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Current speaker recognition systems, that are learned by using wide training datasets and include sophisticated modelings, turn out to be very specific, providing sometimes disappointing results in real-life applications. Any shift between training and test data, in terms of device, language, duration, noise or other tends to degrade accuracy of speaker detection. This study investigates unsupervised domain adaptation,when only a scarce and unlabeled "in-domain" development dataset is available. Details and relevance of different approaches are described and commented, leading to a new robust method that we call feature-Distribution Adaptor. Efficiency of the proposed technique is experimentally validated on the recent NIST 2016 and 2018 Speaker Recognition Evaluation datasets.

Introduction

As any application of machine learning, effectiveness of the automatic speaker recognition relies on extensive model training datasets. The term big data often used in machine learning implicitly means that these datasets are comprised of huge amounts of labeled observations but, also, span a wide variety of real settings (for utterances: channel, device, duration, language, type and level of noise, reverberation, etc.). Actually, these requirements about the "scope of domain" are not fulfilled and this fact can explain the disappointing results of some reallife speaker recognition applications.

We focus here on the challenge of unsupervised domain adaptation, when the methods have to transmit information about domain shift from a small unlabeled in-domain development dataset to the wide out-of-domain training dataset used for modeling.

Methods can be model-based, adapting parameters of a model by a mix of techniques as interpolation [START_REF] Lee | The CORAL+ algorithm for unsupervised domain adaptation of PLDA[END_REF][START_REF] Snyder | X-vectors: Robust DNN embeddings for speaker recognition[END_REF], nuisance attribute projection [START_REF] Aronowitz | Inter dataset variability compensation for speaker recognition[END_REF], Bayesian maximum likelihood [START_REF] Borgstrom | Improving the effectiveness of speaker verification domain adaptation with inadequate in-domain data[END_REF] or / and eigenvectors and eigenvalue-spectrum regularization [START_REF] Snyder | X-vectors: Robust DNN embeddings for speaker recognition[END_REF][START_REF] Lee | The CORAL+ algorithm for unsupervised domain adaptation of PLDA[END_REF]. The methods can also be feature-based, transforming out-ofdomain data to better fit the in-domain distribution [START_REF] Alam | Speaker verification in mismatched conditions with frustratingly easy domain adaptation[END_REF][START_REF] Alam | Speaker verification under adverse conditions using i-vector adaptation and neural network[END_REF].

For model-based methods, the unsupervised domain adaptation can also be dealt with by carrying out a clustering of the in-domain development dataset, identifying the clusters with speaker-classes then performing supervised domain adaptation with these new speakers labels [START_REF] Garcia-Romero | Unsupervised domain adaptation for i-vector speaker recognition[END_REF][START_REF] Villalba | Bayesian Adaptation of PLDA Based Speaker Recognition to Domains with Scarce Development Data[END_REF]. On the one hand, it is shown in [START_REF] Alam | Speaker verification in mismatched conditions with frustratingly easy domain adaptation[END_REF] that these model-based methods perform better when they are preceded by a feature-based unsupervised adaptation (CORAL in [START_REF] Alam | Speaker verification in mismatched conditions with frustratingly easy domain adaptation[END_REF]). On the other hand, scores provided by a PLDA remain the best metric for clustering [START_REF] Shum | Unsupervised clustering approaches for domain adaptation in speaker recognition systems[END_REF][START_REF] Garcia-Romero | Unsupervised domain adaptation for i-vector speaker recognition[END_REF][START_REF] Villalba | The JHU-MIT System Description for NIST SRE18[END_REF][START_REF] Alam | ABC NIST SRE 18 System description[END_REF] and unsupervised methods can be useful to better estimate the PLDA parameters. These remarks show the usefulness of unsupervised domain adaptation.

Our contributions are as follows: we describe the most ef-ficient unsupervised domain adaptation methods in section 2, in particular the algorithm implemented in Kaldi 1 . This code has been used by many participants during NIST-SRE18 [START_REF]Speaker recognition evaluation plan 2018[END_REF] and no documentation is available. In section 3, details about the methods are reviewed and discussed, leading to propose a new method, intended to enhance accuracy and increase robustness of the adaptation. We call this new method "feature-Distribution Adaptor". Section 4 reports experimental results and we conclude in section [START_REF] Alam | Speaker verification in mismatched conditions with frustratingly easy domain adaptation[END_REF].

