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Abstract. This paper focuses on a domain expert querying system over
databases. It presents a solution designed for a French enterprise inter-
ested in offering a natural language interface for its clients. The approach,
based on entity enrichment, aims at translating natural language queries
into database queries. In this paper, the database is treated through a
logical paradigm, suggesting the adaptability of our approach to differ-
ent database models. The good precision of our method is shown through
some preliminary experiments.
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1 Introduction

Graph database querying systems adapted to domain experts, and not only to
database experts, deserve great attention nowadays and become an important re-
search topic. Query language such as SPARQL or CYPHER are powerful tools
but require knowledge of the database structure in order to retrieve informa-
tion. To simplify the accessibility of such databases, the research of natural
language interface (NLI) to (structured) databases receives considerable atten-
tion today [15, 18]. The idea of NLI is to allow users to focus on the semantic of
what they want rather than on how to retrieve it.

This paper describes a practical solution for simple natural language queries
on an RDF database, developed for clients of Ennov, a French enterprise spe-
cialised in building software solutions to the life sciences industry. Our proposal
focuses on the enterprise needs, i .e ., factoid queries concerning instances of one
RDF ’class’, but achieves good results allowing (i) to envisage its use to other
domains and (ii) to extend its ideas to more complex queries. The proposal con-
sists in translating a given natural language query (denoted as NL-query) in a
database query (denoted as DB-query). In this paper, we use a logical formalism
to express database and DB-queries which can be easily translated to any graph,
or relational model (and thus to queries on SQL, SPARQL, etc).

In this context, the main contributions of this paper are:

– An original method, based on entities’ enrichment, for translating a NL-
query into a DB-query. Indeed, entity extraction is a subtask of NLP (Natu-
ral Language Processing) and consists of identifying part of an unstructured
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text that represents a named entity. After identifying entities connected to a
specific domain, a classification into different entity types is possible. Follow-
ing this classification, some of them are merged and a set of enriched entities
is obtained. DB-queries are built from this set of enriched entities.

– An approach composed by two distinct phases: a domain specific pre-proces-
sing step and a general query-generating step. The pre-processing step puts
in place the general environment which guides query translation: lexicons
are built (partially) from the information stored in the database, grammars
and ontology mappings are set up. Query-generating algorithms classify and
enrich extracted entities and then transform the obtained set of enriched
entities into database queries.

– A good-precision querying system. Our approach focus on restricted and
specialized domain queries which imply a relatively small vocabulary (mostly
composed by people and technical terms appearing in the database instance).
Our method takes advantages of this context and gives priority to the use
of grammar- and lexicon- based tools. The result is an efficient and precise
query translation system.

– An approach proposing a non disambiguation of the natural language queries.
Indeed, instead of resolving the ambiguity problem intrinsic to natural lan-
guage, we adopt a lazy approach and consider all possible interpretations,
generating all possible database queries. This option avoids the expensive
disambiguation process and speed up the whole performance. The same idea
is used to solve ambiguity coming from the use of coordinating conjunctions.

Our querying system is available over an RDF database storing information
about medical documents. The system translates a NL-query into a DB-query
offering a user-friendly interface. Let us briefly introduce each of these queries
together with a running example.

NL-query. Ennov’s motivation is to offer a querying system capable to allow
its users to perform the so-called facet search, narrowing down search results
by applying multiple filters. Accepted queries are those requiring information
on instances of one unique RDF class (denoted here as solar-class). An allowed
query selects only the solar-class instances (the nodes of the given type) via
properties having the solar-class as domain or range (the in- or out-edges). For
instance, supposing that Book is a solar-class, a query requiring book instances
edited by doctor Alice on cardiology after year 2018 is an allowed query. On
the contrary, a query requiring book instances edited by doctor Alice who is
cardiologist, is not allowed since is cardiologist is not a property (and edge) of
the current solar-class. If the user wants to identify doctors who are writers, then
he has, firstly, to change his solar-class specification. In other terms, our query
are simple queries identifying instances of one class (even if it can also renders
values concerning properties of these instances). The NL-query follows the format
Find books which... (establishing Book as the solar-class), Find doctors who...
(Doctors as the solar-class), etc.
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Now, as a running example, we introduce query Qrun. We use it in the rest
of the paper to show, step by step, how to obtain a DB-query. When talking
specifically about the NL-query version we can write NLQrun.

