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Abstract

Function estimation using the Reproducing Kernel Hilbert Space (RKHS) framework is a powerful tool for identification of a
general class of nonlinear dynamical systems without requiring much a priori information on model orders and nonlinearities
involved. However, the high degrees-of-freedom (DOFs) of RKHS estimators has its price, as in case of large scale function
estimation problems, they often require a serious amount of data samples to explore the search space adequately for providing
high-performance model estimates. In cases where nonlinear dynamic relations can be expressed as a sum of functions,
the literature proposes solutions to this issue by enforcing sparsity for adequate restriction of the DOFs of the estimator,
resulting in parsimonious model estimates. Unfortunately, all existing solutions are based on greedy approaches, leading to
optimization schemes which cannot guarantee convergence to the global optimum. In this paper, we propose an an ℓ1-regularized
non-parametric RKHS estimator which is the solution of a quadratic optimization problem. Effectiveness of the scheme is
demonstrated on the non-parametric identification problem of LPV-IO models where the method solves simultaneously (i)
the model order selection problem (in terms of number of input-output lags and input delay in the model structure) and (ii)
determining the unknown functional dependency of the model coefficients on the scheduling variable directly from data. The
paper also provides an extensive simulation study to illustrate effectiveness of the proposed scheme.

Key words: Reproducing kernel Hilbert spaces; elastic net; support vector machines; Gaussian processes; non-parametric
estimation; Linear parameter-varying systems; model order selection.

1 Introduction

For decades, estimation of parsimonious models of func-
tional relations between signal variables using data has
been a central problem in many scientific fields like
statistics, systems and control engineering, but also in
newly developing fields like machine learning which has
its roots in statistical learning theory. While the latter
has mainly focused on the estimation of static functional
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relations with possibly a large-number of candidate
signals, in systems and control engineering, the focus
has been on the estimation, or so called system iden-
tification, of possibly nonlinear dynamic relationships
between signals. In both cases, selection of a suitable
model structure to capture the unknown functional
relations is characterized by two main challenges:

(i) determining which variables contribute to the rela-
tionship (e.g., in identification, this corresponds to
the selection of the “suitable” dynamic order, input
delay and noise structure);

(ii) determining/parametrizing a class of functional re-
lations s.t. they have the least possible complexity
for adequately representing the signal relations.

Optimal choice in these questions is rarely known a pri-
ori (especially for (ii)). A possible solution leads through
the parametrization of functional dependencies in terms
of an extensive set of basis functions such that the result-
ing model structure is capable of explaining a rich set
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of possible relations, and let the data decide which sub-
structure is appropriate to use. This can be achieved by
the use of classical model structure selection tools from
statistics like Akaike’s information criterion (AIC), etc.,
or ℓ1 regularization based sparse estimators and shrink-
age methods: non-negative garrote (NNG) [1], least ab-
solute shrinkage and selection operator (LASSO) [2] and
SPARSEVA [3]. Although, these methods are capable of
achieving model structure selection in terms of (i) and
(ii), their efficiency strongly depends on adequate a pri-
ori selection of the basis functions which is left to rest
on the shoulders of the user.

Alternatively, selection problem (ii) can be equivalently
seen as an unknown function “reconstruction” problem
based on measured data for which an important set of
the methods have emerged from the theory of reproduc-
ing kernel Hilbert space (RKHS) estimators [4] in various
forms, such as least-squares support vector machines (LS-
SVM) [5], Gaussian processes (GP) [6] and Kriging [7].
The core idea is that instead of using a priori set of basis
to parametrize the to-be-estimated functional relation,
a kernel function is introduced that acts as a basis gener-
ator driven by the observed data. In this sense, the func-
tion class is defined only a priori for which the basis are
restricted to a subspace that can be distinguished based
upon the given measurements. These methods have been
successfully applied in system identification both in the
linear and nonlinear cases [8–10].

To jointly address sub-problems (i) and (ii), in the ma-
chine learning community, various concepts of RKHS es-
timators have been developed where sparsity is mostly
enforced using ℓ1 norm regularization and by assum-
ing that the nonlinear function relation at hand can be
decomposed as a ”sum of nonlinear functions” [11–13].
The results are mostly theoretical and are derived under
restrictive statistical assumptions (whiteness, joint in-
dependence of signals). Hence, for estimation problems
encountered in practice, such as in system identification,
the resulting optimization problem has only been solved
via various relaxations (e.g. greedy method [14]) with-
out any guarantees on the convergence of the resulting
approach. Hence in this paper, the following contribu-
tions are provided

(1) Proposing an ℓ1-regularized sparse estimator based
on the RKHS framework that corresponds to a di-
rectly solvable global quadratic optimization prob-
lem with linear matrix inequality (LMI) constraints;

(2) Extension of the representer theorem for the pro-
posed estimator, allowing joint selection of func-
tional terms and their reconstruction from data,
without prior parametrization (data-driven model
structure selection with (i) and (ii) in one step).

The proposed approach is demonstrated on the identifi-
cation problem of linear parameter-varying (LPV) sys-
tems (see [15]), which corresponds to a generalization of
the ”sum of nonlinear functions” problem. It is shown
that the proposed method allows joint reconstruction of

the scheduling-variable dependencies and the model co-
efficient structure from data, extending the capabilities
of previous non-parametric estimators developed for this
model class [10, 16, 17].

