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ABSTRACT
To exploit the power of next-generation large-scale structure surveys, ensembles of numerical simulations are necessary to give
accurate theoretical predictions of the statistics of observables. High-fidelity simulations come at a towering computational
cost. Therefore, approximate but fast simulations, surrogates, are widely used to gain speed at the price of introducing model
error. We propose a general method that exploits the correlation between simulations and surrogates to compute fast, reduced-
variance statistics of large-scale structure observables without model error at the cost of only a few simulations. We call this
approach Convergence Acceleration by Regression and Pooling (CARPool). In numerical experiments with intentionally minimal
tuning, we apply CARPool to a handful of GADGET-III N-body simulations paired with surrogates computed using COmoving
Lagrangian Acceleration. We find ∼100-fold variance reduction even in the non-linear regime, up to kmax ≈ 1.2 hMpc−1 for the
matter power spectrum. CARPool realizes similar improvements for the matter bispectrum. In the nearly linear regime CARPool
attains far larger sample variance reductions. By comparing to the 15 000 simulations from the Quijote suite, we verify that the
CARPool estimates are unbiased, as guaranteed by construction, even though the surrogate misses the simulation truth by up to
60 per cent at high k. Furthermore, even with a fully configuration-space statistic like the non-linear matter density probability
density function, CARPool achieves unbiased variance reduction factors of up to ∼10, without any further tuning. Conversely,
CARPool can be used to remove model error from ensembles of fast surrogates by combining them with a few high-accuracy
simulations.

Key words: methods: statistical – cosmology: large-scale structure of Universe – software: simulations.

1 IN T RO D U C T I O N

The next generation of galaxy surveys will provide a detailed chart
of cosmic structure and its growth on our cosmic light cone. These
include the Euclid space telescope (Laureijs et al. 2011; Euclid
Collaboration 2020), the Dark Energy Spectroscopic Instrument
(DESI; DESI Collaboration 2016a, b), the Rubin Observatory Legacy
Survey of Space and Time (LSST; Ivezić et al. 2019; LSST Science
Collaboration 2009; LSST Dark Energy Science Collaboration
2018), the Square Kilometre Array (SKA; Yahya et al. 2015; Square
Kilometre Array Cosmology Science Working Group 2020), the
Wide Field InfraRed Survey Telescope (WFIRST; Spergel et al.
2015), the Subaru Hyper Suprime-Cam (HSC) and Prime Focus
Spectrograph (PFS) surveys (Aihara et al. 2018; Tamura et al. 2016),
and the Spectro-Photometer for the History of the Universe, Epoch
of Reionization, and Ices Explorer (SPHEREx; Doré et al. 2014,
2018). These data sets will provide unprecedented statistical power
to constrain the initial perturbations, the growth of cosmic structure,
and the cosmic expansion history. To access this information requires
accurate theoretical models of large-scale structure statistics, such

� E-mail: nicolas.chartier@phys.ens.fr

as power spectra and bispectra. While analytical work, such as
standard perturbation theory (Jain & Bertschinger 1994; Goroff
et al. 1986), Lagrangian perturbation theory (LPT; Bouchet et al.
1995; Matsubara 2008), renormalized perturbation theory (Crocce &
Scoccimarro 2006), and effective field theory (Carrasco, Hertzberg &
Senatore 2012; Vlah, White & Aviles 2015; Perko et al. 2016), has
made great strides [see also Bernardeau et al. (2002), Desjacques,
Jeong & Schmidt (2018) for reviews], the reference models for
large-scale structure are based on computationally intensive N-body
simulations that compute the complex non-linear regime of structure
growth. In recent years, the BACCO simulation project (Angulo
et al. 2020), the Outer Rim Simulation (Heitmann et al. 2019), the
Aemulus project I (DeRose et al. 2019), the ABACUS Cosmos
suite (Garrison et al. 2018), the Dark Sky Simulations (Skillman
et al. 2014), the MICE Grand Challenge (MICE-GC; Crocce et al.
2015), the Coyote Universe I (Heitmann et al. 2010), and the
Uchuu simulations (Ishiyama et al. 2020), among others, involved
generation of expensive N-body simulations.

While analytical methods compute expectation values of large-
scale structure statistics, a simulation generates a single realization
and its output therefore suffers from sample variance. Reducing this
variance to a point where it is subdominant to the observational error
therefore requires running ensembles of simulations.
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Computational cosmologists have been tackling the challenge of
optimizing N-body codes and gravity solvers for a growingly larger
number of particles. Widely used codes include the parallel Tree
Particle-Mesh (TreePM or TPM) codes GADGET-II by Springel (2005)
and GREEM by Ishiyama, Fukushige & Makino (2009), the adaptive
treecode 2HOT by Warren (2013), the GPU-accelerated ABACUS code
originated from Garrison (2019), the Hardware/Hybrid Accelerated
Cosmology Code (HACC) developed by Habib et al. (2016), and
the distributed-memory and GPU-accelerated PKDGRAV3, based on
Fast Multipole Methods and adaptive particle timesteps, from Potter,
Stadel & Teyssier (2017). The memory and CPU time requirements
of such computations are a bottleneck for future work on new-
generation cosmological data sets. As an example, the 43 100 runs
in the Quijote simulations from Villaescusa-Navarro et al. (2020), of
which the data outputs are public and used in this paper, required 35
million CPU-core-hours.

The search for solutions has led to alternative, fast, and approxi-
mate ways to generate predictions for large-scale structure statistics.
The COmoving Lagrangian Acceleration (COLA) solver of Tassev,
Zaldarriaga & Eisenstein (2013) is a PM code that solves the particle
equations of motion in an accelerated frame given by LPT. Particles
are nearly at rest in this frame for much of the mildly non-linear
regime. As a consequence, much larger timesteps can be taken,
leading to significant time savings. The N-body solver FASTPM of
Feng et al. (2016) operates on a similar principle, using modified
kick and drift factors to enforce the Zel’dovich approximation in
the mildly non-linear regime. The spatial COLA (sCOLA) scheme
(Tassev et al. 2015) extends the idea of using LPT to guide the
solution in the spatial domain. Leclercq et al. (2020) have carefully
examined and implemented these ideas to allow splitting large
N-body simulations into many perfectly parallel, independently
evolving small simulations.

In a different family of approaches, but still using LPT,
Monaco et al. (2013) proposed a parallelized implementation of
the PINpointing Orbit Crossing-Collapsed HI-erarchical Objects
(PINOCCHIO) algorithm from Taffoni, Monaco & Theuns (2002).
Chuang et al. (2015) developed a physically motivated enhancement
of the Zel’dovich approximation called EZmocks. Approximate
methods and full N-body simulations can also be jointly used. For
instance, Tassev & Zaldarriaga (2012) proposed a statistical linear
regression model of the non-linear matter density field using the
density field given by perturbation theory, for which the random
residual error is minimized.

Recently, so-called emulators have been of great interest: they
predict statistics in the non-linear regime based on a generic math-
ematical model whose parameters are trained on simulation suites
covering a range of cosmological parameters. An emulator is trained
by Angulo et al. (2020) on the BACCO simulations; similarly, the
Aemulus project contributions II, III, and IV (McClintock et al.
2019a, b; Zhai et al. 2019), respectively, construct an emulator for
the halo mass function, the galaxy correlation function, and the halo
bias using the Aemulus I suite (DeRose et al. 2019). Not only do
emulators that map cosmological parameters to certain outputs need
large numbers of simulations for training, they also do not guarantee
unbiased results with respect to full simulation codes, especially
outside the parameter range used during training.

Recent advances in deep learning have allowed training emulators
that reproduce particle positions or density fields starting from
initial conditions therefore essentially emulating the full effect of
a low-resolution cosmological N-body code – these include the
Deep Density Displacement Model (D3M) of He et al. (2019)
stemming from the U-NET architecture (Ronneberger, Fischer &

Brox 2015). Kodi Ramanah et al. (2020) describe a complementary
deep learning tool that increases the mass and spatial resolution
of low-resolution N-body simulations using a variant of Generative
Adversarial Networks (Goodfellow et al. 2014).

None of these fast approximate solutions exactly reproduce the
results of more computationally intensive codes. They trade com-
putational accuracy for computational speed, especially in the non-
linear regime. In this vein, the recent series of papers by Lippich et al.
(2019), Blot et al. (2019), and Colavincenzo et al. (2019) compare
the covariance matrices of clustering statistics given by several low-
fidelity methods to those of full N-body codes and find statistical
biases in the parameter uncertainties by up to 20 per cent.