In what follows, the terms in-domain and out-of-domain are abbreviated by inD and ooD.

Domain adaptation methods

Figure 1 details the steps of different speaker recognition backend processes with embeddings (i-vector or x-vector) and feature-or model-based domain adaptation. For comparison, the first row describes a system without domain adaptation. We call it standard as it is the most commonly implemented: after LDA dimensionality reduction, the vectors are whitened by centering (subtracting the mean vector of the training dataset) and standardization by the within-class covariance matrix (Wnorm [START_REF] Hatch | Within-Class Covariance Normalization for SVM-based Speaker Recognition[END_REF][START_REF] Bousquet | Variance-Spectra based Normalization for I-vector Standard and Probabilistic Linear Discriminant Analysis[END_REF]), then length-normalized. Gaussian-PLDA model is estimated, following [START_REF] Prince | Probabilistic linear discriminant analysis for inferences about identity[END_REF], usually with full-rank speaker and nuisance covariance. Vectors are scored by using this Gaussian model.

The second system in Figure 1 describes the example recipe in Kaldi. As no documentation of its backend process is available, we detail it here. The process uses many specific steps: first, the version of PLDA is the one proposed by Ioffe [START_REF] Ioffe | Probabilistic linear discriminant analysis[END_REF]. This PLDA includes a post-modeling normalization: given the estimated between and within class covariance matrices (B, W), W-normalization is applied then rotation by the Beigenvectors. This additional step makes diagonal both matrices but is is worth noting that it modifies the within-class covariance after modeling. Then, a first step of domain adaptation is carried out ("by-domain mean adapt"): each vector is centered around the mean of its specific domain (its own mean for ooD, the mean computed from unlabeled development data for inD).

The Kaldi recipe contains an algorithm of covariance adaptation, referred to as PLDA unsupervised adaptor, that we detail in Algorithm 1. In step (i), eigenvalue decomposition is carried out, P is the eigenvector matrix and ∆ the diagonal matrix of corresponding eigenvalues. Then parameters are transformed as shown in step (ii). Let us note that applying the transformation of step (ii) to inD and ooD total covariance matrices would make them simultaneously diagonal, equal to ∆ and the identity matrix respectively. Therefore, in this space, the dimensional variances (eigenvalues) of the ooD distribution are all equal to 1. The method assumes that the inD variances higher than 1 are specific to this domain. During step (iii), only diagonal values of the model parameters are updated and the result is interpo- 
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lating between initial and transformed parameter. The positive parameters α b , αw are such that α b + αw = 1 and allow to freely weight the initial ooD and pseudo-inD covariances. The last step brings back the transformed parameters in the initial space.

After adaptation, Ioffe's PLDA post-normalization must be applied for a second time, that further modifies features and PLDA parameters. Lastly, a supplementary normalization is performed ("specific L-norm for test") before scoring. The testvectors are modified as follows :

x ←- x x t Σ -1 o x (1) 
where Σo = B + W is the total covariance matrix of the pseudo-inD data after adaptation. Experiments show that this transformation is required to achieve competitive performance. We did not find theoretical justification of this post-modeling normalization. The system ends up by the specific scoring of Ioffe's PLDA model. The third system is the unsupervised Bayesian adaptation proposed in [START_REF] Borgstrom | Improving the effectiveness of speaker verification domain adaptation with inadequate in-domain data[END_REF]. The authors apply the supervised Bayesian adaptation of PLDA [START_REF] Villalba | Bayesian Adaptation of PLDA Based Speaker Recognition to Domains with Scarce Development Data[END_REF] to unlabelled inD datasets. The inD development data do not need clustering: the observations are assumed to be speaker-independent, ie. that each sample is provided by a unique speaker. This assumption eliminates the re-quirement of speaker labeling. The interesting results of this approach, competitive to those of the supervised version, may be due to the fact that the inD development dataset of the experiments NIST SRE16 [START_REF]Speaker recognition evaluation plan 2016[END_REF] contains few samples per speaker (about 2).

