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stochastic differential equations

L. Abbas-Turki∗, B. Diallo†and G. Pagès‡

October 6, 2020

Abstract

We present a new algorithm based on a One-layered Nested Monte Carlo (1NMC)
to simulate functionals U of a Markov process X. The main originality of the
proposed methodology comes from the fact that it provides a recipe to simulate
Ut≥s conditionally on Xs. Because of the nested structure that allows a Taylor-like
expansion, it is possible to use a very reduced basis for the regression. Although
this methodology can be adapted for a large number of situations, we only apply
it here for the simulation of Backward Stochastic Differential Equations (BSDEs).
The generality and the stability of this algorithm, even in high dimension, make
its strength. It is heavier than a straight Monte Carlo (MC) but it is far more
accurate to simulate quantities that are almost impossible to simulate with MC.
The parallel suitability of 1NMC makes it feasible in a reasonable computing time.
This paper explains the main version of this algorithm and provides first results of
error estimates. We also give various numerical examples with a dimension equal to
100 that are executed from few seconds to few minutes on one Graphics Processing
Unit (GPU).

1 Introduction

Numerous contributions in numerical methods based on Monte Carlo reached recently
their limits in dealing with the curse of dimensionality [4]. This paper is a natural progress
of an increasing interest in Nested Monte Carlo (NMC) started in [18, 20, 21] and used
with regression in [1, 6] and with Multilevel method in [13]. In this contribution, One-
layered Nested Monte Carlo (1NMC) is set for only two layers of Monte Carlo that offer
the possibility of having two layers of approximation. In contrast to previous works, our
methodology is based on a judicious combination between 1NMC and various localized
regressions.
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Although we are not the first to propose a learning procedure for BSDEs or option
pricing/hedging [7, 11, 19], we are the first to do it using NMC and local regressions instead
of a neural network. Thus, we replace standard learning using a global minimization to
train a neural network by local regressions that provide very accurate results due to
1NMC. Combining regression with 1NMC makes the local projections accurate, even on
a reduced basis, as long as the projected values are sufficiently smooth. Of course, local
neural networks can replace local regressions but, as will be shown, the latter are already
quite sufficient for the considered examples and have very efficient implementation using
batch parallel processing [3].

The presented procedure is called Conditional Monte Carlo Learning for Diffusions
(CMCLD) as the regression-based analytical representations are established on the top
of a set of outer trajectories of diffusions. If these outer trajectories are erased the whole
learning procedure is lost. The conditional learning is the main drawback of this method-
ology but we are working on making the learning unconditional in future works. The goal
of this paper is to lay the foundation of the simplest version of this methodology making
possible further extensions of it in Conditional Monte Carlo Learning for Diffusions part
II (CMCLDII) [2].

On the top of what is presented in this part I, part II [2] will be dedicated to further
error controls and slight modifications that make possible accurate simulation of tail
values as well as optimal stopping problems in high/very high dimensions. Part I and II
have a common purpose of explaining in depth CMCLD and its benefit either when the
dimension is high/very high or when the problem can be formulated as a composition of
various functionals of a Markov process.

On a filtered probability space (Ω,F , (Ft)0≤t≤T ,P), the generic example is driven by an
Ft-Markov process (Xt)t∈[0,T ] taking its values on Rd1 . Given the fine time discretization
S = {t0, ..., t2L} =

{
0, T/2L, ..., T

}
, let Us be a functional of X defined for s ∈ S by

(f) Us =us(Xs) =Es

 2L∑
k=s2L/T

f(tk, Xtk , Xtk+1
)

=E

( ∑
s≤tk≤T

f(tk, Xtk , Xtk+1
)
∣∣∣Fs) ,

where Es (·) = E
(
·
∣∣∣Fs), the expectation is always considered under P, each determinis-

tic function f(tk, ·, ·) is B(Rd1) ⊗ B(Rd1)-measurable and assumed to satisfy the square
integrability condition E(f 2(tk, Xtk , Xtk+1

)) < +∞ with convention f(t2L , Xt
2L
, Xt

2L+1
) =

f(t2L , Xt
2L

). From the Markov assumption, for each s ∈ S, the B(Rd1)-measurable func-
tion us is deterministic. The simulation of U is generic to all BSDE examples presented
in this paper. As nested simulations involve heavy notations, it is easier to present the
whole algorithm for the simulation of U then apply it on specific examples.

When previous contributions target estimations of Utk for k = 0, ..., 2L knowing some
realization of {Xtj}0≤j≤k (m0 = 1, ...,M0), our purpose is to simulate approximations
{Um0,m1

tk,s
}s≥tk+1

, with (m0 = 1, ...,M0) and (m1 = 1, ...,M1), of {Us}s≥tk+1
condition-

ally on the realization {Xm0
tj }0≤j≤k. This task requires the simulation of a first layer

(Xm0)m0=1,...,M0 of trajectories that are kept in the machine’s random-access memory,
then a second (Xm0,m1)m1=1,...,M1 unstored layer of trajectories, on the top of the first
layer indexed by m0, only used to learn how should we perform approximations Um0,m1

called inner layer simulation of the process U .
Although more complex than a regression/MC method (cf. [22, 17]), getting the inner

layer simulation provides much more information on the process that has to be simulated.
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In particular, it is possible to set the outer layer simulation Um0
tk

of Utk to be equal to

1

M1

M1∑
m1=1

(
f(tk, X

m0
tk
, Xm0,m1

tk,tk+1
) + Um0,m1

tk,tk+1

)
. Knowing the inner layer simulation Um0,m1 , we

can compute quantiles on U or, even more remarkable, can simulate another process
Ũ that satisfies equation (f̃) (Replace f by f̃ in equation (f)) with an f̃ that can be

a function of U like for instance f̃(tk, x, y) = f(tk, Utk(x), Utk+1
(y)). Consequently, when

sufficient assumptions are satisfied, we can learn how to compute functionals of functionals
of X with the same 1NMC. This latter fact makes possible the simulation of Valuation
Adjustments [1] as long as one can write them as a composition of functionals then start
simulating by the innermost functional till the most outer composition.

The outer simulation Um0 is then defined using the inner one Um0,m1 , the latter
obtained from regressing on the inner trajectories Xm0,m1 . When Um0

tk
is defined for

all k = 0, ..., 2L, Um0,m1 has not to be defined on the whole fine discretization S =
{t0, ..., t2L} =

{
0, T/2L, ..., T

}
. We introduce then a coarser discretization set S that

controls the depth of our learning procedure by adding/reducing regression steps needed
for sufficiently accurate values of Um0 . It is possible to improve the depth in a parareal
fashion [23] which increases further the parallel scalability of the algorithm. Controlling
the depth of our learning procedure makes possible the balance between complexity and
accuracy. This compromise can be even formulated iteratively as explained in [2].

Having inner and outer simulations allows also to control the bias throughout the
whole algorithm. Indeed, for any s ∈ [0, T [ and any s′ ∈]s, T ] one can estimate both parts
of equality

E(Us) = E
(
Us′ +

s′∑
tl+1>s

f(tl, Xtl , Xtl+1
)
)

(1.1)

using
∑M0
m0=1 U

m0
s

M0
, 1
M0

∑M0

m0=1

(
Um0

s′ +
∑s′

tl+1>s
f(tl, X

m0
tl
, Xm0

tl+1
)
)

and their difference that

represents the estimated value of the average bias. Controlling the difference is numerically
possible using a particular choice of the time step s, associated to any s ∈ S, at which
we define the terminal condition involved in the inner simulation. To simulate Us, we can
subsequently set a terminal condition um0,S

s,s (·) to be only equal to f(T, ·) when s = T . The

choice of s and of the terminal condition um0,S
s,s (·) are discussed in the example of Section

2.2, are presented in definitions 3.1 and 3.2 with an upper bound error established in
CMCLDII [2]. Combining the tower property in equality (1.1) with the nested structure
of our algorithm is very beneficial to stop the bias propagation. Further benefits of this
combination on the variance of regressed values is presented in [2].

