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Introduction

Structural library enrichment is an important task for pharmaceutical industry. The number of hits selected in screening campaigns depends on drug-likeness and diversity of the underlying screening set. To be efficient in drug-discovery, the existing screening pool needs to be regularly updated in order to include new chemotypes.

One can suggest two different scenarios of the screening pool enrichment with new chemical matter: computer-aided enumeration of virtual structures under some constraints (e.g. molecular weight, LogP, etc.), or selection of existing structures from an external database. Recently, several attempts were made to create a workflow for an efficient molecular de novo design [START_REF] Aladinskiy | Reinforced adversarial neural computer for de novo molecular design[END_REF][START_REF] Kang | Conditional molecular design with deep generative models[END_REF][START_REF] Schneider | De novo design at the edge of chaos: miniperspective[END_REF][START_REF] Sattarov | De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping[END_REF][START_REF] Ruddigkeit | Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17[END_REF]. However, synthetic feasibility of virtual structures including synthetic routes and optimization of reaction conditions still need to be assessed. The second scenario is more practical because new structures selected as a result of comparison of two data sets (a reference set and an external set) do exist and can be purchased or synthesized following the reported in the literature procedure.

Different approaches of chemical databases comparison were reported so far: cell-based clustering [START_REF] Chang | A new cell-based clustering method for large, high-dimensional data in data mining applications[END_REF], pairwise distance analysis [START_REF] Medina-Franco | A similarity-based data-fusion approach to the visual character ization and compar ison of compound databases[END_REF], and some dimensionality reduction methods (principle component analysis (PCA) [START_REF] Akella | Cheminformatics approaches to analyze diversity in compound screening libraries[END_REF], selforganizing maps (SOM) [START_REF] Bernard | Comparison of chemical databases: analysis of molecular diversity with self organising maps (SOM)[END_REF], generative topographic map- 1 3 Recently we demonstrated that GTM represent an efficient tool for comparison of large chemical libraries FDB-17 and PubChem-17 [START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF]. Hierarchical zooming technique [START_REF] Tino | Hierarchical GTM: constr ucting localized nonlinear projection manifolds in a principled way[END_REF] was successfully applied in [START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF] in order to analyze the chemotypes of molecules populated selected zones and to highlight the scaffolds present exclusively in FDB-17.

In this study, the zooming technique was automatized and coupled to a maximum common substructure (MCS) extraction protocol ("AutoZoom" tool). The developed tool was used for enrichment of the in-house collection of Boehringer Ingelheim (further on referred to as the "BI Pool") by the compounds from the commercial Aldrich-Market Select (AMS) database. A drug-likeness and an activity profile of selected AMS compounds against 749 biological targets were assessed using the ChEMBL data-driven predictor based on Universal GTMs [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual screening with generative topographic maps: how many maps are required?[END_REF].

Data

Boehringer Ingelheim (BI) is steadily committed to innovation in medicinal chemistry and is hence interested in new compounds featuring new scaffolds. At the same time, new structures have to be synthesizable and should have the potential to be active.

As a basis in this work we used an in-house collection of drug-like compounds provided by BI (BI Pool) which contained more than 1.7M structures. The source for novel compounds was the publicly available AMS collection of purchasable compounds containing more than 8.2M items (http://www.aldrichmarketselect.com). The data was standardized by ChemAxon's standardizer tool using a list of rules, such as aromatization, removing isotopes, removing stereo, standard representation of N-oxides including nitro group, etc. [16].

Method

The computational workflow consists of three parts. First, the mapping of AMS chemical space was undertaken by calibrating a pertinent GTM manifold, followed by projection of entire AMS and BI Pool collections. Then, hierarchical zoom was performed for selected areas of the map followed by MCSs extraction. The most of interest represented some zones exclusively populated by AMS compounds. The latter were extracted and profiled using universal GTMs described in our previous papers [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual screening with generative topographic maps: how many maps are required?[END_REF]. To this purpose, the publicly available virtual screening webserver of the Laboratory of Chemoinformatics (http://infochim.u-strasbg.fr/webserv/ VSEngine.html) was employed. In addition, simple molecular properties, like LogP, number of H-bond donors and acceptors, molecular weight, and TPSA, were computed using ChemAxon's JChem engine [17].

