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ABSTRACT

Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic
signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities
and fall into their parent stars.
Aims. We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetes-
imals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range
force due to General Relativity.
Methods. Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore
is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is
valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean
motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective
users with a Mathematica notebook with implementation of the model allowing direct use.
Results. We confirm that the 4:1 mean motion resonance with a moderately eccentric (e′ <∼ 0.1) planet is the most powerful one to lift
the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that
this resonance is unable to pump the planetesimal’s eccentricity to a very high value. The inclusion of the General Relativity effect
imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at ∼1 AU around a
solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula
for this critical mass.
Conclusions. Planetesimals can easily fall into the central star even in the presence of a single moderately eccentric planet, but only
from the vicinity of the 4:1 mean motion resonance. For sufficiently high planetary masses the General Relativity effect does not
prevent the achievement of star-grazing orbits.

Key words. celestial mechanics – planets and satellites: dynamical evolution and stability – minor planets, asteroids: general –
white dwarfs – methods: analytical

1. Introduction

Over the last 30 yr it has become clear that planetary pertur-
bations can force asteroids into such highly eccentric orbits
that they collide with the Sun. There is also growing evidence
that planetesimals may fall into their parent stars or suffer tidal
disruption.

In the solar system, Sun-grazing long-period comets (e.g. the
famous Kreutz group; Marsden 1967) have been known for a
long time, but these objects are expected to come from the Oort
cloud on orbits that are already highly eccentric, which means
that planetary perturbations only play a minor role in driving
their final Sun-grazing eccentricities. But in 1994, Farinella et al.
(1994), following the evolution of the known near-Earth objects

? The Mathematica notebook is only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A23

with numerical simulations, discovered that asteroids frequently
collide with the Sun. The original source of near-Earth asteroids
is the asteroid belt, so in this case planetary perturbations must
play a major role in removing the object’s initial angular momen-
tum. Mean motion resonances with Jupiter and a secular reso-
nance with Saturn were identified as the main mechanisms capa-
ble of pushing the asteroid’s eccentricity to high values, far more
effective than planetary close encounters. Gladman et al. (1997),
again with numerical simulations, showed that more than 70%
of the objects initially in the ν6 secular resonance with Saturn or
the 3:1 mean motion resonance with Jupiter eventually collide
with the Sun.

The collision of small bodies with the central star is not an
oddity of our solar system. Ferlet et al. (1987) and Lagrange
et al. (1987) proposed that the red-shifted Ca II and NA I ab-
sorption lines observed in β Pictoris were due to infalling evap-
orating bodies (see also Beust et al. 1989, 1990, 1991). The
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frequency of such events, on a characteristic timescale of a few
years, suggests that the infalling bodies were on short-period
orbits, similar to asteroids or short-period comets in the solar
system. In recent years, many more young star systems have
been observed to possess Doppler-shifted, transient absorption
line features similar to β Pic, suggesting that infalling small
bodies may be a common phenomenon (e.g. Sorelli et al. 1996;
Welsh & Montgomery 2013; Greaves et al. 2016).

Additional evidence for planetesimals falling into the cen-
tral star comes from the atmospheric pollution in heavy ele-
ments observed in white dwarfs (see Farihi 2016 for a review).
Spectroscopic studies of a large sample of cool, hydrogen-rich
white dwarfs has established a minimum frequency of 30% for
the pollution phenomenon in these objects (Zuckerman et al.
2003; Koester et al. 2014). In cold white dwarfs, heavy
elements should rapidly sink (Fontaine & Michaud 1979;
Vauclair & Fontaine 1979) leaving behind only hydrogen or he-
lium. Thus, external sources must be responsible for any pho-
tospheric metals. The most commonly accepted explanation is
that these metals originate from tidally disrupted planetesimals
(Debes & Sigurdsson 2002; Jura 2003). In essence, planetesi-
mals perturbed into highly eccentric orbits pass within the stellar
Roche limit (which is of the order of the solar radius R�) and
are torn apart by gravitational tides; subsequent collisions re-
duce the fragments to dust; the latter produce an infrared excess
and slowly rain down onto the stellar surface, which generates
the observed atmospheric pollution. Obviously, for this model to
work, planetesimals have to be “pushed” by planetary perturba-
tions to achieve orbits that are eccentric enough to pass within
∼R� from the star. Given the ubiquity of the white dwarf pollu-
tion phenomenon, a robust mechanism of extreme eccentricity
excitation of planetesimals is needed (e.g. Bonsor et al. 2011;
Debes et al. 2012; Petrovich & Muñoz 2017). These astrophysi-
cal contexts have revived the interest in mean motion resonances
with eccentric planets as a generic mechanism for pumping the
eccentricities of small bodies from ∼0 to ∼1, i.e. for driving plan-
etesimals into the central star.

Analytic celestial mechanics shows that mean motion reso-
nances with a planet on a circular orbit only cause an oscillation
of the small body’s semi-major axis coupled with a moderate
oscillation of the eccentricity and with the libration of the an-
gle kλ − k′λ′ (where λ and λ′ are the mean longitudes of the
small body and of the planet, respectively, and the integer coef-
ficients k and k′ define the k′:k resonance; Henrard & Lemaitre
1983; Lemaitre 1984). However, if the perturbing planet has a
finite eccentricity, inside a mean motion resonance there can
be a dramatic secular evolution; the eccentricity of the small
body can undergo large excursions correlated with the pre-
cession of the longitude of perihelion (Wisdom 1985, 1983;
Henrard & Caranicolas 1990).

