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Abstract

In this paper, we propose a new Joint EigenValue Decomposition (JEVD) algorithm. JEVD problem belongs to the family of joint
diagonalization problems. Hence, JEVD algorithms aim at estimating the common basis of eigenvectors of a matrix set. This
problem occurs in many signal processing applications. It has notably allowed to develop efficient algorithms for the Canonical
Polyadic Decomposition (CPD) of multiway arrays. The proposed JEVD algorithm is based on an original two-step approach. The
first step consists in transforming the considered matrix set into a set of positive definite matrices. In this purpose, we introduce
an ad hoc joint symmetrization algorithm. This first step allows us to transform the JEVD problem into a simpler orthogonal joint
diagonalization problem. The second step is then performed using an efficient orthogonal joint diagonalization algorithm of the
literature. Eventually, the performance of the proposed approach is deeply investigated in the CPD context of multidimensional
fluorescence data. More particularly, we consider difficult scenarios such as the cases of an overestimated rank and highly correlated
factors.
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1. Introduction

In many data sciences or signal processing applications, the
collected data has a multidimensional structure and can thus be
stored in multiway arrays (tensors). In this context, multilin-
ear algebra provides efficient tools to analyze such data sets.5

Indeed, tensor decompositions offer a large variety of multidi-
mensional models with some interesting properties. Among all
tensor decomposition models, Canonical Polyadic Decompo-
sition (CPD) also known as PARAllel FACtor decomposition
(PARAFAC) [1, 2] decomposes a multiway array as a linear10

combination of a finite number of rank-one tensors. Moreover,
this decomposition is essentially unique under some mild con-
ditions [3, 4]. For these reasons, CPD is largely used to estimate
multilinear mixtures of source signals and plays a growing role
in signal and image processing such as in brain source local-15

ization [5, 6], face recognition [7] and blind source separation
[8, 9]. In chemometrics, CPD directly models the data mea-
sured from fluorescence spectroscopy [10, 11].

CPD decomposes multiway arrays as a combination of fac-
tors matrices. For instance, the rank-N CPD of a three way
tensor T ∈ RP×Q×R is given by:

Tp,q,r '

N∑
n=1

Ap,nBq,nCr,n, ∀(p, q, r) (1)

where matrices A, B and C are the factor matrices. It is note-
worthy that the smallest value of N for which equation (1) is20

exact is called the tensor rank.

Many algorithms have been proposed in order to compute
the CPD of a given tensor. All of them aim at minimizing
iteratively a specific cost function built (in)directly from the
data. They can be classified in three main families. First,25

there are alternating or block coordinate approaches such as
Alternating Least Squares (ALS) [2]. These algorithms up-
date different subsets of factors alternatively at each iteration.
Secondly, we find the well-known first/second order optimiza-
tion methods based on (conjugate) descent [12], Quasi-Newton30

and Levenberg-Marquardt [13] optimization strategies. Finally,
semi-algebraic approaches are also available, which generally
rephrase the CPD as a Joint Diagonalization (JD) problem
[14, 15, 16, 17].

Joint diagonalization consists in finding a matrix, which
transforms (by congruence or by similarity) a given set of
square matrices into a set of diagonal matrices. In this paper, we
focus on the JD problem by similarity well-known as the Joint
EigenValue Decomposition (JEVD) problem. In other words,
JEVD consists in jointly diagonalizing a set of non-defective
matrices of size N × N sharing the same eigenvectors basis W:

M(k) = WD(k)W−1, ∀k = 1, . . . ,K. (2)

where D(k) is a diagonal matrix containing the eigenvalues of35

M(k). It has been shown in [16], through numerical simula-
tions, that CPD algorithms based on JEVD have several advan-
tages. First, they need few iterations to converge. Second, they
are relatively insensitive to correlated factors and to an over-
estimation of the CPD rank (overfactoring problem). On the40

other hand, JEVD-based CPD methods may require more re-
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strictive conditions (see [16, section 3.5] for a comparative anal-
ysis).

A naive approach to solve the JEVD problem consists in
computing the eigenvalue decomposition of only one matrix,45

for instance M(k) or the product of several M(k) matrices. How-
ever, this approach is very sensitive to the noise and has no
unique solution in the presence of a degenerate eigenvalue (i.e.
multiplicity strictly greater than one). Indeed, JEVD has less
restrictive uniqueness conditions [18]. Note that by unique-50

ness we mean essential uniqueness, that is to say the matrix
W of eigenvectors can be estimated only up to a diagonal and
a permutation matrix. Consequently, solving the JEVD prob-
lem by means of a single EVD is not a good thing. Generally,
the JEVD problem is solved by minimizing a diagonality crite-55

rion applied simultenously to multiplicative updates of the M(k)

matrices. The main differences between the existing JEVD al-
gorithms reside in the parametrization of the updating matrix
and the implemented strategy to compute these parameters.

When the eigenvector matrix W is orthogonal, the JEVD60

problem becomes an Orthogonal Joint Diagonalization (OJD)
problem. The latter is a well-know JD problem for which many
algorithms have been proposed. One of the most famous algo-
rithm is JAD (Jacobi Angles for simultaneous Diagonalization)
[19]. In [20] and [21], authors focused on the approximate OJD65

of a set of positive definite matrices by minimizing an original
cost function based on the log-likelihood approach. These al-
gorithms are particularly efficient and have good convergence
properties. Indeed, the quadratic local convergence of Pham’s
method is theoretically proven while simulations show that a70

few iterations are needed to ensure convergence [21]. In or-
der to take benefit of these attractive properties, we introduce a
novel two-step JEVD approach transforming the original matrix
set into a set of symmetric positive definite matrices. For this
purpose, we introduce the problem of joint symmetrization and75

design an ad-hoc algorithm. We show the good behavior of the
proposed JEVD method when it is combined with DIAG in or-
der to canonically decompose data measured from fluorescence
spectroscopy. In addition, we show the ability of our method to
face difficult cases encountered in fluorescence measurements.80

The paper is organized as follows. We first recall how the
CPD problem can be rewritten into a JEVD problem. Then we
describe, in section 3, the proposed approach to solve the JEVD
problem. Section 4 presents a comparative computational anal-
ysis of i) the proposed JEVD method and ii) the DIAG method85

using this JEVD solution. The last part of the paper is dedi-
cated to a chemometric application. Thus, in section 5, we first
recall the CPD model of three-way fluorescence measurements.
Then, we investigate the behavior of the proposed approach to
decompose the observed data tensors in comparison with some90

other existing algorithms.