GTM training

The GTM method relates the data points positions in the initial N-dimensional space and in the latent 2D space. The GTM algorithm is described in a range of publications [START_REF] Kireeva | Generative topographic mapping (GTM): universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF][START_REF] Gaspar | GTM-based QSAR models and their applicability domains[END_REF][START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF][START_REF] Bishop | GTM: the generative topographic mapping[END_REF]. Briefly speaking, GTM injects a 2D hypersurface (manifold) into a multidimensional data space populated by a set of representative items (the Frame Set, FS). The algorithm fits the manifold to the FS data distribution by changing the positions of Radial Basis Function centers and, hence, maximizing the data log likelihood (LLh). At the next stage, the data points are projected on the manifold followed by the manifold unbending. Each compound in the latent space is represented by a vector of normalized probabilities (responsibilities) computed in the nodes of a square grid superposed with the manifold. In turn, the entire data set can be characterized by a vector of cumulative responsibilities. This enables the user to perform an efficient data sets comparison as well as QSAR/QSPR studies [START_REF] Kireeva | Generative topographic mapping (GTM): universal tool for data visualization, structure-activity modeling and dataset comparison[END_REF][START_REF] Gaspar | GTM-based QSAR models and their applicability domains[END_REF][START_REF] Sidorov | QSAR modeling and chemical space analysis of antimalarial compounds[END_REF].

In our early study [START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF], frame set compounds were randomly selected from large chemical libraries. Here, a FS containing 25K AMS compounds of controlled diversity (featuring no two compounds more similar than a given threshold) was prepared. To measure the dissimilarity, Soergel distance [START_REF] Monev | Introduction to similarity searching in chemistry *[END_REF] basing on Morgan fingerprints [21,[START_REF] Rogers | Extended-connectivity fingerprints[END_REF] of radius 4 was computed. FS compounds are expected to represent a non-redundant, representative "core" of spanned chemical space. They are not subjected to any other specific constraints, meaning that any state-of-art molecular descriptor/dissimilarity metric can be equally well used for selection.

The GTM manifold was trained using an incremental algorithm described by Gaspar et al. [START_REF] Gaspar | Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge[END_REF]. The parameters were taken from the previous study [START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF]. The experience of previous projects [START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF][START_REF] Sidorov | Mappability of druglike space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF][START_REF] Volochnyuk | Evolution of commercially available compounds for HTS[END_REF] showed that the usage of ISIDA descriptors is a good choice for GTM training. The initial descriptor space features ISIDA counts of sequences of 2 and 3 atoms, colored by their CVFF [START_REF] Dauber-Osguthorpe | Structure and energetics of ligand binding to proteins: escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system[END_REF] force field types and including formal charge information (IA-FF-FC-2-3) [START_REF] Ruggiu | ISIDA property-labelled fragment descriptors[END_REF][START_REF] Marcou | ISIDA fragmentor-user manual 29[END_REF]. Fragmentation of the FS compounds produced 6142 distinct fragments. However, the vast majority thereof is sparsely populated: only 798 terms were considered for actual manifold construction (the descriptors for which standard deviation over the FS compounds exceeds 2% of their value range width). This (or closely related) fragmentation schemes were often selected by evolutionary [29] map tuning procedures [START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF][START_REF] Casciuc | Virtual screening with generative topographic maps: how many maps are required?[END_REF]. Other adopted map parameters include resolution (841 nodes), the number of RBFs (324), the regularization coefficient (3.236), RBF width (0.4), and incremental block size (10K compounds). When the Expectation-Maximization algorithm used to train the manifold has achieved a certain level of convergence ( LLh new -LLh prev ≤ 0.001), the entire data was projected, and the outliers (the structures positioned far away from the manifold) were removed. To do so, a new strategy for GTM applicability domain (AD) identification was suggested where a Gaussian is fitted to the FS compounds distribution minimizing the root mean square error. Once the fitting is done, the LLh threshold is determined as the LLh value with the highest population (peak) minus three Gaussian widths ("3σ" rule, Fig. 1).

