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Abstract

In Conditional Monte Carlo Learning for Diffusions part I (CMCLDI) [2], we
presented a One-layered Nested Monte Carlo (1NMC) to simulate functionals U of a
Markov process X. Based on a judicious combination between regression and 1NMC
used for localization purpose, this methodology allows to simulate Ut≥s conditionally
on Xs. The parallel suitability and scalability of 1NMC makes this algorithm very
competitive to simulate quantities that are almost impossible to simulate with other
methods. In this paper, using the double layer of trajectories, we explain further
the mathematical background of the control on the bias propagation. With this
double layer structure, we also detail how to adjust the variance to get a better
approximation of the second moment from the regression. In normal and log-normal
models, this variance adjustment allows a better description of tail events. Since we
applied this algorithm on Backward Stochastic Differential Equations in CMCLDI,
we show here its strength for the simulation of risk measures and optimal stopping
problems. Two highly dimensional numerical examples are executed in few minutes
on one Graphics Processing Unit (GPU).

1 Introduction

Various contributions like [1, 8, 15, 20, 24] show an increasing interest in Nested Monte
Carlo (NMC) simulation. NMC used to be avoided due to the heavy computations that
it involves, but it becomes relevant as it can be very efficiently implemented on massively
parallel architectures like Graphics Processing Units (GPUs). Its perfect scalability with
respect to an increasing computing capability makes it a sustainable solution for various
applications. In CMCLDI [2], we proposed local analytical approximations of functionals
of a diffusion using various regressions within One-layered Nested Monte Carlo (1NMC)
simulation. As 1NMC is two layers of Monte Carlo simulations, the inner trajectories
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are used for regressions when the outer ones are used for localization purpose. The
conditional learning stands then for regressions conditional to various starting points on
the outer trajectories.

In the present work as well as in CMCLDI [2], we choose local regressions even though
it can be replaced by local Neural Networks (NNs). Unlike [10, 12, 21] where NNs are
global on the whole Monte Carlo realizations, regressions are sufficient when made local
using 1NMC and their implementation is also very efficient using batch parallel processing
[3]. We already demonstrated the effectiveness of our methodology on a large number of
Backward Stochastic Differential Equations (BSDEs) examples presented in CMCLDI.
We also showed that the bias backpropagation can be removed using a new simple trick
that is only possible because of the nested nature of the proposed algorithm.

In this contribution, CMCLD part II (CMCLDII), we push further the capabilities of
CMCLDI (cf. [2]) using a small modification that allows to get accurate approximations
of the variance of the simulated functionals of diffusions. This modification plays an
important role to simulate tail events necessary to risk measures and optimal stopping
strategies. To make as simple as possible the explanation of the introduced modifications,
we use the same generic example presented in [2].

On a filtered probability space (Ω,F , (Ft)0≤t≤T ,P), the generic example is driven by an
Ft-Markov process (Xt)t∈[0,T ] taking its values on Rd1 . Given the fine time discretization
S = {t0, ..., t2L} =

{
0, T/2L, ..., T

}
, the functional Us of X is defined for s ∈ S by

(f) Us =us(Xs) =Es

 2L∑
k=s2L/T

f(tk, Xtk , Xtk+1
)

=E

( ∑
s≤tk≤T

f(tk, Xtk , Xtk+1
)
∣∣∣Fs) ,

where Es (·) = E
(
·
∣∣∣Fs), the expectation is always considered under P, each determinis-

tic function f(tk, ·, ·) is B(Rd1) ⊗ B(Rd1)-measurable and assumed to satisfy the square
integrability condition E(f 2(tk, Xtk , Xtk+1

)) < +∞ with convention f(t2L , Xt
2L
, Xt

2L+1
) =

f(t2L , Xt
2L

). From the Markov assumption, for each s ∈ S, the B(Rd1)-measurable func-
tion us is deterministic.

1NMC requires the simulation of a first layer (Xm0)m0=1,...,M0 of outer trajectories
of the process X that are kept in the machine’s random-access memory, then a second
(Xm0,m1)m1=1,...,M1 unstored layer of inner trajectories, on the top of each outer one indexed
by m0. Introducing a discretization set S ⊂ S for the process U , it is then possible
to define an inner simulation Um0,m1 = um0,S(Xm0,m1) and an outer simulation Um0 =
ũm0,S . Defined in CMCLDI, um0,S and ũm0,S are respectively the coarse and the fine
approximations of the deterministic function u introduced in (f). The approximation
ũm0,S is considered as an average value on the realizations um0,S(Xm0,m1) and thus it
averages out and reduces the approximation errors of um0,S .

To improve further the coarse approximation, we replace the expression

um0,S
sj ,sk

(x) = ũm0,S
sk,sk

+ tT m0

sj ,sk,M
′
1
(x)Bm0,S

sj ,sk
, (1.1)

given in CMCLDI by

um0,S
sj ,sk

(x) = `
[
um0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)B̂m0,S

sj ,sk
, (1.2)

with

B̂m0,S
sj ,sk

= γm0,S
sj ,sk

Bm0,S
sj ,sk

(1.3)
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and

`
[
um0,S
sj ,sk

]
= ũm0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Bm0,S

sj ,sk
, (1.4)

where t is used for the transpose operator, sj < sk ≤ sk are increments from S, T m0

sj ,sk,M
′
1
(x)

is the considered regression basis, Bm0,S
sj ,sk

is the regression vector and γm0,S
sj ,sk

is the variance
adjustment parameter.

The factor γm0,S
sj ,sk

is used to adjust the variance of um0,S
sj ,sk

defined in (1.2) without chang-

ing its average value. Indeed, the expression of `
[
um0,S
sj ,sk

]
makes the value

∑M1

m1=1

u
m0,S
sj ,sk

(X
m0,m1
sj ,sk

)

M1

invariant with respect to γm0,S
sj ,sk

because equality (1.2) yields

M1∑
m1=1

um0,S
sj ,sk

(Xm0,m1
sj ,sk

)

M1

= ũm0,S
sk,sk

+
1

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Bm0,S

sj ,sk
.

Consequently, for each m0 = 1, ...,M0, the benefit of (1.2) compared to (1.1) would be to
better simulate the second moment u·(X

m0,m1) without changing the accuracy of the first
moment given that the latter is generally very well approximated using regressions.

In the same fashion as for stopping bias backpropagation (cf. CMCLDI [2]), the
variance adjustment is based on the tower property used to obtain the equality

E (Vars(Us′)) = E
(
Es
(
[Us′ − Es(Us′)]2

))
= E

(
[Us′ − Es(Us′)]2

)
true for s′ > s > 0. For s = sj and s′ = sk with (sj, sk) as above, this equality allows us to

choose the adjustment parameter γm0,S
s,s′ that makes the average variance E (Vars(Us′)) es-

timated by 1
M0

∑M0

m0=1

(
1
M1

∑M1

m1=1

[
um0,S
s,s′ (Xm0,m1

s,s′ )−
∑M1

m1=1 u
m0,S
s,s′ (Xm0,m1

s,s′ )/M1

]2
)

equal

to E
(
[Us′ − Es(Us′)]2

)
estimated by 1

M0

∑M0

m0=1

([
ũm0,S
s′,s′
−
∑M1

m1=1 u
m0,S
s,s′ (Xm0,m1

s,s′ )/M1

]2
)

.

Thus, the value of γm0,S
s,s′ improves significantly the accuracy of the former estimator us-

ing the latter one. Using numerically the tower property to get the variance adjustment
parameter γm0,S is made possible by the nested nature of the proposed simulation. We
take fully advantage of this (nested structure, tower property) combination for the pro-
posed variance adjustment trick. Other applications could benefit from this combination
to improve the simulation result.

The rest of this paper is organized as follows. In Section 2, we recall the main steps
of the algorithm including the variance adjustment modification and its adaptation to
an optimal stopping problem. In Section 3, we express the value of γm0,S , provide an
iterative construction of the discretization set S and explore in-depth the use of the tower
property for local bias control and local variance adjustment. Previously presented in
CMCLDI, stopping the bias backpropagation comes at the expense of an additional error
term studied in Section 4. Section 5 concludes this paper with a successful simulation of
both an American option and a risk measure examples in very high dimensions.
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2 Methodology extension and application to optimal

stopping problems

In [2], we presented the algorithm steps and what should be done to stabilize it. We
explained the whole methodology on a simple problem and we showed its benefits when
one has to simulate the composition of functionals of a Markov process. Large number
of BSDEs and Reflected BSDEs (RBSDEs) are specific composition of functionals of a
forward process assumed Markov in various situations. In [2], we already presented the
adaptation of our methodology on the One step forward Dynamic Programming (ODP )
discretization scheme (cf. [16, 25]) of BSDEs. In this section, we start by briefly introduc-
ing the needed notations then explain the new modified version of our algorithm on the
generic example defined in (f). We finally apply the new modified version to a RBSDE
without a Z term.

