
HAL Id: hal-02959817
https://hal.science/hal-02959817

Submitted on 7 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

On Visualization Techniques Comparison for Large
Social Networks Overview: a User Experiment

Bruno Pinaud, Jason Vallet, Guy Melançon

To cite this version:
Bruno Pinaud, Jason Vallet, Guy Melançon. On Visualization Techniques Comparison for Large
Social Networks Overview: a User Experiment. Visual Informatics, 2020, 4 (4), pp.23-34.
�10.1016/j.visinf.2020.09.005�. �hal-02959817�

https://hal.science/hal-02959817
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

On Visualization Techniques Comparison for Large Social
Networks Overview: a User Experiment

Bruno Pinaud∗, Jason Vallet, Guy Melançon

University of Bordeaux, CNRS UMR 5800 LaBRI, France

Abstract

Visualizing social networks, especially an overview emphasizing their structure,
i.e., communities and their interconnections, is known to be a challenging prob-
lem. In this paper, we present a set of design rationales to build such overview
visualizations of social networks and our solution called Jasper. We evaluate its
performances against two of the most wide-spread visualization techniques (ma-
trix and node-link diagram) in a human-computer controlled experiment based
on community-related tasks. While none of the techniques emerge as the over-
whelming winner, Jasper appears to be one of the best method for each task; a
fact sustained by the marks given by the users. Overall, Jasper can be seen as an
all-encompassing solution for quickly producing legible and compact overviews of
large social networks on a single modern computer.

Keywords: Overview Visualization, User Evaluation, Graphs and networks,
Social Networks

1. Introduction

Along with the constant development of social networks and the continuous
raise of their size, social networks analysis (SNA) has been a hot topic for many
years [1]. From the vast set of SNA problems, visualization is known to be an
efficient [2] albeit challenging analysis technique due to the huge size of social
networks. In this paper, we focus on the visualization of the community structure
of a network. We propose and evaluate an easy to implement and fast algorithm
to do so. When nodes are assembled in communities, one major challenge is to be

∗Corresponding author
Email addresses: bruno.pinaud@u-bordeaux.fr (Bruno Pinaud),

jason.vallet@u-bordeaux.fr (Jason Vallet), guy.melancon@u-bordeaux.fr (Guy
Melançon)

Preprint submitted to Visual Informatics September 30, 2020

able to study how information is jumping in the network between each group [2].
To the best of our knowledge, we are not aware of other algorithm able from an
end-user point of view to run on a single workstation and quickly produce a visual-
ization of the community structure while keeping all nodes and edges visible at the
same time. Moreover, this kind of visualization is a challenge to obtain as social
networks extracted from real-world interactions force us to face several hundreds
of thousands [3], when not millions [4, 5], of nodes at once. This easily pushes the
existing algorithms [6, 7] built to lay out more modest graphs to their limits.

Thus, we propose Jasper, which stands for Just A new Space-filling Pixel-
oriented layout for large graph ovERview [8]. Our initial motivation was to cre-
ate quick overviews of large graphs to allow users to easily get a basic mental
map of the targeted dataset before deciding to perform any further visual analytics.
Furthermore, because it presents pixel-oriented characteristics and separates nodes
in clusters (a.k.a. communities), we found that Jasper could be rather useful to
overview propagation and dissemination phenomena in social networks [9]. Nowa-
days, as everybody is connected and able to communicate with a lot of persons
almost instantly by using online social networking services, understanding how
information comes to pass using word-of-mouth so quickly is essential. Figure 1
shows a small-multiples visualization of 9 steps of a popular propagation model we
have implemented [9]. The growing black area of each thumbnail shows the infor-
mation spreading. By emphasizing the visualization of communities, Jaspermakes
the visualization of the cascading effect obvious. As one can see, the propaga-
tion hops from community to community. As far as we know, related work about
the visualization of propagation phenomenon using a graph visualization is lim-
ited. Statistical approaches are often preferred [10] or authors simply use standard
node-link diagrams, even when the edge density becomes quite large, thus result-
ing in very cluttered visualizations [11]. We propose to display graphs quickly
using a pixel-oriented representation. When facing large networks, representing
every single detail promptly becomes impossible; thus, our solution solely focus
on displaying nodes while keeping edges hidden. Consequently, the layout has to
be adapted to translate the main information supported by edges, i.e., adjacency.
As a result, two nodes close to each other in the final layout would very likely be
neighbors (and conversely). Conjointly, we use a space-filling curve to efficiently
display every node without any overlapping, as well as to make the most of the
available displaying area.

Overall, Jasper can be used to compute quickly snapshots of large social net-
works in a fixed configuration to study the evolving transmission of information be-
tween users. According to the Information Visualization Seeking Mantra (Overview
first, zoom and filter, then details-on-demand) [12], Jasper can be used as a quick
and simple method to produce a compact overview. Following the same idea with

2

Figure 1: Small-multiples visualization of a propagation phenomenon on a medium size network
(65k nodes, 130k edges, 100 communities). Each thumbnail is laid out with Jasper. The growing
black area of each thumbnail shows the spreading of the information. Colors are used to display the
communities of the network.

the Visual Analytics Mantra (Analyze First - Show the Important - Zoom, Filter
and Analyze Further - Details on Demand) [13], Jasper can be used to quickly
and easily analyze (i.e., compute communities) and show important information.
While it can be applied on smaller graphs, using Jasper in such case may results
in diminishing the quality of the visualization. Indeed, other algorithms capable
of computing more expressive layouts (showing both nodes and edges, and detail-
ing communities) become able to tackle graphs of such size in a sensible amount
of time. Our solution however cannot be used to display dynamic graphs with
evolving topologies. This will nonetheless become relevant in future work as the
structure of a social network is expected to develop and transform (new users ar-
rive/leave regularly and relations are created/disappear).

This paper builds on and extends a previous work oriented on the presentation
of the algorithm behind Jasper and its time and space complexity [8]. Instead,
the contributions of the current paper are: 1) guidelines for designing community-
oriented visualizations of social networks; 2) a revised presentation of Jasperwhich
is designed to quickly produce an overview of a social network emphasizing com-
munities and their interconnections.

3

A controlled user evaluation has been added to assess the performance of Jasper
for analyzing the community structure of social networks, and compare it to a ma-
trix visualization and two variations around node-link diagrams. In order to ease
future work comparing Jasper, we have voluntarily used general tasks (not specific
to any kind of data or domain) for community visual analytics, various and freely
available datasets (for reproducibility), widely known and used visualizations al-
lowing for indirect comparison with Jasper, and basic interactions (changing the
color) which should be available in all visualisation platforms.

The rest of the paper is structured as follows. In Section 2, we define guidelines
for designing efficient overview of community-oriented network visualizations and
how these guidelines are implemented at each level of the Munzner nested model
for visualization [14]. These guidelines give precious hints and structure for look-
ing at related work which is presented in Section 3. Section 4 recalls the algorithm
of Jasper and in Section 5, we present the controlled user experiment to properly
evaluate it and check if the resulting visualizations are deemed “better” than the
more classical node-link and matrix visualizations. We finish this paper with some
concluding remarks.

2. Design Rationale

We follow the nested model of Munzner [14] which proposes a nested struc-
ture. The problems encountered by the user define the operations to perform, which
establish in turn the interactions and visual encoding to use, thus eventually char-
acterizing the solution implementation. To initiate the process, we establish three
guidelines, described below, that visualization algorithms must meet from a poten-
tial user perspective. These guidelines allow to first identify the observer needs,
which are for us a community-based visualization of large social networks. They
then give potential directions to follow, for developing related work, and eventually
a visualization algorithm, along with the required tasks for its evaluation.

Guideline G1.
When visualizing interactions between users, e.g., propagation phenomena, the

visualized social network must indicate the current state of the propagation. More
precisely, observers need to know which persons have already received informa-
tion, which ones are currently susceptible to spread information and which ones
are unaware of any information propagation.