The fourth system in Figure 1 includes the CORAL domain adaptation presented in [START_REF] Sun | Return of frustratingly easy domain adaptation[END_REF] and introduced for speaker recognition in [START_REF] Alam | Speaker verification in mismatched conditions with frustratingly easy domain adaptation[END_REF]. This feature-based method is inserted as initial step of the process. Given the covariance matrices Σi and Σo of the inD and ooD domain, the authors aim at finding a matrix A that minimizes the distance between Σi and A t ΣoA, using the Frobenius norm metric. The analytical solution is equal to :

A t = Σ + 1 2 i Σ -1 2 o (2)
Actually, the authors apply a regularization term to this solution:

A t = (λI + Σi) + 1 2 (λI + Σo) -1 2 ( 3 
)
where I is the identity matrix and λ a positive scalar. Each ooD vector x becomes x ← A t x. In [START_REF] Sun | Return of frustratingly easy domain adaptation[END_REF], the regularization factor λ is introduced in order to avoid complications when matrices are not full-rank, that is for the sake of efficiency and stability. The authors arbitrarily set this parameter to 1. This value is retained in [START_REF] Alam | Speaker verification in mismatched conditions with frustratingly easy domain adaptation[END_REF] for speaker recognition.

A new domain adaptation method has been recently introduced and tested for SRE18, referred to as CORAL+ [START_REF] Lee | The CORAL+ algorithm for unsupervised domain adaptation of PLDA[END_REF]. Unlike CORAL and like Kaldi adaptor, this method (fifth system of Figure 1) is model-based. In the same way as step (ii) of Kaldi PLDA unsupervised adaptor (but separately for each PLDA parameter B and W), a simultaneous diagonalization of the parameter and of its pseudo-inD covariance version is carried out. The result is a combination of the two matrices (the latter is beforehand thresholded to 1 in terms of eigenvalues). The parameter-dependent scalars for interpolation are experimentally tuned, to optimize performance.

Feature-Distribution adaptor

We tested during and after NIST-SRE18 evaluation some variants of the previous methods. They are based on the following arguments.

First, speaker embeddings as i-vector or x-vector have proven to be very efficient for speaker detection but these lowrank representations are not "ready" for modeling and scoring. They can be used provided that they are first whitened and normalized. Transformations like discriminant dimensionality reduction (LDA), whitening and length-normalization are required to make these representation consistent with the usual and well controlled Gaussian probabilistic framework. All these techniques rely on parameters learned by using ooD data. Hence, InD data follow transformations driven by ooD parameters. Specific information of the target domain can be degraded during these stages. It could be more relevant to adapt ooD data to the target domain before any of these techniques.

Second, it is known that the mean shift due to the mismatch between training and test data can be partially solved by centralizing the datasets to a common origin [START_REF] Vaquero | Dataset Shift in PLDA based Speaker Verification[END_REF]. Also in [START_REF] Vaquero | Dataset Shift in PLDA based Speaker Verification[END_REF], a severe misalignment is observed between the i-vectors for English and for other languages. The Kaldi recipe contains a bydomain mean adaptation (step 5 in Figure 1), performed after normalization and PLDA. We propose to apply this adaptation at the same time as LDA. Indeed, length-normalization, which is done before the mean adaptation in Kaldi code, is critically depending on the location of the origin.

Third, as explained above, the practical implementation of CORAL does not use the analytical solution of the minimization problem of eq. ( 2) but a regularized version (eq. ( 3) with λ = 1), in which the identity is added to the covariances. The resulting matrices have the same eigenvectors that the initial covariances matrices and the same eigenvalues increased by 1. By this way, the impact of the residual components is mitigated, avoiding to take into account inaccurate information during adaptation. This precaution is especially useful for inD covariance, which is estimated by using a small development dataset (in our experiments, about 2000 observations for estimating a 512 × 512 matrix).

As noticed in Section 2, after step (ii) of Kaldi adaptor Algorithm 1, inD and ooD total covariances matrices would be simultaneously diagonal, equal to ∆ and the identity matrix respectively. In this intermediate space, it can be presumed that the inD variances (eigenvalues) higher than 1 are specific to this domain and, also, that low eigenvalues are unreliable -keeping in mind the low amount of the inD development data-. The best way for adaptation is to carry out an eigenvalue-spectrum regularization of the ooD matrices.

By synthesizing all these remarks, it can be of interest to propose the following Algorithm 2. As shown in Figure 1, this algorithm has just to be added as first step to a standard system without adaptation. We refer to this method as "feature-Algorithm 2 feature-Distribution Adaptor Apply by-domain mean adaptation to inD and ooD vectors. Compute covariance matrices Σi, Σo of inD and ooD data.
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x Distribution Adaptor" by analogy with Kaldi PLDA unsupervised adaptor. The transformation avoids to adapt axes of variability higher than those of inD data, by applying a flooring of 1 to the estimated inD-eigenvalues in a whitened space. Let us note that, if ∆ = ∆, the resulting ooD covariance becomes Σi.