These pioneer works used a series expansion of the Hamil-
tonian in power laws of the eccentricities of the perturbed
body (e) and of the planet (e′), and focused specifically on
the case of the 3:1 resonance with Jupiter. A few years later,
Moons & Morbidelli (1993, 1995) developed a semi-analytic
study of the dynamics in mean motion resonances using a first-
order expansion in e′ but no series expansions in e. This way,
they were able to follow the evolution of the small body to
arbitrarily high eccentricities. This approach is valid only for
small values of e′ and moreover for e > e′. Motivated by the
Farinella et al. (1994) numerical results, Moons and Morbidelli
focused on the specific case of the solar system, including the
effects of Saturn on the orbital evolution of Jupiter in addition to
their combined perturbation to the asteroid. In this framework,

they established the existence of overlapping secular resonances
inside the 4:1, 3:1, 5:2, and 7:3 mean motion resonances, which
can push the eccentricity of the small body to unity.

In a more general context, Beust & Morbidelli (1996) inves-
tigated the secular dynamics in mean motion resonances with
a single planet with various (albeit moderate) eccentricities.
Again, they considered an expansion in e′ to the first order,
and no expansion in the eccentricity of the perturbed body. Of
all the resonances, they found that 4:1 is the most powerful in
pushing the eccentricity of the small body from ∼0 to ∼1, pro-
vided that e′ >∼ 0.05. In contrast, the 3:1 resonance only gen-
erates large oscillations in the eccentricity of the small body,
but they are insufficient to produce star-grazing orbits, at least
for planet eccentricities up to 0.1. Because of the linear expan-
sion in e′, Beust & Morbidelli (1996) could not determine the
threshold planetary eccentricity that generates the star-grazing
phenomenon for small bodies initially on quasi-circular orbits in
the 3:1 resonance.

In this paper we revisit the problem of the eccentricity evo-
lution of small bodies inside mean motion resonances with an
eccentric planet using a semi-analytic approach. In order to go
beyond the works cited above, we do not expand the Hamilto-
nian in the eccentricity of either the small body or the perturber.
In this way, our study is valid for all eccentricities and also in
the e < e′ regime. Our work is not the first to avoid expan-
sions in e′ (e.g. Beaugé et al. 2006; Michtchenko et al. 2006;
Sidorenko 2006). We use the adiabatic principle (already in-
voked in Wisdom 1985) to disentangle the motion related to the
libration of kλ − k′λ′ from the secular motion relating eccentric-
ity and longitude of perihelion. To remain relatively simple, our
analysis is performed in the limit of small amplitude of libration
in the mean motion resonance.

The paper is structured as follows. In Sect. 2, we develop the
analytic formalism for the study of the secular dynamics at the
core of mean motion resonances, without series expansions. This
results in the averaged Hamiltonian with two degrees of free-
dom (2.10). In Sect. 3 we lay out the method for studying the
dynamics given by the averaged Hamiltonian, using the theory
of adiabatic invariance; we also discuss the limit of validity of
this method. In Sect. 4 we also include a post-Newtonian term,
describing the fast precession of the longitude of perihelion at
large eccentricity due to General Relativity. Our results are pre-
sented in Sect. 5. We first neglect the effect of General Relativity;
in this case the secular evolution is independent of the planet’s
mass, and only the timescale of the secular evolution depends
on it. We focus in particular on the 4:1, 3:1, and 2:1 resonances,
and for each of these resonances we evaluate what planetary ec-
centricities are needed to lift bodies from initially quasi-circular
orbits to star-grazing ones, if it is ever possible. When this is the
case, we then introduce the post-Newtonian correction, which
makes the secular dynamics at high eccentricity dependent on
the planetary mass. Thus, we determine – for the resonances and
the planetary eccentricities previously considered – the minimal
planetary mass required to achieve the star-grazing phenomenon.
In addition, we provide supplementary material available at the
CDS: a Mathematica notebook implementing our model so that
the reader can compute the secular dynamics in the desired res-
onances with the desired planets. The conclusions of this work
are summarized in Sect. 6.

2. Planetary Hamiltonian

We start with the Hamiltonian for the restricted planar three-
body problem. By denoting with x = (x, y) and u = (vx, vy) the
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Cartesian coordinates and momenta of the perturbed test particle
(“small body”), and using a prime for the perturber (“planet”),
the Hamiltonian reads:

H = Hkepl +Hpert

=
‖u‖2

2
−
GM∗
‖x‖

− Gm′
(

1
∆
−

x· x′

‖x′‖3

)
, (2.1)

where M∗ is the mass of the star, m′ is the mass of the perturber,
and ∆ = ‖x− x′‖ is the distance between the test particle and the
perturber (Murray & Dermott 2000). The perturber is assumed
to follow a given Keplerian orbit, so x′ is a function of time. In
terms of orbital elements, the Cartesian coordinates are given by

x = a(cos E − e) cos$ − a
√

1 − e2 sin E sin$,

y = a(cos E − e) sin$ + a
√

1 − e2 sin E cos$, (2.2)

where a is the semi-major axis, e is the eccentricity and E
is the eccentric anomaly of the perturbed particle, and simi-
lar (primed) equations and orbital parameters for the perturber
(Murray & Dermott 2000).

We introduce the canonical modified Delaunay action-angle
variables (Λ, P, λ, p), given by

Λ =
√
GM∗a, λ = ` +$,

P =
√
GM∗a(1 −

√
1 − e2), p = −$, (2.3)

where λ is the mean longitude, ` = E − e sin E is the mean
anomaly, and $ is the longitude of pericentre of the test mass.
In order to make the system autonomous, we extend the phase
space by introducing for the perturber

Λ′, λ′ = `′ +$′ = n′(t − t0), (2.4)

where n′ =
√
G(M∗ + m′)/a′3 is the mean motion of the per-

turber. We assume that the perturber does not precess, so without
loss of generality we set $′ = 0. Now the autonomous Hamilto-
nian of the system reads

H(Λ, P,Λ′, λ, p, λ′) = −
G2M2

∗

2Λ2 + n′Λ′

+Hpert(Λ, P, λ, p, λ′; e′, $′ = 0), (2.5)

where the perturbation part Hpert is to be written in terms of the
newly defined variables. We note that it depends parametrically
on the arbitrary values of e′ and $′ = 0.