A different approach to this problem is to reduce the stochasticity
of the initial conditions, thereby modifying the statistics of the
observables in such a way as to reduce sample variance. This is
the spirit of the method of fixed fields invented and first explored by
Pontzen et al. (2016) and Angulo & Pontzen (2016). They found
in numerical experiments that a large variety of statistics retain
the correct mean, and analytically showed that pairing and fixing,
while changing the initial distributions, only impact a measure-
zero set of correlations when the errors are not smothered by the
large number of available modes. While this approach does not
guarantee that any given statistic will be unbiased, the numerical
study by Villaescusa-Navarro et al. (2018) showed that ‘fixing’
succeeds in reducing variance for several statistics of interest with
no detectable bias when comparing to an ensemble of hundreds of
full simulations and at no additional cost to regular simulations.
Still, it is clear that other statistics must necessarily be biased, for
example, the square of any variance-reduced statistic, such as four-
point functions. Still in the family of variance reduction methods,
Smith & Angulo (2019) built a composite model of the matter power
spectrum and managed to cancel most of the cosmic variance on
large scales, notably by using the ratio of matched phase initial
conditions.

In this paper, we show that it is possible to get the best of both
worlds: the speed of fast surrogates and the guarantee of full-
simulation accuracy.1 We take inspiration from control variates, a
classical variance reduction technique that directly and optimally
minimizes the variance of any random quantity [see Lavenberg &
Welch (1981) for a review, and Gorodetsky et al. (2020) and
Peherstorfer, Willcox & Gunzburger (2016) for related recent appli-
cations], to devise a way to combine fast but approximate simulations
(or surrogates) with computationally intensive accurate simulations
to vastly accelerate convergence while guaranteeing arbitrarily small
bias with respect to the full simulation code. We call this Convergence
Acceleration by Regression and Pooling (CARPool).2

The paper is organized as follows. In Section 2, we explore the
theory of univariate and multivariate estimation with control variates
and highlight some differences in our setting for cosmological sim-
ulations. In Section 3, we briefly discuss both the N-body simulation
suite and our choice of fast surrogates we use in the numerical
experiments presented in Section 4. We conclude in Section 5.

Table 1 lists mathematical notation and definitions used throughout
this paper.

1As a jargon reminder, the accuracy and precision of an estimate refer,
respectively, to the trueness of its expectation (in terms of the statistical bias)
and the confidence in the expectation (standard errors, confidence intervals).
2We will consider surrogates to be much faster than simulations, so that we
only need to consider the number of simulations to evaluate computational
cost.
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Table 1. Mathematical notation and definitions.

Notation Description

SN = {r1, . . . , rN } Set of N random seeds rn of probability
space

y(rn) ≡ yn Random column vector of size p at seed rn

E [ y] ≡ μ y Expectation value of random vector y
�m, n� Set of integers from m to n
MT Transpose of real matrix M
M† Moore–Penrose pseudo-inverse of matrix

M
det (M) Determinant of matrix M
E
[
(x − E [x]) (x − E [x])T ] ≡ �xx Variance-covariance matrix of random

vector x
E
[
( y − E [ y]) (x − E [x])T ] ≡ � yx Cross-covariance matrix of random vectors

y and x
σ 2

y Variance of scalar random variable y
0p,q and 0p Null matrix in Rp×q and null vector in Rp

Ip Square p × p identity matrix

2 ME T H O D S

Let us consider a set of observables yi we would like to model (e.g.
power spectrum or bispectrum bins) and collect them into a random
vector y with values in Rp . The standard estimate of the theoretical
expectation of y, E [ y] = μ, from a set of independent and identically
distributed realizations yn, n = 1, . . . N, is the sample mean

ȳ = 1

N

N∑
n=1

yn. (1)

Then the standard deviation σ i of each element ȳi decreases as
O(N− 1

2 ), under mild regularity conditions (principally that σ i exists).
Our goal is to find a more precise – i.e. lower variance –

and unbiased estimator of E [ y] with a much smaller number of
simulations yn. The means by which we achieve this is to construct
another set of quantities that are fast to compute such that (i) their
means are small enough to be negligible, and (ii) their errors are
anticorrelated with the errors in the yn,3 and add some multiple of
these to ȳ to cancel some of the error in the yn. This is the control
variates principle.

2.1 Theoretical framework

In what follows we will use the word simulation to refer to costly
high-fidelity runs and surrogate for fast but low-fidelity runs.

2.1.1 Introduction with the scalar case

Let us consider a scalar simulated observable y, such that E [y] = μ,
and a surrogate c of y with E [c] = μc. Note that μ �= μc in general.
For any β ∈ R, the quantity

x(β) = y − β (c − μc) (2)

is an unbiased estimator of μ by construction. The optimal value for
β is determined by minimizing the variance of the new estimator,

σ 2
x(β) = β2σ 2

c − 2βcov(y, c) + σ 2
y . (3)

The function (3) of β has a strict global minimum point at

β� = argmin
β∈R

σ 2
x(β) = cov(y, c)

σ 2
c

. (4)

3The intuition behind this principle is that for two random scalars a and b,
we have σ 2

a+b = σ 2
a + σ 2

b + 2cov(a, b).

Plugging equation (4) into equation (3) allows us to express the
variance reduction ratio of control variates as

σ 2
x(β)

σ 2
y

= 1 − ρ2
y,c , (5)

with ρy, c the Pearson correlation coefficient between y and c. The
latter result shows that no matter how biased the surrogate c might be,
the more correlated it is with the simulation y, the better the variance
reduction. For the classical control variates method, the choice of c is
restricted to cases where μc and β are known a priori. In Section 2.2
below, we will consider the more general case, typically encountered
in practice, where β is not known and we must estimate it from data.

2.1.2 Multivariate control variates

Let y be an unbiased and costly simulation statistic of expectation
μ ∈ Rp , and c an approximate realization with E [c] = μc ∈ Rq .
Similarly to the scalar case, for any β ∈ Rp×q the control variates
estimator is

x(β) = y − β (c − μc) . (6)

�xx , the covariance matrix of the random vector x(β), is expressed
as a function of β,

�xx(β) = β�ccβ
T − β�T

yc − � ycβ
T + � yy. (7)

Optimizing variance reduction here means minimizing the confi-
dence region associated to E [x(β)] and represented by the general-
ized variance det (�xx(β)). Appendix A presents a Bayesian solution
to the Gaussian version of this optimization problem.

Here we present an outline of the derivation in de O. Porta Nova &
Wilson (1993) and Venkatraman & Wilson (1986). The course
by Helwig (2017) provides an overview of canonical correlation
analysis that is used in the derivation. The oriented volume of the
p-dimensional parallelepiped spanned by the columns of �xx(β) is
minimized as the analogue of an error bar in the univariate case.
Rubinstein & Marcus (1985) proved that

β� = argmin
β∈Rp×q

det (�xx(β)) = � yc�
−1
cc . (8)

Combining equations (8) and (7) gives the generalized variance
reduction

det (�xx(β�))

det
(
� yy

) = det
(
� yy

(
Ip − �−1

yy � yc�
−1
cc �T

yc

))
det

(
� yy

)
=

s=rank(�yc)∏
n=1

(
1 − λ2

n

)
, (9)

where the scalars λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
s ≥ 0 are the eigenvalues of

�−1
yy � yc�

−1
cc �T

yc and whose square roots are the canonical correla-
tions between y and c. More precisely, λ1 is the maximum obtainable
cross-correlation between any linear combinations uT

1 y and vT
1 c,

λ1 = argmax
u1∈Rp,v1∈Rq

uT
1 � ycv1√

uT
1 � yyu1

√
vT

1 �ccv1

, (10)

and {λn; n ≤ s} are found recursively with the constraint of uncorre-
latedness between

{
uT

n y, vT
n c

}
and

{
uT

1 y, vT
1 c, . . . , uT

n−1 y, vT
n−1c

}
.

At the end, we have two bases for the transformed vectors u =[
uT

1 y, . . . , uT
s y

]T
and v = [

vT
1 c, . . . , vT

s c
]T

in which their cross-
covariance matrix is diagonal i.e. �uv = diag (λ1, . . . , λs).
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2.2 Estimation in practice

In this section, we examine practical implications of the control
variates implementation when the optimal control matrix β (or
coefficients) and the mean of the cheap estimator μc are unknown. We
will consider an online approach in order to improve the estimates of
(4) or (8) as simulations and surrogates are computed. Estimating μc

is done through an inexpensive pre-computation step that consists
in running fast surrogates. From now on, to differentiate our use
of the control variates principle and its application to cosmological
simulations from the theory presented above, we will refer to it as
the CARPool technique.

