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Abstract—Deciding privacy-type properties of deterministic
cryptographic protocols such as anonymity and strong secrecy
can be reduced to deciding the symbolic equivalence of processes,
where each process is described by a set of possible symbolic
traces. This equivalence is parameterized by a deduction system
that describes which actions and observations an intruder can
perform on a running system.

We present in this paper a notion of finitary deduction systems.
For this class of deduction system, we first reduce the problem of
the equivalence of processes with no disequations to the resolution
of reachability problem on each symbolic trace of one process,
and then testing whether each solution found is solution of a
related trace in the other process. We then extend this reduction
to the case of generic deterministic finite processes in which
symbolic traces may contain disequalities.

Index Terms—Cryptographic protocols; formal methods; pri-
vacy analysis.

I. INTRODUCTION

Context. Security protocols, i.e. protocols in which the

messages are cryptographically secured, are a cornerstone of

security in distributed applications. The need for optimizing

resource utilization and their distributed nature make their

design error prone, and formal methods have been applied

successfully to detect errors in the past [1]–[4].

Formal models of cryptographic protocols usually present

the reader with a dichotomy between the honest agents—

translated into a constraint system [5]–[7], clause sets with

a subset dedicated to the modeling of honest agents [4],

[8] or frames [9], [10]—, and the attacker—modeled by a

deduction system expressing its possible actions. In contrast

the representation with symbolic derivation [11] unifies the

honest and dishonest agent models, where agents may perform

deductions, nonce creation, tests, and communication actions.

Intuition. First, a trivial remark: since one can construct

deduction systems for which reachability is decidable but static

equivalence is not [10]. Thus being able to decide reachability

does not imply being able to decide static equivalence, which

is a special case of process equivalence. However in e.g. [3],
[6], [12] reachability is reduced to the satisfiability of a

constraint system in a bounded number of steps. That problem

is decided using constraint transformation rules. A solved form
is defined as a constraint system in which the attacker just

has to instantiate variables by any term he can construct. In
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practice, the proof of completeness of the procedure consists

in assuming the existence of a sequence of deduction steps

that satisfies the constraint system, and in proving that as long

as one such sequence exists, either the constraint system is in

solved form or there exists a transformation rule applicable

on the constraint system. Then, one proves that there is no

infinite sequence of transformations and that each constraint

system not in solved form has only a finite number of possible

successors. König’s lemma then implies termination of the

procedure. The original constraint system is unsatisfiable if

and only if the set of leaves in solved form is empty.

Such procedures do much more than simply deciding reach-

ability, as they end with a (possibly empty) set of constraint

systems in solved form that, as long as the completeness proof

is along the lines given above, covers all possible attacks.

Formalizing this argument is not trivial, since:

• not all instances of the variables occurring in a constraint

system in solved form correspond to attacks; and

• to test the equivalence of two protocols we need to

account for the equality tests the attacker can perform

to analyze the responses of the honest agents.

We have bypassed the first difficulty by imposing that the

attacker instantiates the first-order variables in a constraint

system in solved form with intruder-generated constants, and

proved that replacing these constants by any possible con-

struction yields another attacks. This replacement is formalized

by a well-founded ordering on the possible attacks, the ones

in solved form being minimal for this ordering. For finitary
deduction systems the set of minimal attacks is always finite.

We solve the second difficulty by proving that it suffices to

consider an attacker testing at most one equality on the result

of his interaction with the honest process when this test is

chosen before the computation of solved forms.

Simmetrically we account for disequalities in the process

modeling the honest agents by introducing an equality chosen

in a finite set before solving the constraint system.

