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Abstract. Ensuring passengers’ safety is one of the daily concerns of
railway operators. To do this, various image and sound processing tech-
niques have been proposed in the scientific community. Since the begin-
ning of the 2010s, the development of deep learning made it possible to
develop these research areas in the railway field included. Thus, this arti-
cle deals with the audio events detection task (screams, glass breaks, gun-
shots, sprays) using deep learning techniques. It describes the method-
ology for designing a deep learning architecture that is both suitable for
audio detection and optimised for embedded railway systems. We will
describe how we designed from scratch two CRNN (Convolutional Re-
current Neural Network) for the detection task. And since the creation
of a large and varied training database is one of the challenges of deep
learning, this article also deals with the innovative methodology used to
build a database of audio events in the railway environment. Finally, we
will show the very promising results obtained during the experimentation
in real of the model.

Keywords: Audio event detection · Abnormal event · Transport envi-
ronment · Railway · Deep learning · CRNN

1 INTRODUCTION

Surveillance in the railway field is an expensive task. It requires deploying huge
resources, both human and material, to ensure the safety of passengers. A whole
framework dedicated to this task must be deployed: CCTV cameras and mi-
crophones, patrol and surveillance agents, barriers, etc. Nowadays, most of au-
tonomous surveillance systems still require a human operator. With the recent
image and signal processing techniques as neural networks (NN) and deep learn-
ing (DL), a robust surveillance automation becomes possible. The automation’s
aim is to help railway operators by reducing security issues by detecting an event
very early and allowing the prompt intervention of the railway police.

Developing audio and video algorithms to detect critical events is not a new
research action. But with recent NN innovations, this research area has grown
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very quickly these last years. Moreover, smart video based event recognition
is an active research field but is more difficult inside the railway vehicle due
to occlusion issues. In this context, analysing audio environment of a railway
has yield promising results in the past [16,25] with classical machine learning
techniques. In this paper, we present a work in line with this question: how to
detect some critical events by analysing audio environment inside a train ?

We propose to design an event detection system based on NN and DL tech-
niques, that will be based on existing audio equipment’s in actual commercial
trains. We aim at increasing the capabilities of the actual surveillance systems
with automatic detection and identification of some abnormal sounds.

The automatic sound classification and recognition are two active areas of
study [22,17,2] and are present in various fields of application as speaker recogni-
tion [18], speech emotion classification [24,23], urban sound analysis [19], audio
surveillance of roads [9], acoustic scene classification [8], event detection [21] and
localisation [4]. It aims at detecting the onset and offset times and labelling for
each sound event in an audio sequence.

The prolific research is due to advances of NN and DL that has deeply
changed the way to design and use automatic detection systems, for both sound
or image stream. In this paper, we study sound classification algorithms to deal
with abnormal audio events recognition. As previously cited, several research
have already been conducted between 2005 and 2015 : The European research
projects BOSS, the french projects SURTRAIN and DÉGIV [16,25]. These works
did not use DL and NN because the computing power of computers did not al-
low us to consider on-board setup. Recently, Laffitte et al. showed the way and
presented studies on the automatic detection of screams and shouts in subway
train using deep neural networks (DNN) [12,13].

A supervised DNN requires a large amount of data for the training task of
the model. Obtaining a database combining both quantity, thousands of data,
and quality, for which all the ”event to be recognised” are precisely labelled be-
come a complex paradigm. Some audio databases are publicly available in the
scientific community like databases from different challenges of Detection and
Classification of Acoustic Scenes and Events (DCASE) [1] but the embedded
railway environment is not generally considered. This is understandable since it
is difficult to collect huge amount of recordings in a train. Indeed, railway is a
highly regulated environment, where very strict rules must be followed, in partic-
ular concerning fire risks assessment, electromagnetic compatibility, vibrations
and personal data protection. Therefore, only certified on-board computers can
be used in trains. These computers have limited computing resources for heat
dissipation considerations.

The present paper addresses two problems. the first problem is dealing with
the build of a railway synthetic database dedicated to abnormal audio events
detection. This database has been built by mixing sound patterns and real em-
bedded railway background sounds. The second problem is focusing on the de-
sign of convolutional and recurrent neural network for abnormal events detection
trained from this database. In the introduction section we present some stud-
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ies on audio classification and detection. The second section present an original
database dedicated to the abnormal events detection in railway environment.
Two architectures of convolutional and recurrent neural network are presented
in the third section. The following sections are dedicated to the experiments
description and detection results respectively. Finally the last section presents
the conclusions.