For the purposes of this paper, we will take as our goal to produce
low-variance estimates of expectation values of full simulation
observables. When we discuss model error, it is therefore only
relative to the full simulation. From an absolute point of view the
accuracy of the full simulation depends on a number of factors such as
particle number, force resolution, timestepping, inclusion of physical
effects, etc. The numerical examples of full simulations we give are
not selected for their unmatched accuracy, but for the availability of
a large ensemble that we can use to validate the CARPool results.

2.2.1 Estimation of μc

In the textbook control variates setting, the crude approximation μc

of μ is assumed to be known. There is no reason for this to be the
case in the context of cosmological simulations, thus we compute
μ̄c with surrogate samples drawn on a separate set of seeds SM =
{r1, . . . , rM} (SN ∩ SM = ∅, where SN is the set of initial conditions
of simulations). What is then the additional variance-covariance of
the control variates estimate stemming from the estimation of μc?

First, write each cheap-estimator realization as c = μc + δ, with
E [δ] = 0q ,

μ̄c = μc + 1

M

M∑
i=1

δi ,

�μ̄cμ̄c = �δ̄δ̄ = 1

M
�cc. (11)

Replacing μc by μ̄c in equation (6) and computing the covariance
results in

x(β, μ̄c) = y − β (c − μc) + βδ̄,

�xx(β, μ̄c) = �xx(β) + β
�cc

M
βT , (12)

with �xx(β) from equation (7). The βδ̄ term above is statistically
independent of the rest of the sum, since it is computed on a separate
set of seeds. As expected, additional uncertainty is brought by �cc

and scaled by the estimated control matrix. See Appendix A for a
Bayesian derivation of the combined uncertainty in the Gaussian case
while taking into account possible prior information on μ and/or μc.

2.2.2 Estimation of the control matrix

The matrices in equation (8) need to be estimated from data via the
bias-corrected sample covariance matrix

�̂ yc = 1

N − 1

N∑
i=1

(
yi − ȳ

)
(ci − c̄)T ,

�̂cc = 1

N − 1

N∑
i=1

(ci − c̄) (ci − c̄)T . (13)

The computational cost of y is the limiting factor for estimating
� yc. Therefore, the cross-covariance matrix is estimated online,
as our primary motivation is to reduce the computation time: for
instance, we certainly do not want to run more costly simulations in
a precomputation step like we do for μc with fast simulations. Simply
put, �̂ yc is updated each time a new simulation pair is available.

Note that for finite N, the inverse of �̂cc in equation (13) is not an
unbiased estimator of the precision matrix �−1

cc (Hartlap, Simon &
Schneider 2006). Moreover, �̂−1

cc is not defined when �̂cc is rank-
deficient, which is guaranteed to happen when N is smaller that p .
We have consequently replaced �−1

cc by the Moore–Penrose pseudo-
inverse – always defined and unique – �†

cc in equation (8) for the
numerical analysis presented in Section 4 to be able to compute
multivariate CARPool estimates even when N < p.

Since the singular value decomposition exists for any complex
or real matrix, we can write � yc = U V W T and �cc = O P QT =
O P OT by symmetry. The optimal control matrix now gives
β� = U V W T O P−1 OT . The product −P

1
2 OT whitens the centered

surrogate vector elements (principal component analysis whitening),
O P− 1

2 restretches the coefficients and returns them to the surrogate
basis, and then U V W T projects the scaled surrogate elements into the
high-fidelity simulation basis and rescales them to match the costly
simulation covariance. It follows that, when using β̂ in practice, the
projections are done in bases specifically adapted to the y and c
samples available. With this argument, we justify why we use the
same simulation/surrogate pairs to compute β̂ first (with the Moore–
Penrose pseudo-inverse of the surrogate covariance replacing the
precision matrix) and estimate the CARPool mean after that.

An online estimation of both β̂ and x̄(β̂), considering incoming{
yn, cn

}
pairs computed on the same seed rn, amounts to computing

a collection of N samples as functions of β̂,

xn(β̂) = yn − β̂ (cn − μ̄c) . (14)

We implement equation (6) by taking the sample mean of N such
variance-reduced samples,

x̄(β̂) = ȳ − β̂ (c̄ − μ̄c) . (15)

This way, equation (15) can be computed each time a simula-
tion/surrogate pair is drawn from a seed in SN = {r1, . . . , rN }, after
updating β̂ according to equation (13).

2.2.3 Multivariate versus univariate CARPool

So far we have not assumed any special structure for β. If, as in the
classical control variates setting, the (potentially dense) covariances
on the right-hand side of equation (8) are known a priori, then β� is
the best solution because it exploits the mutual information between
all elements of y and c.

In practice, we will be using the online approach discussed in
Section 2.2.2 for a very small number of simulations. If we are limited
by a very small number of

{
yn, cn

}
pairs compared to the number

of elements of the vectors, the estimate of β� can be unstable and
possibly worsen the variance of equation (15), though unbiasedness
remains guaranteed.

We will demonstrate below that in the case of small number of
simulations and a large number of statistics to estimate from the
simulations, it is advantageous to impose structure on β. In the
simplest case, we can set the off-diagonal elements to zero. This
amounts to treating each vector element separately and results in
a decoupled problem with a separate solution (4) for each vector
element.
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The univariate setting of 2.1.1 applied individually to each vector
element (bin) will be referred to as ‘diagonal β’ or βdiag, as it amounts
to fixing the non-diagonal elements of �cc and � yc to zero in equation
(8) and only estimating the diagonal elements

βdiag =

⎛
⎜⎜⎜⎜⎜⎜⎝

cov(y1,c1)
σ 2
c1

cov(y2,c2)
σ 2
c2

0
0 .. .

cov(yp,cp )

σ 2
cp

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)

The intent of this paper is to show the potential of control variates for
cosmological simulations; to this end, we will compare the following
unbiased estimators:

(i) GADGET, where we compute the sample mean ȳ from N-body
simulations only.

(ii) Multivariate CARPool described by equation (6), where we
estimate the control matrix β online using equations (13), and denote
it by β�.

(iii) Univariate CARPool, where we use the empirical counterpart
of equation (4) as the control coefficient for each element of a vector:
we estimate βdiag.

Other, intermediate choices between fully dense and diagonal β

are possible and may be advantageous in some circumstances. We
will leave an exploration of these to future work, and simply note
here that this freedom to tune β does not affect the mean of the
CARPool estimate.

3 C O S M O L O G I C A L S I M U L AT I O N S

This section describes the simulation methods that we use to compute
the statistics presented in Section 4. The simulations assume a �

cold dark matter (�CDM) cosmology congruent with the Planck
constraints provided by Planck Collaboration (2020): �m = 0.3175,
�b = 0.049, h = 0.6711, ns = 0.9624, σ 8 = 0.834, w = −1.0, and
Mν = 0.0 eV.

3.1 Quijote simulations at the fiducial cosmology

Villaescusa-Navarro et al. (2020) have publicly released data outputs
from N-body cosmological simulations run with the full TreePM
code GADGET-III, a development of the previous version GADGET-II

by Springel (2005).4 Available data and statistics include simula-
tion snapshots, matter power spectra, matter bispectra and matter
probability density functions. The sample mean of each statistic
computed from all available realizations gives the unbiased estimator
of E [ y] = μ. The fiducial cosmology data set contains 15 000
realizations; their characteristics are grouped in Table 2.

As discussed in Section 2.2, the Quijote simulations are selected
because we have access to an extensive ensemble of simulations
that we can use to validate the CARPool approach. In the following
we will look at wavenumbers k = ∼1 hMpc−1 where the Quijote
simulations may not be fully resolved. This is not important for the
purposes of this paper; we will consider the full simulation ensemble
as the gold standard that we attempt to reproduce with a much smaller
number of simulations plus fast surrogates.

4Instructions to access the data are given at https://github.com/franciscovill
aescusa/Quijote-simulations

Table 2. Characteristics of GADGET-III simulations.

Characteristic/parameter Value

Simulation box volume (1000 h−1Mpc)3

Number of CDM particles Np = 5123

Force mesh grid size Nm = 1024
Starting redshift zi = 127
Initial conditions Second-order Lagrangian

perturbation theory (2LPT)
Redshift of data outputs z ∈ {3.0, 2.0, 1.0, 0.5, 0.0}

In the next section, we present the chosen low-fidelity simulation
code which provides an approximate statistic c for our numerical
experiments.