For visualization and analysis purposes, property and fuzzy class landscapes are used to "color" the map. To this goal, the mean class/property value in each node is taken as responsibility-weighted means of class labels/property values of resident items [START_REF] Gaspar | GTM-based QSAR models and their applicability domains[END_REF]. In consequence, areas of interest (for example, clusters of nodes exclusively populated by AMS compounds) can be easily highlighted.

Zooming

GTM landscape analysis is the following step in the library comparison process. The goal is to bind a certain chemotype to a particular area on the map. In simple cases, map zones (square clusters of nine nodes) do indeed contain structurally quite homogeneous populations of residents. If so, it is straightforward to search for common scaffolds or maximum common substructures (MCSs). However, if too many compounds (e.g. more than 1000 items) reside in one zone, searching of common scaffolds or MCSs is not efficient. Therefore, since the algorithm detects highly populated zones, zooming is automatically applied. For this purpose, the compounds for which the sum of its responsibilities within the zone is higher than 0.95 are selected and used as frame set source for the fitting of a new GTM manifold (using the same setups as those of the global map). For this purpose, the FS-of minimal 1000, but maximal 10% of the local compound pool size-is randomly selected. The "submap" is likewise checked for the zones with population exceeding 1000 items. If necessary, the procedure is repeated (multi-level zooming). If a zone contains less than 1000 compounds, it will be analyzed as such, without further zooming.

Maximum common substructure (MCS) searching

Responsibility patterns (RP) have been used to identify the shared underlying features (scaffolds, substructures, pharmacophore patterns) for a chosen area on the map [START_REF] Sidorov | QSAR modeling and chemical space analysis of antimalarial compounds[END_REF][START_REF] Klimenko | Chemical space mapping and structure-activity analysis of the ChEMBL antiviral compound set[END_REF]. Compounds sharing a same RP will typically share some common structural features that are further manually processed to annotate the map. This is a tedious and error prone task. As an alternative, it is proposed here to exploit MCS search to automatically highlight shared features. Our solution is based on ChemAxon's JChem engine [17].

The problem of MCS searching for a set of compounds was already discussed earlier by Hariharan et al. [START_REF] Hariharan | Multi-MCS: a fast algorithm for the maximum common substructure problem on multiple molecules[END_REF]. The authors showed that in some situations, the intersection of pairwise MCS search is empty or results in small, non-specific substructure, while the molecules in a given set share large and complex substructures. The problem is that such common substructure of a compound set is not the maximum common substructure of any compounds pair. As a solution, Hariharan et al. enumerated all maximal cliques for each pair of molecules, and then intersected the generated lists. The so called multi-MCS is the largest of the identified substructure that is common to all compounds in the set.

However, when the molecule set is very large, the idea to return a single multi-MCS does not work anymore. In this case, we aimed at identifying lists of frequent substructures. In our approach, an arbitrary selected structure in the list of N items is compared to the other N-1, resulting into N-1 connected MCS (Fig. 2). Since we are working with large sets, this already result in a large list of chemically relevant substructures, although the list might not be exhaustive. Additionally, a size filter keeps only the MCS covering at least 30% of the heavy atoms in both structures of a pair. Then, duplicate MCSs are removed from the list and sorted according to their occurrence in the list. The most frequent MCS is selected. Structures featuring the selected MCS are removed from the list, and a new iteration is started. In contrast with the previous scenarios, the new strategy returns a list of MCSs which is more relevant in the context of BigData.