We now consider the test particle to be close to an inner mean
motion resonance with the outer perturber. In other words, we
assume kn − k′n′ ∼ 0, where n =

√
GM∗/a3 is the mean mo-

tion of the test particle for some positive integers k, k′, such that
k′ > k. In order to study the resonant dynamics, it is possible to
introduce a set of canonical resonant action-angle variables:

S = P, σ =
k′λ′ − kλ + (k′ − k)p

(k′ − k)
,

N =
k′ − k

k
Λ + P, ν =

−k′λ′ + kλ
(k′ − k)

= −σ + p, (2.6)

Λ̃′ = Λ′ +
k′

k
Λ, λ̃′ = λ′.

The historical reason for adopting these variables is that for
e′ = 0 there is no harmonic term in ν in the Hamiltonian and

thus N is a constant of motion. The reason why the critical res-
onant angle σ is not simply defined as k′λ′ − kλ + (k′ − k)p is
explained in Lemaitre (1984) and is due to the d’Alembert rules:
the coefficient of the terms cos[l(k′λ′ − kλ + (k′ − k)p)] in the
Fourier expansion of the perturbing Hamiltonian is proportional
to el|k′−k| for small values of e. Thus, for small eccentricities the
Hamiltonian is a polynomial expression in e cosσ and e sinσ,
and the apparent singularity at e = 0 can be removed.

Using the variables (2.6), the Keplerian part of the Hamilto-
nian takes the form

Hkepl(S ,N, Λ̃′) = − G2M2
∗

(k′ − k)2

2k2(N − S )2

+ n′
[
Λ̃′ −

k′

(k′ − k)
(N − S )

]
. (2.7)

At this point, we average the Hamiltonian over the fast angles.
From a computational point of view, a remark is in order. The
Cartesian components given in (2.2) are expressed in terms of the
eccentric anomalies E, E′. Thus, it would be necessary to invert
Kepler’s equation λ−$ = ` = E−e sin E to obtain E = E(λ), and
similarly for E′ = E′(λ′). If e′ is not too large, the latter inversion
is not problematic. However the eccentricity e of the test parti-
cle can reach high values, and solving the Kepler equation for
the test particle becomes numerically cumbersome. Therefore, it
is advisable to retain the dependence on the eccentric anomaly
E, use the differential relationship dλ = (1 − e cos E) dE, and
integrate over E instead. This is more convenient because the
dependence of λ on E is given through Kepler’s equation by an
explicit formula. We also note that λ is related to λ′ through σ
by λ′ = [(kλ − (k′ − k)(p − σ)]/k′. In summary, using the reso-
nant relationship and Kepler’s equation one obtains E′ from λ′,
λ′ from λ, and λ from E, so that the averaging on E eliminates
the short periodic dependence of the Hamiltonian. By doing so,
the canonical angle λ′ vanishes from the averaged Hamiltonian,
and Λ̃′ becomes a constant of motion, so that the term n′Λ̃′ can
be dropped from (2.7).

Proceeding this way, we have that

H̄pert(S ,N, σ, ν) :=
1

2πk′

∫ 2πk′

0
Hpert· (1 − e cos E) dE; (2.8)

it is important to note that we integrate over E from 0 to 2πk′
instead of just 2π because only after k′ revolutions of the test
particle around the star (which correspond to k revolutions of
the outer perturber) does the system attain the initial configura-
tion, thus recovering the complete periodicity of the Hamilto-
nian. The integral (2.8) can be solved numerically. In our code
we use a Mathematica function with an imposed relative accu-
racy of 10−10. For the Keplerian part we just write

H̄kepl(S ,N) := −G2M2
∗

(k′ − k)2

2k2(N − S )2 − n′
k′

(k′ − k)
(N − S ). (2.9)

The averaged Hamiltonian then becomes

H̄(S ,N, σ, ν) := H̄kepl + H̄pert. (2.10)

This two degree of freedom system is not integrable in general,
unless further approximation is made.

3. Studying the averaged Hamiltonian

We now intend to study quantitatively the dynamics given by
the Hamiltonian (2.10). This can be seen as an integrable system
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(i.e. the Keplerian part), to which a small perturbation of order
µ = m′/M∗ � 1 is added.

We begin by noticing that H̄kepl only depends on N − S , so it
is convenient to introduce the canonical variables

Σ = S − N, σ,

N, p = σ + ν, (3.1)

making H̄kepl a function of Σ alone. The location of exact reso-
nance is given by the value Σ = Σres such that

∂H̄kepl

∂Σ
(Σres) = 0, i.e. Σres = −(GM∗)2/3 (k′ − k)

(k2k′n′)1/3 , (3.2)

which is simply n = nres = (k′/k)n′. The expansion of H̄kepl
in ∆Σ = Σ − Σres starts with a quadratic term in ∆Σ. Since the
perturbation H̄pert is a function of (Σ,N, σ, p) and is of order µ,
the dynamics in the canonical pair of variables (Σ, σ) near Σres is
equivalent to that of a pendulum with Hamiltonian of the form
(∆Σ)2 + µ cosσ, so its frequency is of order

√
µ. On the other

hand, the dynamics in the canonical pair (N, p) is slower, with a
characteristic frequency of order µ. We can therefore apply the
adiabatic principle and study the dynamics in (Σ, σ) with fixed
(N, p), and then the dynamics in (N, p) keeping constant the ac-
tion integral

J =

∮
Σ dσ, (3.3)

which is the adiabatic invariant of the dynamics (Henrard 1993).
We now explain this procedure in more detail. Once the val-

ues of N and p have been fixed, H̄ reduces to a one degree
of freedom Hamiltonian in (Σ, σ) and parametrized by (N, p),
which we denote by H̄(N,p)(Σ, σ). This Hamiltonian is therefore
integrable, so we can study its dynamics by plotting its level
curves. We note however that by fixing N we can obtain Σ from
e and vice versa, so we can also use (e cosσ, e sinσ) as indepen-
dent variables. Although these variables are not canonical, they
have the already mentioned advantage that for small e the Hamil-
tonian is a polynomial in (e cosσ, e sinσ), so the level curves do
not have a singularity at e = 0. In addition, the plot of the level
curves does not require the use of canonical variables. We show
examples of these plots in the case of the 4:1 resonance in Fig. 1.

