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Abstract. The measurement of fetal head circumference (HC) is per-
formed throughout the pregnancy to monitor fetus growth using ultra-
sound (US) images. Recently, methods that directly predict biometric
from images, instead of resorting to segmentation, have emerged. In our
previous work, we have proposed such method, based on a regression con-
volutional neural network (CNN). If deep learning methods are the gold
standard in most image processing tasks, they are often considered as
black boxes and fails to provide interpretable decisions. In this paper, we
investigate various saliency maps methods, to leverage their ability at ex-
plaining the predicted value of the regression CNN. Since saliency maps
methods have been developed for classification CNN mostly, we provide
an interpretation for regression saliency maps, as well as an adaptation
of a perturbation-based quantitative evaluation of explanations meth-
ods. Results obtained on a public dataset of ultrasound images show
that some saliency maps indeed exhibit the head contour as the most
relevant features to assess the head circumference and also that the map
quality depends on the backbone architecture and whether the prediction
error is low or high.

Keywords: Saliency maps - Explanation evaluation - regression CNN -
biometric prediction - medical imaging

1 Introduction

The measurement of fetal head circumference (HC) is performed throughout
the pregnancy as a key biometric to monitor fetus growth and estimate gesta-
tional age. In clinical routine, this measurement is performed on ultrasound (US)
images (Fig. 1), via manually tracing the skull contour and fitting it into an el-
lipse. Automated segmentation approaches have been proposed, lately based on
CNN in order to solve this tedious task, but these models require large dataset of
manually segmented data. In our previous work [21], we departed from the main-
stream approach of segmentation and instead proposed a regression network, in
order to directly predict the head circumference.
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109.195 mm 225.885 mm 318.212 mm

Fig. 1. Ultrasound images of fetus head with head circumference in millimeters

Compared to a classification model, the last layer of a regression CNN model
is a linear or sigmoid activation function, instead of the softmax layer. Also, the
regression loss function is metric-inspired, for instance, it can be the Mean Abso-
lute Error (MAE) or the Mean Squared Error (MSE). It is known that the high
accuracy of deep learning methods comes at the cost of a low interpretability, i.e.
the model is seen as a black box, which does not provide explanations along with
the prediction. In this paper, our goal is to investigate how explanation methods
can help us to get some insights on the regression network and to appreciate
its behavior [12]. In classification networks, explanations may take the form of
saliency or sensitivity maps [10], highlighting the areas that particularly con-
tributed to a decision. The saliency maps have been applied on different neural
networks such as CNN, LSTM, and in various tasks, for example classification,
detection and image segmentation [16]. To the best of our knowledge, this paper
is the first interpretation of a regression CNN that is dedicated to the estimation
of biometric from medical images.

In this paper, our contributions are the following: we adapt explanation meth-
ods in regression CNN and provide an interpretation of what a saliency map is,
in the regression case. We are thus able to gain insight into the CNN regression
model for our HC prediction problem, and see what pixels contribute the most
to the estimation of the HC: we expect them to be those of the head contour. We
also address the problem of evaluating the explanation methods, in the regres-
sion case. Adebayo’s sanity checks consist in performing randomization tests,
in the data or in the model, and evaluate the changes in the produced saliency
maps [1]. Another example is Samek’s proposal, that has particularly inspired
us [11], to compare and assess different explanation methods. The principle is to
inject noise gradually in the image, in locations that have been highlighted by
the saliency maps, and see how the prediction is affected by this perturbation.
However, the method is designed for classification networks and requires some
adaptation.

In Section 2 we briefly recall the state-of-the-art in saliency maps algorithm
for classification CNN and their meaning in case of a regression network; we also
presented the evaluation methodology used to assess the explanation methods.
Experimental results are presented in Section 3 and conclusions are drawn in
Section 4.
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2 Saliency map methods for regression CNN

In this section, we briefly describe 8 explanation methods from the state-of-the-
art that are used to produce saliency maps in classification CNN. [12,22,16].
Then, we present the evaluation method of perturbation analysis [11] and adapt
it to the regression CNN to evaluate the performance of these methods.