Notations. In the following, scalars are denoted by a lower case
(x), vectors by a boldface lower case (x), matrices by a bold-
face upper case (X) and tensors by an upper case boldface calli-
graphic (X). xi is the i-th element of vector x, Xi, j is the (i, j)-th95

component of matrix X and Xi, j,k is the (i, j, k)-element of third
order tensor X. Vectors xi,. and x., j are the ith row and jth col-

umn of matrix X respectively. Matrix X.,.,r is a rth frontal slice
of tensor X. Operator [X]+ projects the entries of X on R+ by
forcing all negative entries of X to 0. Diag{X} is an operator that100

set to zero the off-diagonal entries of matrix X whereas diag{x}
creates a diagonal matrix from the entries of vector x. The eu-
clidean norm is denoted by ||.||2. � is the Khatri-Rao product,
defined as a column-wise Kronecker product. Eventually,

{
X(k)

}
denotes the set of K matrices indexed by k:

{
X(1), · · · ,X(K)

}
.105

2. From CPD to JEVD

There are several ways to compute CPD by means of JEVD.
The first step consists in compressing the considered tensor.
Different approaches can be used to do that. Hence, in the
SECSI framework [15], JEVD arises from the Higher-Order110

Singular Value Decomposition (HOSVD) of the tensor while
in the DIAG [16] and SSD-CP [17] algorithms, it comes from
the Singular Value Decomposition (SVD) of one unfolding ma-
trix. Hereafter, we describe the latter approach as example but
note that the proposed JEVD algorithm can be applied to both115

approaches.
As mentioned in introduction, a fluorescence third order ten-

sor is considered in this paper, for which the rank-N CPD is
given by equation (1). By juxtaposing the R frontal slices, the
tensor T can be reshaped into the unfolding matrix T of size
P × QR where the second and third modes of T are merged.
The CPD is then rewritten in matrix form as:

T = A
(
C � B

)T. (3)

Two other unfolding matrices are available. As explained in
[16], it is crucial to use the squarest unfolding matrix or at least
the unfolding matrix which is rank-N. Without loss of general-
ity, we consider in this section that it is given by (3).120

In order to transform the CPD problem into a JEVD problem,
a rank-N truncated SVD of T is computed. The three matrices
of this truncated SVD are denoted by U, Σ and VT, respectively.
Then there exists a non-singular square matrix W of size N ×N
such that

A = UΣW and C � B = VW−T. (4)

Furthermore
(
C � B

)
T can be seen as a horizontal block matrix:(

C � B
)T =

[
Φ(1)(B)T, · · · ,Φ(R)(B)T

]
, (5)

whereΦ(1), · · · ,Φ(R) are the R diagonal matrices built from the
R rows of matrix C. Then, (4) and (5) yield

VT =
[
Γ(1)T, · · · ,Γ(R)T

]
, (6)

where Γ(r1) = BΦ(r1)WT for r1 = 1, · · · ,R. Assuming that
matrix B is full column rank, we can define for all couples
k = (r1, r2) with r1 = 1, · · · ,R and r2 = 1, · · · ,R, r1 , r2, a
set of matrices jointly diagonalizable by similarity transforma-
tion :125

M(k) =
(
Γ(r1)]Γ(r2)

)
T, (7)

= WD(k)W−1, (8)
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where ] is the Moore-Penrose inverse and D(k) = Φ(r2)Φ(r1)]

so that
{
D(k)

}
is a set of diagonal matrices. Hence, performing

JEVD of the K = R(R−1) matrices {M(k)} allows to estimate W.
This quadratic relationship between the number of matrices in
the JEVD step (K) and the dimension of the last mode (R) has130

two consequences when R is large. On one hand, it achieves
a better estimation of W. On the other hand, the numerical
complexity quadratically increases with R (see section 4). Thus
one has to find a good trade-off between speed and estimation
accuracy. As a rule of thumb, if K is very large with respect135

to the matrix size N, one can reasonably leave out a significant
fraction of the matrix set. Here, we apply an arbitrary matrix
decimation as a naive approach but better strategies could be
used. For instance, we could compute and use a basis of the
vector subset spanned by the K matrices to be diagonalized.140

At this stage, there are several ways to deduce the factor ma-
trices from matrix W and/or the set

{
D(k)

}
. DIAG resorts to

the eigenvector matrix W and equations (4) to immediately es-
timate matrices A and C � B. Then B and C are deduced as
explained in [16]. Conversely to the DIAG procedure, SSD-CP145

resorts to the eigenvalues contained in matrices {D(k)}. Indeed
diagonal entries of these matrices are linearly linked to the en-
tries of C so that a least square estimate of C can be obtained
from an overdetermined linear system. B � A is then easily de-
duced, hence B and A. Of course these different schemes could150

be combined in order to define hybrid versions of DIAG and
SSD-CP but this is outside the scope of this paper.

3. JEVD based on joint symmetrization

3.1. A two-step framework

We consider a set of K matrices of size N × N:

M(k) = WD(k)W−1 ∀k. (9)

Any non-singular matrix can be decomposed as a product of a
lower triangular matrix and an orthogonal matrix. Let L and Q
be the matrices of the QL decomposition of W−1: L is a lower
triangular matrix, Q is an orthogonal matrix and W−1 = QL.
Thus the set of equations (9) can be rewritten as

M(k) = L−1QTD(k)QL, ∀k. (10)

Then, defining matrices S(k) as

S(k) = LM(k)L−1, ∀k, (11)

leads to a JEVD with orthogonal transformation:

S(k) = QTD(k)Q, ∀k. (12)

As a consequence, in the noise free case, all matrices S(k) are
symmetric and equation (12) defines the OJD of

{
S(k)

}
. We thus

propose a two step algorithm. First, we look for a lower tri-
angular matrix L̂ that jointly "symmetrizes"

{
M(k)

}
in order to

estimate the set
{
S(k)