Starting with notations, we introduce S = {t0, ..., t2L} = {0,∆t, 2∆t, ..., T} as a fine
discretization set and S ⊂ S as a coarser one with ∆t = T/2L. We then simulate the
outer trajectories (Xm0

· )m0=1,...,M0 as well as the inner ones (Xm0,m1
sj ,· )m0=1,...,M0,m1=1,...,M1

sj∈S
that start at the top of each realization Xm0

sj
with sj ∈ S. Given the Borel-measurable

functions (Etk)k=0,...,2L−1 : Rd1+d2 → Rd1 , we define

Xm0
tk

= Etk−1
(Xm0

tk−1
, ξm0
tk

), when k ≥ 1 and Xm0
t0 = x0, (2.1)

Xm0,m1
sj ,tk

= Etk−1
(Xm0,m1

sj ,tk−1
, ξm0,m1
sj ,tk

) and Xm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Xm0
sj
. (2.2)

Since we focus essentially on the diffusion case, the functions (Etk)k=0,...,2L−1 can be ob-
tained with a discretization scheme to get for instance

Etk(x, ξ) = x+ ∆tb(tk, x) + σ(tk, x)ξ (2.3)

with the usual (cf. [28]) Lipschitz continuity condition on the coefficients b(t, x) and
σ(t, x) uniformly with respect to t ∈ [0, T ]. Introducing outer Wm0 and inner Wm0,m1

realizations of an Rd2-Brownian motion W , we define ξm0
tk

= Wm0
tk
−Wm0

tk−1
and ξm0,m1

sj ,tk
=

Wm0,m1
sj ,tk

−Wm0,m1
sj ,tk−1

where W 1, ...,WM0 are independent with

Wm0,m1
sj ,tk

= Wm0,m1
sj ,tk−1

+ ∆Wm0,m1
sj ,tk

and Wm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Wm0
sj

and (∆Wm0,m1
sj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} are independent Brownian motion increments

independent from W 1, ...,WM0 with E([∆Wm0,m1
sj ,tk

]2) = ∆t. The resulting components of

the vector
(

(ξm0,m1
tj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} , (ξm0

tk
)m0=1,...,M0

k=1,...,2L

)
are independent realiza-

tions with the same normal distribution.
We use Xm0,m1,1

·,· , ..., Xm0,m1,d1
·,· to denote the d1 components of Xm0,m1

·,· and use the
notation Xm0,m1

sj ,sl:sk
for (Xm0,m1

sj ,sl
, Xm0,m1

sj ,sl+∆t
, ..., Xm0,m1

sj ,sk−∆t
, Xm0,m1

sj ,sk
) for sj, sk ∈ S with sj < sk.

We remind also the notation of the stabilized regression basis T m0

tj ,tk,M
′
1

defined in CMCLDI

(cf. [2]) for any couple tj < tk from the fine discretization grid. The cardinal of the basis
T m0

·,·,M ′1
is equal to d′1 with d′1 ≤ d1. T m0

·,·,M ′1
is also indexed by the number M ′

1 of trajectories

needed for the approximation of regression matrices and that are independent from those
used in the backward induction. We also reduce any superfluous dependence structure
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as well as the memory occupation by re-simulating on the fly each realization that has
not to be constantly stored. For example, if an inner trajectory is needed α times in the
backward induction, we simulate α independent copies of it and use each copy once.

Finally, introducing ∧ and ∨ notations for

x ∧ y = min(x, y) and x ∨ y = max(x, y),

we remind the definition of the time operator δS that associates to each s ∈ S the next
increment in S. For a fixed index j ∈ {1, ..., 2L}, we define δSsj(·) on (sk)k≤j, taken its
values in S ∩ [sj, sj], by

δSsj(sk) = sj ∧min{s ∈ S; sk < s ≤ sj} (2.4)

with min(∅) =∞ and the couple (sj, sj) sets the minimal and the maximal time increment
of the performed regressions conditionally on the realization Xm0

sj
of the Markov process

X. The couple (s, s), mainly s, sets the learning depth conditional to the information
available at time s. Given a coarse discretization set S, definitions 2.1 and 2.2 express
the value of (s, s)s∈S .

When S is fixed, the notation δSsj can be replaced by δsj . When sk < sj, the notation

δSsj can be replaced by δS . When S is fixed and sk < sj, we can simplify both indices and

use δ instead of δSsj . Given a coarse discretization set S, the operator δ has the following
properties

Pr1. sj = δsj(sj) = δ(sj).

Pr2. As long as sj1 ∨ sj2 ≤ sk < sj1 ∧ sj2 , δsj1(sk) = δsj2(sk) = δ(sk).

Pr3. The nth composition of δsj denoted δnsj(·) is equal to sj when n ≥ |S∩]sj, sj]| where
| · | denotes the cardinal.

2.1 Variance adjustment modification on the generic example

When applied for the simulation of U defined by (f), the proposed learning procedure
associates to each scenario m0 and to each discretization set S a couple of function families
(ũm0,S , um0,S). Given sj < sk ≤ sk increments from S, equations (1.2), (1.3) and (1.4)
parametrizes the definition of um0,S with respect to the variance adjustment parameter
γm0,S
sj ,sk

. Thus, we generalize the definition of um0,S introduced in CMCLDI (cf. [2]) which

is obtained straightforwardly if we take γm0,S
sj ,sk

= 1. Regarding the regression vector Bm0,S
sj ,sk

used in (1.3), its value is obtained from an estimation of the vector a ∈ Rd′1 that minimizes
the quadratic error given by

E
[
B
m0,S,δsj(sk)
sj ,sk (Xm0,m1

sj ,sk:δsj(sk))−
taT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)
]2

(2.5)

with Xm0,m1

sj ,sk:δsj(sk) =
(
Xm0,m1
sj ,sk

, Xm0,m1

sj ,sk+∆t
, ..., Xm0,m1

sj ,δsj(sk)−∆t
, Xm0,m1

sj ,δsj(sk)

)
and

B
m0,S,δsj(sk)
sj ,sk (x) = um0,S

sj ,δsj(sk)

(
x δsj(sk)−sk

∆t

)
− ũm0,S

sk,sk
+

δsj(sk)−sk
∆t

−1∑
l=1

f(tksk+l, xl, xl+1) (2.6)
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where ksk = sk/∆t − 1, x = (x1, ..., x(δsj(sk)−sk)/∆t) with each coordinate of x belonging to

Rd1 .
We keep however the same definition of ũm0,S given in CMCLDI (cf. [2]) which is

reminded hereafter. For sj < sk < sj and s ∈ {sk, sk + ∆t, ..., δ(sk) − ∆t}, the fine
approximation at Xm0

s is defined by

ũm0,S
s,sk

=
1

M1

M1∑
m1=1

um0,S
sk,δ(sk)(X

m0,m1

s,δ(sk) ) +

δ(sk)∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)

 . (2.7)

To complete this inductive interconnected backward definition of u and ũ, we set the final
coarse approximation to

um0,S
sj ,sj

(x) =

{
f(T, x) if sj = T,

um0,S
sj ,sj

(x) = um0,S
δ(sj),sj

(x) if sj < T.
(2.8)

For sj ∈ S, sj and sj, expressed in Definition 2.1, are really needed when T is sufficiently

big or the variance produced by X is large enough. Otherwise, (2.8) can be replaced by
um0,S
sj ,T

(x) = f(t2L , x) = f(T, x).

32 0

_

t28 t29 t30 t31 t32

32

centred around 

projected on 

32

32

=

t24 t25 t26 t27

Outer trajectory 

t0

lll

l

l

l ll

u S

Figure 1: An example for (2.9) when sk = δsj(sj), δ
2(sj) = δ(sk) = sj = t2L = T ,

`
[
um0,S
sj ,sk

]
= ũm0,S

sk,sk
, L = 5 and S = {t0, t4, t8, t12, t16, t20, t24, t28, t32}.

When sk = δsj(sj) and `
[
um0,S
sj ,sk

]
= ũm0,S

sk,sk
(when γm0,S

sj ,sk
= 1), one can check the coherence

of the previous definitions aimed to approximate U defined in (f). Indeed, (2.7) would
provide for any s ∈ {sj, sj + ∆t, ..., δ(sj)−∆t} = {sj, sj + ∆t, ..., sk −∆t}

ũm0,S
s,sj

=
1

M1

M1∑
m1=1

um0,S
sj ,sk

(Xm0,m1
s,sk

) +

sk∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)

 (2.9)

where the term um0,S
sj ,sk

, defined in (1.2), is obtained through the projection of the sum
δ(sk)∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) + um0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)) on T m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
). In addition, if we

had δ2(sj) = δ(sk) = sj = t2L = T then (2.8) would make um0,S
sj ,δ(sk)(·) = f(t2L , ·) and as

s ∈ {sj, sj +∆t, ..., sk−∆t} the definition of ũm0,S
s,sj

would involve

sk∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)
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plus the projection of

t
2L∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) + f(T,Xm0,m1

sj ,T
) as shown on Figure 1.

ũm0,S
sk,sk

is equal to
1

M1

M1∑
m1=1

 t
2L∑

tl+1>sk

f(tl, X
m0,m1
sk,tl

, Xm0,m1
sk,tl+1

) + f(T,Xm0,m1

sk,T
)

 as δ(sk) = T .

Once we replaced (1.1) by (1.2), Definition 2.1 hereafter is similar to Definition 3.1
presented in CMCLDI.

Definition 2.1. Given a discretization set S ⊂ S

• For any s ∈ S, s is set to be equal to δ(s) and s is set backwardly to be the largest
discretization time u ∈ S∩]s, δ(s)] that satisfies∣∣∣∣∣∣ 1

M0

M0∑
m0=1

ũm0,S
s,u − ũm0,S

δ(s),δ(s)
−

δ(s)∑
tl+1>s

f(tl, X
m0
tl
, Xm0

tl+1
)

∣∣∣∣∣∣ < εSs (2.10)

where {εSs }s∈S is a family of positive bias tuning parameters.