Guideline G2.
Social network users are very often connected with friends, colleagues or fam-

ily members, and consequently tend to be part of at least one community. Because

4

an information spread by somebody is more likely to first register on people close
to her/him, whom will later repeat it, observers want to know if, and how closely,
two persons are related.

Guideline G3.
Large graphs are complex to handle and visualize but observers interested in

propagation phenomena rarely care about complexity, only about the visualization
on their screen. Thus, the network must be available as a whole and shown as such.
We cannot only “Show the Important” first as claimed by the Visual Analytics
mantra. Furthermore, a drawing of the network should appear quickly and not
after several minutes of computation.

After defining the guidelines from a user point of view, Munzner’s next level
leads us to an abstraction into operations on data types. Quite obviously, our data
type is a labeled directed graph where nodes represent users of the social network
and labels associated to nodes (mapped onto node’s color, see below) represent the
state of the node about the information propagated. We consider that all users know
if they have received the information, if they are willing to spread it further or if
they have never heard of it, thus completing G1. To address G2, and handling real-
world problems, we propose to focus the visualization on the community structure
of the network instead of the nodes, and communicate the results obtained to the
observers. Finally, according to G3, we know that the network cannot be altered
and that the computation time should be acceptable from a user point of view.

The third nested level requires that we design both visual encodings and inter-
action techniques. Using specific visual encodings for communities are a perfect
way to differentiate those which have spread information from those who have not
yet done so, and from the others which are not aware of any information at all. In
our case, using colors seems the most obvious and simple choice for both G1 and
G2. For instance, nodes from the same community could be drawn with the same
color by default but their color should change once they have received information,
and once more as they start spreading it. We follow the good practices [15] and
propose to use distinctive colors to identify communities (G2) and diverse trans-
parency or gray-scale levels, using the alpha channel for instance, to differentiate
the different node states (G1). The choice of the other visual encodings, like the
type of layout or in which fashion nodes and edges are displayed is addressed in
Sect. 4.

Finally to complete Munzner’s model (interactions), we follow the Visual Infor-
mation Seeking Mantra [12]. In the case of G1, zoom and pan, and focus+context
operations are essential to know the state of the different nodes as well as to get
more details if asked for. Once joined with the visual clustering of elements or a

5

distortion of the layout to bring together nodes belonging to the same community,
these interactions would also allow to achieve G2 easily. Finally, the creation of a
visualization proposing an overview of the graph, available at any time, is sufficient
to address G3. That is under the condition that all computations are achieved in a
reasonable amount of time.

In complement to the nested model, Munzner proposes a listing of the most
common possible threats the visualization solution may be subjected to. While
the low-level task validation, i.e., the implementation, requires benchmarks and
tests [8], the middle-level ones ultimately need laboratory and field studies for a
thorough validation of the solution i.e., expert and user experiments [16]. This is
the aim of this paper.

In the following, we propose to take a closer look at existing visual encodings
elaborated for large graphs in conjunction with our guidelines.

3. Related work

As we may want to visualize hundred of thousands of elements, we concen-
trate on solutions able to conform to both G1 and G2, such as multiscale visualiza-
tions [17, 18, 19]. Basically, the network is hierarchically decomposed into several
smaller groups using nested subgraphs. This technique is particularly adapted for
large graphs as one can limit the number of level to visualize, thus only displaying
part of the hierarchical structure or a subset of the elements according to the hi-
erarchical branch currently tracked. However, this restriction is, at the same time,
an advantage and an inconvenient as the resulting representations can be used to
visualize large graphs but still do not succeed in showing them in their entirety.
These solutions are consequently unable to resolve G3.

Decomposing the network into smaller components raises an interesting point;
more precisely, if the hierarchical groups coincide with the communities existing
in the network, G2 is solved. Such node grouping can also be used to simplify the
layout computation in considering each cluster as a whole entity instead of trying
to find an appropriate position for each node separately. This method has been ap-
plied to visualize up to fifteen thousand nodes and forty thousand edges [20, 21].
All nodes are individually visible even though the number of elements displayed is
quite big thanks to the use of space-filling layouts as a basis to order the clusters in
the resulting layout. Such quality is obviously important when dealing with large
graphs but more so in our case as we wish to isolate the color of each displayed
node. Other algorithms, for instance [22], have proposed a similar method, by or-
dering nodes along a space-filling curve. These curves are especially designed to
“fill” plane areas by placing nodes at regular distances in a given order and pat-
tern [23]. The solution proposed by Muelder and Ma [22] has good advantages

6

which address G3: its computation is quick, the technique can scale up easily, and
the produced layouts are, at least from our point of view, clearer than those ob-
tained with force-directed algorithms when displaying larger graphs as a whole.
Additionally, the fact that the ordering operation used to place the nodes along the
space-filling curve is based on the community structure also provides us with a
good candidate solution for G2. Nonetheless, the presence of numerous edges still
impairs the node visibility in the densest parts of the graph, a problem known in
many visualizations [24]. A somewhat similar solution has also been proposed by
Auber et al. [25] only using hierarchical data, and consequently making it inappro-
priate for general network visualization.

Using space-filling curves allows to efficiently use space and solve the previ-
ous issue. This can however be pushed even further as demonstrated with pixel-
oriented visualizations [26]. This technique is commonly used to analyze records
and visualize the possible correlations between two measures, one being displayed
using the position of the elements along a space-filling curve while the second is
depicted using a simple color mapping. Whenever the two analyzed measures are
correlated, peculiar color patterns, e.g., chunks of the same color, tend to appear
in the representation. Using this kind of visualization would give us the capac-
ity to effectively display all the nodes at the same time (achieving G1 and G3).
However, edges –carrying information on the connectedness of each node in the
network– cannot be explicitly represented using a pixel-oriented method. Duarte
et al. [27] have encountered a similar problem. Their Nmap layout is introduced
as being a neighborhood preservation space-filling algorithm able to display con-
nected nodes close to each other. The resulting visualization is rather reminiscent
of Tree-Maps [28, 29] which have been successfully used to visualize very large
datasets containing up to a million of elements [30] and to perform social network
analysis [31, 32]. By achieving this spatial proximity in the representation to indi-
cate the connection of elements from a structural point of view, as expected for G2,
edges do not need to be drawn as their existence is hinted by the nodes adjacency
in the visualization.

Alternatively, LaGO [33] or Cornac [34] implement visualization and inter-
active exploration of graphs with millions of elements by using nodes and edges
aggregation based on different levels of detail. However, this adaptive level of
details is incompatible with our guideline G1 as information on elements is only
accessible after focusing and zooming on certain areas of the visualisation.

Traditional and well-known force-directed approaches, and their parallel or
distributed implementations, still receive great attention [35, 36, 37, 38]. These
algorithms quickly produce much detailed drawings compared to Jasper. How-
ever, these algorithms may require an access to distributed computing platforms
and may still need a few minutes to compute, thus failing to help us address G3.

7

4. Jasper algorithm for community-based visualization

As mentioned above, considering the huge number of elements we wish to
visualize at the same time, we decide to visualize the information in its simplest
form, where a node is a pixel. This allows us to represent a lot of elements and
attain the overview mentioned in G3. Additionally, by changing the pixel’s color,
one can visualize the state of the elements being represented, thus achieving G1.
For solving G2 at the same time, we introduce a visual metaphor to suggest the
presence of existing connections between nodes by using a force directed layout
algorithm. By laying out the nodes belonging to the same community close to each
other, we can suggest that any two nodes next to one another in the visualization
are more likely to be connected than any others.

Figure 2: Jasper: from a node-link visualization to a pixel-oriented layout for communities overview-
ing.