The paper is organized as follows. In Section 2, funda-
mental concepts of the RKHS theory needed to derive
the results of the paper are provided. Then, a novel spar-
sity enforcement ℓ1 regularization term for RKHS esti-
mation is introduced in Section 3. In Section 4, the con-
sidered LPV identification setting is introduced. This
is followed by detailing how the LPV sparse estimation
problem is solved from the RKHS point of view in Sec-
tion 5. In Section 6, the proposed method is compared
to existing solutions via a simulation study. Finally, the
conclusions are presented in Section 7.

Notation

R and Z are the sets of the real and integer numbers,
respectively, while N is the set of all positive integers.
‖x‖1, ‖x‖2 and ‖x‖∞ represent the ℓ1, ℓ2 and ℓ∞ norms
of a possibly infinite dimensional vector x. In is the n-
dimensional identity matrix and δij denotes the Kro-
necker delta. In2

n1
= {n1, n1 + 1, . . . , n2} ⊂ Z is an in-

dex set. N indicates a Gaussian distribution, while U
denotes a uniform distribution.

2 RKHS theory

To introduce the preliminaries for the main results of the
paper, a brief introduction to nonlinear function estima-
tion via the RKHS theory is provided in this section.

2.1 Data-generating system

In standard regression problems, a set of observations,
{(zk, wk)}N

t=1 is assumed to be available, generated by

zk = f(wk) + ǫk, (1)

where wk ∈ W is the input sequence, zk ∈ R is the
output, f : W → R is an unknown nonlinear function
and ǫk ∼ N

(
0, σ2

ǫ

)
is an independent Gaussian additive

noise with σ2
ǫ being its variance. Our goal is to provide

an estimate of f that describes the observed data, but
also, for an arbitrary new pair (w, z), the predicted value
of f(w) is close to z in the mean squared error (MSE)
sense.

2.2 Kernel functions and RKHSs

Recall the following definitions:

Definition 1 (Positive definite kernel, [5]) Let W be
a metric space. A real-valued function K : W ×W → R

is called a positive definite kernel if it is continuous, sym-
metric and

∑n,n
k=1,l=1 akalK(wk, wl) ≥ 0 for any finite

set of points {w1, . . . , wn} ⊂ W and {a1, . . . , an} ⊂ R.

Definition 2 (Reproducing kernel) Let H be a
Hilbert space of real-valued functions on W with in-
ner product 〈·, ·〉H . A positive definite kernel function
K : W ×W → R is a reproducing kernel for H if
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(1) ∀w ∈ W , Kw(·) = K(w, ·) ∈ H , where Kw is the
so-called kernel section centered at w;

(2) The reproducing property holds, meaning that

f(w) = 〈f(·), K(w, ·)〉H , ∀w ∈ W , ∀f ∈H .

A Hilbert space of real-valued functions which possesses
a reproducing kernel is called an RKHS [18]. Due to
the Moore-Aronszajn theorem [19], for every positive
definite kernel K, there is a unique RKHS H with
K as its reproducing kernel and vice versa. In the se-
quel. we denote that RKHS as HK and its inner prod-
uct as 〈·, ·〉K with the associated norm ‖ · ‖K . Addi-
tionally, due to the symmetric and reproducing prop-
erty: K(w, w′) = K(w′, w) = 〈K(w, ·), K(w′, ·)〉H =
〈K(w′, ·), K(w, ·)〉H . Due to identification setting and
without any loss of generality, we restrict the scope to
countable metric spaces W .

Definition 3 (RKHS) Let K be a positive definite ker-
nel function and HK is the associated RKHS. Then,

HK =

{

f : W → R | f(·) =

∞∑

k=1

akKwk
(·), wk ∈ W ,

ak ∈ R, ‖f‖H < +∞

}

, (2)

where ‖f‖K =
√

〈f, f〉K is the norm in HK induced by
the inner product 〈f, f ′〉K =

∑∞,∞
k=1,l=1 akblK(wk, wl),

for f =
∑∞

k=1 akKwk
and f ′ =

∑∞

l=1 blKwl
.

Definition 3 implies that all f ∈HK inherit their prop-
erties from the kernel, e.g., the continuity of K implies
the continuity of all f ∈HK [4]. Hence, the main advan-
tage of RKHS-based estimators is that expected prop-
erties, e.g., smoothness, integrability, etc., can be easily
encoded in HK via the associated kernel function K.

2.3 Regularization in RKHSs

The main idea for solving the estimation of f in (1)
based on DN = {(zk, wk)}N

k=1 is to have a real-valued
loss function V that consists of two terms, i.e., a “data-
fit” term denoted by C and a “regularizer” term denoted
by R forming

V(f) = C
(
{wk, zk, f(wk)}N

k=1

)
+ γR

(
‖f‖K

)
, (3)

where γ > 0 is a parameter which defines the trade-off
between these contradicting terms. Common choices are

C
(
{wk, zk, f(wk)}N

k=1

)
=

N∑

k=1

(
zk − f(wk)

)2
, (4a)

R(‖f‖K) = ‖f‖2
K , (4b)

i.e., a quadratic loss function for the “data-fit” term
(similar to the prediction error minimization (PEM) set-
ting commonly considered in LTI and LPV system iden-
tification) and the squared norm of HK used for the

“regularizer”. Once both C and R are chosen, the un-
known function f is estimated by solving

f̂ = argmin
f∈HK

V(f). (5)

The RKHS framework allows to obtain a closed-form
and unique solution of (5), even if the employed RKHS
is an infinite-dimensional space:

Theorem 1 (Generalized representer, [20–23])
For a given RKHS HK with reproducing kernel
K : W ×W → R, the minimizer of (5) for any positive
C and any strictly monotonically increasing R on [0,∞)
can be represented as

f̂(·) =

N∑

k=1

ckK(wk, ·), {ck}
N
k=1 ⊂ R. (6)

Theorem 1 indicates that using criterion (3), the esti-
mate of f can be expressed as a finite sum of kernel
slices/sections centered on the available observations.
In case C and R are chosen as in (4), the parameters
c = [c1 · · · cN ]⊤ ∈ R

N defining the estimated function

f̂ in (6) (minimizer of V(f)) can be computed as

c = (K + γIN )−1ZN , (7)

where the (k, l)-th entry of K ∈ R
N×N is K(wk, wl).