Unlike Kaldi, the method is feature-based, and works on the whole covariance matrix (not only its diagonal values). No specific SVD per within-or between-covariance is carried out, as done in model-based CORAL+. We presume that the limited size of the inD development dataset may make their estimation inaccurate. There is no interpolation between the original and the resulting matrix, as in [START_REF] Garcia-Romero | Unsupervised domain adaptation for i-vector speaker recognition[END_REF][START_REF] Borgstrom | Improving the effectiveness of speaker verification domain adaptation with inadequate in-domain data[END_REF][START_REF] Snyder | X-vectors: Robust DNN embeddings for speaker recognition[END_REF][START_REF] Lee | The CORAL+ algorithm for unsupervised domain adaptation of PLDA[END_REF]. The latter is considered as the best pseudo-inD estimation of the covariance, given the available inD and ooD data.

To better assess the relevance of the previous approach and, also, the gain of accuracy involved by the "first step" featurebased adaptation compared to a post-normalization modelbased adaptation, we also propose a modified version of the PLDA unsupervised adaptor of Kaldi. This new version is described in Algorithm 3. Following the same arguments as those Algorithm 3 Modified-Kaldi Apply by-domain mean adaptation to inD and ooD vectors. (...) Apply step (i) of Algo. 1 Replace steps (ii) to (iv) of Algo. 1 by: Compute matrix ∆ such that ∆i,i = max (1, ∆i,i)
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set out above, about the flooring of eigenvalues to 1 in a specific space, the Kaldi adaptor can be improved by replacing steps (ii) to (iv) of Algorithm 1 as done in Algorithm 3. As for the initial PLDA unsupervised adaptor, the intermediate inD and ooD covariance matrices are simultaneously diagonal but, here, the adaptation is performed on the whole matrix and not only on the diagonal values. Let us note that this modification can be implemented in Kaldi with very small changes. For x-vectors, we use MFCC feature withe 23 cepstral coefficients. The window length and shift size are 25-ms and 10-ms respectively. A cepstral mean normalization is applied with a window size of 3 seconds. Next, non-speech frames are discarded using energy-based voice activity detection. The xvector extractor is a variant of Kaldi toolkit [START_REF] Snyder | X-vectors: Robust DNN embeddings for speaker recognition[END_REF] in which we implemented attentive statistics pooling layer [START_REF] Okabe | Attentive statistics pooling for deep speaker embedding[END_REF] . The attentive statistics pooling layer calculates weighted means and weighted standard deviations over frame-level features scaled by an attention model. This enables x-vector to focus only on important frames. The setting of x-vector network follows the example recipe in kaldi : sre16/v2 except the number of epochs that is fixed to 6 and the size of mini-batch that is fixed to 128. The extracted x-vectors are 512-dimension. The system employs the data augmentation included in Kaldi.

Experiments

For i-vectors, we use MFCC feature with 20 cepstral coefficients appended with the first and second order. A 4096-mixture full covariance UBM has been trained. The extracted i-vectors are 400-dimension.

Experiments were conducted on the NIST SRE16 [START_REF]Speaker recognition evaluation plan 2016[END_REF] 

Results

Results of the different approaches using x-vector system are reported in Table 1. The first two lines show the benefit of the Kaldi recipe, for all the experiments. Next four lines show results of Kaldi, unsupervised Bayesian adaptation, CORAL and CORAL+ without initial by-domain mean adaptation (with only centering during the standard whitening step). The disappointing results suggest that some of these methods may include unmentioned mean adaptation, at one of their stages. The last six lines of Table 1 confirm the benefit of the initial by-domain mean adaptation proposed in Section 3. For CORAL+, as the results of this method were disappointing (compared to those obtained by the authors during NIST-SRE18 and in [START_REF] Lee | The CORAL+ algorithm for unsupervised domain adaptation of PLDA[END_REF]), we tested the method with the last specific lengthnormalization of eq. ( 1), performed after modeling, that is included in Kaldi. With this addition, the method provides a significant gain of performance for all the experiments.

