Crystallographic Structure and Crystal Field Parameters in the $[An(DPA)_3]^{2-}$ series, An=U, Np, Pu.

Matthieu Autillo^a, Md. Ashraful Islam^b, Julie Jung^c, Julien Pilmé^d, Nicolas Galland^e, Laetitia Guerin^a, Philippe Moisy^a, Claude Berthon^a, Christelle Tamain^{a f *}, Hélène Bolvin^{bg *}

Figure S1: IR spectra of $[An(DPA)_3] \cdot (C_3H_4N_2)_2 \cdot (H_2O)_3$ for An=Th, U, Np and Pu, imidazole and H₂DPA

^aCEA, DEN, DMRC, Univ Montpellier, Marcoule, France.

^cTheoretical division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

^fe-mail address: christelle.tamain@cea.fr

^ge-mail address: bolvin@irsamc.ups-tlse.fr

^bLaboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France.

^dSorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137- 4 place Jussieu, 75252 Paris Cédex 05, France.

^eLaboratoire CEISAM, UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes Cédex 3, 44322, France.

Table S1: Quantum numbers for the ground state of the free ions. n is the number of 5f electrons, L, S, J are orbit, spin and total quantum numbers, g_J the Landé factor.

An	n	L	S	J	g_J
UIV	2	5	1	4	4/5
$\mathrm{Np}^{\mathrm{IV}}$	3	6	3/2	9/2	8/11
$\mathrm{Pu}^{\mathrm{IV}}$	4	6	2	4	3/5

Table S2: Standard deviation (in cm⁻¹) of the energies of the N_{st} first states calculated with methods meth1 and meth2.

meth1=orca	SF-CASSCF SF-NEVPT2		SF-NEVPT2		SO-CASSCF			SO-NEVPT2			SO-NEVPT2				
meth2=molcas	SF-C	CASSCF SF-SSCASPT2		SF-MSCASPT2 SC		SO-CASSCF		SO-SSCASPT2			SO-MSCASPT2				
						U^{IV}									
N_{st}	11	27	11	27	11	27	9	63	90	9	63	90	9	63	90
σ	10	56	511	724	236	434	2	4	4	62	28	83	32	27	76
						Np ^{IV}									
N_{st}	13	40	13	40	13	40	10	100	200	10	100	200	10	100	200
σ	1	16	117	97	78	110	1	42	38	49	145	194	58	141	192
						Pu^{IV}									
N_{st}	13	40	13	40	13	40	9	100	200	9	100	200	9	100	200
σ	4	70	207	314	193	317	3	88	79	29	161	221	22	158	226

 $\sigma = \sqrt{\sum_{I=1}^{N_{st}} \left(E_{I}^{meth1} - E_{I}^{meth2}\right)^{2}}/N_{st}$

Table S3: Bond length, LoProp charges,	QTAIM atomic cha	arges and desc	riptors at the BC	Ps of the
M-O and M-N bonds in the $[Ln(DPA)_3]^{3-1}$	and $[An(DPA)_3]^{2-}$	series. All va	lues are averaged	over the
6 M-O or 3 M-N bonds respectively.				