3 Sparsity in RKHS

In the specific case where f(wk) can be written as a sum
of nonlinear functions

f(wk) =

ng∑

i=1

fi(wk,i), (8)

where wk,i is the i-th component of wk, it is well-known
that the Kernel function K can be also expressed as a
sum of kernels Ki : W × W → R (see section 8.1.1):
K(wk, ·) =

∑ng

i=1 Ki(wk,i, ·). In theses cases, an impor-
tant issue is to be able to enforce sparsity in order to keep
the number of nonzero functions fi(·) as low as possi-
ble in order to be able to identify the most parsimonious
structure given the data.

To this end, the literature proposes an additive regu-
larization term that complements (3). More specifically,
the new cost function consists of three terms [11–13]:

(1) C: “data-fit” term
∑N

k=1

(
zk− f(wk)

)2
that quanti-

fies the fit (empirical loss) w.r.t. the measured data;
(2) R: “regularizer” term ‖f‖2

K to prevent overfitting;
(3) S: “sparsity” term aiming at shrinking the functions

fi to zero to minimize the number of non-zero coef-
ficient functions fi characterizing the chosen model
structure.

The “sparsity” term proposed in the literature is
∥
∥
[

‖f1‖2 · · · ‖fng
‖2

]∥
∥

1
(9)
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where ‖ · ‖1 is a convex approximation of the ℓ0-pseudo
norm. 1 Unfortunately, the resulting optimization prob-
lem must be solved via some relaxation [14] which can-
not guarantee the convergence of the resulting estima-
tion approach. In order to tackle this problem, we pro-
pose, to use as a sparsity enforcing term,

S(g) =
∥
∥
[

‖f1‖∞ · · · ‖fng
‖∞

]∥
∥

1
(10)

where ‖fi‖∞ is the ℓ∞-norm (maximum absolute value)
of the function fi over W . It will be shown that using
this term leads to a quadratic optimization problem by
simply approximating the incomputable ‖fi‖∞ by

Si = max
j∈I

M
1

|fi(mj)| ,

where M = {mj}M
j=1 ⊂ W are a set of node points. The

set M can be chosen by gridding of W or by random se-
lection using a prior distribution. Nevertheless, the dif-
ference between the infinity norm and the proposed ap-
proximation scheme is expected to be small if the ker-
nels Ki enforce a sufficient smoothness on fi(wi). As a
result of such an approximation, the “sparsity” term can
be expressed as

∥
∥
[

S1 · · · Sng

]∥
∥

1
. Thus, the estimation

of the model f(wk) in (1) can be formulated as

min
f

N∑

k=1

(
zk−g(wk

)2
+γs

∥
∥
[

S1· · · Sng

]∥
∥

1
+γ‖f ||2K

s.t. Si = max
j∈I

M
1

|fi(mj)| , (11)

where γs > 0 is the hyper-parameter scaling the influ-
ence of the sparsity term. As a contribution of the paper,
next we show that the solution of (11) admits a repre-
senter and is the solution of a quadratic optimization
scheme, which hence guarantees the convergence of the
resutling estimation approach

Theorem 2 (Representer under sparsity) Let HK

be an RKHS over an ng-dimensional W and with repro-
ducing kernel K such that K(w, w′) =

∑ng

i=1 Ki(wi, w′
i).

Then, the minimizer of (11) can be expressed as a repre-
senter in the form

f̂(·) =
N∑

k=1

ckKwk
(·) +

ng∑

i=1





M∑

j=1

ci,jKmj
(·)



 . (12)

with {ck}N
k=1 ⊂ R and {ci,j}

ng,M

i=1,j=1 ⊂ R.

PROOF. Our goal is to express (11) in the form of (3)
suited for applying Theorem 1. Introduce

Cγs
(∗) =

N∑

k=1

(
zk−f(wk

)2
+γs

∥
∥
[

S1· · · Sng

]∥
∥

1
(13)

1 The ℓ0-pseudo norm of a vector x equals to the number of
nonzero elements of x. Minimization under an ℓ0 objective
is a non-convex NP-hard problem.

which depends both on the observation points {wk}k=1

and the grid points {mj}M
j=1. Append observations in W

as {wk}N
k=1∪M. Hence, the cost function V(f) in (11) is

now the sum of Cγs
and R. As Cγs

is a positive function,
(11) is expressed as an optimization criterion in the form
of (3) with observation points {wk}N

k=1∪M, which allows
direct application of Theorem 1, implying (12). �

Note that in (12), the coefficients ci,j appear due to the
added sparsity constraint. Problem (11) can be reformu-
lated as a convex quadratic optimization problem (QP)
that can be efficiently solved by standard solvers. Due to
space restrictions, the required steps are only given when
this sparse estimator concept is applied in LPV system
identification, which is treated in the next section.

4 The LPV identification problem

In order to illustrate the benefits of the sparse estimator
concept introduced in Section 3, we consider the prob-
lem of joint model order selection and non-parametric
identification of LPV-IO models, which corresponds to
a sparse sum-of-nonlinear-functions problem.