Figure 2 depicts the workflow of Jasperwhich is composed of two main phases.
Phase I computes a layout based on a coarser representation of the initial network.
Phase II reorganizes all the nodes of the coarser representation along a space-filling
curve accordingly to the spatial position of the nodes obtained in Phase I. The fi-
nal layout is a space-filling representation with similitude to pixel-oriented layout
(only nodes are displayed). We end up with a compact visualization where nodes
belonging to the same community are set to be displayed spatially close to each
other. A complete illustration of the whole procedure is showed in Figure 3 with a
toy example network. Figure 6 shows the results of Jasper along with more tradi-
tional visualizations, e.g., node-link diagrams and adjacency matrix. The compari-
son between all these visualizations is the main research question of the evaluation
presented in the next section.

In the first paper on Jasper [8], we present a study of the complexity, computa-
tion time and the scalability of the algorithm for graphs with hundreds of thousands
of elements to several millions. In this paragraph, we give an outline of some of
these results. We achieve computation in about one second for our smallest graph
(37k nodes, 370k edges) to about four minutes for our biggest graph (4M nodes,
35M edges) on a mid-2015 workstation laptop. For this latter graph, the longest

8

Phase I

1. Initial graph with
a random layout

2. Clustering
algorithm

3. Coarser
representation

4. Intermediate layout
used for space division

Phase II

5. Space-filling curve
used for ordering

6. Nodes positioned on
the space-filling curve 7. Resulting layout

Figure 3: Illustration of Phase I and II on a toy network.

operation is the clustering algorithm. On average, we end up being able to compute
the layout on relatively large graphs (2M nodes and 5M edges) in approximately
35 seconds. Note that the space-filling and node ordering computations are based
on a multi-threaded implementation. Because the number of edges is always big-
ger than the number of nodes in a real-world network, sometimes up to an order of
magnitude, we can predict that the number of edges, and more precisely, the part of
the solution whose complexity is impacted by it, i.e., the clustering algorithm, will
be our pitfall in terms of efficiency. Overall the performances of Jasper are closely
correlated to the performance of the clustering algorithm. However, our solution
has the advantage of being highly modular as the clustering algorithm detecting
communities and the layout algorithm drawing the coarse graph representations
can be changed at will should alternative algorithms offering better results appear.

4.1. Phase I: Build and Lay Out a Coarser Graph

As we are tackling large graphs, it is known that many layout algorithms gen-
erally need a long computation time to produce a quality layout. The quality
of a drawing is often improved by reducing edge crossings, or minimizing edge
length [39]. Thus, it is directly linked to the number of elements (nodes and edges)
of the graph. If we are able to keep only the most important nodes and edges, we
should be able to compute a quality layout much more quickly and efficiently. This
reduced graph is often called a coarser or skeleton graph. Similar approaches are

9

used in different layout algorithms and analysis techniques [18, 40, 41, 21, 42, 43].
Overall due to its cluster-based nature, using Jasper to visualize a complete graph
(counting only one cluster) does not make much sense. On the other hand, a lot of
very small clusters (consisting only of very few nodes) would not greatly improve
the execution time of the layout algorithm. Thus a right balance must be found by
the clustering algorithm.

4.1.1. Clustering nodes
Jasper is more an abstract framework than an exact step-by-step list of oper-

ations. So, any clustering algorithm can be used. According to Fortunato [44],
and with the additional support expressed by Didimo and Montecchiani [21], we
decide to use the Louvain algorithm [45] thanks to its performance. Evaluating the
difference with other clustering methods is left for future work.

As shown in Figure 3-1, nodes are considered homogeneous in the initial graph
(all nodes have the same color). Once we apply the clustering algorithm, nodes of
the same cluster are colored similarly to identify them (Figure 3-2). We entirely
rely on the clustering algorithm efficiency to appropriately regroup each node with
its proper and closest relatives.

4.1.2. Building on clusters
Once each node is set in the adequate cluster, we create a map of their relations

to obtain a first coarse graph (Figure 3-3). Repeating the clustering step several
times will produce coarser and coarser representations. More generally, upon each
computation of a coarser graph, we first group close nodes together then commu-
nities linked to one another. We use the groupings herein created to decide how
close two nodes should be displayed.

Using a more formal approach, coarser representations can be described as
follows. For a graph Gk = (Nk, Ek) identified by a set of nodes Nk and a set of
edges Ek, where k ≥ 0; we define G0 as the initial graph we want to visualize and
G1,G2, . . . ,Gp as its gradually coarser representations. By applying a clustering
algorithm on Gi, where i ≥ 0, a set of clusters Ci is created such as each node n ∈ Ni

belongs to one and only one cluster c ∈ Ci (described as cluster(n) = c). Those
groupings are then translated to a coarser representation of the graph, i.e., for each
cluster c in Gi, a node m is created in a new graph Gi+1 such as m ∈ Ni+1 and, if an
edge e ∈ Ei exists between two nodes n and n′ ∈ Ni in distinct clusters (cluster(n) ,
cluster(n′)), then, an edge ε ∈ Ei+1 is set between the two nodes m and m′ ∈ Ni+1
–respectively representing cluster(n) and cluster(n′). This edge linking m and m′,
can also have a weight based on the total number of connections between the nodes
contained in each cluster represented by m and m′ or the aggregation of any existing
weight. This weight may be used to improve the layout computed at the next step.

10

4.1.3. Layout computation
After laying out the coarsest graph Gp, we gradually use the layout computed

on the clusters in Gi (where p ≥ i > 0) to place the subgroups in Gi−1. The
operation is repeated until G0 is reached and treated (Figure 3-4).

To perform layout computations, we have to choose an efficient layout algo-
rithm offering legible drawings in a small amount of time. We chose FM3 (“Fast
Multipole Multilevel Method”) [46] which proposes a good balance between ex-
ecution time and drawing quality with minimal edge-crossings and overlapping
edges [47, 48, 49]. Those two points are essentials as we wish to keep a readable
layout of the clusters to easily distinguish one from another.

Computing the layout of the coarsest graph Gp is straightforward as it simply
requires to apply the algorithm layout on Gp. The layout of any of the following
coarser graphs Gi, where i < p, needs a few additional steps. First, a local layout
is computed in each existing cluster c ∈ Ci by only considering the corresponding
subgraphs. Then, freshly computed coordinates of each node n ∈ Ni attached to
the cluster c (with cluster(n) = c) are transformed through translation and scaling
so that all nodes in c are displayed in a (small) area as defined by m ∈ Ni+1,
representing c in the coarser graph Gi+1. Each node coordinate in a coarser graph
Gi+1 is thus used as an anchoring point to lay out the nodes of Gi. These two steps
are repeated for decreasing values of i until we reach G0 and have computed the
coordinates of each initial node (Figure 3-4).

On a more general note concerning Phase I, the rapidly decreasing number
of nodes for each coarser representation makes the construction of Gi+1 and each
application of the clustering and layout algorithms on it quicker. This is not sur-
prising considering the graphs obtained from the clusters are getting simpler, how-
ever, based on observations, repeated applications to obtain several levels of coarse
graphs do not necessarily improve the resulting layouts. As a result, in our appli-
cations, one coarser representation (G1) has proved to be sufficient more often than
not, with a second level of coarse representation only appearing to be of interest
when used on some of the largest graphs. We offer nonetheless the general method
as such, considering structured graphs with established hierarchical communities
will benefit from it. In any case, the appropriate number of coarse levels is left to
be decided upon application.

4.2. Phase II: Order Nodes to Produce a Pixel-Oriented layout

Pixel-oriented visualizations have been presented by Keim [26] to display im-
portant quantities of data in a minimal space. Elements to display are ordered and
placed along a space-filling curve. After ordering nodes according to their spatial

11

position by the end of Phase I, we first divide the space using a technique simi-
lar to the one used to create k-d trees [50]. When each node is isolated from its
neighbors, they are ordered according to a space-filling pattern and are laid on the
corresponding curve at their given position. Finally, the size and shape of nodes
are maximized and edges are finally hidden to obtain the maximum legibility and
avoid overlapping elements (Figures 3-4 to 3-7). As shown in Figure 4, the succes-
sive application of these three steps allows us to create a compact representation
where nodes connected to each other end up in the same vicinity.