	Xrays	Ι	LoPro	р	Integ	rated	l prop.	D	escrip	tors at	bond	critical p	points	
	$R(\text{\AA})$		q			q		ρ_b (a.u.)	$\nabla^2 \rho_b$	(a.u.)	$ V_b /$	G_b (a.u.)	H_b (a.u.)
	M-O M-N	Μ	Ο	Ν	Μ	0	Ν	M-O M-N	M-O	M-N	M-O	M-N	M-O	M-N
							Lı	n ^{III}						
Ce	$2.511\ 2.632$	2.50	-0.77	-0.32	2.67	-1.38	-1.32	0.046 0.040	0.180	0.134	1.042	1.066	-0.002	-0.0024
\Pr	$2.454\ 2.597$	2.51	-0.77	-0.32	$2.57 \cdot$	-1.38	-1.32	$0.044\ 0.041$	0.176	0.143	1.019	1.066	-0.0009	-0.0026
Nd	$2.471\ 2.577$	2.52	-0.76	-0.32	$2.41 \cdot$	-1.37	-1.33	$0.045\ 0.042$	0.185	0.147	1.025	1.063	-0.0011	-0.0025
Sm	$2.454\ 2.552$	2.52	-0.77	-0.32	2.49 ·	-1.37	-1.32	$0.045\ 0.042$	0.193	0.155	1.009	1.042	-0.0004	-0.0017
$\mathbf{E}\mathbf{u}$	$2.443\ 2.538$	2.53	-0.77	-0.32	$2.52 \cdot$	-1.37	-1.34	$0.045\ 0.042$	0.198	0.159	1.003	1.035	-0.0001	-0.0015
Tb	$2.410\ 2.499$	2.52	-0.77	-0.32	$2.55 \cdot$	-1.37	-1.34	$0.047\ 0.043$	0.210	0.168	0.996	1.028	0.0002	-0.0012
Dy	$2.408\ 2.491$	2.52	-0.77	-0.31	$2.56 \cdot$	-1.39	-1.32	$0.046\ 0.043$	0.210	0.173	0.989	1.024	0.0006	-0.0011
Ho	$2.396\ 2.477$	2.52	-0.77	-0.31	2.68	-1.39	-1.32	$0.045\ 0.043$	0.209	0.174	0.983	1.019	0.0009	-0.0008
\mathbf{Er}	$2.395\ 2.463$	2.51	-0.77	-0.31	$2.41 \cdot$	-1.37	-1.33	$0.051\ 0.044$	0.241	0.179	0.999	1.014	0.0000	-0.0006
Tm	$2.376\ 2.448$	2.51	-0.77	-0.31	2.43	-1.36	-1.33	$0.046\ 0.044$	0.219	0.181	0.977	1.012	0.0013	-0.0005
Yb	$2.372\ 2.439$	2.52	-0.77	-0.31	2.38	-1.36	-1.32	$0.046\ 0.044$	0.217	0.181	0.977	1.014	0.0012	-0.0006
							A	n ^{IV}						
U	2.380 2.543	3.17	-0.81	-0.35	3.20 -	-1.38	-1.38	$0.067\ 0.054$	0.251	0.168	1.149	1.163	-0.011	-0.0082
Np	2.368 2.513	3.19	-0.81	-0.35	3.10	-1.36	-1.40	0.068 0.056	0.259	0.182	1.143	1.158	-0.0108	-0.0085
Pu	$2.354\ 2.500$	3.21	-0.81	-0.35	3.10	-1.37	-1.39	$0.069\ 0.057$	0.271	0.187	1.134	1.153	-0.0107	-0.0085
							oth	ners						
Tm SF a	2.376 2.448	2.51	-0.77	-0.31	2.43	-1.36	-1.33	0.046 0.044	0.220	0.181	0.976	1.010	0.0013	-0.0005
U SF a	$2.380\ 2.543$	3.17	-0.81	-0.35	$3.20 \cdot$	-1.37	-1.41	$0.067\ 0.053$	0.249	0.174	1.151	1.137	-0.0111	-0.0069
U SF SS b	$2.380\ 2.543$	3.17	-0.81	-0.35	3.19	-1.37	-1.41	$0.067\ 0.053$	0.249	0.174	1.149	1.134	-0.0110	-0.0067

a: Spin-free ground state from a state average procedure. b: Spin-free ground state from a state specific procedure.

Figure S2: Atomic charge of the metal center determined by QTAIM (circles) and LoProp (triangles) methods as a fonction of the M-O distance (Å) in the $[Ln(DPA)_3]^{3-}$ (black) and $[An(DPA)_3]^{2-}$ (red) series. Straight lines show linear regressions.

Table S4: Mulliken charges per orbital type and charge (Mulliken and LoProp) of the metal center from CASSCF in the $[An(DPA)_3]^{2-}$ series.

6s	6p	5f	7s	7p	6d	ch-mull	ch-loprop
		U	IV				
1.95	5.90	2.55	0.25	0.36	1.10	1.79	3.17
		NĮ	o^{IV}				
1.95	5.89	3.49	0.27	0.37	1.12	1.85	3.19
		Ρι	ı ^{IV}				
1.93	5.86	4.46	0.30	0.38	1.15	1.86	3.21

	δm_X	δm_Y	δm_Z	δh
	\mathbf{U}^{IV}			
SF-CASSCF	0.90	0.92	0.89	761
SO-CASSCF	0.51	0.50	0.49	80
SO-SSCASPT2	0.49	0.48	0.42	124
SO-MSCASPT2	0.51	0.50	0.49	199
	Np ^{IV}			
SF-CASSCF	0.53	0.53	0.56	300
SO-CASSCF	0.70	0.73	0.39	171
SO-SSCASPT2	0.73	0.75	0.40	219
SO-MSCASPT2	0.69	0.77	0.35	142
	Pu^{IV}			
SF-CASSCF	0.45	0.45	0.48	214
SO-CASSCF	1.03	0.99	0.39	217
SO-SSCASPT2	1.94	2.12	0.51	488
SO-MSCASPT2	1.13	1.15	0.39	256

Table S5: $\delta m_u \ (\mu_B)$ and $\delta h \ (\text{cm}^{-1})$ distances between *ab initio* and model matrices (see Eqs. 7 and 8) for the $[\text{An}(\text{DPA})_3]^{2-}$ series.