The last two lines show results of our contribution. Featuredistribution Adaptor confirms the assumptions of Section 3 and the relevance of the approach in terms of robustness. The method yields better performance than the previous ones, for all the experiments and error measurements. Lastly, the modified-Kaldi approach confirms the effectiveness of the matrix transformation of Algorithm 3 but, as presumed in Section 3, performing domain adaptation after normalization leads to lower accuracy than the previous approach. 2 compare performance of two representations: i-vector vs x-vector, on the same evaluation SRE16. The Table allows to better assess the benefit of the new augmented x-vector approach, but also that of the domain adaptation: for EER, about half of the gain is brought by the embedding and the other half by the adaptation of mean and covariance. This recalls the importance of an optimized backend process in robust speaker recognition.

Conclusion

In this study, we focused on unsupervised domain adaptation with recent speaker embeddings (i-vector, augmented x-vector). These low-size representations turn out to be very efficient, but have the major drawback of not being "ready" for scoring. Normalizations are required for preparing data to modeling and scoring. As highlighted in this study, domain adaptation could improve its relevance to be included as initial step of the system, before any type of normalizations (all being learned by using out-of-domain information). The adaptation procedure we propose is relevant, since done on features and as initial step. Dealing with unsupervised domain adaptation merely boils down to adding a preliminary step to a "standard" backend system.

Our experiments highlight the substantial share of performance brought by an appropriate mean adaptation. The bydomain mean adaptation has already been implemented in some systems, but not necessarily as initial step before normalization. We think that this point deserved to be experimentally confirmed. For covariance, the proposed regularization procedure, based on comparison of eigenvalue-spectra in a "whitened" space, appears to be more efficient than all other approaches, especially when performed as first step. As explained in the introduction, the feature-Distribution Adaptor can also be used to refine the prior clustering of supervised adaptation methods.

This method appears to us quite simple and relevant enough to be robust and, thus, to be tested in future work for other mismatch of domain than language.
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 1 Figure 1: Details of some systems with unsupervised domain adaptation. For better comparison, the first one corresponds to a baseline without domain adaptation.
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 1 . Configuration X-vector and i-vector have been trained using data collected from NIST SRE2004, 2005, 2006, 2008 and from Switchboard II phase 2,3 and Switchboard Cellular Part1 and Part2.

Table 1 :

 1 and SRE18 datasets. The training set consists primarily English speech, the enrollment and test segments are in Tagalog and Cantonese for SRE16, in Tunisian Arabic (cmn2) for SRE18. The unlabeled development sets comprises 2272 and 2332 seg-Comparison of x-vector systems with distinct domain adaptation methods.

	system		eval SRE18		eval SRE16
		By-domain	cmn2	tagalog	cantonese
		mean adapt.	eer	dcf	eer	dcf	eer	dcf
	standard (no adapt.)	-	10.67 0.669 20.96 0.996 6.89 0.561
	Kaldi		7.61	0.544 11.04 0.734 3.48 0.359
	Kaldi (without by-D mean adapt)	-	9.76	0.587 15.52 0.835 5.12 0.451
	Unsupervised Bayesian adaptation	-	10.15 0.628 19.97 0.837 7.14 0.529
	CORAL	-	11.94 0.618 17.52 0.859 8.55 0.544
	CORAL+	-	9.88	0.587 17.43 0.842 5.62 0.472
	Unsupervised Bayesian adaptation		7.73	0.600 13.19 0.806 3.89 0.404
	CORAL		8.12	0.581 11.24 0.710 4.16 0.412
	CORAL+		8.47	0.565 13.16 0.791 4.49 0.401
	CORAL+ with specific L-norm.		7.32	0.549 10.94 0.735 3.33 0.359
	feature-Distribution Adaptor		7.22	0.508 10.31 0.688 3.31 0.335
	Modified-Kaldi		7.35	0.544 10.92 0.732 3.28 0.350
	ments respectively. Robust error measures are computed by us-					
	ing the NIST toolkit, that delivers averages of EER and DCF					
	from many partitions.						

Table 2 :

 2 Comparison of i-vector and augmented x-vector based systems on NIST-SRE 2016 (standard without adaptation then feature-Distribution Adaptor).

		tagalog	cantonese
		eer	dcf	eer	dcf
	standard	i-vector 23.07 0.972 10.32 0.698
	f-D Adaptor i-vector 16.09 0.823	6.51	0.544
	f-D Adaptor x-vector 10.31 0.688	3.31	0.335
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