}
or an approximation of it in the noisy

case. After this Joint Symmetrization (JS) step, JEVD problem

is transformed into an OJD problem. An estimate of Q, de-
noted Q̂, is then obtained by solving this OJD problem (using,
for instance, the JAD algorithm). We call this approach, JDJS
for Joint Diagonalization based on Joint Symmetrization. Nev-
ertheless, we aim at using the algorithm introduced by Pham in
[21]. Our motivation is to enjoy the nice convergence proper-
ties of this algorithm. Indeed, Pham has proven its convergence
when the matrices of the set can be nearly jointly diagonalized.
He has also provided a theoretical investigation showing the
quadratic convergence of the algorithm close to the diagonal-
izing solution. Eventually, he has shown, through numerical
simulations, that it requires very few iterations to reach the con-
vergence. However, Pham’s algorithm is designed for positive
definite matrices. This is due to the used diagonality criterion
arising from the Hadamard’s inequality [22]. Let

{
S2

(k)
}

be a set
of positive definite matrices, the Hadamard’s inequality leads
then to

det
{
Diag

{
Q̂S2

(k)Q̂T
}}
≥ det

{
Q̂S2

(k)Q̂T
}
. (13)

The equality being reached if and only if the matrix Q̂S2
(k)Q̂T is

diagonal, a natural diagonality criterion based on the likelihood
maximum method directly comes as

1
2

K∑
k=1

log
(
det

{
Diag

{
Q̂S2

(k)Q̂T
}})
− log

(
det

{
Q̂S2

(k)Q̂T
})
. (14)

In our approach, we can build the
{
S2

(k)
}

matrix set directly
after the JS step as:

S2
(k) =

(
S(k))TS(k) ∀k. (15)

Hence, we obtain positive definite matrices jointly diagonal-
izable in a common orthogonal basis having the following ex-
pression:

S2
(k) = QT(D(k))2Q, ∀k. (16)

This second version of JDJS is called JDJS2.155

It is noteworthy that the matrix Q is unique (up to permuta-
tion and scaling indeterminacy) in equation (12) if and only if
the rows of the matrix

Ω =


D(1)

11 · · · D(K)
11

... · · ·
...

D(1)
NN · · · D(K)

NN

 (17)

are distinct [23]. Hence, the transformation in equation (16)
should not impact the identifiability of the matrix Q excepted if
and only if one row of the matrix Ω is the opposite of another.

In the next subsection we focus on the JS step which is at the
center of the proposed approach.160

3.2. Joint symmetrization

We call joint symmetrization any process that aims to jointly
transform a set of square matrices into a set of symmetric ma-
trices and we call symmetrized matrix any output of a sym-
metrization process.165
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The proposed method to build {S(k)} from {M(k)} is a block
coordinate method based on multiplicative updates. Block co-
ordinate methods consist in estimating several unknown param-
eter subsets instead of estimating the whole of them at each op-
timization step. Here, it means that the matrix L̂ is decomposed170

as the product of elementary matrices. It is noteworthy that
contrarily to JD problems, the JS problem is not invariant to di-
agonal matrix transformations. That is why, we have to resort
to two kinds of elementary matrices:

• Real elementary lower triangular matrices, denoted175

L(i j)(x), (i > j), are equal to the identity matrix at the
exception of the L(i j)

i, j term which is equal to x ∈ R.

• Real elementary diagonal matrices, denoted Λ( j)(a), are
equal to the identity matrix at the exception of the D( j)

j, j
term which is equal to a ∈ R.180

The following proposition gives then a simple factorization
of any lower triangular matrix :

Proposition 1. Let L be a lower triangular matrix of size N,
then there exists N(N−1)/2 elementary lower triangular matri-
ces

{
L(i j)(x(i j))

}
and N elementary diagonal matrices

{
Λ( j)(a( j))

}
such that

L =

[ N−1∏
j=1

[ N∏
i= j+1

L(i j)(x(i j))
]
Λ( j)(a( j))

]
Λ(N)(a(N)). (18)

A constructive proof is trivial.
Thus, such a factorization gives us a natural choice for the

construction of L̂ by multiplicative updates. Computation of
each elementary matrix will be done by successive optimization
of a symmetrization criterion with respect of only one parame-
ter. We call a multiplicative update of the set

{
M(k)

}
by matrix

X the whole following similarity transformations:

M(k) ← XM(k)X−1 ∀k. (19)

In order to compute the matrix X, we propose to minimize the
following symmetrization criterion:

C(X) =

K∑
k=1

N−1∑
p=1

N∑
q=p+1

(N(k)
p,q − N(k)

q,p)2

where N(k) = XM(k)X−1.

(20)

This criterion is non-negative and is equal to zero if and only
if all matrices N(k) are symmetric. According to proposition185

1 and equation (11), the joint symmetrization of {M(k)} can be
done thanks to a set of elementary lower triangular matrices
denoted {L(i j)(x(i j))} and a set of elementary diagonal matri-
ces denoted {Λ( j)(a( j))}. More precisely, at each couple (i, j),
j = 1, . . . ,N − 1, i = j + 1, . . . ,N corresponds a multiplicative190

update by L(i j)(x(i j)). In addition , when i = N the update by
L(N j)(x(N j)) is followed by an update by Λ( j). Finally the last
update is done by Λ(N)(a(N)).

We now describe how the elementary triangular and diagonal
updating matrices are computed. The goal of an update is to

make the whole set {M(k)} closer to a set of symmetric matrices.
In this purpose, each updating matrix is chosen by minimizing
the symmetrization criterion (20). We first consider the update
by elementary lower triangular matrix L(i j)(x) i.e. X = L(i j)(x)
in (20). Thus, we have

N(k) = L(i j)(x)M(k)
(
L(i j)(x)

)
−1. (21)

We can easily check that this update only impacts the jth row
and the ith column of M(k) so that

C(L(i j)(x)) =

K∑
k=1

(∑
p,i
p, j

(
(M(k)

p,i − N(k)
i,p )2 + (N(k)

p, j − M(k)
j,p)2

)
+

(N(k)
i, j − M(k)

j,i )2
)

+ β (22)

where β is a constant independent of x and


∀ p , j, N(k)

i,p = −xM(k)
j,p + M(k)

i,p ,

∀ p , i, N(k)
p, j = xM(k)

p,i + M(k)
p, j,

N(k)
i, j = −x2M(k)

j,i + x(M(k)
i,i − M(k)

j, j ) + M(k)
i, j .