In principle, the dynamics can be studied for any value of
J. Once the cycle of H̄(N,p)(Σ, σ) corresponding to the consid-
ered value of J through (3.3) is identified, the full Hamiltonian
H̄(Σ, σ,N, p) is averaged over the cycle, as explained in Henrard
(1993), leading to a new one degree of freedom Hamiltonian
¯̄
H(N, p; J). This Hamiltonian is integrable, and the resulting dy-
namics in (N, p) describes the secular evolution of the small body
inside the mean motion resonance with the perturber.

In this paper we vastly simplify this procedure by limiting
ourselves to the case J → 0, i.e. the limit of small libration am-
plitude in the mean motion resonance. In this limit, the cycle in
(Σ, σ) described by H̄(N,p) shrinks to the stable equilibrium point.
Thus, there is no need to average the full Hamiltonian over a cy-
cle: ¯̄
H(N, p; J = 0) is obtained by evaluating H̄ on the stable

equilibrium point of H̄(N,p) in the variables e and σ. We note that
by having fixed N, we are effectively linking the semi-major axis
a to the eccentricity e, via the relation

a =
N2

GM∗
(
k′/k −

√
1 − e2

)2 ; (3.4)

therefore, we recover the equilibrium values aeq of the semi-
major axis as well.

We show an example of this calculation in Fig. 2, for the 2:1,
3:1, and 4:1 resonances. It is worth pointing out that the equi-
librium points in the (e, a) diagram deviate away from the Kep-
lerian resonant value ares = a′(k/k′)2/3 as e → 0. This is espe-
cially evident in the case of first-order resonances, |k − k′| = 1.
In this case, for e > e′ the main harmonic in the Hamiltonian
is e cosσ, i.e.

√
P cosσ, from (2.3) and expansion for small e.

Because ṗ = ∂H/∂P, this harmonic gives ṗ ∝ 1/
√

P ∼ 1/e,
which grows considerably as e approaches zero; therefore, in
order to maintain σ̇ = [k′λ̇′ − kλ̇ + (k′ − k) ṗ]/(k′ − k) ∼ 0,
it is necessary to have k′λ̇′ − kλ̇ / 0 i.e. a/a′ / (k/k′)(2/3).
For resonances of order |k′ − k| > 1 the main harmonic in the
Hamiltonian for e > e′ is e|k

′−k| cosσ, i.e. P|k
′−k|/2 cosσ. There-

fore, the first derivative in P is not singular for e ∼
√

P → 0.
However, for e < e′ the main harmonic dependent on e is
e′|k

′−k|−1e cos[(k′ − k)σ − (k′ − k − 1)(p + $′)], which gives a
contribution to ṗ proportional to 1/e, and the same reasoning
applies. Indeed, in the case of inner mean motion resonance, aeq
always attains values that are slightly less than the Keplerian ares
as e → 0, as shown in Fig. 2. We must note, however, that the
deviation of the equilibrium points away from the resonant value
ares indicates a rapid precession of the pericentre $. This means
that our assumption that p and N remain constant is no longer
valid. It breaks down when their motion evolves with a frequency
of order

√
µ, i.e. of the same order as the frequency of the Σ, σ

evolution. When ṗ ∼
√
µ, the equilibrium semi-major axis of

the test particle deviates from the Keplerian value by the amount
of order (2/3)(

√
µ/k)(ares)5/2. Thus, we can determine the lower

limit in eccentricity for the validity of our approach as the value
of e at which the equilibrium point aeq deviates away from ares
by more than this quantity. In this paper, we will focus mainly on
resonances of order higher than 1 because they are much more
efficient in pushing the eccentricity e from ∼0 to ∼1 (see Sect. 5).
In this case, for e < e′ our approach is valid down to very small
values of the eccentricity.

We have implemented this scheme in a Mathematica note-
book, which is made available at the CDS. Let us now briefly
explain the steps in our calculation, which ultimately yields
the level curves of the Hamiltonian ¯̄

H(N, p; J = 0) on the
(e cos$, e sin$) plane, thereby describing the secular evolution
of the small body inside the mean motion resonance with the
perturber, in the limit of J = 0. First, we consider a fixed value
of N = N∗. For some given value of $, we can find the (stable)
equilibrium point in the (e cosσ, e sinσ) plane in the following
manner. If $ = $0 = 0, the Hamiltonian (2.10) contains only
cosines of (k′ − k)σ (and its multiples) so that its extrema in
σ are found at 2πl/(k′ − k) and (2πl + π)/(k′ − k), l ∈ Z. Tak-
ing for example σ = σ0 = 0,±π, we can write the Hamilto-
nian (2.10) as H̄(e,N∗, σ0, $0) and we can find its maximum
as a function of the eccentricity. The fact that H̄ , as a function
of e, must have a maximum at the resonance can be seen from
Eq. (2.9), which clearly has a maximum in Σ = S − N at Σres