Related works. Proofs of equivalence of processes are

notoriously difficult, even when only finite processes are

considered. In [13] Hüttel proves decidability for a fragment

of the spi-calculus—i.e. for the Dolev-Yao model—for single

trace processes. This result was extended by Baudet [14] in

the same process setting but for subterm convergent equational
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theories. This result was extended in [8] for processes with

several branches but no default case, i.e. without disequalities.
Another line of work starting from Hüttel focused on

simple primitives but aimed at considering more complex

processes. Among these we only consider those dealing with

bounded processes, thereby misrepresenting ProVerif’s [4]

diff-equivalence by casting it in the world of bounded pro-

cesses where it is too strong. An historical difficulty has

been to find a satisfactory equivalence notion given a process

algebra, e.g. applied-π calculus [15], spi-calculus [16], or psi-

calculus [17]. It was latter proved in [18] that for deterministic

processes labelled bisimilarity is equivalent to trace equiva-

lence. This motivates us to shy away from complex process

algebra and a translation to sets of traces, and define instead

directly deterministic processes as sets of traces. In a similar

setting but only for Dolev-Yao cryptographic primitives, [19]

proved decidability of deterministic process equivalence.
In this paper we prove decidability of process equivalence

for a class of deduction systems that at least [20] includes

those with a subterm convergent equational theory as in [8]

for processes that include disequalities as in [19]. Further work

is needed to ellicit how large this class actually is.
Example finitary deduction systems. We remark that the

standard Dolev-Yao deduction system [21] is finitary, since

for every attack one can guess a subsequence of deduction

steps which is itself an attack [22]. Deduction systems whose

equational theory is subterm convergent are also finitary (see

e.g. [20] though other articles considering these theories also

include an argument that all attacks are representated).
Organization of this paper. Given this is a short version

we have decided to provide a reference to the submitted

version [23] and to only give in this paper a non-technical

description in the hope that this will incite the brave reader to

read the referenced version. Accordingly we follow the same

organisation to ease the reading. Also we hope that this shorten

format may help distinguish the original contribution that is

not in the unpublished report [24].
We reuse in this paper the classical notions and notations

for terms, equational theories, deduction systems recalled in

Sec. II-A. We present the less known notion of symbolic

derivation and finitary deduction systems in Sec. II-B. Equiv-

alence of deterministic processes in our setting is defined in

Sec. II-D and its decidability for finitary deduction systems is

described first in the case of processes without disequalities,

then in the general case. We conclude in Sec. III.

II. PROCEDURE OUTLINE

This results builds on [24] in which a procedure computing

whether two sequences of actions, called symbolic derivations,
are equivalent assuming the observer is defined by a finitary

deduction system. We refer to [23] for a longer version of

this paper that includes the technical details necessary for

comprehension.

A. Basic foundations
We represent values with terms describing how these can

be constructed from a set of arbitrary values–the constants–

with the application of functions. For example, using the well-

known LISP list functions some values can be represented by

the terms nil, cons(1,nil), car(cons(1,nil)). Traditionally the

car function maps a couple to its first member. Thus the last

value is also equal, more simply, to 1. The valid equalities

are defined by an equational theory, a set of axioms of the

form l = r together with the axioms defining the equality as

a congruence over values. In the preceding example we have

assumed the axiom car(cons(x, l)) = x.
Unification is concerned with the resolution of equations

entailed by an equational theory. A set of equations is unifiable
if its variables can be instantiated by values such that all

equations are entailed by the equational theory. One possible

instantiation is called a unifier, and may contain variables. To

proceed with the example, the mapping {x �→ cons(y,z)} is a

unifier of the equation car(x)= y modulo the equational theory.

It is even a most general unifier (mgu) of this equation: one

can check that any unifier is an instance of this unifier. The

existence of a set of a set of most general unifiers is not guar-

anteed. Even when such a set exists, it may be infinite. For the

equational theory on word, x ·ε = x,ε ·x= y,x ·(y ·z) = (x ·y) ·z,
the equation a ·x= x ·a admits all the unifiers {x �→ an|n∈N},
but this set cannot be described by the instances of a finite

set of mgus. An equational theory is finitary if every set of

equations has a finite (and possibly empty) set of mgus.