(23)

Thus, we have

C(L(i j)(x)) = P(x) = α4x4 + α3x3 + α2x2 + α1x + β′ (24)

with195

α4 =

K∑
k=1

(M(k)
j,i )2; α3 = −2

K∑
k=1

M(k)
j,i (M(k)

i,i − M(k)
j, j ); (25)

α2 =

K∑
k=1

(
− 2M(k)

j,i (M(k)
i, j − M(k)

j,i ) + (M(k)
i,i − M(k)

j, j )
2 +

∑
p,i
p, j

(
M(k)

j,p)2 + (M(k)
p,i )

2
))

; (26)

α1 = 2
K∑

k=1

(
(M(k)

i,i − M(k)
j, j )(M(k)

i, j − M(k)
j,i ) +

∑
p,i
p, j

(
M(k)

p,i (M(k)
p, j − M(k)

j,p) − M(k)
j,p(M(k)

i,p − M(k)
p,i )

))
. (27)

β′ is a constant term thereby its expression is useless here. P(x)
is a coercive 4 degree polynomial, as a consequence we choose
x(i j) as the real root of the derivative of P(x) that minimize P(x).

We now explain how to compute matrix Λ( j)(a( j)) for a given
j. We follow the same idea as previously. The update byΛ( j)(a)
(i.e. taking X = Λ( j)(a) in equation (20)) gives

N(k) = Λ( j)(a)M(k)
(
Λ( j)(a)

)
−1. (28)

4



We then easily show that

C(Λ( j)(a)) =

K∑
k=1

∑
p, j

(N(k)
j,p − N(k)

p, j)
2 + β” (29)

=

K∑
k=1

∑
p, j

 M(k)
j,p

a
− aM(k)

p, j


2

+ β” (30)

= f (a) + β” (31)

where β” is a constant independent of a. This yields

∀a , 0, f ′(a) = 0⇔ a4 =

∑K
k=1

∑
p, j(M(k)

j,p)2∑K
k=1

∑
p, j(M(k)

p, j)
2
. (32)

f (a) being an even function, we can take

a( j) =


∑K

k=1
∑

p, j(M(k)
j,p)2∑K

k=1
∑

p, j(M(k)
p, j)

2


1
4

. (33)

Performing the N(N + 1)/2 successive updates using the
whole set of (i, j) couples is called a sweep. Of course, this op-200

timization scheme is not equivalent to simultaneously estimate
all the entries of L. As a consequence, we do not expect that at
the end of the first sweep the matrix set {M(k)} is symmetrized.
That is why, the sweeping procedure has to be repeated such as
one iteration of the symmetrization algorithm corresponds to a205

sweep. The algorithm is stopped when a suitable stopping cri-
terion reaches a defined threshold or when a maximum number
of iterations is reached. A classical stopping criterion is given
by the relative decrease of C between two successive iterations.

It is worth mentioning that (i.) The identity matrix belongs210

to the set of elementary lower triangular matrices and to the set
of elementary diagonal matrices. This ensures that criterion C
cannot increase after an update and thus after a sweep. (ii.) El-
ementary lower triangular matrices are invertible by construc-
tion, meaning that update (21) is always possible. (iii.) During215

the symmetrization process the numerator and the denominator
in equation (33) tend to the same value. If the numerator and/or
the denominator is equal to 0, one can impose a( j) = 1 and let
the algorithm run.

4. Computational complexity analysis220

Although the ultimate goal of comparing JEVD or CPD tech-
niques is to evaluate the quality of methods as reflected by the
computed matrices, it is also interesting to assess the numerical
complexity of these methods. Complexity is defined here as the
number of floating point operations required to execute an algo-
rithm (flops). A flop corresponds to a multiplication followed
by an addition. But, in practice, only the number of multipli-
cations is considered since, most of the time, there are about
as many (and slightly more) multiplications as additions. In
order to simplify the expressions, the complexity is generally
approximated by its asymptotic limit, as the size of the prob-
lem tends to infinity. We shall subsequently denote, with some

small abuse of notation, the equivalence between two strictly
positive functions f and g:

f (x) = O(g(x)) or g(x) = O( f (x)) (34)

if and only if the ratio f (x)/g(x) tends to 1 as x→ +∞. In prac-
tice, knowing whether an algorithm is computationally heavy is
as important as knowing its performance in terms of SNR.

This section first addresses the complexity of some JEVD
methods needed by the DIAG algorithm to solve the CPD prob-225

lem. Next the numerical complexity of DIAG is given. In order
to have a comparative reference, we provide the complexity of
the alternating FNNLS (A-FNNLS) technique proposed in [24]
and implemented in the N-way toolbox [25, 26], which is used
in section 5.230

4.1. Complexity of JEVD methods
The costliest operation of JEVD algorithms is the multiplica-

tive update step of the matrix set defined in equation (19). Now
the numerical complexity of this step strongly depends of the
structure of the updating matrix.235

Regarding the JSJD2 method, one sweep of the JS step in-
volves N(N − 1)/2 elementary lower triangular matrices and
N elementary diagonal matrices as updating matrices. The nu-
merical complexity of the JS step is then O(KN3). In a similar
way, the JD step based on Pham’s algorithm involves Givens240

matrices. Therefore its numerical complexity is also O(KN3).
Consequently, our JEVD method costs O(KN3) flops.

Note that the numerical complexity of classical JEVD meth-
ods such as JUST [27], SH-RT [28], JDTM [16], JAPAM [29],
SJDTE [30] and JET-U [31] is O(KN3) too.245

4.2. Complexity of two CPD methods: DIAG and A-FNNLS
The computational complexity of DIAG is clearly domi-

nated by the three following computations. First, the trun-
cated SVD of the unfolding matrix of size P × QR requires
2QRP2 + 5N2(P + QR) − 2(N3 + P3)/3 multiplications by as-250

suming that QR > P. Then, the computation of the M(k) ma-
trices needs approximately (NR)2Q additional multiplications.
Finally the cost of the JEVD procedure is O(R2N3) accord-
ing to section 4.1 since K = R(R − 1). Additional computa-
tions can be neglected. Now, let’s consider a low-rank CPD,255

i.e. N � min(P,Q,R), as observed in most of the applications
such as the fluorescence one. Thus, the numerical complexity
of DIAG is O(P2(P2 + PN2 + N3).