2.1 State-of-the-art saliency maps in CNN

Two categories of saliency maps are generally considered, perturbations-based
or propagation-based. In perturbation-based approaches, the goal is to estimate
how perturbation applied to the input image, such as blurring or injecting noise,
changes the predicted class [5,22]. In propagation-based techniques, the idea
is to backpropagate a relevance signal from the output to the input. In this
paper, we will focus on the latter category of methods that actually encompass
(i) sensitivity (or gradient-based) analysis, (ii) deconvolution methods, and (iii)
Layer-wise Relevance Propagation (LRP) variants.

The sensitivity analysers include the Gradient [14] method, that simply
computes the gradient of the output w.r.t. input image, and expresses how much
the output value changes w.r.t. a small change in input; the SmoothGrad [17],
that averages the gradient over random samples in a neighborhood of the input
with added noise, and which is an improvement of Gradient method that can
sharpen the saliency map; the Input*Gradient [13] technique, that strengthens
the saliency map by multiplying Gradient with input information; and the In-
tegrated Gradients [19], that computes the integration of the gradient along
a path from the input to a baseline black image.

Deconvolution methods are the DeConvNet [20] that acts equivalently as
a decoder of CNN models, which reverses the CNN layers, and the Guided
BackProp [18] that combines backpropagation and DeConvNet.

The core idea of Layer-wise Relevance Propagation (LRP) [3] is to
compute a relevance score for each input pixel layer by layer in backward di-
rection. It first forward-passes the image so as to collect activation maps and
backpropagates the error taking into account the network weights and activa-
tions. The DeepTaylor [9] method identifies the contribution of input features
as the first-order of a Taylor expansion, through Taylor decomposition, then it
can estimate the attribution of each neuron one by one.

In the classification setting, a saliency map provides an estimation of how
much each pixel contributes to the class prediction. In the regression setting, the
saliency map will provide an estimation of how much each pixel is impacting the
model, and is contributing to decrease the prediction error, as measured by the
loss function, that is in general the MAE or MSE.

2.2 Evaluation of explanation methods based on perturbation

Explanation methods (also called analyzers) perform differently depending on
the model, the task at hand, the data, etc. In order to quantitatively evaluate
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those analyzers, we build upon the perturbation analysis of [11], originally de-
signed to assess explainability methods in classification networks. Let us first
describe the perturbation process and then the evaluation metric.

First, the input image to be analyzed is subsampled by a grid. Each subwin-
dow of the grid is ranked according to its importance w.r.t. to the pixel-wise
saliency scores assigned by the analyzers. Then, the information content of the
image is gradually corrupted by adding perturbation (Gaussian noise) to each
subwindow, starting with the most relevant subwindow, w.r.t. the ranking just
mentioned. The effect of this perturbation on the model performance is mea-
sured with the prediction error. This procedure is repeated for each subwindow.
Generally, the accuracy of model will drop quickly when important informa-
tion is removed and remains largely unaffected when perturbing unimportant
regions. Thus, the analyzers can be compared by measuring how quickly their
performance drops. That is to say, the quicker the model performance drops
after introducing perturbation, the better the analyzer is capable of identifying
the input components responsible for the output of the model.

The quantitative evaluation proposed in [11] for classification network, con-
sists in computing the difference between the score f(z) indicating the certainty
of the presence of an object in the image z, in the presence and in the absence
of perturbation. This difference is called Area over Perturbation Curve (AOPC)
and defined more precisely defined in in [11] as:

N

K
AOPCtnatyeer = 3= S (Fn)® = = 3 flar) ) (1)
k=0

n=0

where N is the number of images, K is the number of perturbation steps, = is
the input image.