Find books with title ’Principles of Medicine’ co-authored by Bob and Alice and

whose price is less than 30 dollars.

DB-query. We use a logical paradigm to express RDF databases and queries.
We write Book(Anatomy) to express that Anatomy is an instance of class Book

and writtenBy(Anatomy, Bob) to express that Anatomy has value Bob for prop-
erty writtenBy.

We briefly introduce this logic formalism (refer to [4] for some background
on this aspect). An atom has one of the forms: (i) P (t1, ..., tn), where P is an
n-ary predicate and t1, ..., tn are terms (terms are constants or variables); (ii)
⊤ (true) or ⊥ (false); (iii) (t1 op α2), where t1 is a term, α2 is a term or a
character string, and op is a comparison operator. A fact is an atom P (u) where
u has only constants. A database schema is a set of predicates G and a database
instance is a set of facts (denoted by D) on G.

A (conjunctive) query q over a given schema has the rule-form R0(u0) ←
R1(u1) . . . Rn(un), comp1, . . . , compm where n ≥ 0, Ri (0 ≤ i ≤ n) are predicate
names, ui are tuples of terms of appropriate arity and compj (0 ≤ j ≤ m) are
comparison formulas involving variables appearing in at least one tuple from u1

to un. We denote head(q) (respect. body(q)) the expression on the left hand-
side (respect. right hand-side) of q . The answers for q are tuples t only with
constants. For each t there exists a mapping ht (which maps variables to con-
stants and a constant to itself) such that {R1(ht((u1)), . . . , Rn(ht((un))} ⊆ D,
the conjunction of all ht(compj) is evaluated to true (according to the usual
semantic of opertors op) and ht(u0) = t. In this rule-based formalism, the union
is expressed by allowing more than one rule with the same head. For instance,
q(X)← writtenBy(X,Bob) together with q(X)← editedBy(X,Bob) express a
query looking for documents written or edited by Bob.

Book is the solar-class in NLQrun and thus the DB-query should return the
identifiers of book instances. The following conjunctive DB-query is the DBQrun

– it includes all the conditions imposed on the books being selected.

Q(x)← Book(x), hasT itle(x, y1), writtenBy(x, y2), P erson(y2), writtenBy(x, y3),
P erson(y3), hasPrice(x, y4), (y1 =′ Principles of Medicine′),
(y2 = :bob), (y3 = :alice), (y4 < 30). �

Paper Organization. Our approach is depicted in Sections 2 and 3 while im-
plementation and testing results are presented in Section 4. Section 5 concludes
the paper with some related work and perspectives.

2 Entity Extraction and Enrichment

In this paper we define a simple entity as the tuple E = (V , T ,m) where V and
T are lists containing values and lexical types, respectively, and m is a mapping
such that ∀v ∈ V , ∃T ⊆ T ,m(v)→ T .
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Indeed, during the entity extraction phase, ambiguity, an inherent problem in
many steps of natural language processing, exists: it concerns the type (e .g .Paris
can refer to a city or a person) or the value (e .g ., several people in the database
have the same name). Generally, we seek to eliminate this ambiguity by keeping
only the most likely solution. Such a solution may introduce contradiction w .r .t .
the text semantics. In our approach we explicitly reveal ambiguity (a value may
be associated to different types) and we keep track of multiple interpretations
during this extraction step, a convenient solution for querying, if we consider the
situations where ambiguity can be represented by an OR connective.

Entity Extraction (EE) or Named Entity Recognition (NER) is a subtask of
NLP and consists of identifying part of an unstructured text that represents a
named entity. This task can be performed either by grammar-based techniques
or by a statistical models such machine learning (refer to [11] for a complete in-
troduction in the domain). Statistical approaches are widely used in the industry
because they offer good results with the latest research and the work of giants
like Google, Facebook or IBM. However, these approaches mainly require a lot of
data to get good results, implying high costs. More conventional grammar-based
methods are very useful for dealing with small data sets.

Entity extraction. Our proposal consists in applying different grammar- or
lexicon-based methods together in order to extract simple entities from a given
NL-query. The combination of their results allow us to improve entity extraction.
The initial parsing step is followed by two different entity extraction methods.
One consists of looking up on dictionaries (lexicons) for qualifying an entity. The
other is based on local grammars. Notice that the dependency tree resulting from
the parsing phase may be used for guiding entity extraction with local grammars.