As far as the A-FNNLS algorithm is concerned, the estima-
tion of the factors is performed by solving alternatively Non-260

Negative Least Squares (NNLS) problems. The first widely
used algorithm for solving the NNLS problem is an active-set
method published in [32]. A modification of the latter was pro-
posed in [24] giving rise to the FNNLS (Fast NNLS) method.
The effective benefit of FNNLS is from forming the normal265

equations and recognizing that the normal equations on the
passive set are simply a subset of these. The computational
advantages, then, are only applicable for overdetermined sys-
tems, which is generally the case for the CPD problems en-
countered in applications. Without utilizing the normal equa-270

tions, the original NNLS algorithm has O(MN2) complexity for
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each iteration where M denotes the second dimension of the un-
folding matrix used to estimate some factors (e.g. QR for the
unfolding matrix (3)). FNNLS, however, only has an initial-
ization complexity of O(MN2), followed by O(N3) complexity275

in each iteration. One may recognize that the use of the nor-
mal equations comes at the price of numerical stability. This
approach, therefore, may not be appropriate when presented
with an ill-conditioned problem [33]. Under the same assump-
tions as for DIAG, the numerical complexity of A-FNNLS is280

O(P(P2N2 + N3)).
This asymptotic analysis shows that when the tensor dimen-

sions of the low-rank CPD tend to infinity, the DIAG method
requires more flops than A-FNNLS due to the truncated SVD
(O(P4) flops) computed at the beginning of DIAG. Neverthe-285

less, for tensors of smaller size such as that considered in the
following section, the truncated SVD is rarely the most costly
step of DIAG. Indeed, for such scenarios, by considering cu-
bic tensors, the term 2P2N3(IS D + 2IJD) is generally dominant
in the complexity of DIAG, where IS D and IJD denote the num-290

bers of iterations of the two steps of JSJD2. As far as A-FNNLS
is concerned, its dominant term is IAP3N2, where IA denotes
the number of iterations (all factors have been estimated once
using the FNNLS method during one iteration). Since the num-
ber IA of iterations is generally much larger than IS D + 2IJD295

and since P > N, the term IAP3N2 appears to be larger than
2P2N3(IS D + 2IJD) in such a context. This will be confirmed
in the following section by means of the computed CPU time:
DIAG will appear to be less time-consuming than A-FNNLS
for the considered fluorescence spectroscopy scenarios.300

5. Application to the Canonical Polyadic Decomposition of
Fluorescence spectra

5.1. CPD of fluorescence excitation emission matrices

In this section, we show how the proposed approach can be
applied in the context of fluorescence spectroscopy.305

Fluorescence is defined as the emission of light (fluorescence
or emitted light) by a substance (molecule or atom) that has pre-
viously absorbed another light (excitation light). A fluorescing
chemical component is called a fluorophore. The fluorescence
intensity of a diluted solution of several fluorophores varies310

with the wavelength of the excitation light, the wavelength of
the fluorescence light and the fluorophore concentrations. Spec-
trofluorimeters allow to measure the fluorescence intensity of
a diluted solution at various excitation-emission wavelengths
couples, providing a data matrix that characterizes the solution.315

Such a matrix is called Fluorescent Excitation-Emission Matrix
(FEEM) or fluorescence 3D spectra.

In practice, chemists often have at their disposal a set of flu-
orescent solutions from which they measure a set of FEEM. We
denote Xr the FEEM characterizing the rth chemical solution.
Each FEEM can be seen as a frontal slice of a third order ten-
sor. Therefore, measured fluorescence intensities can be stored
in a tensor T so that Tp,q,r is the fluorescence intensity of solu-
tion r at the excitation wavelength p and emission wavelength
q. Each solution can be seen as a mixture of N fluorophores.

Then, assuming that non-linear effects such as Rayleigh and
Raman scattering or inner filter effects have been corrected, it
has been showed in [34] that

Tp,q,r '

N∑
n=1

Ap,nBq,nCr,n (35)

where

• Ap,n is the capacity of the fluorophore n to absorb light at
excitation wavelength number p. Column n of A defines320

the excitation spectra of the fluorophore n.

• Bq,n is the capacity of the fluorophore n to emit light at
emission wavelength number q. Column n of B defines
the emission spectra of the fluorophore n.

• Cr,n is proportional to the concentration of the fluorophore325

n in solution r. Column n of C defines the concentration
profile of the fluorophore n.

Here, we also impose that

||a.,n||2 = ||b.,n||2 = 1, ∀n. (36)

As a consequence, c.,n represents the contributions of fluo-
rophore n to the different mixtures. We then define

Cn = ||c.,n||2, ∀n (37)

as the contribution of fluorophore n to the fluorescence tensor
T . In order to gather all the spectral information about fluo-
rophore n in an unique spectral signature, we define its individ-
ual 3D spectrum as the rank one matrix a.,nb.,nT. Finally, the
CPD model considers that each FEEM Xr is modeled as

Xr = Adiag{cr,.}BT, ∀r. (38)

5.2. Simulations on synthetic data sets

We first propose to evaluate our approach by using several
synthetic data sets designed to cover some of the main issues330

encountered with real unknown fluorescence data:

1. some fluorophores can have similar excitation or emission
spectra,

2. the actual number of fluorophores is unknown and it is
overestimated (overfactoring).335

5.2.1. Data sets and algorithm settings
Our data sets correspond here to different synthetic fluores-

cence tensors of size (P × Q × R). These tensors are built from
a noisy CPD model of rank 4. Hence, each tensor gathers sim-
ulated fluorescence measurements of R random mixtures of 4340

synthetic fluorophores and each data set contains 100 realiza-
tions of these synthetic fluorescence tensors for each considered
noise level. Synthetic data sets are built as follows.

We first build four synthetic excitation and emission spec-
tra defining matrices A and B in equation (38). For all data
sets, excitation and emission spectra are of size P = 41 and
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Figure 1: Synthetic excitation and emission spectra used to build data set 1.