2 A railway database for abnormal events detection

An embedded railway environment is a very specific place where new acoustic
constraints have to be considered. This acoustic environment is very noisy and
not stationary. It is a mixture of many acoustic sources emitted from mechanical,
electrical and electronic sub-systems working simultaneously and also emitted
by passengers. In this context we propose to build a dedicated database by
mixing railway background and abnormal event sounds. Both are presented in
the following sections and are followed by a description of the mixing method
we use.

2.1 Railway background sounds

Railway background sounds have been recorded during technical rolling on board
of multiple (suburbans, regional and high speed) SNCF train to create variabil-
ity and make our system less specific. The mobile capture equipment have been
placed in the middle and at the tail of the train. Six hours of background sounds
have been recorded. The audio signal has been recorded on a single 32 bits chan-
nel and has been sampled at 44.1kHz. These background sounds are a mixture of
sounds of the engines, sounds of friction of the wheels on the rails, sounds of air
conditioner, commercial audio messages etc. These railway background signal is
clearly a polyphonic and not stationary background signal. s caisses ?

2.2 Abnormal events and additional sounds

Four types of abnormal sounds events to detect have been chosen: gunshots,
screams, glass breaks and sprays. The samples of these class sounds are extracted
from Freesound website [10] in order to check the audio content all the samples
have been listen before incorporating them into the final dataset. These abnormal
sound are recorded on a 32 bits mono channel signal and sampled at 44.1kHz.

In a commercial train, other operation sounds as buzzers, door opening/closing,
passengers conversations etc. appear. Because, these sounds are not recorded
during technical rolling, we added all these additional sounds from an other
railway audio dataset.

The duration distributions of abnormal events and additional sounds are
presented in table 1.
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Number Total Min Mean Max

Gunshot 358 404.6s 0.13s 1.13s 2.68s
Scream 339 335.8s 0.28s 1.14s 1.99s

Glass break 175 237.9s 0.38s 1.35 2.98s
Spray 310 253.6s 0.13s 0.81s 1.92s

Add. sounds 459 910.8s 0.53s 1.98s 2.0s

Table 1: Duration distribution of the abnormal events sequences and additional
sounds.

2.3 Database samples generation process

Here we detail how we mix the background, abnormal and additional sounds to
generate one audio sequence of our new database. The duration of each generated
sound sequence is 10 seconds and below is the workflow we follow to process each
sound sequence in the dataset:

1. Selection of a background sound randomly in the background dataset. The
gain of the audio sample is selected randomly between 0 and -10 dB to create
variability without introduce audio saturation.

2. Selection of 0 up to 3 abnormal events to detect. The temporal localisation is
fixed randomly within the 10 seconds of background. Overlapping of samples
is allowed and a random gain between -5 and -15 dB is applied.

3. Choice randomly of the presence or not of an other abnormal events (re-
peated for the three other abnormal sounds). These other events can occur
when dedicated events take place. In order to make the system more reliable
against these others events, necessary for a correct identification, the detec-
tor learn to consider all the other sounds as patterns not to be detected.
The temporal localisation is randomly set in the 10 seconds background.
Overlapping of samples allowed and a random gain between -5 and -15 dB
is applied.

4. Choice randomly the presence or not of an other normal events. The temporal
localisation and the gain are choosen randomly in same interval conditions.

The labels are generated at the same time than the integration of the samples
of the events to be detected. The labeling is a One Hot encoding labeling: each
sequence associated to an event to detect has its own label tensor. Each compo-
nent of this tensor is initialized to 0, except for the frames when a event to detect
occurs where the element is set to 1. The length of this label vector is equal to
the length of output model. For example, the Figure 1 shows an overview of the
spectrogram and its label. In this sequence a 2-seconds scream sample is inserted
at the 7.5th second of the background file, the start timestamp will be 7.5 and
the end timestamp will be 9.5.
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Fig. 1: Spectogram 10 log10 |x(f, t)| of an audio sequence of 5511 frames (10
sec) with the label vector associeted in red line.

3 Abnormal event detection

The algorithm has to label each abnormal event that appears during one 10
seconds sequence. All the sequence is consider as the input of our CRNN. We
adopt a One-vs-All (OvA) strategy to predict the labels. One CRNN is viewed
as a binary classifier designed and trained for one event to detect: scream, gun
shot, glass break and spray. We can take into account the polyphonic detection
problem ie. the cases where several events appear at the same time. Finally by
using dedicated ”less complex” networks, we can expect faster detection by using
multi-processors capacity of the computer.