3.2 Choice of approximate simulation method

Any fast solution can be used for c, provided that it can be fed
with the same initial conditions as of the Quijote simulations. To
this end, the matter power spectrum from CAMB (Lewis, Challinor &
Lasenby 2000) at z = 0 is rescaled at the initial redshift zi = 127
to generate the initial conditions, as in Villaescusa-Navarro et al.
(2020). In this work, we use the L-PICOLA code developed by Howlett,
Manera & Percival (2015), an MPI parallel implementation of the
COLA method (Tassev et al. 2013). The core idea of COLA is to
add residual displacements computed with a Particle-Mesh N-body
solver to the trajectory given by the first- and second-order LPT
approximations. If l is the initial Lagrangian position of a particle
and x is its Eulerian comoving coordinates, the evolution of the
residual displacement field �res appears by rewriting the equation of
motion in a frame comoving with the LPT trajectory,

∂2
a�res = −∇x� − ∂2

a�LPT, (17)

where a is the cosmological scale factor and

�res ≡ � − �LPT,

x(l, a) ≡ l + � (l, a) .

Here, we have omitted the Hubble expansion rate and constants for
simplicity, �LPT is the displacement vector associated to xLPT, the
LPT approximation to the Eulerian position x of matter particles,
and � is the gravitational potential obtained by solving the Poisson
equation with ∇x the gradient operator in Eulerian comoving coordi-
nates. Time integration is performed by discretizing the derivative ∂2

a

only on the left-hand side of equation (17), while the (second-order)
LPT displacements are computed analytically and stored. L-PICOLA
has its own initial conditions generator and uses a slightly modified
version of the 2LPTIC code.5To generate L-PICOLA snapshots and
extract statistics, we set the free parameters as presented in Table 3.
Justification for these choices, along with more details on COLA and
the L-PICOLA implementation, can be found in Appendix C.

4 A PPLI CATI ON AND RESULTS

In this section, we apply the CARPool technique to three standard
cosmological statistics: the matter power spectrum, the matter bis-
pectrum, and the one-dimensional probability density function (PDF)
of matter fractional overdensity. We seek to improve the precision of

5The parallelized version of the code is available at http://cosmo.nyu.edu/ro
man/2LPT/
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Table 3. Characteristics of L-PICOLA simulations.

Characteristic/parameter Value

Number of timesteps 20 (linearly spaced)
Modified timestepping from Tassev
et al. (2013)

nLPT = +0.5

Force mesh grid size Nm = 512
Starting redshift zi = 127
Initial conditions Second-order Lagrangian

perturbation theory (2LPT)
Redshift of data outputs z ∈ {1.0, 0.5, 0.0}

estimates of theoretical expectations of these quantities as computed
by GADGET-III. To assess the actual improvement, we need the sample
mean ȳ of the Quijote simulations on the one hand, and the estimator
(15) on the other hand.

Additionally, unless stated otherwise, each test case has the
following characteristics:

(i) Nmax = 500
{

yi , ci

}
simulation pairs are generated, and the

cumulative sample mean ȳ (resp. x̄(β)) is computed for every other
5 additional simulations (resp. simulation pairs).

(ii) M = 1, 500 additional fast simulations are dedicated to the
estimation of μc.

(iii) The sample mean of 15 000 N-body simulations, accessible
in the Quijote database, is taken as the true μ.

(iv) p = q since we post-process GADGET-III and L-PICOLA snap-
shots with the same analysis codes (e.g. same vector size for y and
c).

(v) The analysis is performed at redshift z = 0.5. The lower the
redshift, the more non-linear (and hence more difficult) the structure
formation problem. We pick the lowest redshift that is relevant for
upcoming galaxy surveys. We expect CARPool to be even more
efficient for higher redshifts.

(vi) δ(x) ≡ ρ(x)/ρ̄ − 1 is the matter density contrast field; the first
term designates the matter fractional overdensity field computed with
the Cloud-in-Cell (CiC) mass assignment scheme. x exceptionally
denotes the three-dimensional comoving grid coordinates here.

(vii) Ngrid designates the density contrast grid size when post-
processing snapshots.

(viii) We use bias-corrected and accelerated (BCa) bootstrap,6

with B = 5 000 samples with replacement, to compute the 95 per cent
confidence intervals of the estimators. Efron & Tibshirani (1994)
explain the computation.

The procedure of the method is illustrated in Fig. 1. The first step is
to run M fast surrogates to compute the approximate mean μc. How
large M should be depends on the accuracy demanded by the user.
Then, for each newly picked initial condition, both the expensive
simulation code and the low-fidelity method are run to produce a
snapshot pair. Only in this step do we need to run the high-fidelity
simulation code N times. The mean (15) can be computed for each
additional pair to track the estimate. In the next section, we assess
the capacity of CARPool to use less than 10 simulations and a set of
fast surrogates to match the precision of a large number of N-body
simulations. All the statistics are calculated from the snapshots with
the PYTHON 3 module PYLIANS3.7

6Available at https://github.com/cgevans/scikits-bootstrap
7Available at https://github.com/franciscovillaescusa/Pylians3

4.1 Matter power spectrum

This section is dedicated to estimating the power spectrum of matter
density in real space at z = 0.5, the lower end of the range covered
by next-generation galaxy redshift surveys. The density contrast
δ(x) is computed from each snapshot with the grid size Ngrid =
1024. The publicly available power spectra range from kmin =
8.900 × 10−3 hMpc−1 to kmax = 5.569 hMpc−1 and contain 886
bins. The following analysis is restricted to kmax = 1.194 hMpc−1

that results in 190 bins. We simplify our test case by compressing the
power spectra into p = 95 bins, using the appropriate re-weighting
by the number of modes in each k bin given in PYLIANS3. Univariate
CARPool gives the best results since we are using the smallest
possible number of costly N-body simulations; for this reason, power
spectrum estimates using the multivariate framework are not shown
here. As we discuss in appendix C, we intentionally run our fast
surrogate (COLA) in a mode that produces a power spectrum that is
highly biased compared to the full simulations, with a power deficit
of more than 60 per cent on small scales.

4.1.1 CARPool versus N-body estimates

Fig. 2 shows the estimated power spectrum with 95 per cent
confidence intervals enlarged by a factor of 20 for better visibility.
Only 5 N-body simulations are needed to compute an unbiased
estimate of the power spectrum with much higher precision than
500 N-body runs on large scales and on the scale of Baryon Acoustic
Oscillations (BAO). On small scales, confidence intervals are of
comparable size.8

We must verify that these results are not produced by a ‘lucky’
set of 5 simulation pairs. To this end, we compute 100 CARPool

means x̄( ̂βdiag) from distinct sets of five random seeds. The CARPool
estimates fall within a sub- per cent accuracy relative to the sample
mean from 15 000 N-body simulations, as illustrated by the upper
panel of Fig. 3. The GADGET sample mean percentage error of 500
simulations with respect to 15 000 simulations is plotted with 95
per cent confidence intervals. We stress here that every percentage
error plot in this paper shows an error with respect to 15 000 N-body
simulations. The mean of 500 GADGET realizations is thus not at
zero per cent, though the difference is very small.

4.1.2 Beta smoothing

Since we use a very small number of simulations, the estimates

of the diagonal elements of β̂diag are noisy. This leads to some
heavy tailed distributions for the CARPool estimates. Using the
freedom we have to modify β without affecting unbiasedness,
we can exploit the fact that we expect neighboring bins to have
similar optimal β. Convolving the diagonal elements with a five-bin-
wide top-hat window slightly reduces the spread at small scales of
CARPool estimates computed with only five GADGET power spectra
and removes outliers. The comparison of the two panels in Fig. 3
illustrates this point. Using a nine-bin-wide Hanning window for
the smoothing yields similar results. We call this technique beta

8While bootstrap is robust for estimating the 95 per cent error bars of a
sample mean with 500 simulation, it is not equally reliable with a very
small number of realizations. This leads to large bin-to-bin variations of the
estimated CARPool confidence intervals in Fig. 2. An alternative, parametric
computation of confidence intervals with very few samples can be found in
Appendix B, using Student t-score values.
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CARPool 1903

Figure 1. Flowchart of the practical application of CARPool to cosmological simulations. We highlight the estimation of μc as a precomputation step using
M fast simulations. The larger the M, the less impacted the variance/covariance of the control variates estimator, as expressed in (11) and Appendix A. The
fractional overdensity images are projected slices of 60 h−1Mpc.
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1904 N. Chartier et al.

Figure 2. Estimated power spectrum with 500 N-body simulations versus

5 pairs of ‘N-body + cheap’ simulations, from which β̂diag is derived.
The estimated 95 per cent confidence intervals are computed with the BCa
bootstrap. They are enlarged by a factor of 20 for better visibility.