(a) 1st division on x (b) 2nd division on y (c) 3rd division on x

(d) Once isolated, nodes
are ordered along the space-
filling curve

(e) Nodes are positioned ac-
cording to the curve

(f) Node’s sizes and shapes
are changed

Figure 4: Illustration of Phase II on a toy graph (16 nodes) to produce a pixel-oriented layout. For
each division (only the first 3 steps here, (a) to (c)) nodes are ordered according to the dimension
considered (alternating between divisions) into two subsets of equivalent size. Divisions are done
until each node is isolated (d). The final ordering (d) and placement along the space-filling curve (e)
is done following a N-order space-filling curve layout.

4.2.1. Space division and node’s ordering
The node’s ordering is done in a way similar to the one employed for a k-d tree

construction. A k-d tree is a data structure used for the storage of k-dimensional
data. In our case, the dimensions considered are those specified by the layout (x
and y coordinates). We first divide the graph in two parts with a similar number of
nodes in each halves using a pivot value on the first dimension (Fig. 4a). The two
resulting halves are then divided again in two equal parts but using a pivot value on

12

the second dimension (Fig. 4b). This process is repeated (Fig. 4c) until each node
is isolated and thus is given an order (Figure 4d).

4.2.2. Placement along a space-filling curve
The choice of the space-filling curve is important as it indicates how the ele-

ments are to be divided and ultimately ordered. We use the space-filling curve pop-
ularized by Morton [23] using an N shape as shown in Figure 3-5. Similar results
can be obtained with different curve designs or orientations –such as the Hilbert or
the Z-order curves– as long as the node ordering during the division respects the
path followed by the curve. This last point is crucial to preserve adjacency in the
final layout.

Space divisions along x and y axis give an appropriate order for each node to be
displayed along our space-filling curve as we establish a correspondence between
each tile and the points on the Morton curve (Fig. 4e). Once ordered (Fig. 3-6),
nodes can be laid out according to the curve shape.

4.2.3. Coloring, Reshaping and Resizing nodes
Finally, nodes are reshaped and resized to obtain a more evenly tilled depiction

(Fig. 3-7) akin to a pixel oriented representation (see Fig. 4f). Each node’s color is
also changed according to the clustering algorithm, thus coloring similarly nodes
belonging to the same communities. It is important to note here that while some
heuristics and methodologies are well-known to help in picking appropriate col-
ors for visualization purposes [51, 52] finding color scales adapted for proposing
hundreds of easily differentiating hues is not possible.

4.2.4. Discussion
As we know the size of the graph to lay out, we can compute from the start

how many divisions will be necessary to isolate all nodes. However, if we wish to
conserve a regular shape for the final layout, the number of divisions have to be
equal for each halves. This means regions with fewer nodes have to incorporate
“holes”, that is white-spaces which are given an order too. Moreover, because
the number of nodes is equally distributed in each halves during the division, the
“holes” are evenly spread throughout the whole space-filling representation. The
appearance of these white spaces is noticeable on representations with a limited
number of nodes, but become less visible when facing large graphs. While the
ideal visualization ratio is set to be 1:1 (square shape), the successive divisions and
the rearrangement along the space-filling curve do not give us the possibility to
freely rearrange nodes. However, to avoid creating representations with too many
white spaces, we suggest to use a variable shape for the representation depending of
the number of nodes to display. The overall resulting Morton curve is composed of

13

n N-shaped patterns (Fig. 3-5) and the layout is either a square (total of 4n possible
points) or a rectangle (number of points of 2 × 4n points for a complete rectangle).
A variable layout shape allows us to avoid incorporating too many “holes” and to
use most of the space available by following a simple rule: let n ∈ N, a natural
number, and |V | the number of nodes in the graph to display. Generally speaking,
the resulting shape will be a square if 2×4n−1 < |V | ≤ 4n and a rectangle otherwise
(when 4n < |V | ≤ 2×4n). We test the number of nodes during the first space division
to either spread the data on a square or on half that surface, i.e., a rectangle. This is
implemented by either using the whole space-filling curve or only half of it, if the
number of nodes allows it.

5. User evaluation of Jasper

Following Purchase methodology [16], we designed a within-participants ex-
perimentation to evaluate Jasper as a compact social network overview visualiza-
tion algorithm against well-known and widely used methods. The experimentation
is motivated by the following research question:

Is Jasper a better solution for analyzing the community structure of social net-
work compared to two variations of node-link diagrams and a matrix visualization?

Although Jasper was originally designed for generating overviews of large
graphs, we expect it to allow users to successfully and quickly perform some ba-
sic community oriented tasks. As a consequence, we evaluate more general tasks
involved in the study and identification of communities in social networks.

Overall the experiment is composed of 4 visual conditions used with 4 datasets
and 3 tasks to be able to generate 4 × 4 × 3 = 48 questions per user.

5.1. Datasets

We use 4 real-world datasets of different sizes plus another small random net-
work generated following the Wang et al. model [53] with 10k nodes and twice as
much edges for user training purposes. The different sizes of the datasets are used
to analyze the responses of users depending of the layout used, but also on both the
size and density of the networks being visualized. All the following datasets are
freely available as part of the Stanford Large Network Dataset Collection [54].

D1 – Enron emails
The network is composed of 33,696 nodes and 180,811 edges and represents

exchanges of email messages between employees of the Enron corporation [55].

14

D2 – Slashdot
The network is composed of 82,168 nodes and 948,464 edges. It is a snapshot

from February 2009 of the user community from the Slashdot website (https:
//slashdot.org/). Although in the initial dataset, users have tagged each other
positively or negatively, we are solely interested by the topological network created
by those interactions.

D3 – Epinions
The network is composed of 119,130 nodes and 833,695 edges extracted from

the (now closed) Epinions website [4]. More specifically, as a review website,
Epinions was proposing users to select other users and “trust” them as well as their
opinions on a wide range of products sorted by categories.

D4 – DBLP

(a) Node-link layout with FM3 (b) Final result with Jasper

Figure 5: Application of Jasper on the DBLP graph [3] (317,080 nodes, 1,049,866 edges and 430
clusters).

This is our largest network with 317,080 nodes, 1,049,866 edges and 430 clus-
ters (Figure 5). It is a filtered version of the co-authorship network extracted from
the DBLP bibliography website (http://dblp.uni-trier.de/).

To visualize networks with at least a common ground, D1 and D2, which

15

are composed of several disconnected groups, have been filtered to only keep the
largest connected component. Although we designed Jasper as a solution to rep-
resent the overview of rather large graphs, one cannot help but notice that the size
of the graphs we have selected for our evaluation is more modest than what we
have presented in our initial work on Jasper [8]. While Jasper is able to handle
very large graphs, we deem it unfair to evaluate the other visual conditions on such
extreme criterion.

5.2. Tasks

Considering our strong interest towards social networks, an important point
of interest concerns the study of communities and the social ties existing between
them. We thus propose solely community-oriented tasks, allowing us to measure
how efficiently the different visualizations can represent this information, even for
an overview of the network.

T1 – Which highlighted community is the largest?
Obviously, and beyond our guidelines, communities have to be distinguishable

from one another along with their relative sizes. As a community delimits a group
of people with strong and numerous ties with one another, it very often possesses
a high edge/node ratio. Large communities are remarkable because this density is
spread between many individuals. When analyzed, one will often want to identify
these sizable groups, isolate them, and study them aside.