Each CRNN consists in extracting the feature map of each sequence (convo-
lution layers) and to analyze the temporal coherence of the frequency activity
(recurrent layers). Finally, it computes one event activity probability for ev-
ery frames of the sequence. The final detection is done by applying a threshold
σ = 0.5.

3.1 Model architecture

We propose two models based on the Convolutional Recurrent Neural Network
(CRNN) developed in the recent papers [14,6,3,5]. These studies show that the
combination of convolutional and recurrent layers allows to jointly capture the
invariance in frequency domain and to model short and long term temporal
dependencies.

The first model consists in the following layers : two convolutional, two Gated
Recurrent Unit (GRU) [7] and three fully connected (FC) layers. GRU is prefered
to Long Short Term Memory (LSTM) to reduce the number of parameters and
avoid the vanishing gradient problem. In many works in audio events detection,
MEL coefficients (MFCCs), are generally used as input features [13]. In [6],
the input of the network is a log time-frequency representation of the data in
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MEL band energies over frames. In our work, we use directly the magnitudes
of the spectrum [11] and let the first layers optimise the extraction of higher
level parameters. N spectra are computed on each 10 seconds sequence of the
database.

The basic version of this first model (CRNN 1) is defined as follows (fig. 2a):

– 1 convolutional layer. It is composed of 32 filters that use k × 15 kernel.
Here k is the total number of filters in the time-frequency representation. We
use a stride of 4 samples to reduce the dimensionality of the resulting feature
map. We use a stride rather than pooling to obtain better computational
performance [20]. The convolutional layer is activated by a ReLu function.

– 1 convolutional layer. This second convolutional layers is composed of
32 filters that use 32 × 15 kernel, a stride of 1 and is activated by a ReLu
function.

– 2 layers of GRU. GRUs are used to extract temporal information from
the feature map output of the second convolutional layer. Each GRU layer
has 32 units.

– 3 FC layers. The 2 first layers are respectively 128 and 64 neurons layers
activated through a ReLU function. The last one is a single neuron layer
activated through a Sigmoid function. These layers gradually reduce the size
of the output and are distributed over the time. The last layer is computing
the activity probability for each class.

The second model (CRNN 2) is inspired by the network architecture of [3].
For this configuration, the convolution operation of the first and the second layer
does not integrate all the frequencies as before i.e. it uses a 3×15 kernel, 3 along
the frequencies range as in [3]. A third convolutional layer is added and a max-
pooling operation is used after each convolutional layer. More precisely, the basic
version of this second model (CRNN 2) is defined as follows (fig. 2b):

– 1 convolutional layer. The layer is composed of 32 filters that use 3× 15
kernel. As in CRNN 1 we use a stride of 4 samples to reduce the dimension-
ality of the feature map. A max-pooling of 5 × 1 is applied to reduce the
dimension output along the frequencies range.

– 1 convolutional layer. The layer is composed of 32 filters with a 3 × 15
kernel and a stride of 1. It is followed by a 2× 1 max-pooling.

– 1 convolutional layer. The layer is composed of 32 filters with a 3 × 3
kernel, a stride of 1 and is followed by a 2× 1 max-pooling.

– 2 layers of GRU. GRUs are used to extract temporal information from
the feature-map of the third convolution. Each layer has 32 units.

– 3 FC layers. The 2 first layers are activated through a ReLU function, and
the last one through a Sigmoid function. These layers gradually reduce the
size of the output and are distributed over the time as in CRNN 1. The last
layer is computing the activity probability for each class.

For both network, the last FC layer is not providing one probability for all
frames. Because of the use of a 4 samples stride for the first layer of each network,
the length of the output vector is divided by 4 i.e. it is equal to N/4.



Audio Events Detection in Noisy Embedded Railway Environments 7

(a) CRNN 1 (b) CRNN 2

Fig. 2: The two basic CRNN architectures.

4 Evaluation

The experiments consist firstly in evaluating the influence of the units num-
ber of the GRU and the structure of the convolutional layers for CRNN 1 and
CRNN2. Secondly, we compare the performances of both architectures. For this
both study the evaluations have been realised with the synthetic mixture de-
scribed in section 2.3. Finally, in the last run, we present a preliminary result for
the portability and the feasibility of detection in real conditions of the railway
environment.