Starting with a simple application of the generic example, Section 2 introduces the
method as well as notations. In Section 3, we define both inner Um0,m1 and outer Um0

simulations of the process U given in (f) then we adapt it to BSDEs with a Markov
forward process. Using similar arguments to the one presented in [6], Section 4 explains
the impact of inner regressions on outer simulations. Section 5 shows the robustness of
our methodology on highly dimensional problems beyond what is known to be possible in
previous contributions.
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2 Notations and the methodology applied on a sim-

ple example

We introduce in Section 2.1 some needed notations and set the stage for Section 2.2 that
explains CMCLD starting from a simple application.

2.1 Notations: 1NMC, stabilized regressions, coarse discretiza-
tion and δ time operator

1NMC stands for one-layered nested MC and thus involves two layers of Monte Carlo sim-
ulation of a Markov process X. Using a sufficiently fine discretization S = {t0, ..., t2L} =
{0,∆t, 2∆t, ..., T} with ∆t = T/2L, one simulates M0 realizations (Xm0

tk
)m0=1,...,M0

k=1,...,2L
of the

Markov process X starting at a deterministic point X0 = x0 ∈ Rd1
with the following

induction

Xm0
tk

= Etk−1
(Xm0

tk−1
, ξm0
tk

), when k ≥ 1 and Xm0
t0 = x0, (2.1)

where (ξm0
tk

)m0=1,...,M0

k=1,...,2L
are independent realizations of an Rd2 random vector ξ and the

functions (Etk)k=0,...,2L−1 : Rd1+d2 → Rd1 are Borel-measurable. We use Xm0,1
tk

, ..., Xm0,d1
tk

to denote the d1 components of the vector Xm0
tk

. The sample (Xm0
tk

)m0=1,...,M0

k=1,...,2L
stays on

the machine memory and is supposed to approximate accurately (Xt)t∈[0,T ] in a sense
explained in Section 4.

For a decreasing sequence (sj)j=0,...,2L that takes its values in the time discretization
set S, an extra simulation conditional to the starting Xm0

sj
is needed for the learning

procedure. Introducing independent realizations (ξm0,m1
tj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} of

the random vector ξ that are also independent from (ξm0
tk

)m0=1,...,M0

k=1,...,2L
, we set for tk−1 ≥ sj

Xm0,m1
sj ,tk

= Etk−1
(Xm0,m1

sj ,tk−1
, ξm0,m1
sj ,tk

) and Xm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Xm0
sj
. (2.2)

We use Xm0,m1,1
sj ,tk

, ..., Xm0,m1,d1
sj ,tk

to denote the d1 components of the vector Xm0,m1
sj ,tk

. For
sj ≤ sl ≤ sk, we also introduce the notation Xm0,m1

sj ,sl:sk
and ξm0,m1

sj ,sl:sk
for respectively

(Xm0,m1
sj ,sl

, Xm0,m1

sj ,sl+∆t
, ..., Xm0,m1

sj ,sk−∆t
, Xm0,m1

sj ,sk
) and (ξm0,m1

sj ,sl
, ξm0,m1

sj ,sl+∆t
, ..., ξm0,m1

sj ,sk−∆, ξ
m0,m1
sj ,sk

).

In (2.2), we simulate M1 + M ′
1 conditional realizations of X in order to keep those

indexed from m1 = M1 + 1 to m1 = M1 + M ′
1 for the approximation of regression ma-

trices. Consequently, we make explicit the independence between trajectories used for
the estimation of regression matrices and those used in the backward induction. This
makes also explicit the difference between the number of trajectories needed for regres-
sion matrices approximation and the number of those used for the backward induction.
To reduce the complexity of the algorithm and memory occupation, trajectories used for
regression matrices can be simulated offline then erased from the memory. Given m0, if
the inner trajectories {Xm0,m1}m1=1,...,M1 are needed α times in the backward induction,
we simulate α independent copies and use each copy once. This reduces further memory
occupation as well as any superfluous dependence structure.

For each ordered couple (j < k) of indices that take their values in {1, ..., 2L}, we
introduce the stabilized regression basis

T m0

tj ,tk,M
′
1

: Rd1 3 x 7→ tΓ̃m0

tj ,tk,M
′
1

(
x−Xm0

tk

)
∈ Rd′1 (d′1 ≤ d1), (2.3)
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that performs a linear combination of the components of
(
x−Xm0

tk

)
using Γ̃m0

tj ,tk,M
′
1

that

contains some eigenvectors from Γm0

tj ,tk,M
′
1

obtained with the eigenvalue decomposition

Γm0

tj ,tk,M
′
1
Λm0

tj ,tk,M
′
1

tΓm0

tj ,tk,M
′
1

(2.4)

of the regression matrix

1

M ′
1

M1+M ′1∑
m1=M1+1

(
Xm0,m1
tj ,tk

−Xm0
tk

)
t
(
Xm0,m1
tj ,tk

−Xm0
tk

)
(2.5)

where t is the transpose operator.
Once factorization (2.4)=(2.5) is performed, we obtain the diagonal matrix Λm0

tj ,tk,M
′
1

=

diag

({
λm0,l
tj ,tk,M

′
1

}
l=1,...,d1

)
of decreasing positive eigenvalues. Then, we define Λ̃m0

tj ,tk,M
′
1

=

diag

({
λm0,l
tj ,tk,M

′
1

}
l=1,...,d′1

)
as the truncation of Λm0

tj ,tk,M
′
1

with d′1 defined by

d′1 = min

k ∈ {1, .., d′′1},
k∑
l=1

λm0,l
tj ,tk,M

′
1
≥ p%

d′′1∑
l=1

λm0,l
tj ,tk,M

′
1

 , (2.6)

where p% ∈ [95%, 100%], d′′1 keeps only eigenvalues that make the regression problem well-

conditioned i.e. The ratio
λm0,l
tj ,tk,M

′
1

λm0,1
tj ,tk,M

′
1

∣∣∣
l=1,...,d′′1

has to be bigger than 10−6 in single precision or

bigger than 10−15 in double precision floating representation [27]. In addition to ensuring
a well-conditioned regression problem, equality (2.6) also performs a principal component

analysis [27]. At the same time that we set the components of Λ̃m0

tj ,tk,M
′
1
, we define the

matrix Γ̃m0

tj ,tk,M
′
1

that contains only the eigenvectors in Γm0

tj ,tk,M
′
1

that are associated to

Λ̃m0

tj ,tk,M
′
1
.

The regression with respect to tΓ̃m0

tj ,tk,M
′
1

(
Xm0,m1
tj ,tk

−Xm0
tk

)
∈Rd′1 with d′1 ≤ d1, instead

of
(
Xm0,m1
tj ,tk

−Xm0
tk

)
∈ Rd1 , involves the inversion of the diagonal matrix Λ̃m0

tj ,tk,M
′
1

which

replaces the whole regression matrix (2.5). Since Λ̃ is bounded below away from zero, its
inverse is bounded and the same for the regression procedure. This stabilizes the compu-
tation of the regression estimator whose expression is detailed in Section 3. Besides, since
we have a large number of regression matrices, we can batch compute these inversions like
explained in [3]. The latter reference presents a recipe to resolve efficiently and accurately
large number of small symmetric linear systems on GPUs. In particular, the authors of
[3] present a batch parallelization strategy of Cuppen’s divide & conquer algorithm (cf.
[10]) suited for CMCLD.

As shown in the numerical examples of Section 5, performing a regression with re-

spect to tΓ̃m0

tj ,tk,M
′
1

(
Xm0,m1
tj ,tk

−Xm0
tk

)
for any couple of fine increments (tj < tk) is mostly

both unacessary and computationally heavy. Thus, only regressions with respect to
tΓ̃m0

sj ,sk,M
′
1

(
Xm0,m1
sj ,sk

−Xm0
sk

)
are considered, with (sj, sk) being a couple that take their val-

ues in S ×
(
S ∩ [sj, sj]

)
. The set of the possible values S is a subset of the fine time
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discretization S. The couple (sj, sj) ∈ (S∩]sj, T ])2 sets the minimal and the maximal
time increment of the performed regressions conditionally on the realization Xm0

sj
of the

Markov process X. Given a coarse discretization set S, definitions 3.1 and 3.2 express
the value of (s, s)s∈S .