4.1 Data-generating system

The simplest form of discrete-time LPV systems consid-
ered in identification is the autoregressive with exogenous
input (ARX) structure, which is defined, in the single-
input single-output (SISO) case, as

yk =

no
a∑

i=1

ao
i (pk)yk−i +

no
b∑

j=do

bo
j(pk)uk−j + eo

k, (14)

where uk ∈ R, yk ∈ R, pk ∈ P are values of the in-
put, output and scheduling signals at discrete time
instant k ∈ Z, respectively, P ⊆ R

np is a compact set,
do ≥ 0 is the input delay, no

a, no
b ≥ 0, while eo

k ∈ R

is a zero-mean white noise. The coefficients ao
i and

bo
j are static 2 functions of the measurable schedul-

ing signal p. By introducing no
g = no

a + no
b − do + 1

and xo
k,i, where the latter is the i-th component of

xo
k = [yk−1 · · · yk−no

a
uk−do · · · uk−no

b
]⊤, (14) can be

written in the compact form :

y(k) = fo(xo
k, pk) + eo

k =

no
g∑

i=1

go
i (pk)xo

k,i + eo
k. (15)

The model structure to estimate (15) is considered as

yk =

na∑

i=1

ai(pk)q−iyk +

nb∑

j=d

bj(pk)q−juk

︸ ︷︷ ︸

f(xk,pk)=
∑

ng

i=1
gi(pk)xk,i

+ek, (16)

2 For clarity of exposition, we assume that ao
i and bo

j

have static dependence. Extension of the results of this pa-
per to the dynamic dependency case, i.e., dependence on
pk, pk−1, pk−2, . . . follows straightforwardly.

4



where ek denotes the residual term, na, nb, d are non-
negative and not necessary equal with no

a, no
b, do. Fur-

thermore, ng = na+nb−d+1 and xk,i is the i-th compo-
nent of xk = [yk−1 · · · yk−na

uk−d · · · uk−nb
]⊤. Please

note that LPV models can also be seen as a special case
of (8) with wk = [xk pk] and fi(xk,i, pk) = gi(pk)xk,i.

4.2 Problem statement

Our goal is to jointly reconstruct the model structure,
i.e., model order, number of effective coefficient func-
tions, delay, etc. (Challenge (i)), and the scheduling
variable dependencies (Challenge (ii)) directly from
data. Specifically, based on a finite record of input,
output and scheduling variable measurements, i.e.,
DN = {yk, uk, pk}N

k=1, we want to

A1 Enforce sparsity over estimation of the functions
ai(pk) (with i ∈ I

na

1 ) and bj(pk) (with j ∈ I
nb

0 ).
A2 Estimate the possibly nonlinear functions ai(pk)

and bj(pk), characterizing the estimated relation-
ship, directly from data;

In the next section, we solve the joint problem of A2
and (A2) by applying Theorem 2 via suitable kernels for
LPV-IO models.

5 Sparse non-parametric LPV-IO identification

5.1 Kernel choice for LPV-IO models

In the considered LPV identification problem, the model
(16) corresponds to wk = [ x⊤

k p⊤
k ]⊤ and zk = yk,

and the aim is to find a kernel K that is a represen-
ter for the function f(x, p) with a specific structure
f(x, p) =

∑ng

i=1 gi(p)xi. Naturally, such a Hilbert space
is not unique 3 , hence it is important to choose HK to
represent f with the least possible degrees of freedom,
i.e., taking into account the linear dependency of LPV
models on xi, to reduce variance of the estimates.

Lemma 1 (Reproducing kernel for LPV-IO mod-
els) Given the LPV-IO structure f(x, p) in (16), the
function f(x, p) is embedded in the RKHS HK , whose
reproducing kernel K : Rng+nP ×R

ng+nP → R is defined
as:

K
(
(x, p), (x′, p′)

)
=

ng∑

i=1

xiKi(p, p′)x′
i, (17)

where each sub-kernel Ki(p, p′) : RnP ×R
nP → R defines

an RKHS HKi
embedding gi(p) : RnP → R.

PROOF. It is well-known that the RKHS Li, embed-
ding static linear functions for xi ∈ R, is defined by the
1-dimensional kernel L(xi, x′

i) : R×R→ R that is equal
to xix

′
i. Let Ki(p, p′) : RnP × R

nP → R define an RKHS
HKi

embedding of gi(p). By the Aronszajn Theorem on
RKHS products [19] (see Appendix 8.1.2), the function
gi(p)xi is embedded in the RKHS product HKi

⊗ Li,

3 Any Hilbert space of functions
∑ng

i=1
gi(p)πi(xi) with πi

a polynomial would also embed f(x, p).

where ⊗ denotes the direct product. Then, by the Aron-
szajn Theorem [19] on RKHS sums (see Appendix 8.1.1),
f(x, p) is embedded in the RKHS given by:

HK =

ng∑

i=1

HKi
⊗Li, (18)

and the associated kernel defined in (17) reproduces HK ,
which ends the proof. �

For Ki, any positive definite kernel, e.g., linear, poly-
nomial, rational, spline or wavelet kernels, can be used.
Choosing an appropriate Ki highly depends on the prob-
lem at hand. More details on this topic can be found
in [5]. For the LPV case, radial basis functions (RBF)
are typically chosen as kernels to describe the expected
structural dependency on p. Such a choice is motivated
by the fact that, in typical applications, ai(pk) and bi(pk)
are nonlinear and smooth functions and RBF kernels are
proven to perform well in capturing such functions.