Figure 3. Estimated power spectrum percentage error with respect to 15 000
N-body runs: 500 N-body simulations versus 100 sets of five pairs of ‘N-body

+ cheap’ simulations. Each set uses a distinct β̂diag, calculated with the same

seeds used for x̄. The upper panel estimate uses β̂diag while the lower panel

convolves the diagonal elements of β̂diag with a narrow top-hat window. Beta
smoothing removes outliers and Gaussianizes the tails by effectively increas-
ing the number of degrees of freedom for each β estimate. Both panels use the
same random seeds. The estimated 95 per cent confidence intervals are plotted
for the N-body sample mean only, using BCa bootstrap. The dark blue symbols
show the 68 per cent percentile of the CARPool estimates ordered by the
absolute value of the percentage error; the rest appears in light blue symbols.

smoothing and use it with a five-bin-wide top-hat window in what
follows.

Both panels of Fig. 3 show the symmetric 95 per cent confidence
intervals of the surrogate mean with grey dashed lines. They represent

Figure 4. Convergence of a single k-bin at the BAO scale: the cumulative

sample mean ȳ of N-body simulations versus the sample mean x̄(̂βdiag).
Confidence intervals take into account that βdiag is estimated from the same
number of samples used to compute the CARPool estimate of P(k).

the 95 per cent error band likely to stem from the estimation of μc,
relatively to the mean of 15 000 GADGET simulations, hence the
fact that, at large scales especially, the CARPool means concentrate
slightly away from the nullpercentage error. Though the unbiased
estimator in equation (15) takes a precomputed cheap mean, the
practitioner can decide to run more approximate simulations on the
fly to improve the accuracy of μ̄c. Note that the CARPool means with
5 N-body simulations still land withing the 95 per cent confidence
intervals from 500 GADGET simulations, even at large scales where
the difference due to the surrogate mean is visible.

Fig. 4 exhibits the convergence of one power spectrum bin at the
BAO scale as we add more simulations: the 95 per cent error band
of the control variates estimate shrinks extremely fast compared to
that of the N-body sample mean.

4.1.3 Empirical variance reduction

The left-hand panel of Fig. 5 shows the empirical generalized
variance reduction of the CARPool estimate compared to the standard
estimate, as defined in equation (9). The vertical axis corresponds
to the volume ratio of two parallelepipeds of dimension p = 95, in
other words the volume ratio of error ‘boxes’ for two estimators.
The determinant det

(
�̂ yy

)
is fixed because we take all 15 000 N-

body simulations available in Quijote to compute the most accurate

estimate of � yy we have access to, whereas det
(
�xx(β̂)

)
changes

each time new simulation pairs are run. More precisely, for each
data point in Fig. 5, we take the control matrix estimate computed
with 5k, k ∈ �1, 100� simulation pairs and generate 3000 x samples
according to (14) to obtain an estimator of �xx . For that, we use
3000 Quijote simulations and 3000 additional L-PICOLA surrogates
run with the corresponding seeds.

The simpler univariate scheme outperforms the estimation of the
optimal β� for N = 5k, k ∈ �1, 100�, corroborating the experiments
of Section 4.1.1. Furthermore, variance reduction granted by a sub-
optimal diagonal βdiag improves rapidly and reaches its apparent
limit quickly. We suspect that the slight worsening of the variance
reduction, when the number of available samples to estimate β�

neighbors the vector size p, is linked to the eigenspectrum of �†
c,c and

could be improved by projecting out the eigenmodes corresponding
to the smallest, noisiest eigenvalues.

We depict the scale-dependent performance of CARPool for the
matter power spectrum in the right-hand panel of Fig. 5. The vertical
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Figure 5. Left-hand panel: Generalized variance ratio for the power spectrum up to kmax ≈ 1.2 hMpc−1 as a function of the number of available simulations.

Each β̂ and β̂diag serves to generate 3000 samples according to (14) to estimate the CARPool covariance matrix. Right-hand panel: Standard deviation reduction

for each power spectrum bin due to CARPool. The blue and black curves use β̂ and β̂diag estimated with 500 samples. The dashed grey curve exhibits the

actual standard deviation ratio when we have five samples only to compute β̂diag. � yy is estimated using all 15 000 available power spectra from the Quijote
simulations.

axis is the variance reduction to expect from the optimal control
coefficients (or matrix). Namely, we take the data points of the
left panel for 500 simulation/surrogate pairs, extract the diagonal
of the covariance matrices, and divide the arrays. The blue and
black curves show the variance reduction with respect to the sample
mean of N-body simulations using all 500 simulation/surrogate
pairs to estimate the control matrix. In practice, we estimate β

using only five simulation/surrogate pairs; does this noisy β̂ lead
to significant inefficiency? The grey dashed curve shows the actual
standard deviation reduction brought by the rough estimate of βdiag

using five simulation pairs only, with which the results of Figs 2
and 3 are computed. A few k-bins fluctuate high but the variance
reduction remains close to optimal, especially considering that only
five simulations were used, and we have not attempted any further
regularization except for beta smoothing.

4.2 Matter bispectrum

We compute the shot-noise corrected matter bispectrum in real
space (Hahn et al. 2020; Villaescusa-Navarro et al. 2020), using
PYSPECTRUM9 with Ngrid = 360 and bins of width k = 3kf =
1.885 × 10−2 hMpc−1, where kf = 2π

L
hMpc−1 is the fundamental

mode depending on the box size L. As in the previous section, we
present only the results using βdiag instead of β�. We examine two
distinct sets of bispectrum coefficients: in the first case we study the
bispectrum for squeezed isosceles triangles as a function of opening
angle only, averaging over scale; in the second case we compute
equilateral triangles as a function of k.

4.2.1 Squeezed isosceles triangles

We start the analysis by regrouping isosceles triangles (k1 = k2)
and re-weighting the bispectrum monopoles for various k3/k1 ratios
in ascending order. Only squeezed triangles are considered here:
(k3/k1)max = 0.20 so that the dimension of y is p = 98 (see Table 1).

9Available at https://github.com/changhoonhahn/pySpectrum

Figure 6. Upper panel: Estimated bispectrum for squeezed isosceles tri-
angles with 500 N-body simulations versus 5 pairs of ‘N-body + cheap’

simulations, from which the smoothed β̂diag is derived. The estimated
95 per cent confidence intervals are computed with the BCa bootstrap. They
are enlarged by a factor of 20 for better visibility. Lower panel: As in the
upper panel, but for the reduced bispectrum of equilateral triangles.

4.2.2 CARPool versus N-body estimates

On the order of 5 samples are required to achieve a precision similar
to that of the sample mean of 500 N-body simulations as we show in
Fig. 6 (upper panel). Fig. 7 (upper panel) corroborates the claim by
showing thepercentage error of 100 CARPool means using 5 costly
simulations each. The reference is the mean of the 15 000 bispectra
from the Quijote simulations. As in the previous section, we show
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1906 N. Chartier et al.

the 95 per cent error band due to estimation of the surrogate mean
μc with dashed curves.

4.2.3 Empirical variance reduction

As for the power spectrum, the upper left-hand panel of Fig. 8 shows
that the generalized variance reduction is much more significant when
separately estimating control coefficients for each triangle configura-
tion. The right-hand side of the curve suggests an increasing improve-
ment of the multivariate case, but in this range of numbers of required
samples the variance reduction scheme loses its appeal. We have used
1800 additional simulations to compute the covariance matrices inter-
vening in the generalized variance estimates. In the upper right-hand
panel of the figure, the calculation of the standard deviation ratio for
each triangle configuration follows the same logic as in Section 4.1.3.
The grey dashed curve corresponds to the standard deviation reduc-
tion brought by control coefficients (i.e. the univariate CARPool
framework) estimated with 5 simulation/surrogate pairs only.

4.2.4 Equilateral triangles

Here, we analyse equilateral triangles with the modulus of k1 = k2 =
k3 varying up to kmax = 0.75 hMpc−1 (p = 40). For better visibility,
we show the reduced bispectrum monopole Q(k1, k2, k3).

4.2.5 CARPool versus N-body estimates

Similarly to the previous set of triangle configurations, we compare
the precision of the CARPool estimator using 5 N-body simulations
with that of the sample mean from 500 GADGET runs. Fig. 6 (lower
panel) exhibits the estimated reduced bispectrum with five seeds,
while Fig. 7 (lower panel) shows the relative error of various CAR-
Pool sets with respect to the reference from 15 000 N-body samples.

4.2.6 Empirical variance reduction

In Fig. 8 (lower panels), we observe a trend similar to that of the
previous experiments: the univariate control coefficients are much
better than the control matrix in terms of generalized variance
reduction for a realistic number of full N-body simulations.