• For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the simulation Um0,m1
sj ,sk

of U around Xm0
sk

conditionally on Xm0
sj

is set to be equal to um0,S
sj ,sk

(Xm0,m1
sj ,sk

) where u
is given in (1.2) and (2.8).

• For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δ(sk) −∆t} − {0}, the simulation Um0
s

of U at Xm0
s is set to be equal to ũm0,S

s,sk
with ũ expressed in (2.7).

• The average U lear
0 of learned values on U0 is equal to

U lear
0 =

1

M0

M0∑
m0=1

ũm0,S
0,0

(2.11)

and the simulated value U sim
0 of U0 is equal to

U sim
0 =

1

M0

M0∑
m0=1

ũm0,S
δ(0),δ(0)

+

δ(0)∑
tl+1>0

f(tl, X
m0
tl
, Xm0

tl+1
)

 (2.12)

with ũ expressed in (2.7).

In contrast to the inner layer approximation Um0,m1 which is only defined on S, the
outer layer approximation Um0 is defined on the whole fine discretization set S. At
t = 0, inner and outer trajectories coincide and yield U lear

0 and U sim
0 as two possible

approximations of U0. The value of s depends on δ(s) whose value involves the one of
δ2(s) and so on till T . In Section 3.1, we provide an example of how to update iteratively
(s, s)s∈S with respect to the discretization set S.

It is remarkable that the term on the left of inequality (2.10) makes possible the
estimation of the average bias. In Section 3.2, we introduce a local bias estimation
that allows a more stringent bias control. None of these bias estimations is possible
without the double layer structure of NMC1. The choice of the tuning parameters
{εSs }s∈S reflects a compromise between the targetted accuracy and the required com-
plexity. This choice has to take into account the standard deviation of the estimator

1
M0

∑M0

m0=1

(
ũm0,S
s,u − ũm0,S

δ(s),δ(s)
−
∑δ(s)

tl+1>s
f(tl, X

m0
tl
, Xm0

tl+1
)
)

.

7



2.2 Application on RBSDEs with a Markov forward process

The variance adjustment trick introduced in this paper was not needed for the BSDE
examples studied in CMCLDI. However, when the considered example requires a better
description of the tail distribution, the choice γm0,S

·,· = 1 becomes insufficient. Here, we
consider an application to RBSDEs like the one presented in [7] with the final condition

function g(·) and the driver {f(tk, ·)}2L−1
k=0 assumed to be L-Lipschitz. We want to propose

a double layer approximation V m0 and V m0,m1 of the Snell envelope V , solution to

(Snl) VT = g(XT ) and for k < 2L : Vtk = g(Xtk)∨Etk [Vtk+1
+∆tf(tk, Vtk+1

)],

that can be done using straightforwardly the recipe of Section 2.1 combined with a max-
imization by g. We introduce the coarse wm0,S and the fine w̃m0,S approximations of the
process V defined by

V tk
= Etk [Vtk+1

+∆tf(tk, Vtk+1
)]. (2.13)

Then, given a discretization set S and indices k < j ∈ {1, ..., 2L} that satisfy sj < sk < sj
and using δsj(sk) defined in (2.4), we set the coarse approximation vsj ,sk around Xm0

sk

conditionally on Xm0
sj

to

vm0,S
sj ,sk

(x) = wm0,S
sj ,sk

(x) ∨ g(x), (2.14)

and the fine approximation ṽs,sk at Xm0
s , s ∈ {sk, sk + ∆t, ..., δsj(sk)−∆t}, to

ṽm0,S
s,sk

= w̃m0,S
s,sk
∨ g(Xm0

s ). (2.15)

Denoting ∆s = δsj(sk)− s and ∆sk = δsj(sk)− sk, we define

w̃m0,S
s,sk

=
1

M1

M1∑
m1=1

(
∆sf(sk, v

m0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))) + vm0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))
)
, (2.16)

wm0,S
sj ,sk

(x) = `
[
wm0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)Ĉm0,S

sj ,sk
, (2.17)

where

`
[
wm0,S
sj ,sk

]
= w̃m0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Cm0,S

sj ,sk
, (2.18)

Ĉm0,S
sj ,sk

= γm0,S
sj ,sk

Cm0,S
sj ,sk

with

Cm0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

C
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

, Xm0,m1

sj ,δsj(sk))

and C
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, x) = T m0

sj ,sk,M
′
1
(x′)C

m0,S,δsj(sk)
sj ,sk (x) with

C
m0,S,δsj(sk)
sj ,sk (x) =

 ∆skf(sk, v
m0,S
sj ,δsj(sk)(x))

+ vm0,S
sj ,δsj(sk)(x)− w̃m0,S

sk,sk

 , (2.19)

with a final coarse approximation given by

vm0,S
sj ,sj

(x) =

{
g(x) if sj = t2L ,

vm0,S
sj ,sj

(x) = vm0,S
δsj(sj),sj

(x) if sj < t2L .
(2.20)
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Definition 2.2. Given a discretization set S ⊂ S

• For any s ∈ S, s is set to be equal to δ(s) and s is set backwardly to be the largest
discretization time u ∈ S∩]s, δ(s)] that satisfies∣∣∣∣∣ 1

M0

M0∑
m0=1

(
w̃m0,S
s,u − ṽm0,S

δ(s),δ(s)
− (δ(s)− s)f(s, ṽm0,S

δ(s),δ(s)
)
)∣∣∣∣∣ < εSs (2.21)

where {εSs }s∈S is a family of positive bias tuning parameters.

• For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the simulation V m0,m1
sj ,sk

of V around Xm0
sk

conditionally on Xm0
sj

is set to be equal to vm0,S
sj ,sk

(Xm0,m1
sj ,sk

) where v
is given in (2.14), (2.17) and (2.20).

• For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δ(sk) −∆t} − {0}, the simulation V m0
s

of V at Xm0
s is set to be equal to ṽm0,S

s,sk
with ṽ expressed in (2.15) and (2.16).

• The average V lear
0 of the learned values on V0 is equal to

V lear
0 =

1

M0

M0∑
m0=1

ṽm0,S
0,0

, (2.22)

and the simulated value V sim
0 of V0 is equal to

V sim
0 = g(x0) ∨ 1

M0

M0∑
m0=1

[
δ(0)f

(
δ(0), ṽm0,S

δ(0),δ(0)

)
+ ṽm0,S

δ(0),δ(0)

]
. (2.23)

Similar to Definition 2.1, the inner layer approximation V m0,m1 is only defined on S
when the outer layer approximation V m0 is defined on the whole fine discretization set S.
At t = 0, inner and outer trajectories coincide and yield V lear

0 and V sim
0 as two possible

approximations of V0. Similar also to Definition 2.1, it is remarkable that the term on the
left of inequality (2.21) makes possible the estimation of the average bias.

Although using an optimal stopping formulation [11] of the dynamic programming is
known to provide better numerical results [26], we prefered here to use 1NMC on the top of
the original algorithm [30] since its error estimates remains similar to the one presented for
BSDEs. As a future work, we would like to apply variance reduction methods with 1NMC
and provide very accurate double layer estimations of the optimal stopping strategy.

3 Learning the values of S and
{
γm0,S
sj ,sk

}m0=1,...,M0

sj∈S,sk∈S∩]sj ,sj ]

Till now, the proposed learning methodology introduced M0, M1, M ′
1, S, εS· and γ·,S·,· as

hyperparameters. In a Monte Carlo simulation, the standard and efficient way to know
what is the appropriate number of trajectories that have to be simulated is through the
estimated confidence interval. The same can be done for the number of outer and inner
trajectories in 1NMC. We only draw attention to the number of trajectories M1 and M ′

1

that have to be sufficient given the number of terms d′1 in T m0

·,·,M ′1
used for the regression.
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We refer the reader to [27] for asymptotic relations between the size of the projection
basis and the number of needed realizations. Consequently, the choice of M0, M1 and
M ′

1 have to be specific to each application and set during the numerical simulation. The
same can be said for the tuning parameter εS· as its value should be proportional to
1/
√
M0. Indeed, from the left term in inequalities (2.10) and (2.21), the user has to make

a numerical compromise between accuracy and complexity when picking the value of εS· .
In this section, we want to relieve the use of S and of γ·,S·,· as hyperparameters. We

start by specifying iteratively the coarse discretization set S. At each iteration, we show
also how to update the couple (s, s) for any s ∈ S. The iterative choice of S and of
(s, s)s∈S is made to keep the bias under control and thus to conserve the first moment
of simulations. Moreover, we detail how to conserve the second moment of simulations
using an appropriate value for the variance adjustment parameter γ·,S·,· . The latter choice
is further refined when the number M0 of simulated outer trajectories makes possible a
local variance adjustment.

The iterative construction of S and (s, s)s∈S presented in Section 3.1 as well as the
expression of γ·,S·,· presented in Section 3.2 are only given as an example and thus are not
restrictive.

3.1 An example of iterative definition of S and update of (s, s)s∈S

Like definitions 3.1 and 3.2 in CMCLDI, definitions 2.1 and 2.2 in Section 2 are intention-
ally announced without specifying the coarse discretization set S. Indeed, the presented
methodology can be applied for any S. It is then possible to use it for an iterative family
{S i}i=0,...,L−L′ where L′ is an integer chosen in this section ∈]L/2, L]. When i increases
the coarse discretization gets finer in the sense of inclusion S0 ⊆ S1 ⊆ ... ⊆ SL−L′ .