Parsing. In our approach, tokenization (i .e ., determine the words and punctu-
ation), part-of-speech (POS) tagging (i .e ., determine the role of the word in a
sentence), lemmatization (i .e ., determine word canonical form), stematization
(i .e ., strip word suffixes and prefixes) and dependence analysis are achieved
by SpaCy [1] built on a convolutional neural network (CNN) [9] learned from a
generic English corpus [16]. The dependency tree produced by SpaCy [8] guides
different choices in some of the following steps of our approach. Fig 1 illustrates
part of the dependency tree for NLQrun.

Find the books with the title ”Principles of Medicine” co-authored by Bob and Alice

VERB DET NOUN ADP DET NOUN PROPN ADP PROPN VERB ADP PROPN CCONJ PROPN

ROOT

det
dobj

prep det
pobj appos prep pobj

relcl

agent pobj cc

conj

Fig. 1: Dependency tree and POS tagging

Lexicons. When, as in our case, we deal with entity extraction founded on a
relatively small database, one could envisage to verify, for each value in the
database, whether it appears in the text. However, to improve performance and
ensure low coupling, our option consists in building lexicons (i .e ., lookup tables)
from the database and then in using them as dictionaries containing a summary
of the database instance.
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LEXICONS INVERSE INDEX

EntityName Lexemes Pointer to Index Entry (word from text)
:alice Alice, Wonderful, Wonderful Alice :alice Alice
:bob Sponge, Bob, Sponge Bob :alice Alice Wonderful
. . . . . .

author co-authored, written by, created by :bob Bob
. . . author co-authored

lt less than lt less than
. . . :alice Wonderful

. . . . . .

Ontology-Mappings Operator Dictionary

EntityName LexType DBType DBType Predicate EntityName Comparator
:alice Person Person Person Person (X) lt <

author Context Author Author writtenBy ( , X) leq ≤

:bob Person Person Book Book (X) gt >

title Context Title Title hasTitle ( , X) geq ≥

:alice Doctor MedicalDoc MedicalDoc Doctor (X) . . . . . .

Fig. 2: Auxiliary structures built in the pre-processing phase

Fig. 2 illustrates an inverse index pointing to lexicons. It helps finding Enti-
tyValue quickly. For instance, if Wonderful Alice is the string found in the text,
the index allows us to find how to refer to it, i .e ., with its EntityValue, :alice.
With EntityValue we have access to information stored in auxiliary structures
denoted here by Ontology-Mappings. In order to simplify notations, we consider
the existence of three functions that render information over Ontology-Mappings.
They are: (1) lexT: given EntityValue, the function renders its lexical type indi-
cating entity’s lexical role, detected during the lexical analysis; (2) dbT: given
EntityValue, the function renders its database type which indicates the semantic
associated to the entity in our RDF database and (3) getPred: given the database
type, the function renders the associated predicate which is the one we should
use in the DB-query. Moreover, the arity of predicates is indicated together with
the argument position reserved for an entity having this database type. Accord-
ing to the example in Fig. 2, we have: lexT(: alice) = Person, dbT(: alice) =
Person and getPred(Person) = Person(Xperson). Similarly, lexeme co-authored
by refers to the entity value author and we obtain lexT(author) = Context,
dbT(author) = Author and getPred(Author) = writtenBy(X,Yauthor).

Entity EntityValue lexT

E1 book Context
E2 title Context
E3 author Context
E4 :bob Person
E5 :alice Person
E6 price Context
E7 lt Operator
E8 ’Princ. of Medecine’ Text
E9 30 Number

Fig. 3: Simple entities extracted
from NLQrun

Local grammar. There is no sense in stor-
ing possible values for attributes associated
to huge domains. Dates, general numerical
attributes (e .g ., prices, weight, etc) or even
publication or section titles are not stored
in our database. Entity extraction, for such
cases, is based on local grammars. Currently
we have designed 15 local grammars as a sup-
port for our entity extraction mechanism.

Example 1. We show our NLQrun with expressions in boxes indicating the en-
tities detected after the extraction step. Fig. 3 summarizes obtained entities:
E1-E7 via Lexicons while E8-E9 are detected by local grammars. Fig. 3 does not
represent set notation to avoid figure overload. Here, each entity has only one
value and each value is associate to a singleton.
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Find the books1 with the title2 ”Principles of Medicine”8 co-authored by3

Bob4 and Alice5 and whose price6 is less than7 309 dollars. �

Once we have extracted simple entities, we classify them into categories in
order to decide about their fusion or not. Our goal is to build enriched entities
which concentrate information initially available in the detected simple entities.
An enriched entity is a first-class citizen which will guide the construction of
DB-queries while simple entities are auxiliary ones considered as second-class
citizens and committed to integrate the enriched entity.