Here, we propose to adapt the AOPC to the regression case, and if we denote
by e(x)(o) the prediction error of initial image evaluated by the analyzer and
e(x,)® (1 < k < K) the prediction error of the perturbed image (z,,)*) at step

regression .
k, we can define the AOPC Analyzer 850

N K
regression 1 1
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A larger AOPC in absolute value means that an analyzer has a steep decrease
while the perturbation steps is increasing.

3 Experiments

3.1 Experimental setup

We analyse two regression models that we proposed in our previous work [21],
namely the regression ResNet50 and regression VGG16 (implemented using
Keras). As their names show, the backbone architectures are ResNet50 [6] and
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VGG16 [15] resp., and the loss is the mean absolute error. Both models are
pre-trained on ImageNet; subsequently the last (softmax) layer is replaced by a
linear layer and the network is fully retrained on a public dataset of ultrasound
fetal head images called HC18 [7]. The HC18 dataset contains 999 US images,
along with the corresponding head circumference, that we randomly split into a
training (600), a validation (200) and a test set (199). We augment the data of
the training set to 1800 images, and perform resizing of the images to the size
128x128 pixels. With a 5-fold cross validation, the mean absolute errors (MAE)
that we obtained on the test set were 37.34 + 37.46 pixels (4.78 & 4.41 mm) in
reg-ResNet50 and 40.17 + 40.99 pixels (5.46 + 5.99 mm) in reg-VGGI6.

In the following, we will compute the saliency maps on the test set images. We
first show the saliency maps of various explanation methods for our regression
problem, for both architectures Reg-ResNet50 and Reg-VGG16, the quantitative
evaluation of explanation methods, and a more in-depth study of prediction
results, with the best ranked methods, namely Input*Gradient and LRP. We
have used the iNNvestigate toolbox to perform our experiments [2].

Visualization of explanation methods We visualize the saliency maps pro-
vided by the 8 selected explanation methods in Fig.2. From these images, we can
barely see the features retrieved by explanation method DeConvNet and Gradi-
ent in both models, that is to say these two methods seem somehow insensitive
to the models. This may be explained by the gradient shattering problem [4]
for the gradient method. Regarding DeConvNet’s saliency map, it may be due
to the the architecture of deconvolution network which reconstructs the con-
volution networks reversely. In addition, for Reg-ResNet50, methods Gradient,
GuidedBackprop and SmoothGrad fail to highlight the head contour. We will
see that these observations are confirmed by the quantitative evaluation.

Quantitative evaluation of explanation methods based on perturba-
tion Here, we compare the explanation methods through perturbation analysis.
In this experiment, the input image of size 128 x128 pixels is divided into a grid
of 4x4 subwindows of size 32x32 pixels. Gaussian noise with mean value 0 and
standard deviation 0.3 is added to each subwindow, according to their impor-
tance assigned by analyzers during the 16 steps. Fig. 3 is an example of the
perturbation process of Gradient analyzer.

In Fig. 4, we show the evolution of the prediction error w.r.t. the quantity of
noise added at each perturbation steps, on first the most significant subwindow
in the analyzer’s sense, to the least significant one. One can observe that consis-
tently, the prediction error is increasing, as the level of noise increases. Methods
with the steepest curve, LRP and Input*gradient, exhibit the largest sensitivity
to perturbations, and as such, should highlight the contributing pixels, in the
sense of this criterion. Interestingly the Integrated gradient analyzer seems to be
relevant for VGG16, but not for Reg-ResNet50. In the future, it will be inter-
esting to vary the subwindow size to see if results are affected. We expect that
a finer grid will be better suited to a thin structure like the head skull.
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Fig. 2. Comparison of different saliency maps with Reg-VGG16 and Reg-ResNet50. P:
predicted HC value, T: ground truth HC value (in pixels).

Table 1. Performance (AOPC scores) of different analysis methods after perturba-
tion, with two regression models. G: Gradient, SG: SmoothGrad, DCN: DeConvNet,
DT: DeepTaylor, GB: GuidedBackprop, I*G: Input*Gradient, IG: IntegratedGradients.
Lower is better. Best scores in bold.