For i = 0, ..., L − L′, we define the set S i through the values taken by the decreas-
ing sequence (T − sij)j=0,...,2L . When i = 0, (s0

j)j=0,...,2L is a homogeneously distributed

sequence where each term is repeated 2L−L
′

times as follows

s0
j =

⌈
j2L

′

2L

⌉
T

2L′
where d·e is the ceiling function. (3.1)

that yields S0 = {0, T/2L′ , ..., (2L′ − 1)T/2L
′
, T}. The value of si0 stays the same for any

iteration and is then given by si0

∣∣∣
i=1,...,L−L′

= 0.

To define (sij)j=1,...,2L for i = 1, ..., L−L′, we introduce a scale Qi and a translation qi
parameters. Since we want to keep each S i as coarse as possible, the translation parameter
qi sets the starting index from which we should refine the discretization. q0 = 0 and qi is
given by

qi = qi−1 ∨max
({
j ∈ {qi−1 + 1, ..., 2L}; Ki−1

j

})
(3.2)

where the condition Ki−1
j has to be specific to each application. Expression (3.2) ensures

an increasing translation parameter qi with respect to the iteration index i. The scale
parameter Qi = 2L−L

′−i is used to know the number of terms that should be equal to each
other. Thus, for indices bigger than qi, when the iteration index i increases Qi = 2L−L

′−i

decreases and the discretization becomes finer.
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For i = 1, ..., L− L′, we choose the following induction

sij = si−1
j 1j≤qi + ŝi−1

j 1j>qi , (3.3)

where the values of (ŝi−1
j )j=0,...,2L are given by

when j ≤ qi−1 define ŝi−1
j = si−1

j

otherwise, for j′ > qi−1/Qi set ŝij

∣∣∣Qij′
j=Qi(j′−1)+1

=
si−1
Qij′

+ si−1
Qi(j′−1)

2
.

(3.4)

The notation sij

∣∣∣Qij′
j=Qi(j′−1)+1

is used for siQi(j′−1)+1, ..., s
i
Qij′

. Similar to S i defined through

(T − sij)j=0,...,2L , we introduce Ŝ i to be the set of values taken by (T − ŝij)j=0,...,2L . From

(3.4), one can easily see that S i ⊆ Ŝ i and thus for any s ∈ S i we have the inequality

δŜ
i

(s) ≤ δS
i

(s). (3.5)

In Figure 2, we illustrate how this discretization strategy is implemented when L′ > L/2.

q0

1q

Figure 2: An example for (3.3) when L = 5, L′ = 3, S0 =
{

0, T
8
, T

4
, 3T

8
, T

2
, 5T

8
, 3T

4
, 7T

8
, T
}

and S1 =
{

0, T
16
, T

8
, 3T

16
, T

4
, 5T

16
, 3T

8
, 7T

16
, T

2
, 9T

16
, 5T

8
, 11T

16
, 3T

4
, 7T

8
, T
}

.

As shown on Figure 2, because S i is the set of the values taken by (T − sij)j=0,...,2L ,
the increment δ(s) − s decreases as the value of the increment s ∈ S i decreases. To
counterbalance a rapid decrease of the time increment δ(s) − s when s gets smaller,
the condition Ki−1

j in (3.2) has to take into account the accumulation of bias through
backpropagation. The value of Kij given in Definition 3.1 allows then to increase the
discretization steps only when the estimated gained accuracy is larger than the maximum
accumulation of bias.

Definition 3.2 provides an updating strategy for (sj, sj)(sj)j=0,...,2L
∈Si associated to the

iterative construction of S i given in Definition 3.1. We will use the notation (sj(s
i
j), sj(s

i
j))

to show an explicit dependence of the updating strategy on the sequence (sij)j=0,...,2L

involved in the definition of S i.

Definition 3.1. Given an iteration step i = 0, ..., L − L′ − 1 for which the values of
(sij)j=0,...,2L, S i, Ŝ i, {εSis }s∈Si and qi are known, given j ∈ {qi + 1, ..., 2L} we define the

condition Kij =“eS
i

s < εS
i

s for s ∈ (T −sik)qi+1≤k≤j” where for s ∈ (T −sik)qi+1≤k≤j we have

δS
i
(s) = δŜ

i
(δŜ

i
(s)) and the definition of the couple (eS

i

s , ε
Si
s ) is specified for the simulation

of (f) by

eS
i

s =
1

M0M1

M0∑
m0=1

M1∑
m1=1

[
um0,Ŝi

δŜi(s),δSi(s)
(Xm0,m1

δŜi(s),δSi(s)
)− um0,Si

s,δSi(s)
(Xm0,m1

δŜi(s),δSi(s)
)
]
,
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εS
i

s =
∑

u∈Si∩]s,s]

εS
i

u

and specified for the simulation of (Snl) by

eS
i

s =
1

M0M1

M0∑
m0=1

M1∑
m1=1

[
wm0,Ŝi

δŜi(s),δSi(s)
(Xm0,m1

δŜi(s),δSi(s)
)− wm0,Si

s,δSi(s)
(Xm0,m1

δŜi(s),δSi(s)
)
]
,

εS
i

s =
∑

u∈Si∩]s,s]

L|Si∩]s,u]|εS
i

u

with |S i∩]s, u]| denotes the cardinal of the finite set S i∩]s, u].

The bias backpropagation of simulation (f) is linear when the one associated to simu-
lation (Snl) is not. Thus, the definition of the maximum bias accumulation εS

i

s associated
to (Snl) involves a sum on the Lipschitz constant L to the power of lag index, given here
by |S i∩]s, u]|, multiplied by the maximal accepted bias εS

i

u per increment u ∈ S i∩]s, s].
eS

i
is defined as the average difference between the estimation um0,Si (resp. wm0,Si)

that involves the discretization set S i and the estimation um0,Ŝi (resp. wm0,Ŝi) that involves

a finer discretization set Ŝ i. Using actualization (3.3) given (3.2) and Kij expressed in
Definition 3.1, we basically make the discretization set finer only when the difference
between approximations is superior to the maximal accumulation of bias εS

i
.

Definition 3.2. Given an iteration step i = 1, ..., L−L′ for which the values of (sij)j=0,...,2L,

(si−1
j )j=0,...,2L, S i and qi are known, introducing

S i,(f)

s = {u ∈ S i∩]s, δSi(s)] that satisfies (2.10) when S = S i}

and S i,(Snl)s = {u ∈ S i∩]s, δSi(s)] that satisfies (2.21) when S = S i}

we set sj(s
i
j) = δS

i
(T − sij) and sj(s

i
j) = sj(s

i−1
j ) ∧max(S i,(f)

T−sij
) for the simulation of (f)

or sj(s
i
j) = sj(s

i−1
j ) ∧max(S i,(Snl)T−sij

) for the simulation of (Snl).

q0

1q

Figure 3: An example for Definition 3.2 based on the example of Figure 2. Here, for

j = 27, 28 we have sj(s
0
j) > max(S1,(·)

T−s1j
).

As illustrated on Figure 3 and on Figure 4, the value of sj(s
i
j) given in Definition 3.2

can change depending on sj(s
i−1
j ) > max(S i,(·)T−sij

) is true or not. Indeed, since S i is finer

than S i−1, the bias backpropagation associated to S i can be larger than the one associated

to S i−1 and thus max(S i,(·)T−sij
) can happen to be significantly smaller than sj(s

i−1
j ).
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q0

1q

Figure 4: An example for Definition 3.2 based on the example of Figure 2. Here, for

j = 27, 28 we have sj(s
0
j) ≤ max(S1,(·)

T−s1j
).

3.2 From global to local bias control and variance adjustment

3.2.1 Local bias control

Given s ∈ S, the couple (s, s) was expressed in Definition 2.1 as well as in Definition
2.2 and an updating strategy for (s, s) was established in Definition 3.2 when S is con-
structed iteratively. In order to reduce the bias backpropagation, these definitions used
the double layer Monte Carlo to control the average bias. Indeed, as 1

M0

∑M0

m0=1 ũ
m0,S
s,u

and 1
M0

∑M0

m0=1

(
ũm0,S
δ(s),δ(s)

+
∑δ(s)

tl+1>s
f(tl, X

m0
tl
, Xm0

tl+1
)
)

are both approximations of the same

expectation E(Us) = E
(
Uδ(s) +

∑δ(s)
tl+1>s

f(tl, X
m0
tl
, Xm0

tl+1
)
)

, it is natural to have them al-

most equal. The same can be said for 1
M0

∑M0

m0=1

(
ṽm0,S
δ(s),δ(s)

+ (δ(s)− s)f(s, ṽm0,S
δ(s),δ(s)

)
)

and

for 1
M0

∑M0

m0=1 w̃
m0,S
s,u that are both approximations of E

(
Vδ(s) + (δ(s)− s)f(s, Vδ(s))

)
=

E
(
Es
[
Vδ(s) + (δ(s)− s)f(s, Vδ(s))

])
. For large values of M0, the difference between these

approximations is due to bias. A judicious method to reduce this bias backpropagation
is to adjust the number of successive regressions through the appropriate choice of u in-
volved in 1

M0

∑M0

m0=1 ũ
m0,S
s,u and in 1

M0

∑M0

m0=1 w̃
m0,S
s,u . In definitions 2.1 and 2.2, we select s

as the largest value of u for which the bias remains under some threshold. This choice of
s, with s = δ(s), sets the learning depth conditional to the information available at s ∈ S.