Entity Enrichment. An enriched entity is a relation. It can thus be seen
as table (as in the relational model) with schema Ee[EntityV alue,DBType,

LexType, op]. The entity Ee itself is a relation instance, i .e ., a set of functions
(tuples) associating each attribute in the schema to a value. Thus, each tuple
maps: (i) EntityV alue to the value v of an entity as represented in a Lexicon
(Fig 3), (ii) DBType and LexType to dbT(v) and lexT(v), respectively (Fig 2),
and (iii) op to a comparison operation indicating the kind of comparison imposed
on the entity value. By default, the comparison operation op is equal to.

On the other hand, we distinguish the following classes of simple entities:
• A reference entity is the one chosen to evolve, i .e ., to be transformed into an
enriched entity. It corresponds to an instance value in a database (e .g ., people
names, document titles, dates, etc) .
•An operator entity Ecp represents words which indicate that another (reference)
entity E = (V , T ,m) is constrained by a comparison condition. A connection
between E and Ecp in the dependency tree determines E as the reference entity.
Then, E evolves to an enriched entity Ee such that for each v ∈ V we have
(v, dbT(v), lexT(v), op) in Ee where op is defined by Ecp, according to an available
dictionary (see example in Fig. 2). Notice also that op corresponds to the operator
used in the DB-query (Section 1) where comp atoms have the general format
(t1 op α2). In Example 1, expression less than is an operator entity having 30 as
its reference entity.
• A context entity EC gives information about the type of another (reference)
entity. Once again, the dependency tree obtained during the parsing, determines
the reference entity E which evolves to a new enriched entity Ee according
to Algorithm 1. In Example 1, price is a context entity and 30 as its reference.
Similarly, title is a context entity and Principles of Medicine its reference (Fig 1).

We remark that the first For-loop of Algorithm 1 transforms a simple entity
into an enriched one. Given a simple entity E, extend(E) is the relation instance
obtained by converting E into its extended counterpart. Notice that the entity
evolution process starts with a simple entity which becomes an enriched entity,
but such an enriched entity can continue evolving.

Example 2. From Fig. 3 and our auxiliary structures (partially depicted in Fig. 2)
we obtain the following enriched entities:
Ee0 = {(book, Book,Context,=), };
Ee1 = {(′Princ. of Medicine′, T ext, T ext,=),
(′Princ. of Medicine′, T itle,Context,=)}
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Algorithm 1: contextEnrichment

Input: EC = (VC , TC ,mC) and E = (V, T ,m)
Output: Ee: an instance over schema Ee[EntityV alue,DBType, LexType, op]
1: for all v ∈ V do

2: Insert (v, dbT(v), lexT(v), op) in Ee;
3: for all u ∈ VC do

4: for all v ∈ V do

5: Insert (v, dbT(u), lexT(u), op) in Ee;

Ee2 = {(:bob, P erson, Person,=), (:bob, Author,Context,=)}
Ee3 = {(:alice, P erson, Person,=), (:alice, Author,Context,=)}
Ee4 = {(30, Number,Number,<), (30, P rice, Context,<)}.

All entities are enriched ones. Ee1 results from the integration of context
entity E2 into E8, Ee2 results from integration of E3 into E4 and Ee3 results
from integration of E3 into E5. Notice that coordinating conjunction and in
NLQrun implies the existence of these two latter independent enriched entities.
Ee4 results from the integration of operator entity E7 to E9. Entity Ee0 is just
the enriched version of E1. It corresponds to the solar-class. �

Now, a NL-query may include multiple conditions (or filters) connected by
coordinating conjunctions. Our current version deals only with and and or, even
if we intend to extend this initial proposal to more complex coordinating con-
junctions such as nor, for, etc . Coordinating conjunctions are expressed through
logical formulas which guide the construction of the DB-query, by specifying: (i)
the kind of atoms comp it will have and (ii) whether the query is defined by
one of several rules. Taking into account coordinating conjunctions implies en-
tity enrichment. Let E1 = (T1,V1,m1) and E2 = (T2,V2,m2) be two simple
entities having the same LexType. If, in the query text, these two entities are
connected by an or, they are merged, forming a new enriched entity composed
by extend(E1) ∪ extend(E2). The original entities do not exist any more. Oth-
erwise, if in the text, these two entities are connected by an and, they are kept
as independent ones.