(defined in Eq. (3.2)). Then, because ∂2H

∂Σ2 = ∂2H

∂S 2 and S is mono-
tonic in e, H̄ must have a maximum in e. We call emax the value
of the eccentricity for which H̄ is maximal. We must now check
that this is in fact the stable equilibrium point, i.e. that in σ0 the
function H̄(emax,N∗, σ,$0) ofσ has a maximum (and not a min-
imum). If this is not the case, we can repeat the calculation with
σ = π/(k′−k), π/(k′−k)+π. Although in principle the maximum
in σ could be away from this axis (because of the higher order
harmonics in (k′ − k)σ), in practice in all the cases we studied
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Fig. 1. Level plots of the Hamiltonian H̄(N,p)(Σ, σ) on the (e cosσ, e sinσ) plane for different values of N and p. This is the case of k′ = 4, k = 1,
with e′ = 0.1, a′ = 1 AU, and µ = 10−3 for the perturber (in units where GM∗ = 1). The black dot in each panel indicates the position of the
stable equilibrium point that is found by our algorithm. The function H̄(N,p) is periodic in σ with period 2π/(k′ − k), so there will always be k′ − k
equivalent stable equilibra one rotation away from each another. We note that eeq increases with N, while p has the effect of simply rotating the
diagram.

this procedure effectively yields, for the given value of N = N∗
and for $ = $0 = 0, the stable equilibrium point in (e, σ), de-
noted by (eeq, σeq). We note from Fig. 1 that eeq increases with
the value N∗.

Following the procedure described above, we can assign to
the Hamiltonian ¯̄

H(N∗, $0; J = 0) the value H̄(eeq,N∗, σeq, $0)
on the point (eeq cos$0, eeq sin$0). We also note that from the
equilibrium value eeq, it is possible to obtain the corresponding
aeq through Eq. (3.4). When $ is not zero, the diagram in the
(e cosσ, e sinσ) plane is, to a good approximation1 for most val-
ues of e, simply rotated by a quantity related to $, so that the
1 We have checked that in the 4:1 resonance eeq changes only by <∼0.1%
with the rotation of $, down to eeq ∼ 0.05, for e′ = 0.1.

equilibrium values of the eccentricity and the semi-major axis do
not change substantially, but only σeq changes (see Fig. 1). This
way, it is possible to obtain the equilibrium value for σ by find-
ing the maximum in σ of the function H̄(eeq,N∗, σ,$) for the
fixed value of$. It is worth noticing that in order to assign to the
point (eeq cos$, eeq sin$) the appropriate value of the Hamilto-
nian, we are only interested in the maxσ∈[0,2π] H̄(eeq,N∗, σ,$) =

maxσ∈[0,2π/(k′−k)] H̄(eeq,N∗, σ,$) for the fixed value of $, not in
the actual value σeq of σ where the maximum is attained. How-
ever, we need to check thatσeq changes smoothly with N∗ and$.
If this were not the case, a bifurcation would occur, which would
invalidate the assumption that the amplitude of libration remains
small. We have checked that this happens only in the case of the
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(a) 2 : 1 resonance.
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(b) 3 : 1 resonance.
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(c) 4 : 1 resonance.

Fig. 2. Level curves of N on the (a, e) plane for the case of the 2:1, 3:1,
and 4:1 resonances with a′ = 1 AU for the perturber (in units where
GM∗ = 1). The solid lines depict Eq. (3.4), where the numerical value
of N increases from left to right. The vertical thick dashed lines indicate
the location of exact Keplerian resonance, ares = a′(k/k′)2/3. The dots
represent the equilibrium values for the eccentricity and the semi-major
axis on different level curves of N, while the arbitrary value of $ re-
mains fixed. Here we used e′ = 0.2 and µ = 10−3. We note that the
equilibrium points deviate away from exact resonance at low eccentric-
ities, which is particularly evident in the case of first-order resonances
(the 2:1 resonance in this case; see text for details). Since this deviation
is linked to a faster precession of the pericentre $ = −p, the value of
e at which this effect becomes higher than (2/3)(

√
µ/k)(ares)5/2 yields a

lower bound in e above which our approach is valid. The orange dashed
line indicates a deviation from the exact resonance of this amount. We
thus colour-coded the equilibrium points using black for those that fall
above this lower limit in eccentricity, and grey for those that fall below
it: for the latter, the fast change in p does not allow us to consider the
pair (N, p) as slowly evolving variables.

3:1 resonance in a point on the $ = 0 axis (e.g. at e ' 0.35
in Fig. 7b). We note that this point is never crossed during the
secular evolution because it appears as a centre of libration.

By letting N vary, i.e. effectively by allowing eeq to vary,
we obtain the level curves of the Hamiltonian ¯̄

H(N, p; J = 0)
in the variables (e cos$, e sin$). We present several examples

in Sect. 5, where we show level curves of ¯̄
H for different reso-

nances and different values of e′.

4. Effect of short-range forces

When the eccentricity of the test mass reaches values close to 1,
so that the osculating ellipse becomes narrower and narrower,
the periapsis distance from the star aperi = a(1 − e) becomes
considerably small. At this point, the effect of various short-
range forces may become important and must be considered.
One such short-range force arises from General Relativity, with
the post-Newtonian contribution to the test particle’s Hamilto-
nian given by

HGR =
GM∗

a

(
GM∗
ac2

) (
15
8
−

3
√

1 − e2

)
, (4.1)

where c is the speed of light (Krivov 1986). We note that the 15/8
term only gives the General Relativity correction to the mean
motions, while the 1/

√
1 − e2 term gives the correction to the pre-

cession of the pericentre. Since we are only interested in the lat-
ter and we have averaged over the mean motion, we drop the for-
mer. Another short-range force arises from the rotational bulge
of the central star, with the Hamiltonian given by