Table S6: CFPs (in cm^{-1}) in the $[An(DPA)_3]^{2-}$ series.

		B_{0}^{2}	\bar{B}_1^2	\bar{B}_2^2	B_0^4	\bar{B}_1^4	\bar{B}_2^4	\bar{B}_3^4	\bar{B}_4^4	B_{0}^{6}	\bar{B}_1^6	\bar{B}_2^6	\bar{B}_3^6	\bar{B}_4^6	\bar{B}_5^6	\bar{B}_6^6
						U^{I}	V									
AILFT	SO-CASSCF	647	280	35	-2202	574	135	3034	138	-1681	40	259	2541	279	118	3210
	SO-NEVPT2	553	227	26	-1729	473	92	2495	128	-1488	34	239	2388	259	98	3095
ITO	SF-CASSCF	935	218	38	-1538	397	206	3231	86	-1005	120	67	2439	58	190	3345
	SO-CASSCF	662	217	26	-2324	382	172	3006	80	-1056	64	32	1368	58	132	1780
	SO-SSCASPT2	552	168	50	-1354	349	192	3193	42	-886	41	87	1127	128	75	1447
	SO-MSCASPT2	477	88	32	-1269	56	344	3647	332	-1146	104	490	1054	273	98	1422
						Np	IV									
AILFT	SO-CASSCF	619	206	6	-1930	469	119	2507	99	-1747	44	193	2326	196	115	3102
	SO-NEVPT2	496	166	5	-1435	355	90	1934	78	-1321	32	141	1713	137	86	2337
ITO	SF-CASSCF	970	193	24	-1373	264	42	1940	56	-1729	176	65	2345	157	287	3099
	SO-CASSCF	329	179	40	-1927	221	58	1732	73	-1127	118	62	1959	125	256	2460
	SO-SSCASPT2	254	163	62	-1788	305	130	2053	66	-1121	175	39	2005	125	242	2316
	SO-MSCASPT2	-181	291	146	-1920	421	272	2533	127	-624	198	161	1897	134	288	2252
						Pu	IV									
AILFT	SO-CASSCF	622	171	27	-1910	502	168	2356	84	-1689	40	183	2218	156	155	2911
	SO-NEVPT2	482	130	20	-1434	382	128	1792	63	-1394	33	146	1804	127	128	2389
ITO	SF-CASSCF	252	140	24	-1623	469	148	2374	111	-1599	35	195	2385	168	183	2848
	SO-CASSCF	1016	182	201	-174	70	10	292	6	-137	4	16	164	6	12	189
	SO-SSCASPT2	654	425	453	359	180	37	195	236	-167	78	71	95	100	34	99
	SO-MSCASPT2	1624	122	361	-199	65	34	312	27	-129	3	20	186	10	18	196

Figure S3: Variation of the crystal field strength with respect to the ionic radius $\Delta S/\Delta R$ (cm⁻¹.Å⁻¹) in [Ln(DPA)₃]³⁻(black, taken from [1]) and [An(DPA)₃]²⁻(red) series.

Table S7: Slater-Condon parameters and SOC parameter in cm^{-1} calculated with AILFT in the $[An(DPA)_3]^{2-}$ series.

	F^2	F^4	F^6	ζ
	U	IV		
SO-CASSCF	72007	47087	35539	1992
SO-NEVPT2	51022	43593	30756	
	NĮ	$o^{\rm IV}$		
SO-CASSCF	75777	49551	37091	2296
SO-NEVPT2	55146	40573	33777	
	Ρu	ı ^{IV}		
SO-CASSCF	78978	51671	38487	2604
SO-NEVPT2	58191	43283	35492	

References

 Jung, J.; Islam, M. A.; Pecoraro, V. L.; Mallah, T.; Berthon, C.; Bolvin, H. Derivation of lanthanide series crystal field parameters from first principles. *Chem. Eur. J.* 2019, 25, 15112–15122.