4.1 Features extraction description

The input features of the networks is the module of the complex-valued spectra
computed on a T seconds audio signal x(t). The spectra x(f, n) are calculated by
a Fast Fourier Transform using a sliding Hamming windows of 200 samples and
a 60% overlap: f and n denote respectively the frequency and the frame index.
Finally, the input of the network is a matrix composed of N magnitude vectors
|x(f, n)|. In our experiments, T = 10s, the sampling rate is fs = 44.1kHz and
the input is 101× 5511 matrix composed of 5511 vectors of k = 101 frequencies.

4.2 Evaluation procedure in synthetic mixtures case

We evaluate both CRNN architectures by modifying their parameters.
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In a first step, we study the influence of the number of units per recurrent
layer: 0 (simple convolutional network), 32 (the basic CRNN described previ-
oulsly) and 64 units per recurrent layers. For these three cases, the number of
convolution filters is fixed to 64. This step is realised for the architecture CRNN
1.

In a second step, we test the influence of the filters number per convolutional
layers for two configurations: 32 filters (the basic CRNN described previoulsy)
and 64 filters. In both cases, the units number of GRU layers is fixed to 32. This
step is realised for the architecture CRNN 1 and CRNN 2.

CRNN is trained and tested independently for each event using dedicated
built synthetic database. In total, we generated for each event 11000 10 seconds
sequences: 7000 sequences for training, 2000 for validation, and 2000 for testing.
This corresponds to 30 hours of sounds for each class.

For learning phase, we use a 0.01 learning rate and the Adam optimizer for
binary crossentropy loss function. Early stopping is triggered after twenty itera-
tions without loss improvement on validation database. A batch normalisation,
a 0.2 dropout and a layer normalisation are applied on each convolutional or
recurrent layer during the training phase.

The test phase consist in presenting the 2000 sequences of 5511 spectra to
compare the N predictions with the N truth labels for each sequence. With a
sequence length of 5511, the length of output vector of the CRNN is equal to
N = 1375. The evaluation is made by computing accuracy, precision, recall
rates and F1score [15] for the 2000 × N = 2750000 predictions. The rates are
calculated as:

accuracy =
TP+TN

TP+FP+TN+FN
(1a) F1score =

2 · precision · recall
precision+ recall

(1b)

precision =
TP

TP + FP
(2a) recall =

TP

TP+FN
(2b)

where TP, FP, TN and FN are respectively the number of true positive, false
positive, true negative and false negative predictions.

4.3 Detection description in real environment

To check the performance of our CRNN architectures under the real conditions
of the railway environment, we carried out tests at the SNCF Technicentre des
Ardoines, in Vitry sur Seine. There, we were able to access an Ile-de-France
region suburban train (Z2N train) operating on lines C and D. The train used
for the test was stationary for maintenance reasons. The train, however, had
its engine running, and many trains were near which produced a huge amount
of noise. We set up the system inside the train and used only one IP camera.
When the train is set ON, the system launched automatically with the onboard
computer. It assigned itself a fixed IP address and started its autotests. The
system was able to connect to the IP camera and start reading the audio stream
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from the IP camera. Some abnormal events were played using a speaker placed
at different locations in the train:

1. Speaker at 2m from the microphone, and we play 3 different samples
2. Speaker at 4m from the microphone, and we play 3 different samples
3. Speaker at 6m from the microphone, and we play 3 different samples

The audio stream is captured and stored in a FIFO memory of 10 sec re-
freshed every 0.5 seconds. The detection tests was performed using the models
learned with the synthetic mixture presented in 2.3 (without new learning phase).
In this real context the evaluation consisted in checking the detection of the cor-
responding event by monitoring logs files of the system. For these experiments
only two critical abnormal events have been tested: the scream and the gunshot
events.

4.4 Results in synthetic environment

The table 2 and the table 3 present the results of the experimentation plan
described in the section 4.2.

For both tables Target and BG refer respectively to the event class and the
background.

The first conclusion is that both architectures yield good results in our rail-
way environment with an accuracy over 90%.

On the one hand, regarding the impact of the recurrent layers (table 2), we
can observe that the performance decrease without recurrent layers for all rates.
It confirms that we need to take into account the temporal evolution of spectral
patterns extracted by the convolutional Layers. The GRU layers do not benefit
to the spray events that has really complex spectral-temporal structure. For the
three other classes, recurrent layers improve target recall: 12% for Scream and
up to 92% for Gunshot. On other hand, the number of units in recurrent layers
does not influence significantly the quality detection.