5.2 Estimation of the coefficient functions from data

In general, operation HK1
⊗HK2

embeds all products
between functions g1 of HK1

and g2 of HK2
. After es-

timating such a product, it is not trivial to deduce g1

and g2 separately. In the LPV context, due to the linear
nature of Li, it is possible to get a direct estimation of
each of the functions gi(p), as described in Lemma 2.

Lemma 2 (Estimating the coefficient functions)
Let f(x′, p′) be embedded in an RKHS HK with re-
producing kernel K as in (17). If f has a representer

f(x′, p′) =
∑N

k=1 ckK
(
(xk, pk), (x′, p′)

)
, then each sub-

function gi(p
′) of f(x′, p′) is represented as

gi(p
′) =

N∑

k=1

ckxk,iKi(pk, p′). (19)

PROOF. For each i ∈ I
ng

1 , consider f at (xØi , p′) with

xØi

j = δi,j , ∀j ∈ I
ng

1 . (20)

In other words, xØi is 0 except at its i-th element which is

equal to 1. Then, f(xØi , p′) =
∑ng

j=1 gj(p′)xØi

j = gi(p
′).

In other words, gi(p
′) can be expressed as f evaluated

at (xØi , p′). Hence, given the representer f(x′, p′) =
∑N

k=1 ckK
(
(xk, pk), (x′, p′)

)
it can be easily seen that

K
(
(xk, pk), (xØi , p′)

)
= xk,iKi(pk, p′). �

Lemma 2 formalizes the estimation of the coefficient
functions gi in the general RKHS framework. It is inter-
esting to note that, for the estimation criterion defined
by (4), Lemma 2 confirms the results obtained in [24]
from the LS-SVM and in [25] from the GP viewpoints.
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5.3 Sparse RKHS estimator for structure selection

In this section, we propose to solve the joint problem of
model structure selection A2 in terms of model order and
delay and non-parametric estimation of the coefficient
dependencies (A2), by applying the sparsity enforcing
solution (11) which can be formulated in this LPV prob-
lem as:

V(f) = Cγs

(
DN , {f(xk, pk)}N

k=1, {gi(mj)}
ng,M

i,j=1 )

+ γR
(
‖f‖K

)
(21)

where

Cγs
(∗) =

N∑

k=1

(
yk − f(xk, pk)

)2
+ γs

∥
∥
[

S1 · · · Sng

]∥
∥

1
,

Si = max
j∈I

M
1

|gi(mj)| and f(xk, pk) =

ng∑

i=1

gi(pk)xk,i,

R(f) = ‖f‖2
K .

Note that this problem is equivalent to (11), since
gi(mj) = f(xØi , mj) = fi(1, mj). To estimate the func-
tion f minimizing (11), the representer of f based on
Theorem 2 readily follows:

Corollary 1 (Representer under sparsity for
LPV-IO models) Let HK be an RKHS embedding
LPV-IO model (16) with reproducing kernel K as in
(17). Then the minimizer of (11) can be expressed as a
representer in the form:

f̂(·) =

N∑

k=1

ckK(xk,pk)(·) +

ng∑

i=1





M∑

j=1

ci,jK(xØi ,mj)(·)



 .

(22)

PROOF. Theorem 2 directly applies as, due to the

linear structure, {gi(mj)}
ng,M

i,j=1 = {f(xØi , mj)}
ng,M

i,j=1

and K(xØi ,mj)(x
′, p′) = K

(
(xØi , mj), (x′, p′)

)
=

Ki (mj , p′) x′. �

Having defined an optimization criterion, an LPV kernel
structure as well as a representer for the problem at
hand, the estimation problem can be defined as follows:

Problem 1 (Joint non-parametric LPV-IO esti-
mation and structural selection) Consider a data set
DN = {yk, uk, pk}N

k=1 measured from a data-generating
system (15) and a set of nodes {mj}M

j=1. Using the rep-
resenter (22) with K defined in (17), estimate the coef-

ficients {ck}N
k=1 and {ci

j}
ng,M

i=1,j=1 which minimize (11).

The solution of Problem 1 in terms of minimization of
(11) can be reformulated as a quadratic optimization
problem (QP) that can be efficiently solved by standard
solvers. All the steps necessary for this reformulation are
detailed in Appendix 8.2. Based on Lemma 2, each co-
efficient function gi(·), i ∈ I

ng

1 is obtained by computing

f(xØi , ·) = gi(·), which reads as:

gi(·) =

N∑

k=1

ckxk,iKi(pk, ·) +

M∑

j=1

ci
jKi(mj , ·). (23)

Remark 1 Due to the ℓ1-penalty term introduced in
(21), i.e., γs

∥
∥
[

S1 · · · Sng

]∥
∥

1
, to shrink the coefficient

functions ai and bj to zero, the resulting estimates of
ai and bj will be biased. To reach an unbiased estimate,
a two step procedure is applied, where (21) is used to
determine indices Iy and Iu which correspond to signifi-
cant functions ai (i ∈ Iy) and bj (j ∈ Iu). In the second
step, by restricting the estimator corresponding to (3)
to only these functions, the following lower-complexity
LPV model is re-estimated:

yk =
∑

i∈Iy

ai(pk)q−iyk +
∑

j∈Iu

bj(pk)q−juk + ek. (24)

Remark 2 In order to obtain the estimate (22), the fol-
lowing hyper-parameters are required to be chosen:

• βw: hyper-parameters of the kernels;
• γ: ℓ2 regularization parameter;
• γs : sparsity regularization parameter.