The choice of S and of S 3 sj 7→ (sj, sj) ∈ (S∩]sj, T ])2 have to be specific to each
application. In some examples like the one presented in Section 5.6, S = S or S has to
be fine enough because fine discretization is needed for the corresponding BSDE. Also for
some situations as the Hamilton-Jacobi-Bellman simulation presented in Section 5.4, one
has to cut the bias propagation and set sj < T for some values sj ∈ S. Consequently, S
and S 3 s 7→ (s, s) ∈ (S∩]s, T ])2 are not predefined but rather add a degree of freedom to
increase accuracy and stop the bias propagation. In Conditional Monte Carlo Learning
for Diffusions part II, for i = 0, ..., L− L′, we define (sj)j=0,...,2L to be iteratively equal to
(T − sij)j=0,...,2L starting with a homogeneously distributed sequence where each term is

repeated 2L−L
′

times as follows

s0
j =

⌈
j2L

′

2L

⌉
T

2L′
where d·e is the ceiling function. (2.7)

Denoting S i the set of values taken by (T−sij)j=0,...,2L , for example S0 = {0, T/2L′ , ..., (2L′−
1)T/2L

′
, T}, it is possible to set a refinement strategy.

Given that (sj)j∈{0,...,2L} is a decreasing, and not strictly decreasing, sequence of coarse
increments, we need to define on S a new operator δS that associates to each s ∈ S the
next increment in S. For a fixed index j ∈ {1, ..., 2L}, we define δSsj(·) on (sk)k≤j, taken
its values in S ∩ [sj, sj], by

δSsj(sk) = min (sj,min{s ∈ S; sk < s ≤ sj}) (2.8)

with min(∅) =∞.
When there is no confusion on the chosen set S, we use δsj notation instead of δSsj .

When sk < sj, we use δS notation instead of δSsj . When there is no confusion on the

chosen set S and sk < sj, we simplify both indices and use δ instead of δSsj .
This time operator will be largely used and for a given set S it has the following

properties

Pr1. sj = δsj(sj) = δ(sj).

Pr2. As long as max(sj1 , sj2) ≤ sk < min(sj1 , sj2), δsj1(sk) = δsj2(sk) = δ(sk).

Pr3. The nth composition of δsj denoted δnsj(·) is equal to sj when n ≥ |S∩]sj, sj]| where
| · | denotes the cardinal.

2.2 Illustration of coarse and fine approximations for condi-
tional expectations

We consider here the following process

Ut = E
(
f(XT )

∣∣∣Xt

)
,

with a deterministic function f . Thus, we assume that there is no path dependence
through the sum on the realizations of X as done in (f). In this path-independent
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situation for the fixed time set (2.7), it is clear that one can simulate U using 1NMC
without any need of regression and thus without using our method. However, we choose
to illustrate our method on this simple case and we will see at the end of this section
what could be the benefits.

For j, j′ ∈ {1, ..., 2L} and time steps sj′ , sj ∈ S−{0} with sj′ < sj and for a fixed outer
trajectory (Xm0

tk
)k=0,...,2L , let us assume that we want to simulate one realization of Usj′

and of Usj . A straight way to do it is to draw the inner trajectories {Xm0,m1

sj′ ,T
}m1=1,...,M1 and

{Xm0,m1

sj ,T
}m1=1,...,M1 , as in Figure 1, then average with respect to m1 on the realizations

f(Xm0,m1

sj′ ,T
) and f(Xm0,m1

sj ,T
) respectively. If sj and sj′ are close to each other in some sense1,

our method makes possible to simulate Utk for any tk ∈ [sj′ , sj) using

Um0
tk

= ũm0,S
tk,T

=
1

M1

M1∑
m1=1

um0,S
sj′ ,sj

(Xm0,m1
tk,sj

).

Thus, um0,S
sj′ ,sj

(x) and Xm0,m1
tk,sj

replace respectively f(x) and Xm0,m1

tk,T
involved in a standard

nested simulation that would approximate the m0 realization of Utk by

M1∑
m1=1

f(Xm0,m1

tk,T
)

M1

.

The introduced

• um0,S
s,s′ (x) (0 ≤ s < s′ < s), called coarse approximation, is the regression representa-

tion of E
(
f(XT )

∣∣∣Xs′ = x
)

computed using the inner trajectories {Xm0,m1

s,s′ }1≤m1≤M1 .

• ũm0,S
s,s (0 ≤ s < T ), called fine approximation, is the Monte Carlo representa-

tion of E
(
f(XT )

∣∣∣Xs

)
computed by averaging on the regression representations

{um0,S
s,s (Xm0,m1

s,s )}1≤m1≤M1 with s = δ(s). The index s in ũm0,S
s,s provides the depth of

the regression learning conditionally on the realization Xm0
s .

Below, we explain how um0,S
s,s′ (x) should be computed and how s should be set.

First of all, since sj′ and sj are assumed to be “close enough” one can consider the
same learning depth sj = sj′ = t2L = T and define

(usj′T ) & (usjT ) um0,S
sj′ ,T

(x) = um0,S
sj ,T

(x) = f(x)

and if sj = T then

(ũsj) Um0
sj

= ũm0,S
sj ,T

=
1

M1

M1∑
m1=1

um0,S
sj ,T

(Xm0,m1

sj ,T
).

As will be presented in (3.1), we define

(usj′sj) um0,S
sj′ ,sj

(x) = ũm0,S
sj ,T

+tT m0

sj′ ,sj ,M
′
1
(x)Am0,S

sj′ ,sj
,

where the adaptation of (3.3) makes

(ATsj′sj) A
m0,S
sj′ ,sj

=

(
Λ̃m0

sj′ ,sj ,M
′
1

)−1

M1

M1∑
m1=1

T m0

sj′ ,sj ,M
′
1
(Xm0,m1

sj′ ,sj
)
[
um0,S
sj′ ,T

(
Xm0,m1

sj′ ,T

)
− ũm0,S

sj ,T

]
.

1Not necessary an Euclidean distance.
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' T'''''0 ''''

Figure 1: Given the realization of one outer trajectory (bold), we simulate inner trajec-
tories to approximate Usj , Usj′ , Usj′′ , Usj′′′ and Usj′′′′ .

If we add a third increment sj′′ (cf. Figure 1) such that sj′′ , sj′ and sj are close enough,

for any tk ∈ [sj′′ , sj′) one can set Um0
tk

= ũm0,S
tk,T

. The latter equality requires the definition

of um0,S
sj′′ ,sj′

which can be obtained from (usj′′sj′ ) (replace sj′ by sj′′ and sj by sj′ in (usj′sj))

involving ũm0,S
sj′ ,T

and Am0,S
sj′′ ,sj′

that can be computed using (A
sj
sj′′sj′ ). The calculations in

(A
sj
sj′′sj′ ) use ũm0,S

sj′ ,T
and um0,S

sj′′ ,sj
whose expression depends on ũm0,S

sj ,T
and Am0,S

sj′′ ,sj
. Finally,

Am0,S
sj′′ ,sj

is the regression vector of um0,S
sj′′ ,T

around ũm0,S
sj ,T

. Subsequently, the computations of

ũm0,S
sj′′ ,T

, ũm0,S
sj′ ,T

and ũm0,S
sj ,T

involve the dependence structure given in (2.9).