The table 3 presents the effect of the number of filters on the performance.
It is difficult to highlight a major improvement w.r.t the number of filters used.
Nevertheless, for CRNN 1, 32 or 64 filters yield quite similar rates and for CRNN
2, increase the number of filters seems to severely decrease performance for all
events except for scream.

4.5 Results in real environment

The results in Table 4 present the number of detected events for scream and
Gunshot. In general manner, all events are correctly detected. However, it ap-
pears clearly that the detection rate depends on the distance between the source
and the microphone. The sensibility effect is reduced by increasing the number
of microphones. In this case, the microphones have to be distributed in the rail-
way vehicle insuring that the distance between passengers and one microphone
is less that 6m.



10 Authors Suppressed Due to Excessive Length

Accuracy F1 Score Precision Recall
Event Config Target BG Target BG Target BG

Scream
0 GRU 0.90 0.82 0.93 0.92 0.90 0.73 0.97
32 GRU 0.93 0.87 0.95 0.92 0.93 0.82 0.97
64 GRU 0.93 0.88 0.95 0.93 0.93 0.83 0.97

Gunshot
0 GRU 0.80 0.54 0.87 0.82 0.80 0.40 0.96
32 GRU 0.91 0.83 0.94 0.89 0.91 0.77 0.96
64 GRU 0.90 0.82 0.93 0.89 0.90 0.75 0.96

Spray
0 GRU 0.95 0.87 0.97 0.92 0.95 0.83 0.98
32 GRU 0.95 0.88 0.97 0.96 0.95 0.81 0.99
64 GRU 0.96 0.90 0.97 0.94 0.96 0.86 0.99

Glass
0 GRU 0.91 0.71 0.95 0.86 0.92 0.60 0.98
32 GRU 0.95 0.86 0.97 0.91 0.96 0.82 0.98
64 GRU 0.95 0.86 0.97 0.92 0.96 0.81 0.99

Table 2: Detection performances for the architecture CRNN 1 in function the
absence or the complexity of GRU layers. ”0 GRU” stands for no GRU.

Acc. F1 Score Precision Recall
Event Config Target BG Target BG Target BG

Scream
CRNN1

32 filters 0.92 0.87 0.95 0.89 0.94 0.85 0.96
64 filters 0.93 0.87 0.95 0.92 0.93 0.82 0.97

CRNN2
32 filters 0.90 0.81 0.93 0.94 0.89 0.72 0.98
64 filters 0.91 0.83 0.94 0.92 0.91 0.76 0.97

Gunshot
CRNN1

32 filters 0.90 0.81 0.93 0.91 0.90 0.73 0.97
64 filters 0.91 0.83 0.94 0.89 0.91 0.77 0.96

CRNN2
32 filters 0.89 0.80 0.93 0.87 0.90 0.74 0.96
64 filters 0.85 0.71 0.90 0.79 0.86 0.64 0.93

Spray
CRNN1

32 filters 0.95 0.89 0.97 0.93 0.96 0.85 0.98
64 filters 0.95 0.88 0.97 0.96 0.95 0.81 0.99

CRNN2
32 filters 0.96 0.91 0.98 0.94 0.97 0.89 0.98
64 filters 0.87 0.61 0.93 0.96 0.87 0.45 0.99

Glass
CRNN1

32 filters 0.94 0.81 0.96 0.86 0.95 0.76 0.97
64 filters 0.95 0.86 0.97 0.91 0.96 0.82 0.98

CRNN2
32 filters 0.96 0.88 0.97 0.89 0.97 0.86 0.98
64 filters 0.82 0.62 0.88 0.50 0.96 0.83 0.82

Table 3: Detection performances in function the complexity of convolutional
layers for architecture CRNN 1 and CRNN 2.

Distance Scream Gunshot

2m 3/3 3/3
4m 3/3 3/3
6m 3/3 2/3

Table 4: Event detection results in real environment for three distances
between events and microphone.
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5 CONCLUSIONS

In this paper, we present a new railway audio database and two CRNN archi-
tectures designed for abnormal audio event detection. Our evaluation show that
using a kernel shape of the same size as the number of frequency bands (CRNN
1) yield better rates. As in [6,3], the detection results show that catching the
temporal structure of the spectrum improves the performance rates. Increasing
the number of filters has a weak impact on the detection performance only for
CRNN 1. The complexity of the CRNN 1 and the number of parameters are
lower than for CRNN 2. It seems to be a quite promising embedded solution for
real railway conditions.
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