Q = 71 respectively and are norm 1. In the proposed numer-
ical simulations, excitation and emission spectra are unimodal
spectra similar to those presented in figure 1. Entries of C are
randomly drawn from a uniform distribution. Columns of C
are also normalized so that all fluorophores have unit contribu-
tions. Then, R synthetic noise-free FEEM are built one after
another according to equation (38). In order to simulate model
errors due to the FEEM acquisition and signal processing, we
build from each noise-free FEEM the corresponding slice of the
noisy tensor T.,.r as follows:

T.,.r = A{Gr � X̃r} (39)

where X̃r and Gr are two random matrices of size P×Q that sim-
ulate the photon detection counting and the possible variations345

of the photomultiplier gain respectively. � is the Hadamard
product andA is a smoothing operator. More precisely:

• Entry (p, q) of X̃r is randomly drawn from a Poisson dis-
tribution of mean (Xr)p,q :
∀ (p, q), (X̃r)p,q ∼ Pois((Xr)p,q). It is noteworthy that be-350

fore applying Poisson noise, the matrix Xr is normalized
in order to set its lowest value to one.

• Entries of Gr are randomly drawn from a uniform distri-
bution in the interval [1 − α; 1 + α] :
∀ (p, q), (X̃r)p,q ∼ unif(1 − α, 1 + α). Hence, parameter α355

allow us to vary the amplitude of the multiplicative noise.

• HereA is a Savitzky–Golay filter. This filter is commonly
used by spectrofluorometer manufacturer softwares.

Other non linear deviations such as diffusion scattering or inner
filter effects are not considered here. This process is repeated360

100 times for six different values of the noise amplitude α from
0.05 to 0.5. Note that α = 0.5 means that the photomultiplier
gain varies from 50% to 150% around its mean value (giving a
relative standard deviation of 29%). Thus each data set consists
in six subsets of 100 noisy tensors. As it will be explained in the365

dedicated subsections below, data sets will differ in the number

of mixtures (R) and in the correlation coefficients between the
factors of the two spectral modes.

Now regarding the algorithms, we compare three different
approaches. Each approach is represented by two algorithms.370

The first approach resorts to the DIAG algorithm (introduced in
section 2) to compute the CPD. Two implementations are con-
sidered. The first implementation, referred to as DIAG-JDJS2,
corresponds to the proposed JDJS2 algorithm: after the sym-
metrization step, the symmetry of the matrices to diagonalize375

is imposed by construction and the joint diagonalization step
is performed thanks to Pham algorithm. Indeed, thanks to pre-
liminary comparisons (results not shown), we obtained best re-
sults with this configuration. The second implementation corre-
sponds to a reference JEVD algorithm: the JEVD step is com-380

puted with the SJDTE algorithm recently introduced in [30].
This algorithm belongs to the family of JDTE algorithm. Its
main advantage in the present context of small real matrices
is its rapidity. This implementation is referred to as DIAG-
SJDTE. Both JEVD algorithms are initialized with the identity385

matrix. The JEVD step is stopped when a maximum number
of iterations is reached or when the relative deviation between
two successive values of the algorithms criterion falls under a
defined threshold. In JDJS2, JS and JD steps are stopped when
the relative deviation between two successive values of the cri-390

terion is lower than 10−6. Maximum number of iterations are
set to 100 for both steps. The same stopping criterion is used
for SJDTE but the maximum number of iterations is set to 50.
Here, we have the prior knowledge that entries of the factor
matrices are nonnegative. Therefore, after the JEVD step in the395

DIAG procedure, we take A = [USW]+ and C�B = [VW−T]+.
The second approach resorts to alternating CPD algorithms

with non-negative constraints. The first algorithm of this ap-
proach is the A-FNNLS algorithm mentioned in section 4 of the
N-way toolbox1 (parafac function) which is commonly used400

to analyze fluorescent excitation-emission matrices. The sec-
ond algorithm is the recent AO-ADMM algorithm [35]. This
algorithm has proved to be very efficient to deal with over-
factoring and correlated factors. We used the AO-ADMM im-
plementation of Jeremy Cohen2 [36] (AOadmm function). A-405

FNNLS is initialized using the best-fitting model scheme im-
plemented in the parafac function: algorithm is run from 5
different random starting values and keeps the starting values
that has led to the best fit after few iterations. We keep the
default values of the convergence criterion (10−6) and the max-410

imal iteration number (2500). The starting values selected by
the best-fitting model scheme are reused as starting values for
the AO-ADMM algorithm. We keep the default settings (least-
square loss, non-negative constraint, tolerance of 10−7) of the
AOadmm function but the maximal number of iterations is set to415

1000.
The last approach consists in using the factors estimated by

the algorithms of the first approach to initialize an algorithm of
the second approach and then perform a very limited number
of iterations as proposed in [16]. The main advantage of this420

1http://www.models.life.ku.dk/nwaytoolbox
2http://www.gipsa-lab.grenoble-inp.fr/ pierre.comon/TensorPackage/tensorPackage.html
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hybrid approach is to improve the results obtained by the DIAG
algorithm while keeping a limited computational cost. Here,
we use the factors estimated by DIAG-JDJS2 and DIAG-SJDTE
as starting values and we perform a maximum of 10 iterations
of AO-ADMM. These algorithms are referred to as JDJS2-AO-425

ADMM and SJDTE-AO-ADMM respectively.
In order to evaluate the robustness of each algorithm with

respect to overfactoring, we compute CPD of rank 6 instead
of 4. Then, the 6 computed factors are sorted according to their
contributions (fluorophores contribution are defined in equation430

(37)). We keep the 4 factors with the highest contributions as
the estimation of the actual factors. Scaling and permutation in-
determinacy are then removed as explained in [37]. We denote
the estimated factors linked to fluorophore n by â.,n, b̂.,n, ĉ.,n.
Algorithms are then compared according three criteria:435

• The mean least square error between the 3D spectra of the
4 fluorophores and their estimation denoted eAB:

eAB =
1
4

4∑
n=1

||â.,nb̂.,nT − a.,nb.,nT||2

||a.,nb.,nT||2
, (40)

• The mean least square error between the concentration
profiles of the 4 fluorophores and their estimation denoted
eC:

eC =
1
4

4∑
n=1

||ĉ.,n − c.,n||2
||c.,n||2

(41)

• The computation time tc.

All the following numerical simulations were performed using
matlab R2017a on a linux system with an Intel Core i7-7700T
CPU and 8GB RAM.