Hrot = −
GM∗R2

∗J2

2a3(1 − e2)3/2 , (4.2)

where R∗ is the stellar radius, and M∗R2
∗J2 is the rotation-induced

quadruple moment of the star. To assess the importance of these
short-range forces, we compareHGR andHrot to Φ0, the charac-
teristic tidal potential produced by the planetary perturber on the
test particle,

Φ0 ≡
Gm′a2

a′3
· (4.3)

We find

|HGR|

Φ0
' 10−2

(
M∗
M�

)2 (
m′

M⊕

)−1 (
a′

a

)3

×

( a
AU

)−1 1
(1 − e2)1/2

' 1.7
(
M∗
M�

)2 (
m′

M⊕

)−1 ( n
4n′

)2

×

( a
AU

)−1/2
(

aperi

R�

)−1/2

, (4.4)

|Hrot|

Φ0
'

kq∗Ω̂
2
∗

2

( M∗
m′

) (R∗
a

)2(a′

a

)3 1
(1 − e2)3/2

' 0.086
(

kq∗

0.01

) (
P∗

10 day

)−2 (
R∗
R�

)5 (
m′

M⊕

)−1

×

( n
4n′

)2 ( a
AU

)−1/2
(

aperi

R�

)−3/2

, (4.5)

where aperi = a(1−e), and we use J2 = kq∗Ω̂
2
∗ = kq∗Ω

2
∗R

3
∗/(GM∗),

with Ω∗ = 2π/P∗ the stellar rotation rate. Clearly, for most main-
sequence stars (with P∗ >∼ 2 days) and white dwarfs, |Hrot| is
negligible compared to |HGR|. We neglect Hrot in the remainder
of this paper.
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It is straightforward to includeHGR into the scheme outlined
in Sect. 3 as we simply need to add the value HGR(aeq, eeq) to
the value of the planetary Hamiltonian. This could change the
dynamics of the system considerably at sufficiently high eccen-
tricity. In fact, up to this point, the perturber’s mass (rescaled by
the star’s mass) µ has played a role in setting the amplitude of
libration in Σ (or a, e) in the Hamiltonian H̄(N,p), and in setting
the frequency of libration around the stable equilibrium point.
However, the dynamics described by ¯̄

H(N, p; J = 0) does not
depend on the perturber’s mass because both N and p appear
only in the part of the Hamiltonian derived from H̄pert, where µ
is a multiplying parameter. Thus, the evolution of e as a func-
tion of $ = −p does not depend on µ, only the timescale of this
evolution does (and scales as 1/µ).

With the addition of the General Relativity term in the
Hamiltonian, the dynamical behaviour of the system will in gen-
eral depend on µ. Indeed, HGR is independent of µ, and is de-
pendent on N:

HGR(Σ,N, σ, p) =
3G4M4

∗

c2

(k′ − k)4

k3Σ3(kN − (N + Σ)k′)
· (4.6)

Thus, the actual evolution of N (i.e. of eeq if J = 0) as a function
of p (i.e. $) depends on the value of µ.

Another way to understand this is that the General Relati-
vity potential has the effect of keeping the eccentricity constant
while the pericentre $ = −p precesses (because ṗ =

∂HGR
∂N =

−
3G4 M4

∗

c2
(k′−k)5

k3Σ3(kN−(N+Σ)k′)2 < 0 while Ṅ = 0, Σ̇ = 0). In contrast, in the
restricted three-body problem (see previous section) the preces-
sion of the pericentre is coupled with the variation in the eccen-
tricity. Since the mass of the perturber µ appears in the planetary
potential as a multiplicative factor in the perturbation, but not in
the General Relativity potential, it will play the role of a parame-
ter regulating which of the two dynamics in the (e cos$, e sin$)
plane is dominant. The smaller µ is, the more the General Rela-
tivity contribution will prevail, and the less efficient the planet
will be in pumping the eccentricity of the test particle; the big-
ger µ is, the less theHGR contribution will be apparent.

5. Results

In Figs. 3–5 we show the level curves of the Hamiltonian ¯̄
H

(see Sect. 3) on the (e cos$, e sin$) plane for the 2:1, 3:1, and
4:1 resonances, respectively, with low values of the eccentricity
of the perturber, e′ = 0.05 and e′ = 0.1. The General Relativity
effect is not included in these figures. The white shaded disks
centred at the origin (barely visible in Fig. 5) indicate the re-
gions where the adiabatic method is not valid (see Sect. 3); in
these regions our calculations do not necessarily reflect the true
dynamics of the system.

We note in Fig. 5 how even for low values of e′ the 4:1 res-
onance is extremely effective in driving the eccentricity of the
test particle from e ∼ 0 to e ∼ 1. Indeed, there is only a small
portion of the phase space that allows orbits starting with low
eccentricities to circulate near the origin (e = 0). In the case of
e′ = 0.05 only some orbits with moderate initial eccentricities,
i.e. e > 0.2 and initial $ ∼ 0, actually librate around the stable
equilibrium point at $ = 0, e ∼ 0.4, while for e′ = 0.1, all orbits
sufficiently distant from the origin eventually end up at e ∼ 1.
This is not the case for the other resonances. For the 2:1 reso-
nance, we see from Fig. 3 that all orbits with initial eccentrici-
ties up to ∼0.4 and ∼0.3, for e′ = 0.05 and e′ = 0.1, respectively,

remain confined around the equilibrium point near the origin.
Another equilibrium point is present at e ∼ 0.7, $ = 0, implying
that whatever the initial values of $ even a higher initial eccen-
tricity is not enough to push the test particle to a star-grazing
orbit. Indeed, the presence of the separatrix (shown as a black
dashed curve) does not allow any orbit with initial eccentricity
lower than ∼0.9 to move farther away from the origin. In the
case of the 3:1 resonance, Fig. 4 shows that eccentricities lower
than 0.4 for e′ = 0.05 and 0.2 for e′ = 0.1 remain small, be-
cause the level curves librate around $ = 0. For e′ = 0.05 a
separatrix bounds the maximum attainable eccentricity as in the
2:1 resonance. This confirms the results in Beust & Morbidelli
(1996).