For RKHS estimators, a large variety of hyper-parameter
estimation methods such as empirical Bayes (EB), Cp

statistics, Stein’s unbiased risk estimator (SURE) and
various forms of cross-validation (CV) have been pro-
posed (see [8] for an overview). As the estimation of the
proposed sparse representer is solved via a QP, most of
these methods are not directly applicable. In this paper,
we apply CV based on a validation data set which can
be implemented by nonlinear optimization, gridding or
Bayesian optimization.

6 Simulation example

The effectiveness of the developed RKHS approach is
shown in this section on a Monte-Carlo study based
on a simulation example. The identification of an LPV
system with a sparse dynamic relation using an over-
parameterized LPV-IO model is considered.

6.1 Data-generating system

The LPV data-generating system is a Multi-Input
Single-Output (MISO) system described by

yk = ao
1(pk)yk−1 + bo

15,1(pk)uk−15,1 + bo
4,2(pk)uk−4,2

+ bo
5,2(pk)uk−5,2 + eo

k, (25)

where eo
k is a white noise process with Gaussian distribu-

tion N
(
0, σ2

e

)
and standard deviation σe = 0.3. The co-

efficient functions are described by the nonlinear maps:

ao
1(pk) = 0.9p3

k, (26a)

bo
15,1(pk) = 2

sin(2πpk)

2πpk

, bo
5,2(pk) = 2p2

k. (26b)

bo
4,2(pk) =







−1 if pk > 0.5;

−2pk if − 0.5 ≤ pk ≤ 0.5;

1 if pk < −0.5;

(26c)
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The system is estimated from a data set DN =
{yk, uk, pk}N

k=1 with N = 600. To gather data, the input
uk,1 and the scheduling signal pk are chosen to be mu-
tually independent white-noise sequences with uniform
distribution U(−1, 1). The second input uk,2 is a white
noise process with Gaussian distribution N (0, 1). For a
validation data set, independent realizations of uk and
pk with the same distributions is used to generate Dval

Nv

with Nv = 200 samples.

6.2 LPV model structure

The identification problem is formulated in the consid-
ered RKHS setting by using an over-parameterized LPV
model structure:

yk =

na∑

i=1

ai(pk)yk−i +

nb,1∑

j=1

bj,1(pk)uk−j,1

+

nb,2∑

j=1

bj,2(pk)uk−j,2 + ek. (27)

with na = 20, nb,1 = 20 and nb,2 = 20. According to the
RKHS identification setting considered in this paper, the
dependence of the functions ai(pk), bj,1(pk) and bj,2(pk)
on the scheduling signal p is not specified a priori.

6.3 Kernel structure

An RBF kernel is used for each Ki, i.e.,

Ki(p, p′) = exp

(

−
(p− p′)

2

βw
2
i

)

.

This kernel defines an RKHS encompassing a wide vari-
ety of nonlinear functions. In this example, all βwi pa-
rameters are enforced to be the same value βw in order to
simplify the hyper-parameter optimization. In order to
minimize the multi-objective function V(f) in (21), for
γs > 0, the interval P = [−1, 1] is gridded into M = 11
equidistant nodes mj .

6.4 Methodology

To demonstrate the efficiency of the proposed approach,
the methodology outlined in Algorithm 1 is applied with
T = 10−2 and with a CV score defined in terms of

BFR = max






0, 1−

√
√
√
√

∑NV

k=1 (yk−ŷk)
2

∑NV

k=1 (yk−y)
2






· 100%,

with ŷk denoting the simulated model output and y the
sample mean of the measured output over the valida-
tion set. For Algorithm 1, the grid Γ is chosen such

that max(γ(τ)) and max(γ
(τ)
s ) produce f̂ = 0, while

max(β
(τ)
w ) is set to be three times the length of the inter-

val P. Furthermore, for each parameter, the minimum is
taken to be zero and the resulting region is covered by
100 grid-points.

Algorithm 1 Sparse estimation & hyper-para. tuning

Require: model structure (27), data sets DN , Dval
Nv

,

node points M = {mj}M
j=1 ⊂ P, kernel function K,

grid Γ = {γ(τ), γ
(τ)
s , β

(τ)
w }

Ng

τ=1 and threshold T > 0.
1: set τ ← 0.
2: repeat
3: Set τ ← τ + 1.
4: Set hyper-parameters to γ(τ), γ

(τ)
s , β

(τ)
w .

5: Minimize V(f) in (21) to estimate (22). The re-
sults of this sparse estimator is referred to as S-
RKHS.

6: For each i ∈ I
ng

1 , test if maxj∈I
M
1
|gi(mj)| > T .

7: Collect the index of the significant ai, bj,1 and bj,2

in Step 6 into the sets Iy, Iu1
and Iu2

.
8: With the same γ, βw, estimate the low-complexity

model (24) via the standard RKHS method (6)

and (7). The result f̂ (τ) is denoted as LC-RKHS.
9: Compute the BFR score of the simulated output

of f̂ (τ) on Dval
Nv

.
10: until τ = Ng.

11: return f̂ (τ) with the lowest BFR score.

6.5 Coefficient selection results

In order to provide representative results, a Monte-Carlo
simulation (MCs) of NMC = 50 runs is performed. At
each run, new realizations of the data sets DN , Dval

Nv

are considered. The average of the Signal-to-Noise Ra-
tio (SNR) over the MCs is equal to 13dB. Tuning of
the hyper-parameters in terms of Algorithm 1 has been
realized on the first dataset and D

val
Nv

. The results are:
γ = 0.01, γs = 0.3 and βw,i = 0.7. These are then used
in the 50 runs based MCs, which corresponds to Steps
4-9 in Algorithm 1 with these parameters fixed. The re-
sults are compared against a regular RKHS method us-
ing model (27) without sparse regularization and with
optimized hyper-parameters γ = 1 and βw = 0.7. Fur-
thermore, in order to evaluate the performance of the
proposed approach with respect to other sparse estima-
tion methods, a LASSO estimator is also applied us-
ing a 6th-order monomial basis based parametrization of
each nonlinearity. The regularization parameter of the
LASSO has been optimized using the grid search pro-
cess. For ai(pk), bj,1(pk) and bj,2(pk) estimated via the
RKHS estimator (i.e., with γs = 0), its sparse version (S-
RKHS) and the LASSO, the maximum absolute values

ai, bj,1 and bj,2 of these functions are computed over P.
The average and standard deviation of these maximums
over the 50 MC runs is reported in Figure 1.