ũm0,S
sj′′ ,T

→ um0,S
sj′′ ,sj′

→ ũm0,S
sj′ ,T

→ um0,S
sj′ ,sj

→ ũm0,S
sj ,T

→ um0,S
sj ,T

= f

↘ ↑ ↘ ↑
Am0,S
sj′′ ,sj′

Am0,S
sj′ ,sj

→ um0,S
sj′ ,T

= f

↘
um0,S
sj′′ ,sj

→ ũm0,S
sj ,T

→ um0,S
sj ,T

= f

↘ ↑
Am0,S
sj′′ ,sj

→ um0,S
sj′′ ,T

= f

(2.9)

By adding other increments sj′′′ and sj′′′′ (cf. Figure 1), it can happen that sj′′′′ ,
sj′′′ and sj can no longer be considered close enough to each other. In this situation,
a regression on a linear basis around Xm0

sj
would not be considered sufficient for inner

trajectories that start at Xm0
sj′′′

or Xm0
sj′′′′

. To deal with this situation, one should introduce

(sj′′′ , sj′′′) and (sj′′′′ , sj′′′′) that set the beginning and the ending of the family of successive
regressions. For instance if sj′′′ = sj and sj′′′ = sj′′ , one starts the backward induction

associated to the increment sj′′′ by the final condition um0,S
sj′′′ ,sj

(x) = um0,S
sj′′ ,sj

(x) instead of

um0,S
sj′′′ ,T

(x) = f(x) and the dependence tree (2.9) becomes

ũm0,S
sj′′′ ,sj′′

→ um0,S
sj′′′ ,sj′′

→ ũm0,S
sj′′ ,sj′

→ um0,S
sj′′ ,sj′

→ ũm0,S
sj′ ,sj

→ um0,S
sj′ ,sj

→ũm0,S
sj ,T

...f

↘ ↑ ↘ ↑ ↘ ↑
Am0,S
sj′′′ ,sj′′

Am0,S
sj′′ ,sj′

Am0,S
sj′ ,sj

...f

↘ ↘
um0,S
sj′′′ ,sj′

→ ũm0,S
sj′′ ,sj

→ um0,S
sj′′ ,sj

→ũm0,S
sj ,T

...f

↘ ↑ ↘ ↑
Am0,S
sj′′′ ,sj′

Am0,S
sj′′ ,sj

...f

↘
um0,S
sj′′′ ,sj

= um0,S
sj′′ ,sj

(2.10)
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In Figure 1, we also set sj′′′′ = sj′ as well as sj′′′′ = sj′′′ and the tree (2.10) can be further
changed to include the dependency structure induced by sj′′′′ . Indeed, we urge the reader
to check that (2.10) can be as easily completed as done for (2.9) to include the dependency
structure induced by sj′′′′ .

Even with the simple example presented in this subsection, one can show the benefit of
this method. Indeed, in addition to a fine simulation of U using ũ, this method defines a
set of functions u that can be considered as coarse conditional approximation of U . These
conditional approximations can be used as forward components of another functional. For
instance, given the example presented above and illustrated in Figure 1, the simulation

of an m0 realization of Vsj′′ = E
(

(Usj − Usj′ )+

∣∣∣Xsj′′

)
can be done with

Ṽ m0
sj′′

=
1

M1

M1∑
m1=1

([
um0,S
sj′′ ,sj

(Xm0,m1
sj′′ ,sj

)− um0,S
sj′′ ,sj′

(Xm0,m1
sj′′ ,sj′

)
]

+

)
.

These functions u can be also used for risk measures. For example, the conditional value

at risk VaRα%
[
Usj − Usj′

∣∣∣Xsj′′

]
of level α% can be computed after sorting the values(

um0,S
sj′′ ,sj

(Xm0,m1
sj′′ ,sj

)− um0,S
sj′′ ,sj′

(Xm0,m1
sj′′ ,sj′

)
)

1≤m1≤M1

.

Remark 2.1. Referring to Figure 1, for any g, when E
(
g(Usj′′′ )

∣∣∣Xsj′′′′

)
, E
(
g(Usj′′ )

∣∣∣Xsj′′′′

)
and E

(
g(Usj′ )

∣∣∣Xsj′′′′

)
are well defined their simulation can be directly performed using

um0,S
sj′′′′ ,sj′′′

, um0,S
sj′′′′ ,sj′′

or um0,S
sj′′′′ ,sj′

. This is not the case for E
(
g(Usj)

∣∣∣Xsj′′′′

)
since um0,S

sj′′′′ ,sj
were

not computed because sj′′′′ = sj′ < sj.

The other benefit of our methodology is the possibility to have a parareal alike imple-
mentation [23] and thus make the algorithm parallel in time in addition to have it parallel
in paths. Indeed, refering to Figure 1, if we associate the final conditions um0,S

sj′′ ,sj′
and

um0,S
sj′ ,sj

respectively to each subinterval [sj′′ , sj′) and [sj′ , sj), we can perform concurrent

calculations on these intervals.

3 General methodology applied to BSDEs with a Markov

forward process

Based on what was presented previously, we detail in Section 3.1 the simulation of approx-
imations of U defined by (f). Section 3.2 illustrates the adaptation of this new method
to BSDEs.

3.1 Fine and coarse approximations

Considering the discretization sequence (sj)j=0,...,2L that takes its values in the set S ⊂ S,
we use a learning procedure to associate to each scenario m0 and to each discretization
set S a couple of function families (ũm0,S , um0,S).

Now, for given indices k, j ∈ {1, ..., 2L} (k < j) that satisfy sj < sk < sj, for x ∈
Rd1 and s ∈ {sk, sk + ∆t, ..., δ(sk) − ∆t}, we define two approximation levels: A coarse
approximation around Xm0

sk
conditionally on Xm0

sj
defined by

um0,S
sj ,sk

(x) = ũm0,S
sk,sk

+ tT m0

sj ,sk,M
′
1
(x)Bm0,S

sj ,sk
, (3.1)
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and a fine approximation at Xm0
s defined by

ũm0,S
s,sk

=
1

M1

M1∑
m1=1

um0,S
sk,δ(sk)(X

m0,m1

s,δ(sk) ) +

δ(sk)∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)

 . (3.2)

The value of Bm0,S
sj ,sk

is given by

Bm0,S
sj ,sk

= (Λ̃m0

sj ,sk,M
′
1
)−1 1

M1

M1∑
m1=1

B
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1

sj ,sk:δsj(sk)) (3.3)

where Xm0,m1

sj ,sk:δsj(sk) =
(
Xm0,m1
sj ,sk

, Xm0,m1

sj ,sk+∆t
, ..., Xm0,m1

sj ,δsj(sk)−∆t
, Xm0,m1

sj ,δsj(sk)

)
and B

m0,S,δsj(sk)

sj ,sk,M
′
1

: Ω ×
Rd1(δsj(sk)−sk)/∆t 3 (ω, x1, ..., x(δsj(sk)−sk)/∆t) → Ω × Rd′1 is Fδsj(sk) ⊗ B(Rd1(δsj(sk)−sk)/∆t)-
measurable and defined by

B
m0,S,δsj(sk)

sj ,sk,M
′
1

(x) = T m0

sj ,sk,M
′
1
(x1)


um0,S
sj ,δsj(sk)

(
x δsj(sk)−sk

∆t

)
− ũm0,S

sk,δsk(sk)

+

δsj(sk)−sk
∆t

−1∑
l=1

f(tksk+l, xl, xl+1)


︸ ︷︷ ︸

B
m0,S,δsj(sk)
sj ,sk (x)

(3.4)

where ksk = sk/∆t − 1 and x = (x1, ..., x(δsj(sk)−sk)/∆t).

T involved in (3.1) was already defined in (2.3). Regarding the regression vector Bm0,S
sj ,sk

,

its value can be seen as an estimation of the vector a ∈ Rd′1 that minimizes the quadratic
error given by

E
[
B
m0,S,δsj(sk)
sj ,sk (Xm0,m1

sj ,sk:δsj(sk))−
taT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)
]2

. (3.5)

To complete this inductive interconnected backward definition of u and ũ, we set the
final coarse approximation to

um0,S
sj ,sj

(x) =

{
f(T, x) if sj = T,

um0,S
sj ,sj

(x) = um0,S
δ(sj),sj

(x) if sj < T,
(3.6)

where the values sj, sj ∈ (S∩]sj, T ])2 with sj < sj, expressed in Definition 3.1, delimit
the learning depth of the performed regressions conditionally on the realization Xm0

sj

of the Markov process X. In numerical examples of Section 5, we see that sj and sj
are needed when the bias becomes important because either T is sufficiently big or the
variance produced by X is large enough. Otherwise, (3.6) can be replaced by um0,S

sj ,T
(x) =

f(t2L , x) = f(T, x). In CMCLDII [2], we suggest a method of iterative actualization of
the couple {(s, s)}s∈S when we refine the discretization set S.