4.3 Probability density function of smoothed matter fractional
overdensity

The power spectrum and the bispectrum are Fourier-space statistics.
How does CARPool fare on a purely direct-space statistic? In the
Quijote simulations, the probability density function of the matter
fractional overdensity, or the matter PDF, is computed on a grid with
Ngrid = 512, smoothed by a top-hat filter of radius R. There are 100
histogram bins in the range ρ/ρ̄ ∈ [

10−2, 102
]
. We work with the R =

5 h−1Mpc case and restrict the estimation of the PDF to the interval
ρ/ρ̄ ∈ [

8 × 10−2, 5 × 101
]

that contains p = 70 bins. Note that we
intentionally do not do anything to improve the correspondence of
the surrogate and simulation histograms, an example of which is
displayed in Fig. 9.

4.3.1 Empirical variance reduction

For the matter PDF, we show the empirical variance reduction
results before the actual estimates: Fig. 10 shows that the variance
reduction is much milder for the PDF than for the power spectrum

Figure 7. Upper panel: Estimated bispectra percentage error for squeezed
isosceles triangles with respect to 15 000 N-body runs: 500 N-body simu-
lations versus 100 sets of 5 pairs of ‘N-body + cheap’ simulations. Each

set uses a distinct β̂diag, calculated with the same seeds intervening in x̄
and smoothed by a five-bin-wide flat window. The estimated 95 per cent
confidence intervals are plotted for the N-body sample mean only, using
BCa bootstrap. The dark blue symbols show the 68 per cent percentile of the
CARPool estimates ordered by the absolute value of the percentage error;
light-blue symbols represent the rest. Lower panel: As in the upper panel, but
for the reduced bispectrum of equilateral triangles.

or the bispectrum, both for the univariate and multivariate CARPool
frameworks. While the multivariate case does eventually lead to
significant gains, CARPool needsO(100) simulations to learn how to
map density contrast in COLA outputs to density contrast in GADGET-
III simulations. While COLA places overdense structures close to
the right position, their density contrast is typically underestimated,
meaning a level sets of the COLA output is informative about a
different level set of the GADGET-III simulation.

The right-hand panel none the less proves that it is possible to
reduce the variance of the one-point PDF with CARPool, unlike
with paired-fixed fields (Villaescusa-Navarro et al. 2018). As for the
bispectrum, we took the data outputs of 1800 additional simulations
to compute the covariance matrices intervening in the generalized
variance and standard error estimates.

4.3.2 CARPool versus N-body estimates

For the matter PDF we compare CARPool estimates in both the
multivariate and univariate settings. Figs 11 and 12 are paired and
show the comparable performance at the tails of the estimated PDF

for the smoothed β̂diag with 50 samples on the one hand, and the
dense β̂ matrix obtained with 125 simulations on the other. We can
expect O(101) fewer N-body simulations to compute an accurate
estimate of the PDF when applying the simple univariate CARPool
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Figure 8. Upper left-hand panel: Generalized variance ratio of bispectrum for squeezed isosceles triangles as a function of the number of available simulations.

Each β̂ and β̂diag serves to generate 1800 samples according to (14) to estimate the CARPool covariance matrix. Upper right-hand panel: Standard deviation

reduction for each squeezed isosceles triangle to expect from CARPool. The blue and black curves respectively use β̂ and β̂diag estimated with 500 samples.

The dashed grey curve exhibits the actual standard deviation ratio when we have five samples only to compute β̂diag. � yy is estimated with all 15 000 available
bispectra from the Quijote simulations. Lower panels: As in the upper panels, but for the reduced bispectrum of equilateral triangles.

Figure 9. Probability density function of the smoothed matter fractional
overdensity of GADGET-III and L-PICOLA snapshots at z = 0.5 for the same
initial conditions. The characteristics of L-PICOLA are provided in Table 3.

technique (50 instead of 500 here). As discussed above, with enough
simulations CARPool can learn the mapping between the density
contrasts of COLA and GADGET outputs. Therefore, the matter PDF
is a case where the multivariate framework, which involves the
estimation of p × p covariance matrices, shows improvement over the
more straightforward univariate case once the number of available
simulation pairs passes a threshold.

While we wanted to test the performance of CARPool with
minimal tuning, we expect that with some mild additional
assumptions and tuning the univariate CARPool approach could
be improved and similar gains to the multivariate case could be
obtained with a smaller number of simulations. As an example, one
could pre-process the COLA outputs to match the PDF (and power
spectrum) of GADGET-III using the approach described in Leclercq
et al. (2013) to guarantee a close correspondence between bins
of density contrast. In addition, a regularizing assumption would
be to consider transformations from COLA to GADGET-III density
contrasts that are smooth and monotonic.

4.4 Summary of results

Here we present a summary of the variance reduction observed in our
numerical experiments. With M =1500 additional fast simulations
reserved for estimating the cheap mean μ̄c, and with percentage
errors relative to the mean of 15 000 full N-body runs available in
Quijote, we find:

(i) With only 5 N-body simulations, the univariate CARPool tech-
nique recovers the 95-bin power spectrum up to kmax ≈ 1.2 hMpc−1

within the 0.5 per cent error band, when the control coefficients are
smoothed.

(ii) For the bispectrum of 98 squeezed isosceles triangle configu-
rations, the recovery is within 2 per cent when 5 N-body simulations
are available, and 1 per cent when we have 10 of them, still with the

smoothed β̂diag.
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1908 N. Chartier et al.

Figure 10. Left-hand panel: Generalized variance ratio of the matter PDF as a function of the number of available simulations. Each β̂ and β̂diag serves to
generate 1800 samples according to (14) to estimate the CARPool covariance matrix. Right-hand panel: Standard deviation reduction for the PDF bin to expect

from CARPool. The blue and black curves respectively use β̂ and β̂diag estimated with 500 samples. The dashed grey curve exhibits the actual standard deviation

ratio when we have 10 samples only to compute β̂diag. � yy is estimated with all 15 000 available PDFs from the Quijote simulations.

Figure 11. Estimated matter PDF with 500 N-body simulations versus

CARPool estimates. β̂diag is used in the upper panel whereas the full control
matrix is computed in the lower panel. The estimated 95 per cent confidence
intervals are computed with the BCa bootstrap. They are enlarged by a factor
of 40 for better visibility.

(iii) The bispectrum estimator of equilateral triangles on 40 bins
falls within the 2 per cent (resp. 1 per cent) error band with 5
simulations (resp. 10) at large k, and performs better than the mean
of 500 GADGET simulations at large scales.

(iv) The standard deviation of matter PDF bins can also be reduced
with CARPool, by factors between 3 and 10, implying that the
number of required costly simulations is lowered by an order of
magnitude.

Figure 12. Estimated matter PDF percentage error with respect to 15 000
N-body runs: sample mean of 500 N-body simulations versus CARPool

estimates. In the upper panel, β̂diag is used for each set and smoothed by
a five-bin-wide flat window. In the lower panel, the full control matrix β̂

is estimated for each group of seeds. The estimated 95 per cent confidence
intervals are plotted for the N-body sample mean only, using BCa bootstrap.

In Appendix B, we provide the power spectrum and bispectrum
results when the CARPool means are computed with 10 simula-
tion/surrogate pairs instead of the 5 pairs presented so far.

5 D I SCUSSI ON AND C ONCLUSI ONS

We presented CARPool, a general scheme for reducing variance
on estimates of large-scale structure statistics. It operates on the
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idea of forming a combination (pooling) of a small number of
accurate simulations with a larger number of fast but approximate
surrogates in such a way as to not introduce systematic error (zero
bias) on the combination. The result is equivalent to having run
a much larger number of accurate simulations. This approach is
particularly adapted to cosmological applications where our detailed
physical understanding has resulted in a number of perturbative and
non-perturbative methods to build fast surrogates for high-accuracy
cosmological simulations.

To show the operation and promise of the technique, we computed
high-accuracy and low-variance predictions for statistics of GADGET-
III cosmological N-body simulations in the �CDM model at z =
0.5. A large number of surrogates are available; for illustration we
selected the approximate particle mesh solver L-PICOLA.

For three different examples of statistics, the matter power spec-
trum, the matter bispectrum, and the probability density function
of the matter fractional overdensity, CARPool reduces variance
by factors 10 to 100 even in the non-linear regime, and by much
larger factors on large scales. Using only five GADGET-III simulations
CARPool is able to compute Fourier-space two-point and three-point
functions of the matter distribution at a precision comparable to 500
GADGET-III simulations.

CARPool requires (i) inexpensive access to surrogate solutions,
and (ii) strong correlations of the fluctuations about the mean of the
surrogate model with the fluctuations of the expensive and accurate
simulations. By construction, CARPool estimates are unbiased
compared to the full simulations no matter how biased the surrogates
might be. In all our examples, we achieved substantial variance
reductions even though the fast surrogate statistics were highly biased
compared to the full simulations.