T2 – How many highlighted communities is there?
Although highlighting is an efficient way to bring information into focus (i.e.,

for addressing Guidelines G1 and G2), one still needs to be able to discern this
visual feedback. For this task, we extend this requirement by displaying several
highlighted communities at the same time in a single graph. This allows us to
measure how efficiently users can identify precise communities and differentiate
them from the others.

T3 – Are the highlighted communities connected?
In the same way that most usual graph visualizations try to legibly indicate the

existence of a link between two nodes, we wish to know if two communities are
actually connected, i.e., if there is at least one node from the first community con-
nected to one node of the second community. We propose this task to evaluate the
adjacency-rendering abilities of the different visualizations. This task also address
Guidelines G1 and G2.

16

5.3. Visual Conditions

We choose to compare Jasper with three other well-known visualizations able
to produce drawings quickly to address Guideline G3: an adjacency matrix and two
variations around a node-link diagram (Figure 6). In order to be fair throughout
our experiment with respect to the nature of the tasks being community-oriented,
we propose two different layouts to draw the graphs with the node-link diagram.
Although both use a force-directed layout, one additionally propose a more notice-
able spatial separation of the communities. For each graph, we use the Louvain
clustering algorithm to identify the communities and mark accordingly each node
with an index specifying its cluster number. Based on this index, we then colored
the nodes using a red-yellow-blue color scale (qualified as colorblind safe on Col-
orBrewer [52]), so that each community color is different. This coloring is given
for each graph and is kept across all conditions. Furthermore, for all visualiza-
tions, nodes are drawn using square shapes, edges are colored in gray and drawn
as straight lines on a black background.

C1 – Jasper
As introduced above, Jasper is an adjacency-preserving, space-filling, and pixel-

oriented layout. As a preliminary hypothesis, we believe our solution to be partic-
ularly adapted for an overview, and thus, should be the most efficient for finding
communities and evaluating their size (T1). It should also perform quite well with
any community numbering related task (T2), due to its design. Its space-filling
characteristic however is likely to impede to a certain extent the acknowledgment
of existing connections between communities, thus likely giving poor results for
task T3.

C2 – Adjacency matrix diagram
This is the visualization of an adjacency matrix. As the main characteristic

responsible for making a difference between two adjacency matrix diagrams is the
selected node ordering, we arrange the nodes using the cluster indices. As a pre-
liminary hypothesis, we believe the adjacency matrix diagram to be a rather dense
and complex representation lacking the appeal offered by other visualization tech-
niques. Nonetheless, the matrix still shows all the information needed to properly
complete each task. Its only weakness is the difficulty for users unfamiliar with
this representation to gather this knowledge [56]. We thus expect an overall fair
rate of accurate answers but with probably longer response times than the other
conditions for all the tasks.

17

C1: Jasper C2: Adjacency matrix

C3: Node-link diagram C4: NLD with community
(NLD) separation (NLD-com)

Figure 6: The four different conditions used during the experiment with the same graph. Nodes are
shaped and colored identically across all conditions.

C3 – Node-link diagram (NLD)
We use this condition with the well-known force-directed layout FM3 [46].

While certainly the most common and preferred visualization [57], NLDs are known
to provide poor visualization for dense graphs with only a few hundred nodes
when considering classical graph visualization tasks (e.g., counting nodes, finding
paths [24]). As the tasks considered for our experiment are community-oriented,
we may possibly end up with very different results. However, with the visualiza-
tion being unsatisfactorily, especially for large graphs, we state as a preliminary
hypothesis that NLD remains unlikely to excel at any of the given tasks.

18

C4 – NLD with community separation (NLD-com)
This condition uses a layout similar to the intermediate layout obtained based

the coarser graph of Jasper at the end of Phase I. Compared to the standard NLD
(C3), it shows the communities with a much more legible view of the graph. It is
computed using FM3 and the communities are displayed more densely, allowing
nodes belonging to the same community to be spatially closer to their neighbors
than outsider nodes. The preliminary hypothesis formulated when using this lay-
out is more positive than the previous one when considering T2 and T3. Indeed,
placing nodes of a community close together improves the visibility and the iden-
tification of the communities. When laid out this way, the connections between
groups of users are also quite discernible from connections between users of the
same community. On the other hand, task T1 remains precarious as nodes from
the same community can appear more and more indistinguishable from one an-
other especially for large networks.

5.4. Evaluation setup
All users used the same computer (no updates during the experimentation),

same screen (same resolution and brightness for each user), same room with the
same light conditions, same mouse, same software (no recompilation). We use two
different series of questions for each dataset, task, and visualization combination.
The layouts are similar but the communities highlighted (i.e., the subjects of the
question) are different. This allows us to further validate the solution by using an
alternative scenario to overcome a learning effect.

The communities used for each task were chosen among the largest communi-
ties built by the Louvain algorithm. For T1, the large community has about 10%
more nodes than the small one. For T2, the comparison was done between 3 and
4 communities. For T3, the available choices were limited by the datasets but we
always chose communities connected with numerous connections between them.
To perform the experimentation, we use a simple web application, proposing for
each question two pictures of the same graph with the same layout under the same
condition but with different highlighted communities in pink. Edges on the other
hand remain of the same color (gray). The evaluation was done in French which is
the native language of all participants. We used Tulip [58] to produce the pictures.
Fig. 7 shows a screenshot of the web user interface. Users have to choose the draw-
ing with the largest highlighted community (T1), the higher number of highlighted
communities (T2) and the smallest distance between the highlighted communities
(T3). We also offer a “Je ne sais pas” (I do not know) button to go to the next
question without waiting for the remaining time.

The task to complete is expressed at the top, with more detailed instructions
given underneath, and a time counter placed at the top-right corner to indicate the

19

Figure 7: Graphical user interface used for the evaluation. The task is specified at the top of the page;
the remaining time is at the top-right corner; the two pictures of the current graph are displayed on
the left and right sides; the “Je ne sais pas” (“I do not know”) button is located between the two
visual conditions. Users have to click on the image they choose.

remaining time to answer (maximum of 45 sec.). Past that time, users can still look
at the visualization for as long as they need but any given answer will be marked
as false. We hope that by leaving them the time to study a graph visualization
in depth, we give them the opportunity to forfeit one question for a better under-
standing of the visualization, thus leading to better result with the remaining tasks.
While the pictures are static drawings, an interaction is offered to the users: the
possibility to hide the highlighted communities whenever the picture is hovered by
the mouse cursor. Moreover, the color of the communities remains similar across
all conditions, only changing when the community is highlighted. All these param-
eters, especially the interaction which was not initially planned, were decided and
verified during 3 pilot experiments with different users unfamiliar with our work.

Overall, the experiment is divided into 4 sets of questions, each set using only
a single condition. The ordering of tasks, graphs, and conditions is managed with
a Latin square to avoid identical scenarios to take place between users. To keep
users attentive all along the experiment, short intermissions of up to two minutes
are proposed between each set of questions.

When starting the evaluation, users are not familiar with the different condi-
tions or tasks. For users to perform at their utmost capability, we use a total of six

20

training questions per question set. The first three are used to introduce the tasks
with the current condition on the training dataset, and give users the opportunity to
ask for help or additional explanations concerning the visualization. The remain-
ing three training questions are simply standard questions, selected at random in
the alternative series whose results are ignored. Each user is thus asked to answer
to 6 training questions × 4 conditions + 48 normal questions = 72 questions.

After completing the experiment, users have to answer a survey asking them
to sort the conditions for each given task according to their preferences, feelings
of efficiency, and overall to choose their favorite condition. An inquiry for diverse
remarks is also performed.

5.5. Results

For the whole experimentation (excluding pilot experiments), we had a total
of 26 participants formed of associate professors, researchers, engineers, post-
doctorates and PhD students all with a computer-science background. They were
asked to have at least a basic understanding of graph theory (undergraduate level)
but no prior knowledge concerning information visualization or network analysis.