B. Symbolic derivations

We denote an execution of a process with symbolic deriva-

tions [25]. These are labeled sequences of values in which

each value in the sequence is either in the initial memory

of the process, received, copied from a preceding occurrence,

constructed by the application of a function, or an arbitrary

constant. Furthermore an occurrence of a value can be pub-

lished, i.e. sent. A unification system records these constraints

among the values.

Symbolic derivations are combined by identifying the pub-

lished occurrences of one with the received occurrences of

the other–and removing the reception label–to create a new

symbolic derivation. In this model a realisable execution is

modeled by a symbolic derivation in which all reception labels

have been removed, called closed symbolic derivations and in

which the unification system is satisfied by the values.

Among symbolic derivations we single out those defining

the possible actions of an active attacker as those in which

the initial knowledge only contains constants selected to

represent random values. This setting is analoguous to the

resolution of sets of equations modulo an equational theory.

For satisfiability, a set of equation plays the same role wrt its

unifiers that instantiante it to produce equations entailed by the

equational theory as a symbolic derivations plays wrt to the

attacker symbolic derivations that they can be combined with

to form closed symbolic derivations whose unification system

is satisfiable. This set of atacker symbolic derivations is called

the set of solutions of the symbolic derivation.

There are however a few caveat to this analogy that are

addressed in [23], [24]:



• Variables in sets of equations play the same role in this

analogy as received values. However to ensure that the

attacker indeed can interact with the symbolic derivation,

we must ensure that the reception labels are removed.

This problem is solved in [24], [25] by introducing an

opening operation using which the constants in a solution

can be re-used to allow for the combination with a new

symbolic derivation;

• The solutions are quantified over all sequences of values

and over all unification systems that represent tests that

the attacker may apply on the results of his interaction

with the symbolic derivation. This situation is resolved

in [24], [25] by spliting attacker symbolic derivations in

a pure deduction part, a well-formed derivation and a pure
testing part, a testing derivation, that is latter connected

using the opening operation.

The set of solutions of a symbolic derivation C is denoted

C �. The subset of well-formed solutions is denoted C sf, and

for a closed symbolic derivation C . Two symbolic derivations

are equivalent if and only if they have the same set of solutions.

A deduction system is defined by the set of operations the at-

tacker can employ together with the equational theory defining

the effects of these operations. We say that a deduction system

D is finitary if for every symbolic derivation C the set C � can

be described by a finite set of symbolic derivations min<(C ).
The lack of technical details hides again two caveats:

• attacker symbolic derivations in min<(C ) also must be

solutions of C , for otherwise just instantiating the ex-

pected received values with constants would provide a

meaningless description;

• also, since there is an unbounded number of constants,

we need a pre-ordering on solutions to capture symbolic

derivations that are instance one of the other (the strict

ordering part) and one of another (the equivalence classes

for the pre-ordering)

The resolution of these difficulties is presented in [23], [24].

C. Equivalence of processes

This part is novel and not present in [24]. We present in this

section and in the next one how to reduce the problem of the

equivalence of two processes to the problem of equivalence

of two symbolic derivations, and how to take into account

disequations as in [19] but for a more general class of

deduction systems.

Since we assume finite processes, we identify processes

with the set of symbolic derivations that correspont to finite

forward executions. An observational relation is employed to

restrict the symbolic derivations of the other process to which

a symbolic derivation of one can potentially be identified. This

relation is a pre-observational equivalence in the sense that any

symbolic derivation in a process and any attacker trace which

is in its solution set, there must exist a related trace in the other

process which has that attacker trace in its solution set. Though

it is superficially similar to the biprocess construction of [4]

note that two different solutions of one symbolic derivation

of one process can be solutions of two different symbolic

derivations of the other process.

Finally we consider the containment problem of two pro-

cesses, and define that two processes are equivalent if they

are contained one in the other for the same observational

relation R. The reduction of process equivalence to process

containment is trivial.