The entire workflow is implemented in Python3 language using NumPy [START_REF] Oliphant | A guide to NumPy[END_REF][START_REF] Oliphant | Python for scientific computing[END_REF] and Plotly [START_REF] Inc | Collaborative data science[END_REF] libraries. When the MCSs absent in the BI pool were found, the structures containing these MCSs were retrieved from the AMS collection,
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Fig. 2 MCS extraction protocol and their biological profile was predicted using previously developed universal GTMs [START_REF] Tino | Hierarchical GTM: constr ucting localized nonlinear projection manifolds in a principled way[END_REF].

standard deviation of the seven estimations (Eq. 1), to signal that mutual agreement of predictions enhances the trustworthiness of consensus. The approach supported on the public property prediction

Virtual profiling of novel compound candidates

P corrected = P ̄ - } P i -P ̄ i=1 (1) 
server (http://infochim.u-strasbg.fr/webserv/VSEngine. html) utilizes consensus prediction of the activity class (active or not) of a compound with respect to 749 biological targets for which structure-activity records found in ChEMBL v.24 were considered to be sufficiently robust to provide for meaningful activity class landscapes on the seven distinct "universal" GTMs of drug-like space. Each candidate is iteratively projected onto each of the seven universal maps [START_REF] Casciuc | Virtual screening with generative topographic maps: how many maps are required?[END_REF], and its projection is then placed in the context of the map-specific activity landscapes of each of the 749 targets. For each target, the compound is assigned a probability to belong to the "active" class, which corresponds to the relative excess of "active" population in its residence zone (or zero if the target-specific data from ChEMBL do not occupy at all this residence area). Herewith, a consensus probability P ̄ to be active on a target is taken as the mean of the seven predictions of the complementary universal maps. This mean is penalized by the where P ̄ is the mean probability over the 7 universal maps; P i is the probability to be active on a map i; P corrected is the corrected consensus probability. The tool supports processing of up to a few million compounds, operating on the HPC cluster of the University of Strasbourg, in order to return a virtual profile matrix of input compounds × 749 predicted consensus probabilities.

Results and discussion

In order to train the GTM manifold, a Frame set (FS) of 25K compounds needed for the manifold construction was diversity-picked from the AMS library with the dissimilarity threshold equal to 0.4. At the next stage, the log likelihood threshold LLh = -2501.52 was determined as described in Fig. 1 in order to delineate the GTM Here, the white space means non-populated areas, and the transparency corresponds to the density applicability domain (AD). With this threshold, 95.5% of the FS items passed the AD criteria (23.9K compounds out of 25K). Figure 3 visualizes the distribution of the FS compounds over the map. The density landscape shows that the FS covers most parts of the map, and the maximal population of compounds in each node doesn't exceed 5% of the entire FS.

To understand how the two chemical collections relate to each other, they were projected on the map and rendered as individual density landscapes and a fuzzy classification landscape, respectively (Fig. 4). Some 94.1% of the BI Pool and 95.8% of the AMS collections passed the LLh threshold which means that the frame set extracted from AMS is diverse enough to describe both databases. In general, as far as the frame set is diverse enough to span the relevant chemical space zone, its explicit composition is of rather little importance-a recurrent conclusion in all our GTM studies, notably the creation of "universal" maps [START_REF] Sidorov | Mappability of druglike space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF] where a frame set of the order of 10K random compounds was shown to suffice for the coverage of ChEMBL chemical space and Fig. 5 An example of zooming analysis. Here, a new substructure from AMS collection was discovered using 2-levels zooming. The white space means non-populated areas, and the transparency corresponds to the density of population supporting robust predictive activity models for hundreds of independent targets.

The density landscapes in Fig. 4a, b show that the libraries are globally similar since they both reside mostly the same areas. However, there are some areas where the AMS library has a strong presence and even fills some "holes" of the BI Pool. In the fuzzy class landscape, AMS-dominated areas are dark red (Fig. 4c). It is obvious that the darkred areas can serve as a source of new chemotypes for the BI collection. However [START_REF] Lin | Mapping of the available chemical space versus the chemical universe of lead-like compounds[END_REF], even mixed zones might also contain some structural patterns not shared by both libraries. To investigate this possibility, 187 zones were checked whereby 151 zones were zoomed (the maximal level of zooming was up to 4). The procedure took approximately 7 days using 48 CPUs. An example of multi-level zooming is given in Fig. 5.

