Dir.out |For( Viap)  iFor(Curv,,,) iFor(Len,,) OCSVM(V,,) OCSVM(Curv,,) OCSVM(Len,,,)
FUNTA (baseline) X = = #* = = =
Dir.out (baseline) - X #* #* = #* #* =
iFor( mp) - - X = #* = = £+
lFor(Curump) - - - X #* = = #*
iFor(Lenmap) - - - - X #* £ =
OCSVM(V,,.,) - - - - - x = #
OCSVM(Curv,,,) - - - - - - X £+
OCSVM(LenM) - - - - - - - X
FUNTA  Dir.out iFor(V,,) iFor(Curv,,) iFor(Len,,) OCSVM(V,,) OCSVM(Curv,,) OCSVM(Len,,,)
FUNT A (baseline) X = #* # + #* £* #*
Dir.out (baseline) - X #* #* = #* #* #*
iFor(V,.,) - - X = #* = =
iFor(Curv,,,) - - - X = =
iFor(Len,,,) - - - - X = =
OCSVM(V,,,,) - - - - - X = =
OCSVM(Curv,,,) - - - - - - X =
OCSVM(Len,,,) - - - - - - - X
Table 6
Significance of the pairwise comparisons for the false detection rate p, on the ECG (upper
table) and PenDig (lower table) datasets.
Notation is the same as in Table 5.
FUNTA Dir.out |For( Viap) iFor(Curv,,) iFor(Len,,,) OCSVM( Vi) OCSVM(Curv,,,) OCSVM(Len,,,)
FUNT A (baseline) X = = = # = = =
Dir.out (baseline) - X #* #* = #* #* =
IFOI’( map) - - X = #* = = #*
iFor(Curv,,,) - - - X #* = = #*
iFor(Len,,,) - - - - X #* #* =
OCSVM( map) - - - - - X = #*
OCSVM(Curv,,,) - - - - - - X £*
OCSVM(Len,,,) - - - - - - - x
FUNTA  Dirout iFor(V,,) iFor(Curv,,,) iFor(Len,,) OCSVM(V,,) OCSVM(Curv,,,) OCSVM(Len,,,)
FUNTA (baseline) X = #* #* #* #* #* *
Dir.out (baseline) - X #* #* = = * =
iFor(V,,) - - X = = = = =
iFor(Curv,,,) - - - x = =
iFor(Len,,,) - - - - X = =
OCSVM(V,,,,) - - - - - x = =
OCSVM(Curv,,,) - - - - - X =
OCSVM(Len,,,) - - - - - - -
10 6. Conclusion 1e03  can perform similarly on synthetic data (except for persistent
- In this paper, we proposed a method to improve the detec- shape outliers, where the proposed method performs better).

We demonstrated that, compared with the baselines, the pro-

05
1301 tion of different types of outliers in multivariate functlonal posed approach i robust to the variation of the contamination

w2 data, based on curve shape. We assumed that the orlglnal level. The results are consistent on both synthetic and real
1303 discrete curves can be well approximated by finite functlonal

a0 data.
1304 basis expansions, where the basis is specified. Based on thﬁm9 We also discussed the ability of each of mapping function

1305 smooth reconstruction provided by the fitted basis expan- . .
. dth length, velocit d ‘ ~1a10  to capture outlying features depending on the type of the out-
1300 SION, We used the arc-length, velocity, and curvature Mapping, - jiqr¢ 16 be detected. In future work, we will investigate more

1307 functions to capture latent shape features. Then, we detected .= deeply the identifiability of the class(es) of outliers detected
1308 the outliers from the mapped curves using outher—detectlon . . . .
13 with respect to a given mapping function. Moreover, the used

1300 algorithms. . .
1a taxonomy [22] does not cover outliers that represent a mix-
1400 Through an experimental study on real and synthetlc . .
15 ture of multiple classes of outlyingness. Hence, a further step
1s01  datasets, we demonstrated that the proposed approach outper— . . .
. ; . 116 would be to identify both the outlyingness class(es) and the
1402 forms multivariate functional depth baselines on real data and
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Table 7

Significance of the pairwise comparisons for AUC on the ECG (upper table) and PenDig

(lower table) datasets.

Notation is the same as in Table 5

FUNTA  Dir.out _iFor(V,,,) iFor(Cury

imap)

iFor(Len,g,) map) map)

OCSVM(V,,,) OCSVM(Cury OCSVM(Len

FUNTA (baseline) X = = =
Dir.out (baseline) - X #* #*
iFor(V,.,) - - X
iFor(Curv
iFor(Len,,,)
OCSVM(V,,,,) - - - -
OCSVM(Curv -
OCSVM(Len,

map)

map)

map)

# = = =
= #* #* =
= = £+
= #*

W

X #+* =
- X #*
£

X

x|l
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Figure 7: Ranking of the methods (1 is the best, 8 is the worst) on the synthetic datasets
for p,, p;, and AUC based on the post-hoc Friedman's aligned rank test. For p, and AUC,
the ranking is given in decreasing order (i.e., for high p. and AUC values, the rank is close
to 1), and for Py, the ranking is given in increasing order (i.e., for low p; values, the rank is
close to 1). The y-axis represents the average ranking over the five models, and the integers
on the top of the bars represent the final ranking. If there are ties, we take the average
ranking. The baseline methods are slightly better than the proposed method, but the
best results by the proposed method (iFor(Len,,,) and OCSV M (Len,,,,)) are statistically
equivalent to those by the baseline, as demonstrated by the pairwise comparison tests in
Tables 8,9, and 10.

potential mixture proportions when a sample lies in multiplg,,, Acknowledgment

classes.

We did not assume any weighting of the curve variables
in the mapping functions; this is left as future work. This

1420 We thank the French National Association for Research
aa30  and Technology (ANRT) for providing us with a PhD grant.

weighting could be user-driven, as proposed for functional

depth in [4], or data-driven. It is conceivable that this can eng,,
hance outlier detection in the presence of non-outlying curve,
variables (when p increases). Another possible improvemen,,,
would be to combine mapping functions in the same detectaiass
so that multiple outlier classes may be detected in the same3s

dataset. 1436
1437

1438

1439
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Table 8

Significance of the pairwise comparisons for the correct detection rate p, on the synthetic

dataset.

Notation is the same as in Table 5

FUNTA  Dirout iFor(V,,) iFor(Curv,,) iFor(Len,,) OCSVM(V,,) OCSVM(Curv,,,) OCSVM(Len,,,)
FUNTA (baseline) X = = #* = = #* =
Dir.out (baseline) - X = #* = #* #* #*
iFor(V,.,) - - X = = = £* =
iFor(Curv,,,) - - - X #* = = =
iFor(Lenmap) - - - - X = +* £*
OCSVM(V,,,,) - - - - - X = =
OCSVM(Curv,,,) - - - - - - X =
OCSVM(Len,,,) - - - - - - - X
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