To analyze the error rate, we use a Pearson’s Chi-squared test, allowing us to
verify if there is a significant difference between all conditions. Then, following
the result, we use a post-hoc pair-wise analysis with a Wilcoxon’s rank-sum test to
identify where the significant difference really is. For the response time analysis,
we first use a Kruskal-Wallis’ rank-sum test and again a Wilcoxon’s rank-sum test
as a post-hoc pair-wise analysis. One can notice that we use non-parametric tests
for both the error-rate and the response time, as both sets of results follow non-
normal distributions. We use a standard significance level α = 0.05 to declare
whether a significant difference exists or not. Figure 8 shows the overall results for
response times and error rates for each task and each condition.

T1 – Large community detection.
Jasper (C1) and Matrix (C2) give the lowest error rates significantly below than

NLD (C3) and NLD-com (C4). Response times for C1 and C2 are also better but
the difference is only significant when compared to C4.

T2 – Number of highlighted communities.
For this task, a huge gap appears between C3 and the three other conditions in

terms of error-rate. C4 gives here a significantly lower error-rate than Matrix (C2)
while Jasper (C1) sits halfway in-between. The response time analysis shows only
small variations, and, while the average NLD response time seems to be longer, no
significant difference is found.

21

T1 T2 T3

p-value� 0.01 p-value� 0.01 p-value� 0.01
Mean error rate

p-value = 0.01 p-value = 0.5 p-value� 0.01
Mean response time (sec.)

Figure 8: Mean error-rates and response times for each task. For each diagram, the lower the value
is, the better. All p-values< 0.05 indicate significant differences between results. Bold black lines
between bars indicate where a significant difference is found. A white bar means there is a significant
difference with all other bars. The mean value is written below each bar.

T3 – Distance between highlighted communities.
This task proved to be much more complicated than initially anticipated in

the pilot experimentation as shown by the high error-rates. Matrix (C2) returns
the lowest error rate by far, with C1 and C3 coming next. However, the average
response time when using Jasper is significantly lower than all the other conditions,
it even cuts by half the average time needed to answer when using C2.

On a side note, while all datasets have been chosen to bring the experimentation
as close as possible to a real case, the selected networks are not identical and some
statistically significant variations exist for some tasks. For instance, even with a
Bonferroni correction (α = 0.025), the successful completion of T1 takes signif-
icantly less time on DBLP (D4) and the completion of T3 has been significantly
more successful on Epinion (D3) –with still 49% of errors– as well as seemingly
faster –but not significantly– than on the other networks. Task T2 on the other

22

hand does not show any significant differences in the response times and error
rates across the different datasets.

Qualitative comments
We then analyze the qualitative comments and marks gathered with the survey

given after each evaluation. We also use a Kruskal-Wallis’ rank-sum test to com-
pare for each task users appreciation concerning the different conditions (Tab. 1).
We asked users to rank conditions according to their feelings for each task from 1
(best) to 4 (worst, equality forbidden). This ranking was made without any knowl-
edge of the experiments results. The average ranks are rather conform to the mea-
sured response times and errors. For T1, Jasper (C1) and Matrix (C2) are both
preferred to node-link visualizations. Task T2 however brings NLD-com (C4), C1
and C2 at the same level due to mixed opinions with C3 being mostly rated low.
C4 and C1 end up with the best score for T3, following the response time tendency
but ignoring their high error rates (especially for C4).

Task C1. Jasper C2. Matrix C3. NLD C4. NLD-com
T1 1.64 1.96 3.16 3.24
T2 2.12 2.20 3.64 2.04
T3 1.80 3.20 3.28 1.72

Table 1: Average score given (the lowest, the better) by users after the experiment for each condition
and each task.

5.6. Discussion
Overall, while no conditions emerge as the clear winner, we have some inter-

esting trends for each task. First, with T1, the ranking obtained on the error-rate
confirms the ability of Jasper to successfully solve this task, as initially expected
in Section 5.3. There is, however, no significant difference of response time be-
tween Jasper (C1), Matrix (C2) and NLD (C3), although the error rate is quite
high (more than 20%). Task T2 sees the prevalence on all fronts of NLD-com (C4)
with Jasper not so far away. This is because nodes are arranged as tight clusters
and can be easily identified, even for the largest networks. When compared to the
standard NLD (C3), one can clearly see the interest in regrouping nodes as com-
munities, nevertheless, this advantage turns to be a double-edged sword as C4 falls
back on the two other tasks whereas NLD (C3) presents average results instead.
Finally, T3 has certainly the most striking results with its high error-rate. While,
after the pilot experiments, we were aware of the high complexity of this task, we
were far from expecting such poor results in general. As the identification of neigh-
boring elements is one of the atomic operations one would expect to perform on a

23

node, the generalization of this task to a community seemed a necessary operation
in a context where communities are essentials. In the end, while the task may have
been too intricate, we believe that the proposed conditions are also not adapted;
alternatively, a multi-scale visualization may be a much more efficient solution for
such task [59].

Overall, and despite its popularity, NLD (C3) does not excel anywhere and
gives almost consistently worst results than Matrix (C2). Its variation NLD-com
(C4) proposes extremely improved results on T2 in terms of error-rate but this
condition does not bring improvements anywhere else. C2 showed the expected
efficiency but the responses are faster than what we had initially predicted except
for T3. This proves that, given a good ordering of the nodes, the adjacency matrix
diagram is still a relevant visualization even for moderately large graphs. For both
T1 and T2, Jasper comes as one of the best with no significant differences found
in the experimentation results. Task T3 shows more mixed results with a slightly
better-than-average error-rate, in comparison to the other conditions, but also with
the best response time, coming at half the time needed for the Matrix. So while
Jasper is not the best at every task, its global performances seem to mark it as an
all-encompassing acceptable overview solution, a fact sustained by the marks given
by the users during the final survey.

With the results of the user’s evaluation at hand, it is necessary to acknowl-
edge the limitations of our method. As we emphasize the overview characteristic
of the resulting visualization, we are aware that any analysis or in-depth studies
on a graph can not be achieved using our method alone. Obviously, if one tries to
discover all there is to know about a graph using a single approach, it will never
be sufficient to understand every singular detail; attaining this outcome will in-
deed require different methods and points of view. Only then, may it ultimately
result in a more complete picture. This is true for our method as, due to our focus
on node representation, we have hidden edges, thus occluding some information
to the observer. Even though we use node placement and colors to give hints of
detected communities and existing connections, such metaphors are far from per-
fect and the visualization produced is not entirely sound. Nevertheless, with the
assistance of supplementary interactions and additional visualizations, more in-
sights on the structure of the graph and connections established through edges can
be easily accentuated. An interaction like a neighborhood highlighter [60], or a
compound visualization like matrix/node-link drawing [61] focusing on specific
sub-graphs are such tools. Furthermore, this lack of explicit information displayed
is not solely encountered when using our method as large graphs typically con-
tain more information and details most screen can display nowadays. Even other
solutions similar to Jasper, using pixel-oriented layout to maximize the amount
of information displayed in limited space, can only give an approximation [62].

24

Multi-level solutions [49, 19, 33] can overcome such restrictions but only up to
a certain level as their resulting layouts solely provide an approximated or partial
representation of the graph.

6. Conclusion

We have presented and evaluated Jasper, a community oriented visualization
algorithm for large networks. Its space-filling and pixel-oriented characteristics
are well suited to display a fast yet intelligible overview of the networks with node
adjacency preserving qualities. The user evaluation proved our solution to be quite
efficient on community-related tasks, leading us to believe that Jasper can also
be useful in situations where a visualization to assess the state of a large graph
at a glance is required. As networks are still getting larger and larger as more
data is harvested through data-science techniques, specific visualization methods
will have to be developed to cope with the ever increasing number of elements
to consider. Although, in the end, none of the conditions considered during the
evaluation have proved to be better than the others for community-oriented tasks
on large graphs, we believe the issue to be particularly worthy of interest and an
important research topic to explore further.