Definition 1. (D-Containment) Let P1,P2 be two processes
and let R be an observational relation such that R(P1,P2). We
say that P1 is D-contained in P2, and denote it P1 �R

D P2, if
C1

� ⊆ ∪1≤i≤nC2,i
� for all C1 ∈ P1.

D. Decidability of containment

1) Processes without disequalities: In the case of processes

without disequalities, the procedure is straightforward. For

each possible execution, we first guess an additional test that

the attack will perform on his interaction with the execution

(Ct ) and on which terms it will be performed (Ch◦Ct ). By [24]

and if performed for all possible tests (one for each function),

this test is sufficient to prove that all instances of a minimal

solution of Ch are solutions of the other symbolic derivation.

We have adapted it to prove that all solutions of Ch are

solutions of one of the related symbolic derivation.

Algorithm 1 Algorithm for solving process containment.

procedure D -PROCESS CONTAINMENT(P1,P2,R)
Input: P1,P2 processes, R an observational relation
Output: SAT if (P1,D1)�R

D (P2,D2).
For all Ch ∈ P1

For all Ct testing with one deduction and one

equality

let Σ =min<(Ch ◦Ct)
sf,D1(Ch)

For all C ∈ Σ
if there does not exist C ′

h such that R(Ch,C
′
h)

and C ∈ (C ′
h ◦Ct)

�

Then return UNSAT End
End

End
End
return SAT

end procedure

2) Processes with disequalities: Algorithm 2 is slightly

more involved and adds a level of quantification. When testing

a solution of a symbolic derivation Ch in P1, we have to

consider all related symbolic derivations C ′
h in P2 and for each

guess a disequality that can be satisfied by an instance of the

solution. Only if there is no such C ′
h can we conclude that all

instances of the solution are solutions of one of the related

C ′
h.

III. CONCLUSION

We have introduced in this paper the notion of finitary

deduction systems, and proved that symbolic equivalence is

decidable for such attacker models. We believe that definition



Algorithm 2 Algorithm for solving extended process contain-

ment.
procedure D -PROCESS CONTAINMENT(P1,P2,R)

Input: P1 = (P1,D1),P2 = (P2,D2) extended pro-
cesses, R an observational relation

Output: SAT if (P1,D1)�R
D (P2,D2).

For all Ch ∈ P1
For all Ct testing with one deduction and one

equality

let Σ =min<(Ch ◦Ct)
sf,D1(Ch)

For all C ∈ Σ
If there does not exist C ′

h such that R(Ch,C
′
h)

and C ∈ (Ch ◦Ct)
� and, for every l �= r ∈ D2, the HSD

(openC(C ◦C ′′
h ◦Ct))

�,D1 = /0 where: C ′′
h =C ′

h but for S ′′
h =

S ′
h ∪{l ?

= r}
Then return UNSAT End

End
End

End
return SAT

end procedure

also captures the essence of lazy intruder techniques that

are employed in many tools. In further work we aim at

implementing this procedure to assess its practical feasability.
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verification of equivalence properties of cryptographic protocols,” ACM
Trans. Comput. Log., vol. 17, no. 4, pp. 23:1–23:32, 2016. [Online].
Available: http://dl.acm.org/citation.cfm?id=2926715

[9] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols:
The spi calculus,” in ACM Conference on Computer and Communica-
tions Security, 1997, pp. 36–47.

[10] M. Abadi and V. Cortier, “Deciding knowledge in security protocols
under equational theories,” in ICALP, ser. Lecture Notes in Computer
Science, J. Díaz, J. Karhumäki, A. Lepistö, and D. Sannella, Eds., vol.
3142. Springer, 2004, pp. 46–58.

[11] Y. Chevalier, D. Lugiez, and M. Rusinowitch, “Towards an automatic
analysis of web service security,” in Frontiers of Combining Systems,
6th International Symposium, FroCoS 2007, Liverpool, UK, September
10-12, 2007, Proceedings, ser. Lecture Notes in Computer Science,
B. Konev and F. Wolter, Eds., vol. 4720. Springer, 2007, pp. 133–
147.