So far we have presented CARPool as a way to accelerate the
convergence of ensemble averages of accurate simulations. An
equivalent point of view would be to consider it a method to remove
approximation error from ensembles of fast mocks by running a
small number of full simulations. Such simulations often already
exist, as in our case with the Quijote simulations, not least because
strategies to produce fast surrogates are often tested against a small
number of simulations.

In some cases there are opportunities to use CARPool almost for
free: for instance, using linear theory from the initial conditions as
a surrogate model has the advantage that μc (the mean linear theory
power spectrum) is perfectly known a priori. In addition, the de-
correlation between linearly and non-linearly evolved perturbations
is well studied, and can be used to set β. Even for just a single N-body
simulation, and without the need to estimate μc from an ensemble of
surrogates, this would remove cosmic variance on the largest scales
better than in our numerical experiments with L-PICOLA, which are
limited by the uncertainty of the μc estimate.

Regardless of the details of the implementation, the reduction of
sample variance on observables could be used to avoid having to
run ensembles of simulations (or even surrogates) at the full survey
volume. This would simplify simulation efforts for upcoming large
surveys since memory limitations rather than computational time
are currently the most severe bottleneck for full-survey simulations
(Potter et al. 2017).

In comparison to other methods of variance reduction, CARPool
has the main advantage of guaranteeing lack of model error (‘bias’)
compared to the full simulation. ‘Fixing’ (Angulo & Pontzen 2016;
Pontzen et al. 2016) explicitly modifies the statistics of the gen-
erated simulation outputs; which observables are unbiased must be
checked on a case-by-case basis, either through theoretical arguments
or through explicit simulation (Villaescusa-Navarro et al. 2018).
Klypin, Prada & Byun (2020) argue that ‘fixed’ field initialization

is unsuitable for simulation suites to estimate accurate covariance
matrices, and they are pessimistic about the possibility of generating
mock galaxy catalogues solely with this technique.

Pontzen et al. (2016) and Angulo & Pontzen (2016) also introduce
and study the ‘pairing’ technique. ‘Pairing’ reduces variance for
k-space observables (such as the power spectrum) by a factor of
O(1) by combining two simulations whose initial conditions only
differ by an overall minus sign, that is they are phase-flipped. This
technique can be analysed simply in the control variates framework of
CARPool. Consider the phase-flipped simulation as the surrogate for
the moment. The mean of an ensemble of phase-flipped simulations
is identical to the mean of the unflipped simulations by symmetry.
‘Pairing’ then amounts to taking β = −1 to cancel off contributions
of odd-order terms in the initial conditions (Angulo & Pontzen 2016;
Pontzen et al. 2016) to reduce variance on the simulation output.
Inserting this β in equation (2) and taking the expectation shows that
‘pairing’ is an unbiased estimator of the simulation mean.

Other opportunities of exploiting the control variates principle
abound; related ideas have been used in the past. As an example,
a very recent study (Smith et al. 2021) succeeds in reducing the
variance of the quadrupole estimator of the two-point clustering
statistic in redshift space. In this case, the variance reduction is
achieved by combining different, correlated lines of sight through
the halo catalogue of the Outer Rim simulation. Though not driven
by a general theoretical framework that guarantees unbiasedness and
optimal variance reduction, for the specific application at hand their
approach does not require pre-computation of fast surrogates and
uses a control matrix set based on physical assumptions.

While we intentionally refrained from tuning CARPool for
this first study, there are opportunities to use physical insight to
adapt it for cosmological applications. For instance, the one-point
remapping technique proposed by Leclercq et al. (2013) that allows
us to increase the cross-correlation between LPT-evolved density
fields and full N-body simulations could improve snapshots of a
chosen surrogate for CARPool.

In future work, we plan to explore intermediate forms of CARPool
between the multivariate and univariate versions we study in this
paper. Any given entry of y could be predicted by an optimal
combination of a small subset of c. In this case, the variance reduction
could be improved compared to the univariate case while the reduced
dimension of the control matrix would ensure a stable estimate using
a moderate number of simulations.

The CARPool setup can be applied to numerous ‘N-body code
plus surrogate’ couples for cosmology. It can be used to make high-
resolution corrections to low-resolution simulations, while reducing
variance. This will provide an alternative to the procedure suggested
by Rasera et al. (2014), where the mass resolution effect is estimated
by a polynomial fit of the matter power spectrum ratio, and the
work of Blot et al. (2015), where a linear transformation of the
low-resolution power spectra preserving the mean and variance is
smoothed by a polynomial fit. Furthermore, rather than using a
single surrogate, taking advantage of multiple low-fidelity methods
for variance reduction is also a possibility to explore, especially if
the cost of running a large number of surrogates is non-neglible. For
instance, taking the linear theory as a second surrogate in addition to
L-PICOLA would have strongly reduced the number of L-PICOLA runs
required to match the variance of the μc estimate to the massively
reduced variance of y − β (c − μc). In this regard, the multifidelity
Monte Carlo scheme of Peherstorfer et al. (2016) and the approximate
control variates framework of Gorodetsky et al. (2020) are recent
techniques that reduce variance with multiple surrogates for a fixed
computational budget. We can also combine CARPool with other
techniques. For instance, if the paired-fixed fields initialization of
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Angulo & Pontzen (2016) is found to be unbiased in practice for a
particular statistic, then one can combine it with CARPool for further
variance reduction.

The simplicity of the theory behind CARPool makes the method
attractive for various applications both in and beyond cosmology,
as long as the conditions given above are satisfied. Our results
suggest that CARPool allows estimating the expectation values of
any desired large-scale structure correlators with negligible variances
from a small number of accurate simulations, thereby providing a
useful complement to analytical approaches such as higher-order
perturbation theory or effective field theory. We are planning to
explore a number of these applications in upcoming publications.
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APPEN D IX A : A NA LY TICAL DERIVATION: A
BAYESIA N A P P ROACH

There is an elegant Bayesian derivation of the optimal form of the
control variates estimator for the Gaussian case. The result coincides
with the minimum variance estimator even in the non-Gaussian case.
As in the derivation by Rubinstein & Marcus (1985), the covariance
matrices of the full simulations y and of the fast simulations c
are assumed to be known. In the main text, we use non-parametric
approaches to estimate uncertainties since β is not known a priori
but estimated from the same simulations that we use to estimate μ y.

For notational simplicity, we will use y for the empirical mean
of the brute-force simulations, c for the empirical mean of cheap
simulations, and t for the target, the unknown mean of y. These
quantities can be related in a linear model,

y = t + εy, (A1)

c = m + εc. (A2)

We model the quantities on the right-hand side as

t ∼ N (μy, �t t ), (A3)

εy ∼ N (0p, � yy/N ), (A4)

εc ∼ N (0p, �cc/N ), (A5)

m ∼ N (μc, �mm), (A6)

which express, respectively, any prior information on t from previous
runs, the noise terms for y and c after averaging over N simulations,
and prior information on m from a separate run of fast simulations
of c. In addition, the basis of our methods is to exploit correlation
between the Monte Carlo noise y and c, so cov( y, c) ≡ � yc/N .

Gathering these together in a single vector gives z = (t, y, c, m)T

with multivariate normal density p(z) = p(t, y, c, m). This joint
vector z is a multivariate Gaussian N (μ, �), where

μ =

⎛
⎜⎜⎝

μy

μy

μc

μc

⎞
⎟⎟⎠ (A7)

and

C =

⎛
⎜⎜⎝

�t t �t t 0p,p 0p,p

�t t �t t + � yy/N � yc/N 0p,p

0p,p � yc
T /N �mm + �cc/N �mm

0p,p 0p,p �mm �mm

⎞
⎟⎟⎠. (A8)

The diagonal covariances are the block marginals, representing prior
information; e.g. �mm expresses the uncertainty in m obtained from
a prior, independent simulation set of the fast surrogate. For that
reason � ym = �tm = �t c = 0p,p .