Model G SG DCN DT GB I*G IG LRP

Reg-VGG16 -7.312 -7.398 -2.869 -7.401 -1.663 -9.189 -9.490 -9.175
Reg_ResNet50-11.533 -11.841 -9.249 -9.890 -9.717 -14.748 -5.603 -14.577

In Table 1, we compared AOPC scores on regression VGG16 and regression
ResNet50 models respectively. Since the AOPC is the difference between the
prediction error with and without perturbation, we expect that the analyzer that
are indeed perturbed by the noise will return a large AOPC score, in absolute
value. We can see that the regression ResNet50 has higher AOPC score than
regression VGG16 model. Again we can gather from this table that both the
LRP and Input*Gradient methods perform well in those two models.

Note that other explanation methods have inconsistent performance depend-
ing on the model. This highlights the necessity to choose the proper explanation
method before analyzing a specific model.

Comparison of regression models As shown in Fig 2, both regression VGG16
and regression ResNet50 are successful in learning the features from ultrasound
images to assess the HC. From Table 1, we can gather that the regression
ResNet50 has slight better performance on the whole, since AOPC values are
larger in absolute value.
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Fig. 3. Perturbation process for the saliency map produced by the Gradient method.
Step 0 is the original input image. From step 1 to step 15, Gaussian noise is added
gradually on the image subwindows. The perturbation order of these subwindows cor-

responds to the saliency scores assigned by the Gradient method analysis, i.e. the most
contributing pixels are perturbed first. Red: noise, blue: original image pixels.
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Fig. 4. Prediction error (in pixels) of different analyzers during each perturbation step
based on Regression VGG16 and Regression ResNet50 model. The horizontal axis is
the perturbation steps.

Comparison of saliency maps for correct vs incorrect prediction In
this experiment, we arbitrarily pick one of the best performing methods from
the previous results, and thus the use Input*Gradient explanation method to
generate saliency maps from images with small prediction error (Fig. 5 (a)),
and with large prediction error (Fig. 5 (b)). We can see that the well predicted
images have obvious head contour, at least in the 2 last rows of Fig 5 (a). The
models are able to learn the features from these images, therefore the saliency
maps show key features. However, it is not always the case: the first row shows
a small prediction error, and the head contour are not specifically highlighted.
For the badly predicted images, the saliency maps highlight features that are
spread and not localized into meaningful segments. The models can not learn
the features from these images.
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Fig. 5. Saliency map of Reg-VGG16 and Reg-ResNet50 with Input*Gradient explana-
tion method. P and T: resp. predicted and ground truth HC values (pixels).

4 Conclusion

Understanding whether the model can learn the relevant features in images and
take the right decision is crucial in the medical domain. Whereas there have
been a wealth of works in classification networks, there is a void for interpret-
ing regression networks. In this paper, we address the problem of estimating
the head circumference in fetal head directly from US images. We use several
post-hoc explanation techniques that produce saliency maps and adapt a per-
turbation based quantitative evaluation method, to assess the relevance of the
saliency maps. The experimental results proved that the regression CNN mod-
els are able to learn the key features from the input ultrasound fetus images,
and in particular, the head circumference. One finding is that for this applica-
tion, Gradient and DeConvNet method are particularly insensitive to different
CNN models or data, and that ResNet50 seem to have better learnt the head
features. Thus so far, we have extended the model property from classification
to regression and explored a specific regression task. Future works also include
investigating the explainability of other regression losses: in this paper, we used
the MAE, but the mean square error or the Huber loss are alternatives, and
there is no heuristics yet to decide which loss is better [8]. This will allow us
to adapt or design new loss functions, that can account for an enhanced learn-
ability of the regression CNN, to further improve the HC prediction. In addition
to investigate individual image-wise explanations, we also intend to explore the
generation of meta-explanations by aggregating individual explanations, to gain
additional insight into the model behavior. Other regression applications will
also be interesting to explore.
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