Example 3. In Example 2, Ee2 = {(:bob, P erson, Person,=), (:bob, Author,
Context,=)} and Ee3 = {(:alice, P erson, Person,=), (:alice, Author, Context,

=)} are independent entities. When considering NLQrun these entities do not
merge because the coordinating conjunction is an and. If we change the sentence
to ’written by Bob or Alice’, entities are merged resulting in:

Eenew = {(:bob, P erson, Person,=), (:bob, Author, Context,=),
(:alice, P erson, Person,=), (:alice, Author, Context,=)}. �

Queries may have multiple coordinating conjunctions as illustrate in sentence
written by Alice or Bob and Charlie and, in this case, its interpretation (due
to the ambiguity of natural language) can vary, resulting in the logic formula
F1 ≡ (X = :alice) ∨ ((X = :bob) ∧ (X = :charlie)) or in the formula F2 ≡
((X = :alice)∨ (X = :bob))∧ (X = :charlie). To avoid erroneous query answers,
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one may envisage to take into account all the alternative interpretations, or to
give choices to the user. In our approach we do not plan interactions with the
user and thus, we propose to consider a larger interpretation, i .e ., to overcome
ambiguity by replacing a mixed and -or sentence by an only-or sentence. Thus,
let F be the logic formula obtained from a sentence with coordinate conjunctions.
If F contains both ∨ and ∧, then we replace it by the formula F ′ composed only
of ∨. The idea is based on the fact that any answer satisfying F also satisfies F ′.
In that way, when multiple coordinate conjunctions are present, the DB-query
will be represented by multiple rules with the same head.

3 Building DB-Queries from Enriched Entities

Once our NL-query is analysed and all enriched entities are completed, the DB-
query is generated by Algorithm 2. The algorithm starts by considering entity
Ee0 (line 3) which has a special role since it specifies the solar-class, i .e ., the
class on which the query focuses. The query is initialized with a body composed
by one unique atom over the predicate associated to the solar-class. Notice the
use of function bAt which is responsible for building an atom for the query being
constructed. The predicate symbol to be used in the construction of an atom is
found via the value of attribute DBType in Ee0 – which is then used as an input
for function getPred. In Example 2, Book is the value of attribute DBType in
Ee0 and the name of the associated unary predicate. Atom A0 in our case is
Book(x). Notice that Algorithm 2 builds only queries whose answers are books’
identifiers (i .e ., instantiations of x). Our initial query is thus q(x)← Book(x).

Lines 11 to 15 of Algorithm 2 consider entities Ee enriched with a context
entity. If in Ee there are more than one tuple t for which the value of attribute
lexType is ”Context”, then Ee is an entity obtained after taking into account
coordinating conjunction or. Each tuple t having value ”Context” for attribute
lexType has to be grouped together with the tuple t′ representing its reference.
On line 14, Algorithm 2 groups each t with another t′ ∈ Ee having the same
value for attribute EntityV alue. From information in t and t′ we build a list l,
added to set Parts. Each l ∈ Parts is a list of atoms to be added to the body of
the query under construction. Notice that Algorithm 2 divides Ee’s tuples into
parts (or lists). Each list in Parts generate a new distinct query with the same
head. Indeed, on line 24, in the for-loop, each list l is used to create a new query
q′ – continuing the construction of a query q already in Q. If there are more
than one list l in Parts, there will be more than one query q′.

From Example 2, Ee2 has two tuples. Let t1 be the first tuple for which
getPred(t1(DBType)) = getPred(Person)) = Person and t2 be the second one
for which getPred(t2(DBType)) = getPred(Author)) = writtenBy. The func-
tion bAt can be used to build atoms that will be added to body(q). Notice that
bAt also takes into account information concerning positions marked as the place
for the entity value in the atom being built. Thus, the new variable y represent-
ing the entity is placed accordingly. In binary predicates x is always the other
variable. Atoms comp may associate a value to variable y. Thus, on line 14 list
〈Person(y2), writtenBy(x, y2), (y2 = :bob)〉 is added to Parts and on line 24 the
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Algorithm 2: EntitiesToQueries

Input: E an enriched entity set {Ee0, Ee1, . . . }
Output: Q a set of query rules, i .e ., the DB-query with one or more rules
1: Q := ∅
2: for all enriched entity E in E do

3: if E is Ee0 then

4: {(eval, dbTval, lT val, opval)} := E

5: A0 := bAt(dbTval, x) // Build the first atom for the query’s body
6: Q := {q(x)← A0}
7: else

8: Parts := ∅ // Set of list of atoms. Each l ∈ Parts is a list of atoms
whose conjunction should be added to query’s body.