Figure 1 reveals that the S-RKHS approach correctly
detects the nonzero coefficient functions as a1, b15,1,
b4,2 and b5,2 (see (25)). These are the only functions
with maximum absolute value greater than the thresh-
old 10−2. It is also worth remarking that the true coeffi-
cient structure of the system is detected in 47 out of 50
Monte-Carlo runs, while in the other 3 runs, 5 nonzero
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Fig. 1. Maximum of the coefficient function estimates over 50 Monte Carlo runs.
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Fig. 2. Estimated coefficient functions a1(pk), b15,1(pk), b4,2(pk), b5,2(pk) after model structure selection (LC-RKHS). True
function (solid black line), mean estimate (solid blue line), the standard deviation intervals (dashed red line), and the box plot
of the error over the 50 Monte Carlo runs.

functions were detected instead of 4. As can be seen
in Figure 1, the estimated maximum values of |a1(�)|,
|b15,1(�)|, |b4,2(�)| and |b5,2(�)| over the interval P are 0.27,
0.12, 0.67 and 0.75, respectively, while the correspond-
ing true values are 0.9, 2, 1 and 2. This is a common phe-
nomenon with ℓ1 regularization indicating the necessity
of the second re-estimation step. When comparing the
selection quality with the LASSO approach, the perfor-
mance of both approaches are equivalent. Naturally the
average values of significant functions are different since
the LASSO is based on an explicit and a priori fixed poly-
nomial parametrization. This shows that on an example
where relatively low order polynomial parametrization
is suitable, the proposed approach is competitive with
LASSO. However, the RKHS guarantees a more accu-
rate modeling capability in a larger variety of nonlinear
structures. In cases when the explicit parametrization is
not adequate (e.g., non-symmetric functions), LASSO
selection process can potentially run into difficulties.

6.6 Final estimation results

Here, the results of the final estimation step of the LC-
RKHS after complexity shrinking is presented. The esti-
mates of the nonzero coefficient functions a1, b15,1, b4,2

and b5,2 are plotted in Figure 2. It can be seen that the
true nature of the nonlinear scheduling functions are well
captured and accurately estimated by the RKHS model.
The box-plots of the BFR on the validation dataset (used
neither for training nor to tuning the hyper-parameters
γ, γs and βwi) obtained with the RKHS and S-RKHS
approaches are computed and reported in Figure 3. The

obtained results clearly indicate that, by exploiting the
sparsity structure, the LC-RKHS dramatically improves
the model quality with respect to overparameterizedone.

Reg No-Reg

70

80

90

100

Identification method

B
F

R
[%

]

Fig. 3. Box-plot of the Monte-Carlo results for the BFR ob-
tained with the LC-RKHS (left) and standard RKHS (right)
estimators.

7 Conclusions

In this paper, we have presented a sparse Reproducing
Kernel Hilbert Space (RKHS) estimator for a gen-
eral class of nonlinear dynamical problems where the
underlaying nonlinearity can be expressed in a sum-of-
functions form. The main strength of this estimator is
that its solution can be computed by convex (quadratic)
optimization and therefore it avoids possible conver-
gence problems of perviously proposed iterative greedy
solutions. Applicability of the estimator is demonstrated
on non-parametric estimation of LPV input-output
models with an ARX noise structure. The resulting es-
timator avoids parameterization of the dependencies of
the model coefficients on the scheduling variable and ca-
pable of automatic selection of model structure based on

8



data, leading to a truly black-box identification method
in the LPV setting without the need of user interaction.
Such properties are achieved due to the combination of
RKHS estimator and ℓ1 regularization, which, next to
the formulation of the resulting estimator is the main
contribution of the paper. Behavior of the proposed es-
timator is empirically analyzed showing consistency of
the identification method in recovering the functional
dependency and dynamic order of the system together
with possible sparsity pattern of the model coefficients.
The method is further extendable for more general noise
conditions of the Box-Jenkins type using an instrumen-
tal variable based modification which is the target of
future research.

8 Appendix

8.1 Aronszajn’s Theorems [19]

8.1.1 Sum of kernels

If Ki(x, x′) is the reproducing kernel of the RKHS HKi

with the norm ‖ � ‖Ki
, then K(x, x′) =

∑n

i=1 Ki(x, x′)
is the reproducing kernel of the RKHS HK containing
all functions f =

∑n
i=1 fi with fi ∈ HKi

and with

norm ‖f‖2
K = min

{∑n

i=1 ‖fi‖2
Ki

}
, where the minimum

is taken for all the decompositions f =
∑n

i=1 fi with
fi ∈ HKi

. If all HKi
are disjoint and therefore do not

include any common functions beside 0, then the norm
in HK is simply given by

∑n
i=1 ‖fi‖2

Ki
.