According to equations (3.1), (3.2), (3.3), (3.4) and (3.6), the functions u and ũ are
defined backwardly. When ũ is a straight Monte Carlo involving u, the latter is defined
using a regression around a point at which we expressed ũ. Consequently, u can be
seen as a conditional first order Taylor expansion around the first layer of trajectories
(Xm0

tk
)m0=1,...,M0

k=1,...,2L
. The term of order zero in this expansion is played by ũ, where the term

tT m0

sj ,sk,M
′
1
(x)Bm0,S

sj ,sk
, deduced from the minimization of (3.5), plays the order one.
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Remark 3.1. 1. Since we do not want to increase further the algorithm complexity
by considering higher order terms, the definition of u involves only linear terms for
regressions around Xm0

sk
.

2. When the dimension d1 is not too high, it is possible to regress the residual of the
first regression on higher order terms. These successive regressions do not increase
drastically the complexity when compared to the standard procedure. Nevertheless,
as it separates regression with respect to first order terms and regression with respect
to higher order terms, it loses orthogonality between first and higher order terms.

3. In case X is a martingale, the linearity simplifies further computations since, for
instance, (3.2) can be replaced by

ũm0,S
s,sk

= um0,S
sk,δ(sk)(X

m0
s ) +

1

M1

M1∑
m1=1

δ(sk)∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

).

Definition 3.1. Given a discretization set S ⊂ S

• For any s ∈ S, s is set to be equal to δ(s) and s is set backwardly to be the largest
discretization time u ∈ S∩]s, δ(s)] that satisfies∣∣∣∣∣∣ 1

M0

M0∑
m0=1

ũm0,S
s,u − ũm0,S

δ(s),δ(s)
−

δ(s)∑
tl+1>s

f(tl, X
m0
tl
, Xm0

tl+1
)

∣∣∣∣∣∣ < εSs (3.7)

where {εSs }s∈S is a family of positive bias tuning parameters.

• For k, j ∈ {1, ..., 2L} (k < j) that satisfy sj < sk ≤ sj < t2L = T , the simulation
Um0,m1
sj ,sk

of U around Xm0
sk

conditionally on Xm0
sj

is set to be equal to um0,S
sj ,sk

(Xm0,m1
sj ,sk

)
where u is given in (3.1) and (3.6).

• For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δ(sk) −∆t} − {0}, the simulation Um0
s

of U at Xm0
s is set to be equal to ũm0,S

s,sk
with ũ expressed in (3.2).

• The average U lear
0 of learned values on U0 is equal to

U lear
0 =

1

M0

M0∑
m0=1

ũm0,S
0,0

(3.8)

and the simulated value U sim
0 of U0 is equal to

U sim
0 =

1

M0

M0∑
m0=1

ũm0,S
δ(0),δ(0)

+

δ(0)∑
tl+1>0

f(tl, X
m0
tl
, Xm0

tl+1
)

 (3.9)

with ũ expressed in (3.2).
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The definition of s is straightforward since we take s = δ(s). To set the value of
s, we need to know δ(s) whose value involves the one of δ2(s) and so on till T . In [2],
Section 3.1, we give an example of how to update the values of (s, s)s∈S when the coarse
discretization S gets finer.

Um0,m1 can be seen as the inner or second layer approximation of U and Um0 can be
seen as the outer or first layer approximation of U . When Um0,m1 is only defined on S, it
is remarkable to see that Um0 is defined on the whole fine discretization set S. At t = 0,
inner and outer trajectories coincide that yield U lear

0 and U sim
0 as two possible outer first

layer approximations of U0. For any S, it is natural to have εSs proportional to the value
of the estimation 1

M0

∑M0

m0=1 ũ
m0,S
s,s . Used to control the bias, the choice of εSs has also to

take into account the confidence interval of the estimator of the left side of inequality
(3.7). Based on equality (1.1), (3.7) is quite sufficient in the considered examples to have
almost unbiased estimates. CMCLDII [2] introduces a more stringent local bias control
that can be used when (3.7) is not sufficient.

3.2 BSDEs with a Markov forward process

In Section 2.2, we saw the implementation of CMCLD on a simple problem and we showed
its benefits when one has to simulate functionals of functionals of a Markov process.
BSDEs with a Markov forward process are specific functionals of functionals of a Markov
process. After [26], BSDEs became very widely studied, especially in the quantitative
finance community starting with [12]. Here we adapt CMCLD to the One step forward
Dynamic Programming (ODP ) scheme for discrete BSDEs

(ODP ) YT = ζ and for k < 2L
{
Ytk = Etk [Ytk+1

+ ∆tf(tk, Ytk+1
, Ztk)],

Ztk = Etk [Ytk+1
(Wtk+1

−Wtk)/∆t].

(ODP ) was studied for instance in [14, 22]. We consider ζ = f(T,XT ) to be some
square integrable random variable that depends on XT . Given a discretization sequence
(sj)j=0,...,2L ∈ S and referring to (2.1) and (2.2), the simulation of X involves the incre-
ments of an Rd2-Brownian motion W with ξm0

tk
= Wm0

tk
−Wm0

tk−1
and ξm0,m1

sj ,tk
= Wm0,m1

sj ,tk
−

Wm0,m1
sj ,tk−1

where W 1, ...,WM0 are independent realizations of W with

Wm0,m1
sj ,tk

= Wm0,m1
sj ,tk−1

+ ∆Wm0,m1
sj ,tk

and Wm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Wm0
sj
,

(∆Wm0,m1
sj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} are independent Brownian motion increments in-

dependent from W 1, ...,WM0 with E([∆Wm0,m1
sj ,tk

]2) = ∆t. As pointed out in Section 2.1,
if an inner trajectory {Xm0,m1} is needed several times in the backward induction, we
simulate independent copies of it and thus independent copies of ξm0,m1 and use each
copy once.

For given indices k, j ∈ {1, ..., 2L} with k < j that satisfy sj < sk < sj and using
δsj(sk) defined in (2.8), we also set ∆Wm0,m1

sj ,sk,δsj(sk) = Wm0,m1

sj ,δsj(sk) −Wm0,m1
sj ,sk

. For each k, the

Borel B(R)⊗B(Rd2)-measurable driver f(tk, ·, ·) is assumed to satisfy Lipschitz condition
of Section 4.