References

[1] S. Wasserman, K. Faust, Social Network Analysis – Methods and Applica-
tions, Cambridge University Press, 1997.

[2] J. Golbeck, Analyzing the Social Web, Morgan Kaufmann, 2013.

[3] J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney, Community structure in
large networks: Natural cluster sizes and the absence of large well-defined
clusters, CoRR abs/0810.1355 (2008).

[4] J. Leskovec, D. Huttenlocher, J. Kleinberg, Signed networks in social media,
in: Proc. of the SIGCHI Conf. on Human Factors in Computing Systems,
CHI ’10, ACM, 2010, pp. 1361–1370. doi:10.1145/1753326.1753532.

[5] J. Leskovec, D. Huttenlocher, J. Kleinberg, Predicting positive and negative
links in online social networks, in: Proc. of the 19th Int. Conf. on World Wide
Web, ACM, 2010, pp. 641–650. doi:10.1145/1772690.1772756.

[6] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van Wijk,
J.-D. Fekete, D. W. Fellner, Visual analysis of large graphs: State-of-the-
art and future research challenges, Computer Graphics Forum 30 (6) (2011)
1719–1749. doi:10.1111/j.1467-8659.2011.01898.x.

25

[7] F. Beck, M. Burch, S. Diehl, D. Weiskopf, The state of the art in visualizing
dynamic graphs, in: EuroVis - STARs, Eurographics Association, 2014, pp.
83–103. doi:10.2312/eurovisstar.20141174.

[8] J. Vallet, G. Melançon, B. Pinaud, JASPER: Just A new Space-filling and
Pixel-oriented layout for large graph ovERview, in: Conf. on Visualiza-
tion and Data Analysis (VDA 2016), Electronic Imaging, 2016, pp. 1–10.
doi:10.2352/ISSN.2470-1173.2016.1.VDA-484.

[9] M. Fernandez, H. Kirchner, B. Pinaud, J. Vallet, Labelled Graph Strategic
Rewriting for Social Networks, J. of Logical and Algebraic Methods in Pro-
gramming 96 (C) (2018) 12–40. doi:10.1016/j.jlamp.2017.12.005.

[10] B. Wang, Y. Sun, C. Tang, Y. Liu, A visualization toolkit for online
social network propagation and influence analysis with content features,
in: 2014 International Conf. on Orange Technologies, 2014, pp. 129–132.
doi:10.1109/ICOT.2014.6956616.

[11] J. Lu, X. Yu, W. Wan, Visualization research of the tweet diffusion in the
microblog network, in: Int. Conf. on Audio, Language and Image Processing,
2014, pp. 592–595. doi:10.1109/ICALIP.2014.7009863.

[12] B. Shneiderman, The eyes have it: A task by data type taxonomy for informa-
tion visualizations, in: Visual Languages, Proc., IEEE Symp. on, 1996, pp.
336–343. doi:10.1109/VL.1996.545307.

[13] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, G. Melançon,
Visual analytics: Definition, process, and challenges, in: A. Kerren, J. Stasko,
J.-D. Fekete, C. North (Eds.), Information Visualization, Vol. 4950 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2008, pp. 154–175.
doi:10.1007/978-3-540-70956-5 7.

[14] T. Munzner, A nested model for visualization design and validation, IEEE
Trans. on Visualization and Computer Graphics 15 (6) (2009) 921–928.
doi:10.1109/TVCG.2009.111.

[15] T. Munzner, Visualization Analysis & Design, A K Peters Visualization, CRC
Press, 2014.

[16] H. Purchase, Experimental Human-Computer Interaction: A Practical Guide
With Visual Examples, Cambridge University Press, 2012.

26

[17] D. Archambault, T. Munzner, D. Auber, Grouseflocks: Steerable exploration
of graph hierarchy space, Visualization and Computer Graphics, IEEE Trans.
on 14 (4) (2008) 900–913. doi:10.1109/TVCG.2008.34.

[18] D. Auber, Y. Chiricota, F. Jourdan, G. Melancon, Multiscale visualization of
small world networks, in: IEEE Symp. on Information Visualization, 2003,
pp. 75–81. doi:10.1109/INFVIS.2003.1249011.

[19] L. Shi, N. Cao, S. Liu, W. Qian, L. Tan, G. Wang, J. Sun, C.-
Y. Lin, Himap: Adaptive visualization of large-scale online social
networks, in: IEEE Pacific Visualization Symp., 2009, pp. 41–48.
doi:10.1109/PACIFICVIS.2009.4906836.

[20] M. L. Huang, Q. V. Nguyen, A space efficient clustered visualization of large
graphs, in: 4th Int. Conf. on Image and Graphics (ICIG), 2007, pp. 920–927.
doi:10.1109/ICIG.2007.10.

[21] W. Didimo, F. Montecchiani, Fast layout computation of clustered networks:
Algorithmic advances and experimental analysis, Information Sciences 260
(2014) 185–199. doi:10.1016/j.ins.2013.09.048.

[22] C. Muelder, K.-L. Ma, Rapid graph layout using space filling curves, Visu-
alization and Computer Graphics, IEEE Trans. on 14 (6) (2008) 1301–1308.
doi:10.1109/TVCG.2008.158.

[23] G. M. Morton, A computer oriented geodetic data base and a new technique
in file sequencing, Tech. rep., IBM Ltd. (1966).

[24] M. Ghoniem, J.-D. Fekete, P. Castagliola, On the readability of graphs us-
ing node-link and matrix-based representations: A controlled experiment
and statistical analysis, Information Visualization 4 (2) (2005) 114–135.
doi:10.1057/palgrave.ivs.9500092.

[25] D. Auber, C. Huet, A. Lambert, B. Renoust, A. Sallaberry, A. Saulnier,
Gospermap: Using a gosper curve for laying out hierarchical data, IEEE
Trans. on Visualization and Computer Graphics 19 (11) (2013) 1820–1832.
doi:10.1109/TVCG.2013.91.

[26] D. A. Keim, Pixel-oriented visualization techniques for exploring very large
data bases, Journal of Computational and Graphical Statistics 5 (1) (1996)
58–77. doi:10.1080/10618600.1996.10474695.

27

[27] F. Duarte, F. Sikansi, F. Fatore, S. Fadel, F. Paulovich, Nmap: A
novel neighborhood preservation space-filling algorithm, IEEE Trans.
on Visualization and Computer Graphics 20 (12) (2014) 2063–2071.
doi:10.1109/TVCG.2014.2346276.

[28] J. J. Van Wijk, H. Van de Wetering, Cushion treemaps: visualization of hierar-
chical information, in: Proc. 1999 IEEE Symp. on Information Visualization
(InfoVis’99), 1999, pp. 73–78. doi:10.1109/INFVIS.1999.801860.

[29] T. Schreck, D. Keim, F. Mansmann, Regular treemap layouts for visual
analysis of hierarchical data, in: Spring Conf. on Computer Graphics
(SCCG’2006), 2006, pp. 184–191. doi:10.1145/2602161.2602183.

[30] J.-D. Fekete, C. Plaisant, Interactive information visualization of a million
items, in: Information Visualization, 2002. INFOVIS 2002. IEEE Symp. on,
2002, pp. 117–124. doi:10.1109/INFVIS.2002.1173156.

[31] K. Stein, R. Wegener, C. Schlieder, Pixel-oriented visualization of change in
social networks, in: Int. Conf. on Advances in Social Networks Analysis and
Mining, 2010, pp. 233–240. doi:10.1109/ASONAM.2010.18.