[12] M. Turuani, “The cl-atse protocol analyser,” in Term Rewriting and
Applications, 17th International Conference, RTA 2006, Seattle, WA,
USA, August 12-14, 2006, Proceedings, ser. Lecture Notes in Computer
Science, F. Pfenning, Ed., vol. 4098. Springer, 2006, pp. 277–286.
[Online]. Available: https://doi.org/10.1007/11805618\_21

[13] H. Hüttel, “Deciding framed bisimilarity,” Jun. 2002, presented at the
INFINITY’02 workshop.

[14] M. Baudet, “Deciding security of protocols against off-line guessing at-
tacks,” in ACM Conference on Computer and Communications Security,
V. Atluri, C. Meadows, and A. Juels, Eds. ACM, 2005, pp. 16–25.

[15] S. Delaune, S. Kremer, and M. D. Ryan, “Symbolic bisimulation
for the applied pi calculus,” Journal of Computer Security, vol. 18,
no. 2, pp. 317–377, 2010. [Online]. Available: https://doi.org/10.3233/
JCS-2010-0363

[16] L. Durante, R. Sisto, and A. Valenzano, “Automatic testing equivalence
verification of spi calculus specifications,” ACM Trans. Softw. Eng.
Methodol., vol. 12, no. 2, pp. 222–284, 2003. [Online]. Available:
https://doi.org/10.1145/941566.941570

[17] J. Borgström, “A complete symbolic bisimilarity for an extended spi
calculus,” Electr. Notes Theor. Comput. Sci., vol. 242, no. 3, pp. 3–20,
2009. [Online]. Available: https://doi.org/10.1016/j.entcs.2009.07.078

[18] V. Cheval, V. Cortier, and S. Delaune, “Deciding equivalence-based
properties using constraint solving,” Theor. Comput. Sci., vol. 492, pp. 1–
39, 2013. [Online]. Available: https://doi.org/10.1016/j.tcs.2013.04.016

[19] V. Cheval, H. Comon-Lundh, and S. Delaune, “A procedure for
deciding symbolic equivalence between sets of constraint systems,”
Inf. Comput., vol. 255, pp. 94–125, 2017. [Online]. Available:
https://doi.org/10.1016/j.ic.2017.05.004

[20] M. Kourjieh, “Logical Analysis and Verification of Cryptographic Pro-
tocols,” Thèse de doctorat, Université Paul Sabatier, Toulouse, France,
décembre 2009.

[21] D. Dolev and A. Yao, “On the Security of Public-Key Protocols,” IEEE
Transactions on Information Theory, vol. 2, no. 29, 1983.

[22] Y. Chevalier, D. Lugiez, and M. Rusinowitch, “Verifying cryptographic
protocols with subterms constraints,” in LPAR, ser. Lecture Notes in
Computer Science, N. Dershowitz and A. Voronkov, Eds., vol. 4790.
Springer, 2007, pp. 181–195.

[23] Y. Chevalier and B. F. Romero Jimenez, “Decidability of Deterministic
Process Equivalence for Finitary Deduction Systems (short paper),”
in Euromicro International Conference on Parallel, Distributed
and network-based Processing, Västerös, 11/03/2020-13/03/2020,
D. Masoud, F. Leporati, and S. Mikael, Eds. https://www.computer.org:
IEEE Computer Society, mars 2020. [Online]. Available: https:
//oatao.univ-toulouse.fr/25220/1/main.pdf

[24] Y. Chevalier, “Finitary deduction systems,” may 2011, https://arxiv.org/
abs/1105.1376.

[25] Y. Chevalier and M. Rusinowitch, “Decidability of the equivalence of
symbolic derivations,” Journal of Automated Reasoning., p. (to appear),
Aug. 2010.