8.1.2 Product of kernels

Let HK1
and HK2

be RKHS’s defined by the re-
producing kernels K1(x1, x′

1) and K2(x2, x′
2). The

direct product of HK1
⊗ HK2

is an RKHS HK de-
fined by the reproducing kernel K

(
(x1, x′

1), (x2, x′
2)
)

=
K1(x1, x′

1)K2(x2, x′
2) and has the norm ‖(f1, f2)‖K =

‖f1‖2
K1
‖f2||2K2

. HK embeds all functions of type
f(x1, x2) = f1(x1)f2(x2) with f1 ∈HK1

and f2 ∈HK2
.

8.2 Quadratic optimization problem

8.2.1 Formulation

Under the considered kernel structure (17) and sparsity
objectives of the LPV case expressed in terms of M, the
optimization problem (11) can be written by introducing
the slack variables r = {ri}

ng

i=1 as:

min
f,ri

N∑

k=1

(yk − f(xk, pk))2 + γ||f ||2K + γs

ng∑

i=1

ri

s.t.− ri ≤ f(xØi , mj) ≤ ri, i ∈ I
ng

1 , j ∈ I
M
1 .

(28)

Notice that the specific structure of the LPV problem
simplifies the general expression of K given in (17), when
it is computed at the specific points xØi in (20) due to
the reproducing property:

〈K(xk,pk)(·), K(xØi,mj)(·)〉K = K((xk, pk), (xØi, mj))

= xk,iKi(pk, mj)

〈K(xØi,mj)(·), K
(x

Øj,ms)
(·)〉K = K((xØi, mj), (xØj, ms))

= Ki(mj , ms) if i=j

= 0 ∀i 6= j (29)

By noticing these equalities, it becomes obvious that (21)
is equivalent with (28) and that the sparse representer
(12), i.e., (22), can be used to express ||yk− f(xk, pk)||22,
||f ||2K and f(xØi , mj) in terms of the coefficients ck and
ci

j . Their matrix expression, leading to the QP are de-
tailed in the subsequent subsections.

8.2.2 Expressing the error term

In order to compute
∑N

t=1(yk− f(xk, pk))2, the value of
f must be computed for all measurements points (xk, pk)
by using directly the sparse representer (22).

Stack column-wise the parameters as

c̆⊤ = [c⊤c⊤] = [c1 . . . cN c1,1 . . . c1,M c2,1 . . . cng,M ],

the output YN = [y1 . . . yN ]⊤ and introduce the follow-
ing notation ∀i ∈ I

ng

1 :

Xi = diag(x1,i, . . . , xN,i),

K
NM
i (k, j) = Ki(pk, mj), ∀k, j ∈ I

M
1 ,

K
MN
i = K

NM
i

⊤
,

K
MM
i (j, s) = Ki(mj , ms), j, s ∈ I

M
1 ,

K
NN
i (k, l) = Ki(pk, pl), k, l ∈ I

N
1 .

Then, the following matrix formulation is obtained:

N∑

k=1

(yk − f(xk, pk))2 = ‖ YN − K̆ c̆ ‖2
2, (30)

where K̆ ∈ R
N×(N+Mng) is given as

K̆ =

[
ng∑

i=1

XiK
NN
i Xi X1K NM

1 . . . Xng
K NM

ng

]

. (31)

8.2.3 Expressing the regularizer

Using the expression ||f ||2K = 〈f, f〉K under the sparse
representer (22):

||f ||2K =

ng∑

i=1

(
N∑

k=1

N∑

l=1

ckxk,iKi(pk, pl)xl,icl

)

+

ng∑

i=1

(
M∑

j=1

N∑

l=1

ci,jKi(mj , pl)xl,icl

)

+

ng∑

i=1

(
N∑

k=1

M∑

s=1

ckxk,iKi(pk, ms)ci,s

)

+

ng∑

i=1

(
M∑

j=1

M∑

s=1

ci,jKi(mj , ms)ci,s

)
, (32)
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which corresponds in a matrix form with c̆⊤ = [c⊤c⊤] to

||f ||2K = c̆⊤Ωc̆, (33)

where Ω ∈ R
(N+Mng)×(N+Mng) is given as

Ω=
















ng∑

i=1

XiK
NN
i Xi X1K NM

1 X2K NM
2 . . . Xng

K NM
ng

K
MN
1 X1 K

MM
1 0 . . . 0

K MN
2 X2 0 K MM

2

. . .
...

...
...

. . .
. . . 0

K MN
ng

Xng
0 . . . 0 K MM

ng
















.

8.2.4 Expressing the sparsity term
Finally by using that gi(mj) = f(xØi , mj) and the
sparse representer (22):

gi(mj) = f(xØi , mj) =
(

N∑

k=1

ckxk,iKi(pk, mj)
)

+
(

M∑

s=1

ci,sKi(ms, mj)
)
, ∀i ∈ I

ng

1 , ∀j ∈ I
M
1 , (34)

or equivalently

gi(mj) = [c⊤ci
⊤]

[

K
Nj
i

K
Mj
i ,

]

(35)

using the additional notation

K
Nj
i (k) = xk,iKi(pk, mj), k ∈ I

N
1 ,

K
Mj
i (s) = Ki(ms, mj), s ∈ I

M
1 . (36)

8.2.5 Matrix expression of the optimization criterion

Under the previous derivation, the optimization problem
(21) can be equivalently considered as:

min
c,c,r
‖ YN − K̆ c̆ ‖2

2 + γs

ng∑

i=1

ri + γc̆⊤Ωc̆

s.t.







−ri ≤ [c⊤ci
⊤]

[

K
Nj
i

K
Mj
i

]

≤ ri, i ∈ I
ng

1 , j ∈ I
M
1

ri > 0

which is a quadratic programming problem.
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