[32] R. Gove, N. Gramsky, R. Kirby, E. Sefer, A. Sopan, C. Dunne,
B. Shneiderman, M. Taieb-Maimon, Netvisia: Heat map and matrix vi-
sualization of dynamic social network statistics and content, in: IEEE
3rd Int. Conf. on Social Computing (SocialCom), 2011, pp. 19–26.
doi:10.1109/PASSAT/SocialCom.2011.216.

[33] M. Zinsmaier, U. Brandes, O. Deussen, H. Strobelt, Interactive level-of-detail
rendering of large graphs, IEEE Trans. on Visualization and Computer Graph-
ics 18 (12) (2012) 2486–2495. doi:10.1109/TVCG.2012.238.

[34] A. Perrot, D. Auber, Cornac: Tackling huge graph visualization with
big data infrastructure, IEEE Trans. on Big Data 6 (1) (2020) 80–92.
doi:10.1109/TBDATA.2018.2869165.

[35] H. Meyerhenke, M. Nöllenburg, C. Schulz, Drawing large graphs by mul-
tilevel maxent-stress optimization, in: E. Di Giacomo, A. Lubiw (Eds.),
Graph Drawing and Network Visualization, Springer International Publish-
ing, Cham, 2015, pp. 30–43. doi:10.1007/978-3-319-27261-0 3.

[36] M. Ortmann, M. Klimenta, U. Brandes, A sparse stress model, J. of Graph Al-
gorithms and Applications 21 (5) (2017) 791–821. doi:10.7155/jgaa.00440.

28

[37] A. Arleo, W. Didimo, G. Liotta, F. Montecchiani, Large graph visualizations
using a distributed computing platform, Information Sciences 381 (2017)
124–141. doi:10.1016/j.ins.2016.11.012.

[38] A. Arleo, W. Didimo, G. Liotta, F. Montecchiani, A distributed multilevel
force-directed algorithm, IEEE Trans. on Parallel & Distributed Systems
30 (04) (2019) 754–765. doi:10.1109/TPDS.2018.2869805.

[39] G. Di-Battista, P. Eades, R. Tamassia, I.-G. Tollis, Graph drawing – Algo-
rithms for the visualization of graphs, Prentice-Hall, 1999.

[40] Y. Frishman, A. Tal, Online dynamic graph drawing, in: Proc. of the 9th Joint
Eurographics / IEEE VGTC Conf. on Visualization (Eurovis), Eurographics
Association, 2007, pp. 75–82. doi:10.2312/VisSym/EuroVis07/075-082.

[41] T. Itoh, C. Muelder, K.-L. Ma, J. Sese, A hybrid space-filling and force-
directed layout method for visualizing multiple-category graphs, in: Visu-
alization Symp., 2009. PacificVis ’09. IEEE Pacific, 2009, pp. 121–128.
doi:10.1109/PACIFICVIS.2009.4906846.

[42] B. Nick, C. Lee, P. Cunningham, U. Brandes, Simmelian backbones: Am-
plifying hidden homophily in facebook networks, in: Advances in Social
Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International
Conf. on, 2013, pp. 525–532. doi:10.1145/2492517.2492569.

[43] A. Nocaj, M. Ortmann, U. Brandes, Untangling the hairballs of multi-
centered, small-world online social media networks, Journal of Graph Al-
gorithms and Applications 19 (2) (2015) 595–618. doi:10.7155/jgaa.00370.

[44] S. Fortunato, Community detection in graphs, Physics Reports 486 (3–5)
(2010) 75 – 174. doi:http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[45] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfold-
ing of communities in large networks, Journal of Statistical Mechanics:
Theory and Experiment 2008 (10) (2008) P10008. doi:10.1088/1742-
5468/2008/10/P10008.

[46] S. Hachul, M. Jünger, Drawing large graphs with a potential-field-based mul-
tilevel algorithm, in: J. Pach (Ed.), Graph Drawing, Vol. 3383 of LNCS,
Springer, 2005, pp. 285–295. doi:10.1007/978-3-540-31843-9 29.

[47] S. G. Kobourov, Spring embedders and force directed graph drawing algo-
rithms, CoRR abs/1201.3011 (2012).

29

[48] S. Hachul, M. Jünger, Large-graph layout algorithms at work: An experi-
mental study, Journal of Graph Algorithms and Applications 11 (2) (2007)
345–369. doi:10.7155/jgaa.00150.

[49] D. Archambault, T. Munzner, D. Auber, Topolayout: Multilevel graph layout
by topological features, IEEE Trans. on Visualization and Computer Graphics
13 (2) (2007) 305–317. doi:10.1109/TVCG.2007.46.

[50] J. Bentley, Multidimensional binary search trees used for associative search-
ing, Commun. ACM 18 (9) (1975) 509–517. doi:10.1145/361002.361007.

[51] Y. Hu, L. Shi, Q. Liu, A coloring algorithm for disambiguating graph and
map drawings, IEEE Trans. on Visualization and Computer Graphics 25 (2)
(2019) 1321–1335. doi:10.1109/TVCG.2018.2798631.

[52] M. Harrower, C. A. Brewer, Colorbrewer.org: An online tool for selecting
colour schemes for maps, The Cartographic Journal 40 (1) (2003) 27–37.
doi:10.1179/000870403235002042.

[53] L. Wang, F. Du, H. P. Dai, Y. X. Sun, Random pseudofractal scale-
free networks with small-world effect, The European Physical Journal
B - Condensed Matter and Complex Systems 53 (3) (2006) 361–366.
doi:10.1140/epjb/e2006-00389-0.

[54] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset col-
lection, http://snap.stanford.edu/data (Jun. 2014).

[55] B. Klimt, Y. Yang, The Enron corpus: A new dataset for email classification
research, in: Proc. of the 15th European Conf. on Machine Learning, Springer
Berlin Heidelberg, 2004, pp. 217–226. doi:10.1007/978-3-540-30115-8 22.

[56] J. Sansen, R. Bourqui, B. Pinaud, H. Purchase, Edge Visual Encodings in
Matrix-Based Diagrams, in: 19th International Conf. on Information Visuali-
sation (IV), 2015, pp. 62–67. doi:10.1109/iV.2015.22.

[57] D. Archambault, H. C. Purchase, On the effective visualisation of dy-
namic attribute cascades, Information Visualization 15 (1) (2016) 51–63.
doi:10.1177/1473871615576758.

[58] D. Auber, D. Archambault, R. Bourqui, M. Delest, J. Dubois, A. Lambert,
P. Mary, M. Mathiaut, G. Mélançon, B. Pinaud, B. Renoust, J. Vallet, TULIP
5, in: R. Alhajj, J. Rokne (Eds.), Encyclopedia of Social Network Analysis
and Mining, Springer, 2017, pp. 1–28. doi:10.1007/978-1-4614-7163-9 315-
1.

30

[59] D. Archambault, T. Munzner, D. Auber, TugGraph: Path-preserving hierar-
chies for browsing proximity and paths in graphs, in: IEEE Pacific Visualiza-
tion Symp., 2009, pp. 113–120. doi:10.1109/PACIFICVIS.2009.4906845.

[60] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, J.-D. Fekete, Topology-
aware navigation in large networks, in: Proc. of the SIGCHI Conf. on Human
Factors in Computing Systems, CHI ’09, ACM, New York, NY, USA, 2009,
pp. 2319–2328. doi:10.1145/1518701.1519056.

[61] S. Rufiange, M. J. McGuffin, C. P. Fuhrman, Treematrix: A hybrid visualiza-
tion of compound graphs, Computer Graphics Forum 31 (1) (2012) 89–101.
doi:10.1111/j.1467-8659.2011.02087.x.

[62] B. Shneiderman, Extreme visualization: Squeezing a billion records into a
million pixels, in: Proc. ACM SIGMOD Int. Conf. on Management of Data,
SIGMOD ’08, ACM, 2008, pp. 3–12. doi:10.1145/1376616.1376618.

31