The choice of (s)s∈S ought to decrease the global average value of the bias. More local
approach can be developed using equalities

E
(
Us1{Us∈[a,b]}

)
= E

1{Us∈[a,b]}

Uδ(s) +

δ(s)∑
tl+1>s

f(tl, X
m0
tl
, Xm0

tl+1
)

 (3.6)

E
([
Vδ(s)+(δ(s)− s)f(s, Vδ(s))

]
1{Vs∈[a,b]}

)
=E
(
1{Vs∈[a,b]}Es

[
Vδ(s)+(δ(s)− s)f(s, Vδ(s))

])
(3.7)

which are true for any localizing interval [a, b]. Considering the generic example (f)
with equality (3.6), when M0 is large enough, one can sort {ũm0,S

s,u }m0≤M0 and define a
subdivision of localizing intervals {[aq, aq+1]}q≥1 then choose u = s that does not induce a

large difference between 1
M0

∑M0

m0=1

(
1{ũm0,S

s,s ∈[aq ,aq+1]}
[
ũm0,S
δ(s),δ(s)

+
∑δ(s)

tl+1>s
f(tl, X

m0
tl
, Xm0

tl+1
)
])

and 1
M0

∑M0

m0=1

(
ũm0,S
s,s 1{ũm0,S

s,s ∈[aq ,aq+1]}
)

for all qs. The local increase of bias can be tracked
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for any s ∈ S ∩ [δ(s), s[ and each interval [aq, aq+1] using the difference

1

M0

M0∑
m0=1

1{ũm0,S
s,s ∈[aq ,aq+1]}

̃um0,S
s,s − ũm0,S

δ(s),δ(s)
−

δ(s)∑
tl+1>s

f(tl, X
m0
tl
, Xm0

tl+1
)

 . (3.8)

The same can be done for (Snl) with equality (3.7). Although the local tracking of bias
was not necessary in our simulations, it is quite remarkable to point out the strength
of bias control induced by 1NMC. Provided that M0 is sufficiently large, it is basically
possible to remove any bias backpropagation.

3.2.2 From global to local value of
{
γm0,S
sj ,sk

}m0=1,...,M0

sj∈S,sk∈S∩]sj ,sj ]

Given sj ∈ S and sk ∈ S∩]sj, sj], various values can be considered for γm0,S
sj ,sk

. The straight

choice is to take γm0,S
sj ,sk

= 1 which reduces the procedure to a standard regression like
in CMCLDI. However, this is not the suitable choice for problems that heavily depend
on tail distribution. Indeed, given two arbitrary square integrable random variables χ1

and χ2, consider χ3 to be the regression of χ1 on a σ(χ2)-measurable basis. Because
generally regression preserves the mean value, it is reasonable to assume E(χ3) = E(χ1).
However, projections reduce the value of the second moment i.e. E(χ2

3) < E(χ2
1) and thus

Var(χ3) < Var(χ1). The latter fact becomes a real problem for tail distribution in case
Var(χ3) < Var(E(χ1|χ2)). Some contributions tackle rare event simulation using a change
of probability trick [9, 14] and more recent contribution [4] implements reversible shaking
transformations.

In case E(χ3) = E(χ1) = 0, given that we know a good approximation of Var(E(χ1|χ2)),
it is possible to adjust the projected value χ3 with a parametter γ to make Var(γχ3) ≈
Var(E(χ1|χ2)). Thus, γχ3 has the appropriate variance for the price of a slight increase
of the quadratic error since

E
(
[χ1 − γχ3]2

)
= E

(
[χ1 − χ3]2

)
+

(1− γ)2

γ2
E
(
[E(χ1|χ2)]2

)
then E ([χ1 − γχ3]2) ≈ E ([χ1 − χ3]2) provided that γ is slightly bigger than 1. This basic
idea is adapted hereafter to adjust the variance of the coarse estimators um0,S and wm0,S .

Using the global and local bias control presented above, we established strong con-
straints to make ũm0,S and ṽm0,S almost unbiased estimators of U and V respectively
given in (f) and (Snl). It is then possible to use their values to propose an appropriate
adjustment of the variance. For sj < s with s = sk, δ(sk), the whole idea is based on the
following equality

E
(
Varsj(Θs)

)
= E

(
Esj
([

Θs − Esj(Θs)
]2))

= E
([

Θs − Esj(Θs)
]2)

true for any square integrable process Θ and thus when Θ = U or when Θ = V with U
defined in (f) and V defined in (2.13).

For Θ = U, V we associate θ̃m0,S = ũm0,S , w̃m0,S respectively as fine approximations

and θ
m0,S

= um0,S , wm0,S respectively as coarse ones. We also set Hm0,S = Bm0,S , Cm0,S

which are subsequently the regression vector associated to either um0,S or wm0,S . To define
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γm0,S inductively, we need to introduce three notations starting with the non-adjusted
(γm0,S
sj ,s

= 1) conditional variance (σ̂m0,S
sj ,s

)2 (sj < s) given for each couple (θ,H) by

(σ̂m0,S
sj ,s

[θ,H])2=
1

M1

M1∑
m1=1

θ̃m0,S
s,s +tT m0

sj ,s,M ′1
(Xm0,m1

sj ,s
)Hm0,S

sj ,s
−

M1∑
m1=1

θ
m0,S
sj ,s

(Xm0,m1
sj ,s

)

M1

2

. (3.9)

∑M1

m1=1

θ
m0,S
sj ,s

(X
m0,m1
sj ,s

)

M1
in (3.9) can be replaced by

∑M1

m1=1

θ̃
m0,S
s,s +tT m0

sj ,s,M
′
1
(X

m0,m1
sj ,s

)H
m0,S
sj ,s

M1
without

changing the value of (σ̂m0,S
sj ,s

)2. We introduce also the conditional variance (sj < s)

(σm0,S
sj ,s

[θ])2=
1

M1

M1∑
m1=1

[
θ
m0,S
sj ,s

(Xm0,m1
sj ,s

)− 1

M1

M1∑
m1=1

θ
m0,S
sj ,s

(Xm0,m1
sj ,s

)

]2

(3.10)

and the average conditional variance (sj < s)

(σS0,sj ,s[θ])
2 =

1

M0

M0∑
m0=1

[
θ̃m0,S
s,s − 1

M1

M1∑
m1=1

θ
m0,S
sj ,s

(Xm0,m1
sj ,s

)

]2

. (3.11)

Because expressions (3.10) and (3.11) are the estimators of Esj
([

Θs − Esj(Θs)
]2)

and of

E
([

Θs − Esj(Θs)
]2)

respectively, it is natural to have asymptotically (as M1 → ∞ and

M0 →∞) the equality

(σS0,sj ,s[θ])
2 =

1

M0

M0∑
m0=1

(σm0,S
sj ,s

[θ])2 (3.12)

for both s = sk, δ(sk).

For θ = u,w, the estimators 1
M1

∑M1

m1=1 θ
m0,S
sj ,s

(Xm0,m1
sj ,s

) and θ̃m0,S
s,s have negligible bias.

Thus, we can reasonably assume inductively that (3.12) is true for s = δ(sk). Afterwards,
we choose the appropriate value of γm0,S

sj ,sk
that makes σm0,S

sj ,sk
satisfy (3.12) for s = sk. We

have then the following definition.

Definition 3.3. For a discretization set S ⊂ S, sj ∈ S, sk ∈ S∩]sj, sj], θ = u,w
and Hm0,S = Bm0,S , Cm0,S assuming by backward induction that γm0,S

sj ,s
is known for all

s = sj, ..., δ(sk) and given a positive tuning value ε < 1/3, we set then

γm0,S
sj ,sk

=
σm0,S
sj ,δ(sk)[θ]

σ̂m0,S
sj ,sk [θ,H]

(√
sk − sj
δ(sk)− sj

1δ(sk)−sj<ε +
σS0,sj ,sk [θ]

σS0,sj ,δ(sk)[θ]
1δ(sk)−sj≥ε

)
. (3.13)

According to (3.13), when δ(sk) − sj is small and a fortiori sk − sj is small then the
conditional variance (σm0,S

sj ,sk
[θ])2 has to be linear with respect to time increment sk − sj.

This fact can be justified for diffusions using first order Taylor expansion of φ(t, βt) around
φ(t, 0), for a standard Brownian motion β and a smooth function φ. Also according to
(3.13), when δ(sk) − sj becomes sufficiently big, the conditional variance (σm0,S

sj ,sk
[θ])2 has

the same average decreasing ratio

(
σS0,sj ,sk

[θ]

σS
0,sj ,δ(sk)

[θ]

)2

with respect to (σm0,S
sj ,δ(sk)[θ])

2.
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Although Definition 3.3 works well in our simulations, it can be turned into a more
local variance adjustment. In fact, similar to what was proposed for the bias control in
(3.6) and (3.7), for sj < s with s = sk, δ(sk), the equality

E
(

Varsj(Θs)1{Varsj (Θδ(sk))∈[a,b]}

)
= E

(
1{Varsj (Θδ(sk))∈[a,b]}

[
Θs − Esj(Θs)

]2)
is true for any localizing interval [a, b]. When M0 is sufficiently large, one can sort
{(σm0,S

sj ,δ(sk)[θ])
2}1≤m0≤M0 to define a family of localizing intervals {[aq, aq+1]}q≥1 and set

(σS,q0,sj ,s
[θ])2 =

1

M0

M0∑
m0=1

1{(σm0,S
sj ,δ(sk)

)2∈[aq ,aq+1]}

[
θ̃m0,S
s,s − 1

M1

M1∑
m1=1

θ
m0,S
sj ,s

(Xm0,m1
sj ,s

)

]2

.