Given the discretization set S, one can define two coarse approximations around Xm0
sk

conditionally on Xm0
sj

given by

ym0,S
sj ,sk

(x) = ỹm0,S
sk,sk

+ tT m0

sj ,sk,M
′
1
(x)Cm0,S

sj ,sk
, (3.10)
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tzm0,S
sj ,sk

(x) = tz̃m0,S
sk,sk

+ tT m0

sj ,sk,M
′
1
(x)Dm0,S

sj ,sk
, (3.11)

as well as two fine approximations at Xm0
s , for s ∈ {sk, sk + ∆t, ..., δsj(sk) − ∆t} with

∆s = δsj(sk)− s and ∆sk = δsj(sk)− sk, given by

ỹm0,S
s,sk

=
1

M1

M1∑
m1=1

 ∆sf(sk, y
m0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk)), z̃
m0,S
s,sk

)

+ ym0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))

 , (3.12)

z̃m0,S
s,sk

=
1

M1∆s

M1∑
m1=1

ym0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))
(
Wm0,m1

s,δsj(sk) −W
m0
s

)
(3.13)

and we set the final coarse approximation to

ym0,S
sj ,sj

=

 f(t2L , X
m0,m1
sj ,t2L

) if sj = t2L ,

ym0,S
sj ,sj

(Xm0,m1

sj ,sj
) = ym0,S

δsj(sj),sj
(Xm0,m1

sj ,sj
) if sj < t2L ,

(3.14)

where the values sj, sj ∈ (S∩]sj, T ])2 with sj < sj, expressed in Definition 3.2, delimit
the learning depth of the performed regressions conditionally on the realization Xm0

sj
of

the Markov process X.
Since T was already expressed in (2.3), to complete this inductive interconnected

definition of (y, ỹ, z, z̃), we set the vector Cm0,S
sj ,sk

and the matrix Dm0,S
sj ,sk

to be equal to

Cm0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

Y
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

, Xm0,m1

sj ,δsj(sk)), (3.15)

Dm0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

Z
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

,∆Wm0,m1

sj ,sk,δsj(sk), X
m0,m1

sj ,δsj(sk)), (3.16)

with Y
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, x) =T m0

sj ,sk,M
′
1
(x′)Y

m0,S,δsj(sk)
sj ,sk (x′, x) is Fδsj(sk)⊗B(R2d1)-measurable and

Z
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, w, x) = T m0

sj ,sk,M
′
1
(x′)tZ

m0,S,δsj(sk)
sj ,sk (w, x) is a vector function measurable with

respect to Fδsj(sk) ⊗ B(R2d1+d2), where

Y
m0,S,δsj(sk)
sj ,sk (x′, x) =

∆skf(sk, y
m0,S
sj ,δsj(sk)(x), zm0,S

sj ,sk
(x′))

+ ym0,S
sj ,δsj(sk)(x)− ỹm0,S

sk,sk

 (3.17)

and

Z
m0,S,δsj(sk)
sj ,sk (w, x) = ym0,S

sj ,δsj(sk)(x)
w

∆sk

− z̃m0,S
sk,sk

. (3.18)

From equations above, one can associate quadratic minimization problems to Cm0,S
sj ,sk

and to Dm0,S
sj ,sk

, as done for Bm0,S
sj ,sk

in (3.5). In the same fashion as in Definition 3.1, we
define the double layer approximations (Y m0 , Zm0) and (Y m0,m1 , Zm0,m1) of functionals Y
and Z.
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Definition 3.2. Given a discretization set S ⊂ S

• For any s ∈ S, s is set to be equal to δ(s) and s is set backwardly to be the largest
discretization time u ∈ S∩]s, δ(s)] that satisfies∣∣∣∣∣ 1

M0

M0∑
m0=1

(
ỹm0,S
s,u − ỹm0,S

δ(s),δ(s)
− (δ(s)− s)f(s, ỹm0,S

δ(s),δ(s)
, z̃m0,S
s,s )

)∣∣∣∣∣<εSs (3.19)

where {εSs }s∈S is a family of positive bias tuning parameters.

• For k, j ∈ {1, ..., 2L} with k < j that satisfy sj < sk ≤ sj < t2L = T , the simulation
Y m0,m1
sj ,sk

and Zm0,m1
sj ,sk

of Y and Z respectively around Xm0
sk

conditionally on Xm0
sj

are

set to be equal to ym0,S
sj ,sk

(Xm0,m1
sj ,sk

) and zm0,S
sj ,sk

(Xm0,m1
sj ,sk

) where y and z are given in
(3.10), (3.11) and (3.14).

• For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δsk(sk)−∆t} − {0}, the simulation Y m0
s

and Zm0
s of Y and Z respectively at Xm0

s are set to be equal to ỹm0,S
s,sk

and to z̃m0,S
s,δsk(sk)

with ỹ and z̃ expressed in (3.12) and (3.13).

• The average Y lear
0 and Z lear

0 of learned values on Y0 and Z0 are respectively equal to

Y lear
0 =

1

M0

M0∑
m0=1

ỹm0,S
0,0

, Z lear
0 =

1

M0

M0∑
m0=1

z̃m0,S
0,0

(3.20)

and the simulated values Y sim
0 and Zsim

0 of Y0 and Z0 are respectively equal to

Y sim
0 =

1

M0

M0∑
m0=1

[
δ(0)f

(
δ(0), ỹm0,S

δ(0),δ(0)
, Zsim

0

)
+ ỹm0,S

δ(0),δ(0)

]
,

Zsim
0 =

M0∑
m0=1

ỹm0,S
δ(0),δ(0)

Wm0

δ(0)

δ(0)M0

.

(3.21)

Y m0,m1 and Zm0,m1 are the inner or second layer approximation of Y and Z respectively.
Y m0 and Zm0 are the outer or first layer approximation of Y and Z respectively. Similar to
what was presented for the generic example in Section 3.1, as inner and outer trajectories
coincide at t = 0, we get two possible outer first layer approximations of Y0 and Z0. It
is also remarkable to have Y m0 and Zm0 defined on the whole fine discretization set S
despite Y m0,m1 and Zm0,m1 are only defined on S. With BSDEs, it is possible to replace
(3.19), using rather an MDP scheme (cf. [16]), by∣∣∣∣∣ 1

M0

M0∑
m0=1

(
ỹm0,S
s,u − ỹ

m0,S
δ(r),δ(r)

−
r∑

θ∈S,θ=s

(δ(θ)− θ)f(s, ỹm0,S
δ(θ),δ(θ)

, z̃m0,S
θ,θ

)

)∣∣∣∣∣ < εSs , (3.22)

for a chosen r ∈ S ∩ [s, u[. Both conditions (3.19) and (3.22) involve mainly the ap-
proximation of Y since using criteria on the approximation of Z would involve very large
number of trajectories which makes it impracticable.
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4 Regression-based NMC and bias propagation

Before presenting the main elements, we point out that we have intentionally considered
only discrete functionals of a Markov process. The approximation due to discretization of
the continuous version of BSDEs is not studied and we refer to [5, 14, 22] among others
that quantify well the resulting error. Moreover, we also consider the discretized version
of the Markov process introduced in (2.1) and (2.2) where

Etk(x, ξ) = x+ ∆tb(tk, x) + σ(tk, x)ξ (4.1)

with the usual (cf. [25]) Lipschitz continuity condition on the coefficients b(t, x) and
σ(t, x) uniformly with respect to t ∈ [0, T ]. Similar to what was considered in Section
3.2, the noise ξ is given by increments of a vector of independent Brownian motions i.e.
ξm0
tk

= Wm0
tk
−Wm0

tk−1
and ξm0,m1

sj ,tk
= Wm0,m1

sj ,tk
−Wm0,m1

sj ,tk−1
. (4.1) can be read as an Euler scheme

of a stochastic differential equation that admits a strong solution. In this paper, when the
discretization is needed, we assume that L is sufficiently large to neglect the discretization
error of the forward process X.

Given two arbitrary square integrable random variables χ1 and χ2, consider {χ3
m1}M1

m1=1

to be the empirical regression of χ1 with respect to χ2, the authors of [6] established an up-

per bound error of the regression-based NMC estimator
1

M1

M1∑
m1=1

φ(χ3
m1) of E(φ(E(χ1|χ2)))

once we know the representation error κ = E(χ1|χ2)− tRB(χ2) induced by the projection
of E(χ1|χ2) on the basis B(χ2). The fine approximations ũ and ỹ presented earlier were
computed by averaging on the empirical regressions u and y. It is then interesting to see
how to control the error of the fine approximations through the representation error like
in [6].