In total, more than 222K substructures were processed. This set included some 45.5K MCS present only in AMS collection. More than 401K structures containing these MCSs were extracted from the AMS collection and projected onto the map. The density landscape with some examples of the most popular new AMS substructures is given in Fig. 6.

Comparing the density landscape from Fig. 6 and the fuzzy class landscape from Fig. 4, we see that most of compounds came from the areas where AMS dominated. At the same time, several thousands of structures also came from the mixed areas (green and yellow). This was achieved by the application of zooming. In order to check the drug-likeness of the extracted structures, simple molecular properties, namely the number of H-bond donors and Fig. 6 Density landscape for the new 401K structures. Here, several most popular (within the particular zone) new substructures are shown. The number of corresponding compounds is presented here as a popularity score acceptors, LogP, molecular weight, and TPSA were computed (Fig. 7).

Accordingly to Lipinski's r ule of five [START_REF] Lipinski | Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[END_REF], most of the extracted compounds can be classified as drug-like. These str uctures were also vir tually prof iled against 749 ChEMBL t argets. 109.5K compounds were predicted as active against at least one out of 749 ChEMBL targets with a probability score P cor rected > 0.5. About 1.2K compounds out of it were predicted according to Eq. 1 as active with P cor rected > 0.8 and passed BRENK [START_REF] Brenk | Lessons learnt from assembling screening libraries for drug discovery for neglected diseases[END_REF], PAINS [START_REF] Baell | New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays[END_REF] and NIH [START_REF] Doveston | A unified leadoriented synthesis of over fifty molecular scaffolds[END_REF][START_REF] Jadhav | Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease[END_REF] f ilters. The four examples with the highest cor rected consensus probability to be active in one of t he CHEMBL t argets are shown in Fig. 8, where t he compounds are predicted as active against Photoreceptor-specific nuclear receptor (CHEMBL4374), Cholecystokinin B receptor (CHEMBL3508), Muscarinic acetylcholine receptor M4 (CHEMBL317), and Pyruvate dehydrogenase kinase isoform 1 (CHEMBL4766) [40].

The type of the source of the structures (a chemical online store) allows us to say that these compounds are potentially synthesizable or even purchasable (the real synthesizability depends on a supplier, since some suppliers just claim that it can be synthesized if a client asks). This and the number of predicted actives demonstrate that the revealed substructures are new and useful for the pharma company. Also, it supports the statement that GTM is a powerful method for the efficient library comparison and enrichment (in terms of structural diversity). 

Conclusion

Generative topographic mapping was enabled to provide automated hierarchical analysis of large libraries, by means of the herein described "AutoZoom" tool. This integrates automated zooming and a new MCS extraction protocol and was successfully applied to diversify the in-house collection of Boehringer Ingelheim (BI). Some 45.5K substructures were found to be absent in the BI collection. The corresponding structures (401K items) were checked for Lipinski's rule compliance and classified as drug-like. In addition, they were virtually profiled against 749 ChEMBL targets. More than 1.2K compounds were predicted active against different targets with a corrected consensus probability (removing a standard deviation) higher than 80%. The discovered structures were recommended to the company to be imported as novel chemical matter that would be useful in diversifying the in-house collection. Here, the probability to be active returned by the web server is computed according to Eq. 1
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 1 Fig. 1 GTM Applicability Domain is identified by log likelihood threshold LLh 0 = LLh peak -3σ. Here, LLh peak and σ are, respectively, a position and with of a Gaussian function which fits the LLh distribution

Fig. 3 Fig. 4 BI

 34 Fig. 3 Frame set density landscape. Here, the white space means nonpopulated areas. Both color intensity (transparency) and color choice are associated to local density values (red areas have no transparency)

Fig. 7

 7 Fig. 7 Histograms represent the number of H-bond donors and acceptors, LogP, molecular weight, and topological polar surface area (TPSA) computed for the extracted 401K AMS compounds. Here, the red dashed line represents Lipinski's thresholds[START_REF] Lipinski | Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[END_REF] 

Fig. 8

 8 Fig. 8 Examples of structures predicted as actives taken from the 1.2K AMS compounds.Here, the probability to be active returned by the web server is computed according to Eq. 1
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