Condition (3.12) can be then replaced by its localized version

(σS,q0,sj ,s
[θ])2 =

1

M0

M0∑
m0=1

1{(σm0,S
sj ,δ(sk)

[θ])2∈[aq ,aq+1]}(σ
m0,S
sj ,s

[θ])2. (3.14)

If σm0,S
sj ,δ(sk)[θ] ∈ [aq0 , aq0+1], for some q0, then it makes sense to replace (3.13) by

γm0,S
sj ,sk

=
σm0,S
sj ,δ(sk)[θ]

σ̂m0,S
sj ,sk [θ,H]

(√
sk − sj
δ(sk)− sj

1δ(sk)−sj<ε +
σS,q00,sj ,sk

[θ]

σS,q00,sj ,δ(sk)[θ]
1δ(sk)−sj≥ε

)
. (3.15)

The local variance adjustment (3.15) was not necessary in our simulations. Never-
theless, it is quite remarkable to point out the high flexibility of the multilayer setting
induced by 1NMC. Thus when M0 and M1 are sufficiently large, one sees that this dou-
ble layer Monte Carlo makes possible a very fine tracking of both the bias of the first
layer fine estimators (Um0 , V m0) and the variance of the second layer coarse estimator
(Um0,m1 , V m0,m1).

4 Error estimates for regression with different start-

ing points

After expressing error estimates for both coarse and fine approximations in CMCLDI
(Section 4), we showed in Section 5.4 the importance of using the couple (s, s)s∈S to cut
the bias propagation. Indeed, it is usual that successive regressions associated to a large
learning depth (the cardinal |[s, s] ∩ S| is large for s ∈ S) induce the accumulation of
significant errors, especially for nonlinear problems. When the standard compromise to
reduce these errors is to choose a coarser set S, our trick shortens the distance |s − s|
to cut the propagation of these errors without decreasing the precision on S. This trick
could then introduce a new stage of approximation by making s < T for some s ∈ S.

In this section, we present a control on this new stage of approximation used in the
generic example of [2](Section 3.1) extended in Section 2.1 which is adapted to BSDEs
in [2](Section 3.2) and to RBSDEs in Section 2.2. Focusing on the generic example,
equation (2.7) defines ũm0,S

s,sk
for any s ∈ {sk, sk + ∆t, ..., δsj(sk) − ∆t} using um0,S

sk,δsj(sk)(·)
which is deduced from a regression on Xm0,m1

sk,δsj(sk) instead of a regression on Xm0,m1

s,δsj(sk). Thus,

provided that s is sufficiently close to sk we replaced a regressed function obtained from
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inner trajectories starting at s by a regressed function obtained from inner trajectories
starting at sk on the same outer trajectory m0. We performed a similar approximation
in (2.8) when sj < T as we defined um0,S

sj ,sj
to be equal to um0,S

δsj(sj),sj
i.e. we replaced a

regression on Xm0,m1

sj ,sj
by a regression on Xm0,m1

δsj(sj),sj
. The adaptation of (2.7) yields similar

approximations in (2.16) and in [2](3.12) when the adaptation of (2.8) yields similar
approximations in (2.20) and in [2](3.14).

For sj < s < sk, we consequently approximate the regressed function um0,S
sj ,sk

(·) resulting

form the projection of
T∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) on Xm0,m1
sj ,sk

by the regressed function

um0,S
sj ,s

(·) resulting form the projection of
T∑

tl+1>sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) on Xm0,m1
s,sk

and vice

versa. These two approximations are not absurd since one can straightforwardly see, from
the Markov property, that

usk(x) = E

(
T∑

tl≥sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)
∣∣∣Xm0,m1

sj ,sk
= x

)

= E

(
T∑

tl≥sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)
∣∣∣Xm0,m1

s,sk
= x

)
.

(4.1)

In the following, we denote Em0
sj

the conditional expectation knowing the trajectory
(Xm0

t )t≥sj . When Esj is the usual conditional expectation knowing Xm0
sj

, Em0
sj

is needed
since the regression basis depends on Xm0 . In Proposition 4.1, we establish a control on

Em0
sj

([
um0,S
sj ,sk

(Xm0,m1
s,sk

)− usk(Xm0,m1
s,sk

)
]2
)

and on Em0
s

([
um0,S
s,sk

(Xm0,m1
sj ,sk

)− usk(Xm0,m1
sj ,sk

)
]2
)

using two auxilary processes X and X̃ defined for tl ≥ s by
X
m0,m1

sj ,s,s
= Xm0

s , X̃m0,m1
sj ,s,s

= Xm0,m1
sj ,s

and for tl = s+ ∆t, ..., T

X
m0,m1

sj ,s,tl
= Etl−1

(Etl−2
(...Es(Xm0

s , ξm0,m1

sj ,s+∆t
), ...ξm0,m1

sj ,tl−1
), ξm0,m1

sj ,tl
)

X̃m0,m1
sj ,s,tl

= Etl−1
(Etl−2

(...Es(Xm0,m1
sj ,s

, ξm0,m1

s,s+∆t
), ...ξm0,m1

s,tl−1
), ξm0,m1

s,tl
).

(4.2)

where E is given in (2.3).
As shown on Figure 5 for tl > sk, X

m0,m1

sj ,s,tl
is defined using Xm0,m1

s,s = Xm0
s and in-

crements from the process Xm0,m1
sj ,tl

, in contrast to X̃m0,m1
sj ,s,tl

defined using Xm0,m1
sj ,s

and in-
crements from the process Xm0,m1

s,tl
. Proposition 4.1 provides a strong formulation of a

possible compromise between two error terms on the right of each inequality.

Proposition 4.1. For any t ∈ S, we assume ut is [ut]Lip-Lipschitz. For sj < s < sk taking

their values in the discretization set S, we define Km0
2,sj ,sk

= [usk ]Lip +
√
Em0
sj (|Bm0,S

sj ,sk |2d′1)

and Km0
2,s,sk

= [usk ]Lip +
√

Em0
s (|Bm0,S

s,sk |2d′1) where | · |d′1 is the Euclidean norm on Rd′1, then√
Em0
s

([
um0,S
s,sk

(Xm0,m1
sj ,sk )− usk(X

m0,m1
sj ,sk )

]2)≤√Em0
s

([
um0,S
s,sk

(Xm0,m1
s,sk )− usk(X

m0,m1
s,sk )

]2)

+Km0
2,s,sk

√
Em0
s

(∣∣∣X̃m0,m1
sj ,s,sk −X

m0,m1
s,sk

∣∣∣2
d′1

) (4.3)
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Figure 5: Regression of
T∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) on Xm0,m1
sj ,sk

compared to regression of

T∑
tl+1>sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) on Xm0,m1
s,sk

with s ∈ {sj + ∆t, ..., sk −∆t}.

and√
Em0
sj

([
um0,S
sj ,sk

(Xm0,m1
s,sk )− usk(X

m0,m1
s,sk )

]2)
≤

√
Em0
sj

([
um0,S
sj ,sk

(Xm0,m1
sj ,sk )− usk(X

m0,m1
sj ,sk )

]2)

+Km0
2,sj ,sk

√
Em0
sj

(∣∣∣Xm0,m1

sj ,s,sk
−Xm0,m1

sj ,sk

∣∣∣2
d′1

)
.

(4.4)

Proof. As we simulate several independent copies of Xm0,m1 (cf. few lines before (2.4)),
we make sure that the approximations u are independent from Xm0,m1 , from X

m0,m1
and

from X̃m0,m1 conditionally on Xm0 . Moreover, from definition (4.2), (X
m0,m1

sj ,s,tl
)tl≥s has the

same law as (Xm0,m1
s,tl

)tl≥s and (X̃m0,m1
sj ,s,tl

)tl≥s has the same law as (Xm0,m1
sj ,tl

)tl≥s. Then one
can write the following

√
Em0
s

([
um0,S
s,sk

(Xm0,m1
sj ,sk )− usk(X

m0,m1
sj ,sk )

]2)
=

√
Em0
s

([
um0,S
s,sk

(X̃m0,m1
sj ,s,sk )− usk(X̃

m0,m1
sj ,s,sk )

]2)

≤

√
Em0
s

([
um0,S
s,sk

(X̃m0,m1
sj ,s,sk )− um0,S

s,sk
(Xm0,m1

s,sk )
]2)

+

√
Em0
s

([
um0,S
s,sk

(Xm0,m1
s,sk )− usk(X

m0,m1
s,sk )

]2)
+

√
Em0
s

([
usk(X

m0,m1
s,sk )− usk(X̃

m0,m1
sj ,s,sk )

]2)
(4.5)
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as well as√
Em0
sj

([
um0,S
sj ,sk

(Xm0,m1
s,sk )− usk(X

m0,m1
s,sk )

]2)
=

√
Em0
sj

([
um0,S
sj ,sk

(X
m0,m1

sj ,s,sk
)− usk(X

m0,m1

sj ,s,sk
)
]2)

≤

√
Em0
sj

([
um0,S
sj ,sk

(X
m0,m1

sj ,s,sk
)− um0,S

sj ,sk
(Xm0,m1

sj ,sk )
]2)

+

√
Em0
sj

([
um0,S
sj ,sk

(Xm0,m1
sj ,sk )− usk(X

m0,m1
sj ,sk )

]2)

+

√
Em0
sj

([
usk(X

m0,m1
sj ,sk )− usk(X

m0,m1

sj ,s,sk
)
]2)

(4.6)

which yield (4.3) and (4.4).