First, for sj < sk < sj and Borel measurable Θ function of (Xm0,m1

sj ,sk:δ(sk)) with Θ(Xm0,m1

sj ,sk:δ(sk))

integrable, we denote Em0,x
sj ,sk

, Em0,x

sj ,sk
and Êm0,x

sj ,sk
the operators defined by

Em0,x
sj ,sk

(Θ(Xm0,m1

sj ,sk:δ(sk))) = Em0
sj

(
Θ(Xm0,m1

sj ,sk:δ(sk))|X
m0,m1
sj ,sk

= x
)
,

Em0,x

sj ,sk
(Θ(Xm0,m1

sj ,sk:δ(sk)))

= tT m0
sj ,sk

(x−Xm0
sk

)

(
Λ
m0

sj ,sk

)−1

M1

M1∑
m1=1

[
T m0
sj ,sk

(
Xm0,m1
sj ,sk

−Xm0
sk

)
Θ(Xm0,m1

sj ,sk:δ(sk))
]

and

Êm0,x
sj ,sk

(Θ(Xm0,m1

sj ,sk:δ(sk))) = tT m0
sj ,sk

(x−Xm0
sk

)Rm0
sj ,sk

[
Θ(Xm0,m1

sj ,sk:δ(sk))
]

with

Rm0
sj ,sk

[
Θ(Xm0,m1

sj ,sk:δ(sk))
]
∈ argmin

r∈Rd
′
1

Em0
sj

[Em0
sj

(
Θ(Xm0,m1

sj ,sk:δ(sk))|Xm0,m1
sj ,sk

)
−tT m0

sj ,sk
(Xm0,m1

sj ,sk
−Xm0

sk
)r

]2
 .

When Esj is the conditional expectation knowing Xm0
sj

, Em0
sj

is the conditional expec-
tation knowing the trajectory of Xm0 starting from Xm0

sj
. Em0

sj
is used as the regression
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basis depends on Xm0 . For a given sj ∈ S, in contrast to expressions presented in
sections 2.2 and 3.2, we simplify the presentation here and we omit to center the re-
gressions around ũm0,S

δ(sj),δ(sj)
or ỹm0,S

δ(sj),δ(sj)
. Consequently, the value of ũm0,S

sj ,sj
and ỹm0,S

sj ,sj
are

obtained through respectively averaging on um0,S
sj ,δ(sj)

(x) = Em0,x

sj ,δ(sj)
(Θu(Xm0,m1

sj ,δ(sj):δ2(sj)
)) and

on ym0,S
sj ,δ(sj)

(x) = Em0,x

sj ,δ(sj)
(Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)), where

Θu(Xm0,m1

sj ,δ(sj):δ2(sj)
) = um0,S

sj ,δ2(sj)
(Xm0,m1

sj ,δ2(sj)
) +

δ2(sj)∑
tl≥δ(sj)

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

),

Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
) = ym0,S

sj ,δ2(sj)
(Xm0,m1

sj ,δ2(sj)
)

+∆δ(sj)f(δ(sj), y
m0,S
sj ,δ2(sj)

(Xm0,m1

sj ,δ2(sj)
), zm0,S

sj ,δ(sj)
(Xm0,m1

sj ,δ(sj)
)).

We assume Lipschitz condition uniformly in time of the driver f involved in (ODP )
with respect to its Y and Z coordinates. Although this condition is not necessary to
obtain good numerical results in Section 5, it is required to apply Theorem 2 of [6] (cf.
Assumption F2 in [6]) that yields the following asymptotical result.

Proposition 4.1. Given that assumptions A1, A2 and A3 of [6] are fulfilled and that the
driver involved in (ODP ) is [f ]Lip-Lipschitz we have the following asymptotical inequality

(ρ̃− ρ)2 ≤ [ρ]LipEm0
sj

(κ2(Xm0,m1

sj ,δ(sj)
)) +Op(1/M1) (4.2)

as M1 −→ ∞ where (ρ̃, ρ, [ρ]Lip, κ) is either equal to (ρ̃u, ρu, [ρ]uLip, κ
u) for (f) or equal to

(ρ̃y, ρy, [ρ]yLip, κ
y) for (ODP ) with ρ̃u = ũm0,S

sj ,sj
, ρ̃y = ỹm0,S

sj ,sj
,

ρu = Em0
sj

Em0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θu(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+

δ(sj)∑
tl≥sj

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)

 ,

ρy = Em0
sj

(
E
m0,X

m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+∆sjf

(
sj,E

m0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
, z̃m0,S
sj ,sj

))
,

[ρ]uLip = 1, [ρ]yLip = 1 + ∆sj [f ]Lip and

κu(x) = Em0,x
sj ,δ(sj)

[
Θu(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θu(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
,

κy(x) = Em0,x
sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
.

Proposition 4.1 results from Theorem 2 and Remark 2 of [6]; we expressed [ρ]Lip
associated to each problem and we replaced E by Em0

sj
as the regression basis depends

on Xm0 . Assumptions A1, A2 and A3 of [6] are standard assumptions for regressions
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(cf. [28]). Considering the regression basis presented in Section 2.1 with E(|Xt|2) < ∞
for any t ∈ [0, T ], these assumptions are fulfilled if: i) the conditional variance of each
regressed quantity is integrable and bounded from below by v0 > 0, ii) the regression
value is unbiased and iii) each component of the regression basis as well as κ (denoted M
in [6]) admit a finite fourth moment. When the latter moment assumption iii is needed
to establish error control and can be modified using truncation (cf. [15]), the further i&ii
are sufficient to ensure the existence and uniqueness of the regressed representation.

In Proposition 4.1, we provided a control on fine approximations ũ and ỹ. In Proposi-
tion 4.2, we rather focus on coarse approximations and decompose the conditional mean
square error Em0

sj

(
[um0,S
sj ,sk

(Xm0,m1
sj ,sk

)− usk(Xm0,m1
sj ,sk

)]2
)

into a bias termW , a variance term V and

a regression error term R.

Proposition 4.2. Assuming i and iii introduced above, for sj < s < sk taking their
values in the discretization set S, we define

Wm0,S
sj ,sk

(x) = Em0
sj

(
um0,S
sj ,sk

(x)− um0,S
sj ,sk

(x)
)
,

Rm0,S
sj ,sk

(x) = Em0
sj

(
um0,S
sj ,sk

(x)− usk(x)
)
,

Vm0,S
sj ,sk

(x) = Varm0
sj

(
um0,S
sj ,sk

(x)
)
,

with

um0,S
sj ,sk

(x) = Em0,x

sj ,sk

uδ(sk)(X
m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)


then

Em0
sj

(
[um0,S
sj ,sk

(Xm0,m1
sj ,sk

)− usk(Xm0,m1
sj ,sk

)]2
)

= Em0
sj (Vm0,S

sj ,sk
(Xm0,m1

sj ,sk
))

+Em0
sj

(
[Rm0,S

sj ,sk
(Xm0,m1

sj ,sk
) +Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)

and there exists a positive constant Km0
1,sj ,sk

depending on the regression basis such that

Em0
sj

(
[Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
≤ Km0

1,sj ,sk
Em0
sj

(
[um0,S
sj ,δ(sk)

(Xm0,m1

sj ,δ(sk)
)− uδ(sk)(X

m0,m1

sj ,δ(sk)
)]2
)
.

Proof. As we simulate several independent copies of Xm0,m1 , we make sure that the ap-
proximations u are independent from Xm0,m1 conditionally on Xm0 . Then, the expansion
of Em0

sj

(
[um0,S
sj ,sk

(Xm0,m1
sj ,sk

)− usk(Xm0,m1
sj ,sk

)]2
)

is gotten when we notice that

usk(Xm0,m1
sj ,sk

) = E
m0,X

m0,m1
sj,sk

sj ,sk

uδ(sk)(Xm0,m1

sj ,δ(sk)
) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1

sj ,tl
, Xm0,m1

sj ,tl+1
)

 .