Figures 6–8 depict our results for high values of the per-
turber’s eccentricity, e′ = 0.2 and e′ = 0.3. We find that for
the 2:1 and 3:1 resonances, even these higher values of e′ are not
sufficient to generate star-grazing objects from e ∼ 0. Although
for some initial configurations it is possible to observe an exci-
tation in the eccentricity (see e.g. the case of the 3:1 resonance
in Fig. 7a, where particles with e ∼ 0.2 and $ = π may indeed
reach e ∼ 1), a modest/high initial eccentricity of the test parti-
cle is needed in order to eventually reach a value close to 1. On
the other hand, Fig. 8 shows that when the perturber’s eccentric-
ity is too high, the capability of the 4:1 resonance to raise the
eccentricity of the test particle from ∼0 to ∼1 is diminished. In
all cases (Figs. 6–8), a separatrix confines all orbits close to the
origin. We note that this separatrix occupies the region where
the adiabatic method remains valid (see Sect. 3), i.e. outside the
white shaded region in each plot. Therefore, any orbit with a
small initial eccentricity remains confined to low values of e.

As we noted in Sect. 4, when the eccentricity of the test par-
ticle reaches sufficiently high values, the effect of the General
Relativity term becomes important, and the mass parameter µ
plays a crucial role in shaping the dynamics of the system. Led
by our results shown in Figs. 3–8, we restrict ourselves to the
case of a test particle in the 4:1 mean motion resonance with the
outer perturber, and we study the critical value µcrit needed such
that the periapsis distance aperi = a(1 − e) reaches sufficiently
small values, e.g. the radius of the central star or the star’s Roche
limit (which is ∼R�, for white dwarfs and asteroids with internal
density about a few g/cm3).

In Fig. 9 we show the level curves of the Hamiltonian ¯̄
H with

e′ = 0.1, on the ($, log aperi) plane, both with and without the
addition of the General Relativity contribution, for the case of
µ = 3 × 10−6. Here we choose the resonance location of the test
particle ares at 1 AU. We can clearly see that while in the purely
planetary case the resonance is capable of pushing a test mass
with a small initial eccentricity e ∼ 0.05 into a star-grazing orbit,
this does not hold true when HGR is introduced. In Fig. 10 we
repeat the calculation, this time with µ = 5 × 10−5 and the same
values for ares = 1 AU and e′ = 0.1, and we see that even with the
General Relativity contribution, test particles with initial small
eccentricities are just about able to reach aperie ∼ R�. Because
the thick curve in Fig. 10b is almost tangent to the bottom of
the figure at $ = π, we deduce that the critical mass to achieve
star-grazing orbits for this choice of a′ and e′ is close to 5 ×
10−5 solar masses.

The critical perturber mass µcrit = m′crit/M∗ can be estimated
as follows. For a test particle near a given mean-motion reso-
nance (4:1) with an external perturber (of given m′, a′, e′), the
“secular” planetary Hamiltonian can be written schematically as

¯̄
H = −Φ0Ĥ(e, $), (5.1)
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(a) e′ = 0.05.
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(b) e′ = 0.1.

Fig. 3. Level curves of the Hamiltonian ¯̄
H on the (e cos$, e sin$) plane for the 2:1 mean motion resonance with an outer perturber for low values

of e′ (=0.05 and 0.1, both with $′ = 0). The General Relativity effect is not included. Lighter colours indicate a higher value of the Hamiltonian.
The white shaded disks centred at the origin indicate the regions where the adiabatic method is not valid (see Sect. 3), i.e. where our calculations
do not necessarily reflect the true dynamics of the system. The dark dashed line indicates a set of critical orbits which separate the phase space
into a circulation zone near the origin, a libration zone near the stable equilibrium point at $ = 0, and an outer circulation region. All orbits with
initially low eccentricities do not experience an appreciable increase in e.
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(a) e′ = 0.05.
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(b) e′ = 0.1.

Fig. 4. Same as Fig. 3, but for the 3:1 mean motion resonance with an outer perturber.

where

Φ0 ≡
Gm′a2

a′3
∝

m′

a
, (5.2)

and Ĥ is dimensionless. We note that in the above equation, a is
really a0 = a′/42/3 (the value of a in exact Keplerian resonance
with the perturber). We assume that the test mass starts with an

initial eccentricity e0 � 1 at $ = 0. Its maximum eccentricity
e(0)

max (achieved at $ = π) is determined by

Ĥ(e0, 0) − Ĥ(e(0)
max, π) = 0. (5.3)

The superscript “(0)” in e(0)
max indicates that this maximum eccen-

tricity is obtained without any short-range force effect.

A23, page 8 of 12



G. Pichierri et al.: Extreme secular excitation in mean motion resonances

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a) e′ = 0.05.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(b) e′ = 0.1.

Fig. 5. Same as Fig. 3, but for the 4:1 mean motion resonance with an outer perturber. In contrast to Figs. 3 and 4, orbits with small initial
eccentricities can be driven to e ∼ 1.
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(b) e′ = 0.3.

Fig. 6. Level plots of the Hamiltonian ¯̄
H on the (e cos$, e sin$) plane for the 2:1 mean motion resonance with an outer perturber with modest

eccentricities (e′ = 0.2 and e′ = 0.3, both with $′ = 0). All orbits with initially low eccentricities do not experience a large increase in e.