Remark 4.1. • We introduced notation Km0
2,·,· since Km0

1,·,· was already used in [2] to
control the bias term W. Indeed, Proposition 4.2 in [2] establishes the following
upper bound on the bias at time sk involving the mean squared error at time δ(sk)

Em0
sj

(
[Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
≤ Km0

1,sj ,sk
Em0
sj

(
[um0,S
sj ,δ(sk)

(Xm0,m1

sj ,δ(sk)
)− uδ(sk)(X

m0,m1

sj ,δ(sk)
)]2
)
.

• In addition to the bias term W, Proposition 4.2 in [2] introduced also a variance
term V and a regression error term R that can be used to decompose each mean
squared error involved in the right side of inequality (4.3) and of inequality (4.4).
For instance, using Proposition 4.2 of [2] we have

Em0
sj

(
[um0,S
sj ,sk

(Xm0,m1
sj ,sk

)− usk(Xm0,m1
sj ,sk

)]2
)

= Em0
sj (Vm0,S

sj ,sk
(Xm0,m1

sj ,sk
))

+Em0
sj

(
[Rm0,S

sj ,sk
(Xm0,m1

sj ,sk
) +Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)

which leads to a compromise between (regression error R+ variance V+ bias W)

and Km0
2,sj ,sk

Em0
sj

(∣∣∣Xm0,m1

sj ,s,sk
−Xm0,m1

sj ,sk

∣∣∣2
d′1

)
in (4.4). As the latter term can be made

very small with a continuity argument and fine discretization, we can thus stop the
bias backpropagation by accepting an error that is virtually equal to zero!

Proposition 4.1 requires Lipschitz property of U that is fulfilled if f is Lipschitz. If f
and g are Lipschitz, one can also show Lipschitz property for V solution of (Snl). It is
then possible to replace U by V , u by v and B by C in Proposition 4.1. In contrast to U
and V , it is harder to establish Lipschitz property of the solution of a discretized BSDE
with a Z term. Using similar steps to the one presented in [29], Lemma 4.1 shows this
Lipschitz property for the One step forward Dynamic Programming (ODP ) scheme

Ŷsk = Esk
(
Ŷδ(sk) + ∆skfsk(Xsk , Ŷδ(sk), Ẑsk)

)
Ẑsk = 1

∆sk
Esk

(
Ŷδ(sk)(Wδ(sk) −Wsk)

)
= 1√

∆sk

Esk
(
Ŷδ(sk)ζδ(sk)

)
where f uses the X component and the vector ζδ(sk) has a normal distribution N (0, Id1).
Replacing sk by k, ∆sk by ∆k and using Markov property (cf [18]) with{

yk(x) = E (yk+1(Ek(x, ζk+1)) + ∆kfk(x, yk+1(Ek(x, ζk+1)), zk(x)))

zk(x) = 1√
∆k

E (yk+1(Ek(x, ζk+1))ζk+1) ,

then Ŷsk = yk(Xsk) and Ẑsk = zk(Xsk).
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Lemma 4.1. Assume that f(t, x, y, z) is [f ]Lip-Lipschitz continuous with respect to x, y
and z uniformly in t ∈ [0, T ], for the particular case f(T, x) we denote by [fT ]Lip the Lip-
schitz coefficient. The coefficients b(t, x) and σ(t, x) of the Markov process (2.3) are also
assumed Lipschitz continuous in x uniformly with respect to t ∈ [0, T ] with Lipschitz coef-
ficients denoted [b]Lip and [σ]Lip. For a fixed value n0 ≥ 1, we assume that all increments

∆k are smaller than T/n0 and we define C = [f ]Lip

(
1 +

[√
d1[f ]Lip

2
+
√

T [f ]Lip
2n0

]2
)

+Cb,σ

with Cb,σ = [b]Lip + 1
2
[σ]2Lip, then for every time index k, yk is [yk]Lip-Lipschitz continuous

with
[yk]Lip 6

(
[yk+1]Lip e

∆kC + ∆k [f ]Lip

)
.

Moreover the functions zk are [zk]Lip-Lipschitz continuous with

[zk]Lip 6
1√
∆k

[yk+1]Lip e
∆kCb,σ,T

√
d1.

If ∆k = h is homogeneous with respect to k, we have

[yk]Lip 6

(
[fT ]Lip +

[f ]Lip
C

)
eC(T−sk)

and

[zk]Lip 6
√
d1

√
n0

T

(
[fT ]Lip +

[f ]Lip
C

)
eC(T−sk)e

T
n0
Cb,σ,T .

Proof. Assume by backward induction that yk+1 is [yk+1]Lip-Lipschitz continuous. For
every x, x′ ∈ Rd1 , we have

yk(x)− yk(x′) = E [yk+1(Ek(x, ζk+1))− yk+1(Ek(x′, ζk+1))]

+∆kE [fk(x, yk+1(Ek(x, ζk+1)), zk(x))− fk(x′, yk+1(Ek(x, ζk+1)), zk(x))]

+∆kE [fk(x
′, yk+1(Ek(x, ζk+1)), zk(x))− fk(x′, yk+1(Ek(x′, ζk+1)), zk(x))]

+∆kE [fk(x
′, yk+1(Ek(x′, ζk+1)), zk(x))− fk(x′, yk+1(Ek(x′, ζk+1)), zk(x

′))]

and, for any random vector ζ ∼ N (0, Id1)

zk(x)− zk(x′) =
1√
∆k

E ([yk+1(Ek(x, ζ))− yk+1(Ek(x′, ζ))]ζ) . (4.7)

We denote, when the denominator of these expressions are not equal to zero

Jx,x′ =
[fk(x, yk+1(Ek(x, ζk+1)), zk(x))− fk(x′, yk+1(Ek(x, ζk+1), zk(x))]

| x− x′ |2d1

t(x− x′)

Kx,x′ =
[fk(x

′, yk+1(Ek(x, ζk+1), zk(x))− fk(x′, yk+1(Ek(x′, ζk+1), zk(x))]

yk+1(Ek(x, ζk+1))− yk+1(Ek(x′, ζk+1))

Lx,x′ =
[fk(x

′, yk+1(Ek(x′, ζk+1), zk(x))− fk(x′, yk+1(Ek(x′, ζk+1), zk(x
′))]

| zk(x)− zk(x′) |2d1

t(zk(x)− zk(x′))

20



where, for any x, x′ ∈ Rd1 , | x |d1=
√
〈x, x〉 and 〈x, x′〉 = txx′. When the denominator is

zero we set these quantities to 0 as well. Then Jx,x, Kx,x and Lx,x are σ(ζk+1)-measurable
random vectors bounded by [f ]Lip and

yk(x)− yk(x′) = E [(yk+1(Ek(x, ζk+1))− yk+1(Ek(x′, ζk+1))) (1 + ∆kKx,x′)]
+ ∆k 〈E (Lx,x′), zk(x)− zk(x′)〉+ ∆kE [Jx,x′ ](x− x′).

Note that

〈E (Lx,x′), zk(x)−zk(x′)〉 = E
[
yk+1(Ek(x, ζk+1))− yk+1(Ek(x′, ζk+1))〈E (Lx,x′), ζk+1/

√
∆k〉

]
so that

yk(x)− yk(x′) = E
[

(yk+1(Ek(x, ζk+1))− yk+1(Ek(x′, ζk+1))) (1 + ∆kKx,x′ +
√

∆k〈E (Lx,x′), ζk+1〉)
]

+ ∆kE [Jx,x′ ](x− x′).

Consequently, using Cauchy-Schwartz inequality for the first term on the right hand
side of the above decomposition and |Jx,x′ | ≤ [f ]Lip for the second,

|yk(x)− yk(x′)| ≤
∥∥yk+1(Ek(x, ζk+1))− yk+1(Ek(x′, ζk+1)

∥∥
2

∥∥1 + ∆kKx,x′ +
√

∆k〈E (Lx,x′), ζk+1〉
∥∥
2

+ ∆k[f ]Lip | x− x′ |d1 .

By elementary computations already carried out in [5, 29], one classically has for the
Euler scheme with step ∆k,∥∥yk+1(Ek(x, ζk+1))− yk+1(Ek(x′, ζk+1)

∥∥
2
≤ [yk+1]Lip

∥∥Ek(x, ζk+1)− Ek(x′, ζk+1)
∥∥

2

≤ [yk+1]Lip|x− x′|d1

(
1 + Cb,σ∆k

)
with Cb,σ = [b]Lip + 1

2
[σ]2Lip. On the other hand

E
∣∣1 + ∆kKx,x′ +

√
∆k〈ELx,x′ , ζk+1〉

∣∣2 = 1 + ∆2
kEK2

x,x′ + ∆kE|Lx,x′ |2|ζk+1|2 + 2∆kE(Kx,x′)

+ 2
√

∆k 〈E (Lx,x′),E ζk+1〉︸ ︷︷ ︸
=0

+2∆
3/2
k E [Kx,x′〈E (Lx,x′), ζk+1〉]

≤ 1 + ∆k[f ]2Lipd1 + ∆2
k[f ]2Lip + 2∆

3/2
k [f ]2Lip

√
d1 + 2∆k[f ]Lip

≤ 1 + 2∆k[f ]LipCf,d1,T

where we used E|ζ1|2 = d1 in the first inequality and for fixed n0 > 1 given ∆k ≤ T/n0

we set Cf,d1,T =

(
1 +

[√
d1[f ]Lip

2
+
√

T [f ]Lip
2n0

]2
)

. Thus, we obtain

∥∥1 + ∆kKx,x′ +
√

∆k〈E (Lx,x′), ζk+1〉
∥∥

2
≤ 1 + [f ]LipCf,d1,T∆k.