9: E′ := ∅ // Set storing E’s tuples already treated
10: // Treatment of entities enriched with a context
11: for all tuple t = (eval, dbTval, ”Context”, opval) in E do

12: Let t′ ∈ E, s.t t′ = (eval, dbTval′, lT val′,=) and lT val′ 6= ”Context”
13: y := GetNewV ar()
14: Parts := Parts∪ {〈bAt(dbTval′, y),bAt(dbTval, y),

bAtOp(eval, y, opval)〉}
15: E′ := E′ ∪ {t′, t}
16: // Treatment of enriched entities without tuples where

lT val = ”Context”
17: for all tuple t = (eval, dbTval, lT val, opval) in (E \E′) do

18: y := GetNewV ar()
19: Parts := Parts∪ {〈bAt(dbTval, y), bAtOp(eval, y, opval)〉}
20:
21: Q′ := ∅
22: for all query q ∈ Q do

23: for all list l ∈ Parts do

24: q′ = BuildNewQuery(q, l)
25: Q′ := Q′ ∪ {q′}
26: Q := Q′

27: return Q

query being built is q(x)← Book(x), P erson(y2), writtenBy(x, y2), (y2 = :bob).
The result obtained with entity Ee3 is similar. However, entities Ee1 and Ee4

are treated in a different way since their lexical types are Text and Number,
respectively. These entities are treated on lines 17-19. For instance, Ee1 gives
rise to list 〈hasT itle(x, y1), (y1 = ”Princ. of Medicine”)〉. After considering all
entities, Algorithm 2 returns set Q with the following DB-query:

q(x)←Book(x), hasT itle(x, y1), P erson(y2),

writtenBy(x, y2), P erson(y3), writtenBy(x, y3), asPrice(x, y4),

(y1 = ”Princ. of Medicine”), (y2 = :bob), (y3 = :alice), (y4 < 30)

However, if we consider Eenew of Example 3, Algorithm 2 (lines 11 to 15) pro-
duces two lists from the same entity, namely, l1 = 〈Person(y2), writtenBy(x, y2),
(y2 = :bob)〉 and l2 = 〈Person(y3), writtenBy(x, y3), (y3 = :alice)〉. Then, on
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line 24, each list is considered separately and the query q is replaced by two new
queries. At the end, Q returns a DB-query composed by two rules:

q(x)←Book(x), hasT itle(x, y1), P erson(y2), (y1 = ”Princ. of Medicine”),

writtenBy(x, y2), hasPrice(x, y4), (y2 = :bob), (y4 < 30)

q(x)←Book(x), hasT itle(x, y1), P erson(y3), (y1 = ”Princ. of Medicine”),

writtenBy(x, y3), hasPrice(x, y4), (y3 = :alice), (y4 < 30)

Finally, consider Eenew2 = {(:bob, P erson, Person, =), (:bob, Author,

Context, =), (:bob, Editor, Context, =)}. The resulting lists on line 14 are l1 =
〈Person(y2), writtenBy(x, y2), (y2 = :bob)〉 and l2 = 〈Person(y3), editedBy(x,
y3), (y3 = :bob)〉 and Q also returns a DB-query composed by two rules. Here
we are looking for books edited or written by Bob.

Thus, queries can be directly generated from enriched entities. Currently we
only deal with conjunctive queries – easily translated to SQL or SPARQL.