Now we consider howHGR affects emax. We write

HGR = −
ΦGR
√

1 − e2
, (5.4)

with

ΦGR ≡
3GM∗

a
GM∗
ac2 · (5.5)

Again, starting with an initial eccentricity e0 � 1 at $ = 0, the
maximum eccentricity emax of the test mass (achieved at $ = π)

is estimated by

Φ0Ĥ(e0, 0) + ΦGR ' Φ0Ĥ(emax, π) +
ΦGR√

1 − e2
max

· (5.6)

Assuming 1 − emax � 1, Eq. (5.6) becomes

|HGR|

Φ0
=

ΦGR

Φ0

1√
1 − e2

max

' Ĥ(e0, 0) − Ĥ(emax, π) =: f . (5.7)

This shows that emax depends on various parameters through the
ratio ΦGR/Φ0 ∝ M2

∗/(m
′a).
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Fig. 7. Same as Fig. 6, but for the 3:1 mean motion resonance with an outer perturber.
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Fig. 8. Same as Fig. 6, but for the 4:1 mean motion resonance with an outer perturber. In contrast to Fig. 5, orbits with initial e ∼ 0 do not
experience extreme eccentricity excitation.

Setting a(1 − emax) = Rcrit in Eq. (5.7), we obtain the critical
perturber mass m′crit that allows the test particle to reach a certain
pericentre distance Rcrit:

m′crit =
3
√

2

1
f
GM2

∗

c2

1
√

R∗
a−1/2

(
a(1 − emax)

R∗

)−1/2 (
4
1

)2

' 17 M⊕

(
f

0.1

)−1 (
M∗
M�

)2 ( a
AU

)−1/2
(

Rcrit

R�

)−1/2

· (5.8)

It is important to note that f in general depends on emax and thus
is a complicated function of (Rcrit/a). However, we can calculate

its numerical value in the case depicted in Figs. 9 and 10, where
we obtain f ∼ 0.1.

6. Conclusions

In this paper, we have revisited the problem of resonant dy-
namics inside mean motion resonances in the restricted planar
three-body problem in order to determine to what extent plane-
tary perturbations can effectively drive small bodies into highly
eccentric orbits, and cause them to fall into the star or suffer
tidal disruption. While most previous works employed series ex-
pansion of the Hamiltonian in powers of the eccentricities or
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(a) Purely planetary case.
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(b) Adding the General Relativity contribution.

Fig. 9. Level curves of the Hamiltonians ¯̄
H (left panel) and ¯̄

H + HGR (right panel) on the ($, log aper) plane for a test mass at ares = 1 AU in
4:1 mean motion resonance with an outer perturber with µ = 3 × 10−6, $′ = 0 and e′ = 0.1. The mass of the parent star is set at M∗ = 1 M�. The
black solid line experiencing a significant change in aperi indicates the trajectory with the initial conditions $ = 0 and e = 0.05. The lower edge
of the plot is at the location of the radius of the star, here taken to be the radius of the Sun (R�). The white dotted line indicates the location of the
Roche limit, calculated using a density of the test particle of ρtp = 2 g/cm3. The addition of the General Relativity potential reduces drastically the
efficiency of the planetary perturbation in driving the test particle to collide with the star.

0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

(a) Purely planetary case.

0 1 2 3 4 5 6

-5

-4

-3

-2

-1

0

(b) Adding the General Relativity contribution.

Fig. 10. Same as in Fig. 9, except for µ = 5 × 10−5. In this case, a test mass starting at $ = 0 and e = 0.05 can fall into the star even considering
the General Relativity contribution. The level curves of the purely planetary Hamiltonian do not change with different values of µ: as explained in
the text, here µ only plays the role of setting the timescales of the evolution of the test particle, not the evolution itself.

were limited by a first-order development in e′ to the case of
e > e′ and small e′ (where e′ and e are the eccentricities of
the planetary perturber and the test particle, respectively), we do

not perform any expansions, thus making our results valid for a
wider range of orbital configurations. We make use of the princi-
ple of adiabatic invariance to reduce the two degree of freedom
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Hamiltonian (2.10) to the integrable Hamiltonian ¯̄
H , which we

study in the limit of vanishing amplitude of libration of k′λ′ − kλ
in the k′:k = 2:1, 3:1 and 4:1 mean motion resonances. We con-
firm the results of Beust & Morbidelli (1996), and show that for
small e′ (<∼0.1) the 2:1 and 3:1 resonances are not able to push
test particles in initially nearly circular orbits into star-grazing
trajectories (Figs. 3, 4), while the 4:1 resonance is extremely
effective (Fig. 5). Moreover, we find that a higher value of e′
(=0.2–0.3) does not change this picture for the 2:1 and 3:1 res-
onances (Figs. 6, 7), but makes the 4:1 resonance less effec-
tive by generating a larger stable region of circulation around
e ∼ 0 (Fig. 8). Finally, in the cases where the resonance is strong
enough to generate star-grazing objects, we include the General
Relativity contribution to the Hamiltonian, which causes a fast
precession of the pericentre while keeping the eccentricity con-
stant, thereby suppressing the effectiveness of the planet’s per-
turbation to generate extreme eccentricities (Fig. 9). While the
planetary mass only sets the timescales of the secular eccentric-
ity evolution when the General Relativity effect is neglected, we
note that it now plays an important dynamical role, as it regu-
lates the relative contribution of the purely Newtonian evolution
and the impact of the post-Newtonian term. We then obtain, for
a specific choice of semi-major axis and eccentricity of the per-
turber, an estimate on the minimum planetary mass needed to
drive eccentricity growth of the test particle from ∼0 to ∼1. An
approximate analytic expression for this critical mass is also ob-
tained. In addition, we make available a Mathematica notebook
which implements the calculations outlined in the paper to allow
the interested reader to examine the effect of secular dynamics
inside mean motion resonances for other applications.
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