Plugging these in the above upper bound yields

| yk(x)− yk(x′) | 6 [yk+1]Lip

((
1 + [f ]LipCf,d1,T∆k)

(
1 + Cb,σ∆k

)
+ ∆k[f ]Lip

)
| x− x′ |d1
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i.e.

[yk]Lip ≤ [yk+1]Lip

((
1 + [f ]LipCf,d1,T∆k)

(
1 + Cb,σ∆k

))
+ ∆k[f ]Lip

≤
(

[yk+1]Lip e
∆kC + ∆k [f ]Lip

)
with

C = [f ]LipCf,d1,T + Cb,σ.

As for the z term, using Lipschitz property of yk+1 and Cauchy-Schwarz’s inequality
then E|ζ1|2 = d1 and

∥∥Ek(x, ζk+1)− Ek(x′, ζk+1)
∥∥

2
≤ |x− x′|d1

(
1 + Cb,σ∆k

)
we get

| zk(x)− zk(x′) |d16
1√
∆k

[yk+1]Lip

√√√√ d1∑
i=1

E [(Ek(x, ζk+1)− Ek(x, ζk+1))]2 E
[
ζ ik+1

]2
6

1√
∆k

[yk+1]Lip
√
d1e

∆kCb,σ | x− x′ |d1 .

Thus, zk is Lipschitz continuous with coefficient [zk]Lip satisfying

[zk]Lip 6
1√
∆k

[yk+1]Lip e
∆kCb,σ,T

√
d1.

Assuming homogeneous time increment ∆k = h = T/n with n ≤ 2L, then for k ≤ n
we have

eCkh [yk]Lip 6 [yk+1]Lip e
C(k+1)h + eCkh [f ]Lip h.

which yields

eCkh [yk]Lip 6 [fT ]Lip e
Cnh + [f ]Lip h

n−1∑
l=k

eClh

6 [fT ]Lip e
CT + [f ]Lip h

eCT − eCkh

eCh − 1

6 [fT ]Lip e
CT + [f ]Lip h

eCT

eCh − 1

6 [fT ]Lip e
CT + [f ]Lip e

CT/C.

Finally we have

[yk]Lip 6 [fT ]Lip e
C(T−sk) + [f ]Lip e

C(T−sk)/C (4.8)

and

[zk]Lip 6
1√
h

([fT ]Lip +
[f ]Lip
C

)eC(T−sk−h)ehCb,σ
√
d1.
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5 Some numerical results

In this section we test the presented conditional MC learning procedure on American
option and risk measure. All simulations are run on a laptop that has an Intel i7-7700HQ
CPU and a single GeForce GTX 1060 GPU programmed with the CUDA/C application
programming interface. We refer the reader to [31] for an introduction to CUDA pro-
gramming. Like in [2], we used the code of the contribution [3] in order to perform the
batch parallel regressions induced by the proposed 1NMC simulation combined with local
regressions. The very competitive execution times that we present hereafter are possi-
ble not only because of the GPU use but also due to the adaptation of parallelization
strategies presented in [3].

5.1 American geometric put option

Given the (Snl) setting of Section 2.2 with a driver f = 0, we consider an American
geometric put option with constant interest rate r and a payoff

g(x) =

[
K −

d1∏
i=1

(xi)
1/d1

]+

(5.1)

with an asset X given by X i
t = X i

s exp
(

(r − σ2

2
)(t− s) + σ(W i

t −W i
s)
)

, t > s, 1 ≤ i ≤ d1,

r = log(1.1), σ = 0.4, K = X i
0 = 100 and d1 = 20.

Table 1: Numerical simulations for American option (5.1) simulated formula, [BC] bias
control [VA] variance adjustment: d1 = 20, M0 = 211, M1 = 212.

L = 2 L = 3 L = 4
(T = 0.5) (T = 1) (T = 2)

[VA] 2.561 4.236 6.363
(s = T ) (± 0.035) (± 0.042) (± 0.054)

[BC] 2.493 3.734 5.130
(s = (s+ 1/4) ∧ T ) (± 0.041) (± 0.061) (± 0.089)

[VA] + [BC] 2.291 2.890 3.961
(s = (s+ 1/4) ∧ T ) (± 0.035) (± 0.037) (± 0.055)

Real Price 2.153 2.871 3.754

We approximate the price V0 associated to payoff (5.1). We choose the dimension d1 = 20
to make sure that the variance of g(X) is sufficiently large. We point out however that it
works well for d1 = 100. In Table 1 we show the price of an American geometric put option,
calculated by simulated expression V sim

0 , for different maturities. Indeed, V learn
0 provides

almost the same values. From top to bottom we have: a variance adjustment [VA], a bias
control [BC] and a combination of [BC] and [VA]. We show that the simulated expression
with a combination of [BC] and [VA] gives a good approximation of the price even for long
maturity T = 2. One can strengthen the bias control on a finer discretization time grid S
but this will increase further the complexity. In Table 1 [VA] + [BC], we choose a standard
time discretization for the approximation of American options with s = (s+ 1/4)∧T and
we show that the variance adjustment is needed for better approximation of the conditional
expectation of scenarios close to the exercise frontier.
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Figure 6 shows the difference between two approximations 1
M0

∑M0

m0=1 e
−r∆s ṽm0,S

δ(s),δ(s)
and

1
M0

∑M0

m0=1(w̃m0,S
s,s ) of the same quantity with respect to the time discretization. For s ∈

S = {0, 1
8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1}, we implement on the left the conditional MC procedure using

s = T . On the right, we implement the conditional MC procedure controling the bias
with s =

(
s+ 1

4

)
∧ T . We show that the control allows to reduce the bias propagation.

Figure 6: 1
M0

∑M0

m0=1 e
−r(δ(s)−s)ṽm0,S

δ(s),δ(s)
vs. 1

M0

∑M0

m0=1(w̃m0,S
s,s ); [Left] s = T [Right] s =(

s+ 1
4

)
∧ T : d1 = 20, M0 = 211, M1 = 212, T = 1 and L = 3.

Figure 7: Numerical approximation of the price V0: d1 = 20, M0 = 29, T = 1, L = 3.

Figure 7 shows the approximation of the American geometric put option, calculated by
learned and simulated expression, with respect to the number of inner trajectories for
different maturities. Both expressions converge to the benchmark value for 29 outer
trajectories and 212 inner trajectories in 3 seconds.
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5.2 Initial Margin

We consider a portfolio of one hundred put options, the price Usk of the portfolio at time
step sk is given by

Usk =

d1∑
i=0

e−(T−sk)rEsk
([
K −X i

T

]+)
(5.2)

with an asset X given by X i
t = X i

s exp
(

(r − σ2

2
)(t− s) + σ(W i

t −W i
s)
)

, t > s, 1 ≤ i ≤ d1,

with r the interest rate, K the strike and T the maturity.

We calculate the Initial Margin (IM) of this portfolio that is an amount posted by the
counterparty (or the bank) to overcome the loss of the portfolio during the liquidation
period after a default. IM is formalized here as follows

IMsk = ESask(Lsk,δ(sk)) (5.3)

where the loss of the portfolio at time sk over a period ∆sk is denoted Lsk,δ(sk) and is
defined here by

Lsk,δ(sk) = Uδ(sk) − Usk ,

and the expected shortfall ES of level a is defined at time sk for any random variable Y
by

ESask(Y ) =
1

(1− a)

∫ 1

a

VaRα
sk

(Y )dα.

The value-at-risk VaRα(Y ) of level α of some random variable Y conditionally to Fsk is
defined by

VaRα
sk

(Y ) = inf{x ∈ R : P(Y ≤ x | Fsk) ≥ α}.

We considered the following parameters: T = 1, d1 = 100, K = X i
0 = 100, r = 0.01,

a = 99% and ∆sk = 1
32

. For each sk ∈ S =
{

l
32

; l = 0, ..., 32
}

, we simulate Usk using ũm0,S
sk,T

and we simulate Uδ(sk) using um0,S
sk,sk+∆sk

(Xm0,m1

sk,sk+∆sk
). A benchmark approximation of the

IM is obtained using Black & Scholes formula for put options.

Figue 8 shows few distributions of the loss process. From top to bottom we show different
time steps sk ∈ {29

32
, 19

32
, 9

32
}. On the left, we perform the procedure without variance

adjustment and on the right we perform the variance adjustment. We show that the
variance adjustment is necessary to fit the benchmark distribution of the loss process.
Figure 9 shows the initial margin distribution. From top to bottom we show different time
steps sk ∈ {29

32
, 19

32
, 9

32
}. The tail distribution of the loss process is very well approximated

and provides a fairly good representation of the distribution of IM.
Figure 10 shows the mean of IM with respect to the time horizon of the portfolio at the
top and the L2 relative error at the bottom. The relative error is sufficiently small as it
is generally less than 8% and does not exceed 11%.
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Figure 8: Numerical approximation of loss Ls,s+ 1
32

distribution [Left] Without variance

adjustment, [Right] With variance adjustment; [top to bottom] sk ∈ {29
32
, 19

32
, 9

32
}; M0 = 28,

M1 = 28 × 5.
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Figure 9: Numerical approximation of IMs distribution: [top to bottom] s ∈ {29
32
, 19

32
, 9

32
};

M0 = 28, M1 = 28 × 5.
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Figure 10: Initial Margin: [Top] mean of IMs; [Bottom] L2 relative error.
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