5.2.2. Synthetic data set 1 : small tensors and uncorrelated440

spectra
For this first data set, we consider a (quite) small number of

mixtures by taking R = 30. Synthetic spectra used to build
the data set are plotted on figure 1. These spectra are moder-
ately correlated. More precisely the higher correlation coeffi-445

cient between two columns of A or B is 0.63. Figure 2 shows
the evolution of the average values of the three criteria with α.
Average values are computed from the 100 tensors of each sub-
set. First of all, recall we are in an over-factoring situation with
two extra-components out of 6. In this context, it is notewor-450

thy that all the considered algorithms performed quite well with
estimation errors falling under 12 %.

Regarding both estimation error criteria (eAB and eC) DIAG-
JDJS2 provides better results than DIAG-SJDTE, A-FNNLS
and AO-ADMM whatever the considered value of α. Hybrid al-455

gorithms improve significantly DIAG results. Among them the
best results are clearly achieved by JDJS2-AO-ADMM. Now
regarding the computing time, DIAG-JDJS2 and JDJS2-AO-
ADMM are about two to seven times faster than A-FNNLS and
AO-ADMM but slower than SJDTE based algorithms. The gap460

with SJDTE is mainly explained by the number of iterations
computed during the symmetrization procedure.

5.2.3. Synthetic data set 2 : large tensors and uncorrelated
spectra

We now show what happen on bigger data tensors. FEEM465

dimensions used for data set 1 are common while the number
of mixtures can vary a lot from one real word application to
another. Therefore, here we use the same spectra as synthetic
data set 1 but we now consider a larger number of mixtures by
taking R = 200. The JEVD step in data set 1 involved 870 ma-470

trices of size 6. Thus, we had K/N = 145 and KN3 ' 2.105.
Here, the situation is different since we have now : K = 39800,
K/N ' 6633 and KN3 ' 9.106. In other words, the numeri-
cal complexity has been multiplied by 45 whereas the size of
the matrix set was already significantly greater than the matrix475

size. We thus decimate the matrix set by a factor 10 (we leave
out 90% of the matrices) in order to speed up the DIAG algo-
rithm as explained in section 2. The same decimation will be
applied to the next two synthetic data sets. Results are plotted
on figure 3. These results are similar to data set 1. In particular,480

JDJS2-AO-ADMM still provides the lowest estimation errors
while keeping a very limited computing time. Indeed thanks to
the decimation JDJS2-AO-ADMM is now about ten and fifteen
times faster than A-FNNLS and AO-ADMM respectively.

5.2.4. Synthetic data set 3 : large tensors and correlated exci-485

tation spectra
Here, we keep R = 200 but we modify the position (in the

wavelength range) of the excitation spectra of fluorophore 2 and
4 in order to increase the overlap with the excitation spectra
of fluorophore 1 and 3 (the shapes of the spectra remain un-490

changed). Correlation coefficients between fluorophores 1 and
2 on one side and between fluorophores 3 and 4 on the other side
are now equal to 0.98. Results are plotted on figure 4. If we
consider the whole range of α values, JDJS2-AO-ADMM, A-
FNNLS and AO-ADMM outperform the three other algorithms495

in term of estimation error. The correlations affect the estima-
tion performances of JDJS2-AO-ADMM when α ≥ 0.4. In this
range, A-FNNLS and AO-ADMM provide now the best results.
Under this critical value JDJS2-AO-ADMM performs slightly
better than A-FNNLS and AO-ADMM. It is worth mentioning500

that at the lowest values of α (0.05 and 0.1) DIAG-JDJS2 com-
petes with those algorithms. Regarding the computing times,
tc(JDJS2-AO-ADMM) is about 20 to 30 times lower than tc(A-
FNNLS) and tc(AO-ADMM) whatever the value of α. This in-
dicate that we could decrease the decimation factor for α ≥ 0.4505

in order to improve the performances of JDJS2-AO-ADMM.

5.2.5. Synthetic data sets 4 : large tensors and correlated exci-
tation and emission spectra

Here, we modify both the excitation and the emission spec-
tra to obtain significant correlations in matrices A and B. Flu-510

orophores 1 and 2 have a coefficient correlation of 0.98 in ex-
citation and fluorophores 3 and 4 have a coefficient correlation
of 0.99 in emission. Results are plotted on figure 5. JDJS2-
AO-ADMM, A-FNNLS and AO-ADMM still outperform the
other algorithms in term of estimation errors. Regarding the515

3D-spectra error, they provide similar results. Mean values of
eAB are 0.065 for JDJS2-AO-ADMM, 0.072 for AO-ADMM
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Figure 2: Synthetic data set 1: evolution of the average values of the three
comparison criteria with respect to the noise amplitude.

and 0.075 for A-FNNLS. If we look at eC plots, the gap between
JDJS2-AO-ADMM and AO-ADMM increases slightly: mean
values of eC are 0.03 for JDJS2-AO-ADMM, 0.048 for AO-520

ADMM and 0.035 for A-FNNLS. If we compare these results
with those of data set 3, it seems that two correlations in one
mode (data set 3) affect more severely the proposed approach
than one correlation in two modes (data set 4). Finally, as for
data set 3, the main difference between the different approaches525

is the computation speed. Indeed, mean values of tc are 1.35s
for JDJS2-AO-ADMM, 32.6s for AO-ADMM and 30.6s for A-
FNNLS.

5.3. Simulations on real data sets

5.3.1. Real data set 1530

This data set is composed of 11 FEEM, measured from di-
luted mixtures of fluorescein, quinine sulfate and tryptophane.
Fluorophore spectra and concentration profiles are plotted on
figure 6. These FEEM were used as reference spectra (no inner
filter effect) in a previous study [38]. Excitation an emission535

wavelengths vary from 270 to 550 nm with a step of 5 nm. The
data set is thus a tensor of size (57 × 57 × 11). Rayleigh and
Raman scatters were removed numerically from each measured
FEEM using the method proposed by Zepp [39]. We referrer to
the above mentioned paper for details about sample preparation540

and FEEM acquisition. We compare the results obtained from
various CPD computed by the previous algorithms. Indeed,
in order to evaluate the influence of possible over-factoring,
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Figure 3: Synthetic data set 2: evolution of the average values of the three
comparison criteria with respect to the noise amplitude.
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Figure 4: Synthetic data set 3: evolution of the average values of the three
comparison criteria with respect to the noise amplitude.
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Figure 5: Synthetic data set 4: evolution of the average values of the three
comparison criteria with respect to the noise amplitude.

we vary the CPD rank from 3 to 7, thus the number of extra-
components, F, varies from 0 to 4. Algorithms settings are the545

same as for synthetic data set 1 and the same comparison crite-
ria are used. Results are plotted on figure 7. When the correct
number of components is used (F = 0), all algorithms perform
well and give similar results in term of factor estimation error.
From F = 1 to F = 3, DIAG and hybrid algorithms clearly550

outperform the alternating algorithms. Finally at F = 4, all
algorithms fail. If we focus on eAB, JDJS2 algorithm helps to
improve DIAG performances. However, here, when the hybrid
approach is used, we cannot discriminate between SJDTE and
the proposed algorithm. Thus, these results mainly highlight the555

ability of the DIAG and hybrid approaches to deal with over-
factoring on a real data set. These algorithms are also clearly
faster than A-FNNLS and AO-ADMM with random initializa-
tion in particular for F > 0.