We are interested in the posterior p(t| y, c); this expresses the
information we have about our target t when we have obtained the
set of correlated sample pairs ( y, c). Based on our assumptions, we
know the posterior p(t| y, c) to be Gaussian with mean

μt| y,c = μy + (�t t 0p,p)

(
�t t + � yy/N� yc/N

� yc
T /N�mm + �cc/N

)−1 (
y − μ y

c − μc

)

= μ y + �t t [�t t + 1

N
(� yy − � yc(N�mm + �cc)

−1� yc
T )]−1

(( y − μy) − � yc(N�m + �cc)
−1(c − μc)) (A9)

and covariance

�t| y,c = �t t − (�t t 0p,p)

(
�t t + � yy/N� yc/N

� yc
T /N�mm + �cc/N

)−1 (
�t t

0p,p

)

= �t t − �t t [�t t + 1

N
(� yy − � yc(N�mm + �cc)−1� yc

T )]−1�t t

= [�t t
−1 + N(� yy − � yc(N�mm + �cc)−1� yc

T )−1]−1 . (A10)

These results generalize the earlier equations by (i) including �mm,
the error estimate of μc from a prior run of fast simulations, (ii)
allowing for information from previous runs to be included by
specifying prior mean μt and prior covariance �t t , and (iii) giving
analytical uncertainty estimates for the accelerated estimates.

To make contact with equation (15), we will consider special cases
of this expression. Without prior information on μ y (i.e. �t t → ∞)
we obtain

μt| y,c = y − 1

N
� yc(�mm + 1

N
�cc)

−1(c − μc) (no prior on y)

(A11)

and

�t| y,c = + 1

N
(� yy − � yc(N�mm + �cc)

−1� yc
T ) (no prior on y).

(A12)

For the case where the error on m can be neglected (i.e. �mm →
0p,p) but prior information is included, we obtain

μt| y,c,�mm→0p

= μy + �t t (�t t + � t| y,c,�mm→0p,p
)−1

(( y − μy) − � yc�cc
−1(c − μc)) (μc known) (A13)

and

� t| y,c,�m→0p,p

= [�t t
−1 + N (� yy − � yc�c

−1� yc
T )−1]−1 (μc known).

(A14)

In the absence of prior information and assuming that μc is
perfectly known (i.e. �t t → ∞ and �mm → 0p,p), equation (A10)
simplifies to match the result of equation (15) from Rubinstein &
Marcus (1985),

μt| y,c = y − � yc�cc
−1(c − μc)) (μc known, no prior on y)

(A15)

and

� t| y,c = 1

N
(� yy − � yc(�cc)

−1� yc
T ) (μc known, no prior on y) .

(A16)
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Figure B1. As in Fig. 2, but with 10 N-body simulations used for the
CARPool estimate.

A P P E N D I X B: A D D I T I O NA L IN S I G H T O N
RE SULTS AND C ONFIDENCE INTERVA LS

We start with a reminder about confidence intervals. The ‘1σ rule of
thumb’ (same for two and three) is a direct application of the central
limit theorem (CLT) when estimating a random variable with the
sample mean of N realizations,

ȳ ± γ
σ̂y√
N

, (B1)

where γ is the z-score – e.g. from a normal distribution – associated
to a given confidence band. The 95 per cent symmetric confidence
intervals correspond to γ ≈ 1.96, hence the name 2σ rule.’ With a
very small number of samples, the CLT is not really ‘working,’ so
it is common practice to penalize the confidence intervals by taking

Figure B2. The upper panel shows the same data as in Fig. 2 and the lower
panel is paired with Fig. B1, except that the confidence intervals come from
t-score values with 4 and 9 d.o.f., respectively.

Figure B3. As in the lower panel of Fig. 3, but with 10 N-body simulations
used for the CARPool estimate.

Figure B4. As in Fig. 7, but with 10 N-body simulations used for the
CARPool estimate.

γ from a t-score table i.e. from a Student distribution with N − 1
degrees of freedom, which has fatter tails. For instance, for N = 10,
γ ≈ 2.26 for the 95 per cent confidence band.

Because the trustworthiness of confidence intervals for a sample
mean with very few realizations is debatable, we provide here,
by way of an example for the power spectrum only, Fig. B1 with
bootstrap confidence intervals of 10 CARPool samples and Fig. B2
for CARPool with 5 and 10 N-body simulations but with t-score
intervals accordingly to equation (B1). The latter figure is to compare
with Figs 2 and B1 (exact same data except for the blue CARPool
confidence intervals). We have agreement between the paired plots,
and we notice that the symmetric confidence intervals from t-
score tend to be larger. Additionally, for the two- and three-point
clustering statistics, we present in Figs B3 (power spectrum) and
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Figure B5. Estimated matrices intervening in β� for the matter power spectrum (left) and the matter PDF (right). The cross-covariance, covariance, and

precision matrices are normalized i.e. we display D−1�̂ D−1 with D =
√

diag
(
�̂
)

. ‘od’ denotes the fractional overdensity bin ρ/ρ̄. For better visibility, the

diverging colour scale is not forced to be centered at 0.0 for the � yc and �cc estimates in the upper left corner (power spectrum). All matrices are estimated
using 500 simulation pairs, and represent the ‘close to optimal’ β� towards which the control matrix estimator tends in the multivariate setting.

B4 (bispectrum) the percentage error of CARPool means with 10
simulations that are not shown in the main part of the paper.

We provide also in Fig. B5 an overview of the optimal control
matrix β� from equation (8) for the matter power spectrum and
matter PDF test cases.

APPEN D IX C : C OLA TIMESTEPPING AND
CROSS-COR R ELATION C OEFFICIENTS

We briefly explain our choice of timestepping strategy to generate
a collection of low-fidelity snapshots at z = 0.5. In COLA, the
cosmological scale factor a is used to discretize the time derivative
of the left-hand side of the COLA equation of motion (17),

vi+ 1
2

= vi− 1
2

− a1∂
2
a�res,

r i+ 1
2

= r i + vi+ 1
2
a2 + D1�1 + D2�2. (C1)

Dl = Dl, i + 1 − Dl, i with l ∈ {1, 2} are the changes of linear (or
Zel’dovich) and second-order growth factors between the timesteps,
normalised such that D1(a = 1) = D2(a = 1) = 1. �1 and �2

are, respectively, the linear (or Zel’dovich) and second-order LPT
(or 2LPT) displacement fields at a = 1. We have enabled the
timestepping scheme from Tassev et al. (2013) in which the time
intervals ai, i ∈ {1, 2} are given by

a1 = H0

nLPT

anLPT

i+ 1
2

− anLPT

i− 1
2

anLPT −1
i

,

a2 = H0

anLPT

i+ 1
2

∫ ai+1

ai

anLPT −3

H (a)
da. (C2)

Here, nLPT is an additional free parameter that should be tuned
experimentally for every simulation setting, as Tassev et al. (2013),

Howlett et al. (2015), and Izard, Crocce & Fosalba (2016) already
stressed. The Kick-and-Drift/Leapfrog algorithm of Quinn et al.
(1997) can also be used in L-PICOLA.

Before generating our ensemble of fast surrogates, we tested the
sensitivity of the cross-correlation coefficients ζ yc between the full
N-body dark matter density contrast field δ y and δc produced by
L-PICOLA,

ζyc = E
[
δy(k)δc(k)∗

]√
E
[| δy(k) |2]E

[| δc(k) |2] = Pyc(k)√
Py(k)Pc(k)

, (C3)

to the choice of timestepping.
The numerator in (C3) is the cross power spectrum between the two

aforementioned density contrast fields. δ(k) is the Fourier transform
of the real-space density contrast δ(x). Note that these coefficients
serve as a proxy for the correlation between the COLA and GADGET

snapshots, but do not provide an estimation of the canonical cross-
correlations of (10) between the statistics y and c computed from
these snapshots. Having tested different schemes, we concluded that
choosing linearly-spaced timesteps yields a better cross-correlation
than with logarithmic ones, and that the fewer the timesteps, the
more influential the modified timestepping parameter nLPT in terms
of cross-correlation coefficients (in the case of this study, with a very
high starting redshift of zi = 127). Fig. C1 shows an example with
10 and 20 linearly-spaced timesteps and nLPT ∈ { − 2.5, +0.5}
(the fiducial value and our experimentally ‘best’ value, respectively).
Although ζ yc(k = 1.0 hMpc−1) ≈ 0.96 with 10 timesteps exceeds
ζ yc(k = 1.0 hMpc−1) ≈ 0.94 with 20 timesteps for nLPT = +0.5,
we still chose to generate our L-PICOLA snapshots with 20 timesteps
between zi = 127 and z = 0.0, again, to avoid tuning L-PICOLA for
any one particular statistic. In any case, even with 20 timesteps the
L-PICOLA surrogates are much faster than full GADGET-III simulations.
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Figure C1. Power spectrum recovery ratio (top) and cross power spectrum coefficients (bottom) at z = 0.5 between a specific L-PICOLA snapshot computed
with 10 (left) and 20 (right) linearly-spaced timesteps and the corresponding N-body snapshot derived from the same initial conditions at zi = 127.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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