4 Implementation and Experimental Results

In order to validate our system, we implemented it in the form of a pipeline
which allows us to divide the separate stages and explore various combinations.
For lexicon-based entity extraction, Apache SolR [2] is used with its text tagger,
an inverted index and n-gram algorithm [12]. It allows lexemes detection even
with typographic errors. We also use a combination of hand-written grammars
together with a Facebook project called Duckling [3] which provides powerful
tools for extracting entities such as numbers or dates. Each extraction step is
performed independently and simple entities are defined by taking into account
all different methods. In particular, if several approaches identify entities in the
same place (but not necessarily with the same bounds), we keep only the entity
resulting from the union of the overlapping entities to represent the ambiguity.
To implement this pipeline and link each step, we use the RASA NLU frame-
work [6] in combination with SpaCy for the parsing phase. Notice that the pre-
processing part is based on generic grammars and lexicons. Some lexicons are
generated automatically by considering values in the RDF database (e .g ., first
and last name for Person). Hand-written lexicons such as those for operators
and contexts concerning dates (e .g ., application, archive, creation, expiration)
or persons (e .g ., author, signatory) are also used. Partial matches are managed
using multiple lexemes when possible (e .g .create by, create with, create, . . . ).

We conduct our preliminary experiments on an RDF database concerning
medical publications. The database has 66 classes (possible candidates for a
query solar-class) with a total of 29327 class instances. In our tests, about 10
classes have been used as solar-classes. These tests have considered entity extrac-
tion and enrichment phases. Ambiguity has not been tested and thus we only
take into account one value per entity. The evaluation is done by analysing the
obtained enriched entities. Table 4 shows the results of our experiments on a set
of 113 NL-queries (varying number of and and or). It summarizes the precision,
recall, f1-score, and the weighted mean (weighted by support) obtained for each
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dbT on the NL-queries set. As our system is implemented as a pipeline, we intend
to perform tests step by step, in order to identify the impact of each step.

DBType precision recall f1-score support
solar class 1.00 0.62 0.77 82
application date 1.00 0.62 0.76 13
archive date 0.50 0.67 0.57 3
creation date 0.60 0.60 0.60 5
expiration date 1.00 0.50 0.67 2
customers 1.00 0.60 0.75 5
department 1.00 0.11 0.20 9
sector 1.00 0.95 0.98 21
doc author 0.77 0.63 0.70 38
doc signatory 0.90 0.86 0.88 21
doc status 1.00 0.50 0.67 6
doc unit 1.00 0.27 0.43 11
. . . . . . . . . . . . . . .
Weighted avg. 0.86 0.59 0.67 295

Fig. 4: Results on enriched entities

Our precision is good, indicating
that most of our detected entities are
the expected ones. This is clearly a
consequence of the effective use of lex-
icons and grammars. For recall, our
results are not bad, but weaker than
our precision, indicating that some en-
tities are not detected. Lower preci-
sion on some dbT like creation date or
doc author is partially explained be-
cause ambiguity is not taken into ac-
count in our experiment, but entities
giving rise to these types are enriched with a similar context and associated with
both types. A similar issue occurs with the recall for department and doc unit. In
our test database they are semantically close. So, we have significant overlap on
the two lexicons (a lot of lexemes are shared, adding ambiguity to the type). Our
current work consists in improving lexicons for context detection, in particular
those generated automatically.

5 Related Work and Concluding Remarks

Recently, NLI has been widely discussed in the literature. Some work focuses on
augmenting the expression power of queries while others on domain-independence.
For instance, in [18] authors propose the use of binary templates rather than se-
mantic parses to better understand complex queries while [15] proposes a cross-
domain NLI with a general propose question tagging strategy. Several work (such
as in [19, 5, 7]) consider RDF question/answering (QA). Aggregate queries are
considered in [10]: the authors propose a method to automatically identify the
aggregation and transform it into a SPARQL aggregate statement. Methods used
vary a lot. In [13, 17, 18] authors base their approach on NLP techniques with
entity extraction and grammars, while in [14, 15] they use neural networks.

The paper presents a method where enriched entities allow us to translate
NL-queries into DB-queries. The use of a logical paradigm to deal with databases
shows that our method can be adapted to different data models. Our approach is
divided into a domain-dependent pre-processing and domain-independent query
generation phases. The first step, responsible for building lexicons, grammar-
tools and ontology mappings, also sets up general propose tools which can be
considered as domain-independent (e .g ., grammars for date recognition). The
second step of our method can be applied on any domain, provided the ontology
mappings are set up. This division allows us to deal with possible extensions and
improvements separately. We are currently considering extensions of Algorithm 2
in order to deal with queries on more than one solar-class or aggregate queries.
We also plan to extend entity extraction by including alternative approaches
such as machine learning to complete grammars (e .g . for title identification).
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