5.3.2. Real data set 2560

We performed the same comparison study on an other data
set which is publicly available at http://www.models.life.
ku.dk/Fluorescence [40, 41]. This data set consists in 16
mixtures of resorcinol, tryptophane and tyrosine and corre-
sponds to dataset #1 in the web page3. Fluorescence inten-565

sity was measured for 19 different excitation wavelengths and

3We chose this data set because, according to the publisher of the data, in
all other data sets one of the components "contains some impurities, and thus
gives rise to an extra component"

136 different emission wavelengths. We removed the data
corresponding to excitation wavelength shorter than 250 nm
in order to focus on the main excitation peaks of the 3 flu-
orophores.We also removed the first sample because it corre-570

sponds to a pure fluorophore. Thus our final data set is a tensor
of size 16 × 136 × 15. Rayleigh and Raman scatters were re-
moved as explained previously. Fluorophore spectra and con-
centration profiles are plotted on figure 8. Fluorophore spec-
tra are highly correlated both in excitation and emission mak-575

ing this data set quite difficult. Results are plotted on figure
9. First of all, performances of DIAG and hybrid approaches
are remarkably stable with respect to the number of extra-
components, whatever the considered criterion. In contrast, A-
FNNLS and AO-ADMM error plots are quite fluctuating and580

A-FNNLS tc plot shows a clear increase of the computing time
with the number of extra-components. Above all, DIAG-JDJS2

and JDJS2-AO-ADMM clearly provide the lowest estimation
errors whatever the number of extra-components. For instance
at F = 0, eAB is about 0.04 for DIAG-JDJS2 and JDJS2-AO-585

ADMM, about 0.18 for DIAG-SJDTE and SJDTE-AO-ADMM
and about 0.3 for A-FNNLS and AO-ADMM. Finally, DIAG
and hybrid algorithms are much faster than A-FNNLS and AO-
ADMM (at F = 0 we have tc(JDJS2-AO-ADMM)=0.22s, tc(A-
FNNLS)=1.6s and tc(AO-ADMM)=3.9s).590

6. Conclusion

In this study, we have first recalled how the canonical
polyadic decomposition of a multiway array can be computed
by means of joint eigenvalue decomposition. At this occasion,
we also explain how this kind of CPD algorithm can be eas-595

ily speed-up by matrix decimation in order to obtain fast algo-
rithms. We have then showed how the JEVD can be rewritten
into the simpler problem of orthogonal joint diagonalization of
a set of positive definite matrices. This is done by joint sym-
metrization of the original matrix set. We have thus proposed600

an ad hoc joint symmetrization algorithm based on a sweep-
ing procedure and multiplicative updates. This allowed us to
introduce an original JEVD algorithm called JDJS2 based on a
two step process: joint diagonalization after joint symmetriza-
tion. This approach can thus take benefit of efficient exist-605

ing OJD algorithms. We have then proposed to apply this ap-
proach to the CPD of data tensors containing real or synthetic
fluorescence measurements by including JDJS2 into a JEVD-
based CPD algorithm. We call the resulting algorithm algo-
rithm DIAG-JDJS2. Both synthetic and real data sets were built610

to be challenging. Two main difficulties were considered: the
number of component (i.e. the rank of the decomposition) is un-
known and overestimated and several factors can be highly cor-
related. The proposed DIAG-JDJS2 algorithm was compared
to an other version of DIAG using a recent reference JEVD al-615

gorithm and with two reference CPD algorithms based on an
alternating approach namely A-FNNLS and AO-ADMM. Our
results first show that in most situations, the proposed algorithm
significantly improves DIAG performances in term of factor es-
timation accuracy. Second, DIAG-JDJS2 competes with and620
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Figure 6: Real data set 1: Fluorophore spectra and concentration profiles.
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Figure 7: Real data set 1: evolution of the average values of the three compari-
son criteria with respect to the number of extra-components.

sometimes outperforms the A-FNNLS and AO-ADMM algo-
rithms in the simplest situations (in terms of noise level and
factor correlations) while having a computing time significantly
lower. We then show that A-FNNLS and AO-ADMM are more
robust to the noise level and correlations between factors. How-625

ever, we also show that DIAG-JDJS2 provides a very good start-
ing point for alternating algorithms. This hybrid approach not
only achieves the best performances in terms of estimation ac-
curacy (in most of the considered situations) but it is also very
fast in comparison to a classical random initialization strategy630

such as the best fitting scheme.
This study also opens some perspectives. In particular, the pro-
posed JEVD algorithm allows us to impose a non-negative con-
straint on the eigenvalues. This feature is not really exploited
here. An extension to the complex case is also worth consid-635

ering. Regarding the CPD, here we use matrix decimation in
the DIAG algorithm to build a smaller JEVD problem. Better
selection strategies may be investigated. Finally it may be in-
teresting to include JDJS2 in other CPD algorithms based on
JEVD.640
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•

Cannonical Polyadic Decomposition (CPD) also known as PARAFAC has become an
important chemometric tool to decompose multiway data sets, notably in fluorescence
spectroscopy.

•

Joint eigenvalue decomposition and joint diagonalization are at the center of efficient CPD
algorithms.

•
We propose an original joint eigenvalue decomposition algorithm based on joint
symmetrization.

• This algorithm is succesfully applied to the CPD of synthetic fluorescence data sets.

• We show that our approach improves the estimation of the CPD factors in difficult but
realistic cases (correlated factors and unknown number of factors.)
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