An expression for the constant Km0
1,sj ,sk

can be obtained after expanding

Em0
sj

(
[Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)

using

um0,S
sj ,sk

(x) = Em0,x

sj ,sk

um0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)

 .
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Finally, we should point out that one could establish a similar result for (ODP ).
Indeed, for instance, using the following coarse discretization to approximate (ODP )

Ŷsk = Esk
(
f̃sk(Ŷδ(sk), Ẑsk)

)
,

Ẑsk = 1
∆sk

Esk
(
Ŷδ(sk)(Wδ(sk) −Wsk)

)
,

(4.3)

with f̃sk(y, z) = y + ∆skfsk(y, z), the bias is then controlled as follows

Em0
sj

(
[W̃m0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
≤K̃m0

1,sj ,sk
Em0
sj


 f̃sk(Ŷsj ,δ(sk)(X

m0,m1

sj ,δ(sk)
), Ẑsj ,sk(Xm0,m1

sj ,sk
))

−f̃sk(ym0,S
sj ,δ(sk)

(Xm0,m1

sj ,δ(sk)
), zm0,S

sj ,sk
(Xm0,m1

sj ,sk
))

2
 ,

for some positive constant K̃m0
1,sj ,sk

depending on the regression basis. Therefore, the bias
upper bound depends heavily on the driver choice.

As shown in Proposition 4.2, the bias W at time step sk is controlled by the mean
square error at time step δ(sk) decomposed into a variance term V , a regression error term
R and a bias term at time step δ(sk). Thus, increasing the number of time steps loosens
the bias control as it involves more and more terms. In some situations, this accumulation
of errors is a source of a significant bias backpropagation. A standard method to reduce
this bias backpropagation is to use a coarser set S. In this paper, we rather proposed a
new trick to cut this bias backpropagation using the couple (s, s) for any s ∈ S. Like for
the example of Section 5.4, the latter method is quite effective and will be further studied
in CMCLDII (cf. [2], Section 4).

5 Some numerical results

In this section we test the presented conditional MC learning procedure on various BSDE
examples. The fact that the driver f depends also on X is not a burden to the use of
our method. All simulations are run on a laptop that has an Intel i7-7700HQ CPU and a
single GeForce GTX 1060 GPU programmed with the CUDA/C application programming
interface. We refer the reader to [24] for an introduction to CUDA programming.

The proposed 1NMC simulation combined with local regressions leads to a simulation
with batch parallel regressions that can be successfully implemented using the contribution
[3]. We had even to extend the work presented in [3] to examples with larger dimensions.
It is worth mentioning that the very competitive execution times that we present here-
after are possible not only because of the GPU use but also due to the adaptation of
parallelization strategies presented in [3].

5.1 Allen-Cahn equation

We consider (ODP ) simulation as presented in Section 3.2, we use the following functions

f(t, x, y, z) = y − y3,

f(T, x) =

[
2 +

2

5
|x|2d1

]−1

and
Etk(x,w) = x+

√
2w, Xt0 = 0.
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Table 1: Numerical simulations for PDE (5.1): T = 0.3, M0 = 24, d1 = 100, L = 4;
[Benchmarck solution] yb(0, 0) = 0.0528.

M1 Average learned Simulated Runtime in sec. (10−3)
Y learn

0 std Y sim
0 std

24 0.0454 (± 0.0093) 0.0455 (± 0.0073) 13
25 0.0513 (± 0.0011) 0.0517 (± 0.0008) 23
26 0.0523 (± 0.0004) 0.0518 (± 0.0006) 56
27 0.0526 (± 0.0003) 0.0515 (± 0.0001) 119
28 0.0525 (± 0.0002) 0.0517 (± 0.0002) 227
29 0.0527 (± 0.0002) 0.0515 (± 0.0002) 414

Table 2: Numerical simulations for PDE (5.1): T = 1, d1 = 100, M0 = 25, L = 6;
[Benchmarck solution] yb(0, 0) = 0.0338.

M1 Average learned Simulated Runtime in sec.
Y learn

0 std Y sim
0 std

25 0.0345 (± 0.0008) 0.0350 (± 0.0021) 2
26 0.0333 (± 0.0003) 0.0326 (± 0.0004) 4
27 0.0334 (± 0.0002) 0.0330 (± 0.0003) 7
28 0.0336 (± 0.0002) 0.0332 (± 0.0002) 12
29 0.0336 (± 0.0001) 0.0331 (± 0.0001) 27

We would like to approximate the solution y(t, x) of the Allen-Cahn PDE defined as
follows, y(T, x) = f(T, x),

∂y

∂t
(t, x) + y(t, x)− [y(t, x)]3 + (∆xy)(t, x) = 0. (5.1)

A benchmark approximation yb(0, x) for the solution y(0, x) of the PDE (5.1) is given in
[Section 4.2; [11]].

Table 1 provides the y(0, 0) simulated value of equation (5.1), approximated by Y learn
0

and Y sim
0 expressions, with respect to the number of inner trajectoriesM1. The benchmark

solution yb(0, 0) is equal to 0.0528 for T = 0.3 and d1 = 100. The standard deviation
of each expression and the runtime in seconds are also given. We reduce the bias by
increasing the number of inner trajectories. Table 1 shows that a relative small number
of outer and inner trajectories is sufficient to observe a small variance and bias for both
options. In fact, we show that the standard deviation is already acceptable for M0 =
24 outer trajectories and the bias is acceptable for M1 = 26 inner trajectories with an
execution time of 56 millisecond.

The average learned Y learn
0 and the simulated Y sim

0 values in Table 2 are presented
for the longer time horizon T = 1. The benchmark solution is equal to 0.0338 for T = 1
and d1 = 100. To achieve a similar level of variance and bias, we need larger number of
outer and inner trajectories than in Table 1. In fact, for M0 = 25 of outer trajectories
and M1 = 26 of inner trajectories, we obtained an acceptable bias and standard deviation
within 4 seconds of execution.

19



5.2 Multidimensional Burgers-type PDEs

We assume the (ODP ) setting presented in Section 3.2, we use the following functions

f(t, x, y, z) =

(
y − 2 + d1

2d1

)( d1∑
i=1

zi

)
,

f(T, x) =

exp

(
T + 1

d1

d1∑
i=1

xi

)

1 + exp

(
T + 1

d1

d1∑
i=1

xi

)
and

Etk(x,w) = x+
d1√

2
w, Xt0 = 0.

We simulate the solution y(t, x) of the multidimensional Burgers-type PDE (cf [8],
Example 4.6) defined as follows, y(T, x) = f(T, x),

∂y

∂t
(t, x) +

d1
2

2
(∆xy)(t, x) +

(
y(t, x)− 2 + d1

2d1

)(
d1

d1∑
i=1

∂y

∂xi
(t, x)

)
= 0. (5.2)

PDE (5.2) admits an explicit solution, we refer the reader to [Lemma 4.3, [11]] for
more details. The value of the solution y(0, 0) is 0.5000 for T = 0.2 and d1 = 100.

Table 3: Numerical simulations for PDE (5.2): T = 0.2, d1 = 100, M0 = 26, L = 5;
[Explicit solution] y(0, 0) = 0.5000.

M1 Average learned Simulated Runtime in sec.
Y learn

0 std Y sim
0 std

28 0.4785 (± 0.0428) 0.0517 (± 0.0431) 7
29 0.5113 (± 0.0450) 0.5108 (± 0.0450) 16
210 0.4966 (± 0.0448) 0.4912 (± 0.0447) 27
211 0.5022 (± 0.0421) 0.5012 (± 0.0435) 49

Table 4: Numerical simulations for PDE (5.2): T = 0.2, d1 = 100, M1 = 211, L = 5;
[Explicit solution] y(0, 0) = 0.5000.

M0 Average learned Simulated Runtime in sec.
Y learn

0 std Y sim
0 std

25 0.4953 (± 0.0618) 0.4941 (± 0.0615) 24
26 0.5022 (± 0.0424) 0.5013 (± 0.0435) 49
27 0.5079 (± 0.0346) 0.5066 (± 0.0342) 103
28 0.5158 (± 0.0221) 0.5151 (± 0.0221) 194
29 0.5023 (± 0.0164) 0.5029 (± 0.0164) 408

Table 3 presents the approximations (3.20) and (3.21) of the equation (5.2), with
respect to the number of inner trajectories M1. It shows that the standard deviation
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of both results should be reduced by increasing the number of outer trajectories. The
number M0 of outer trajectories in Table 4 is augmented till reaching a sufficiently small
standard deviation within less than 7 minutes of execution time.

5.3 Time-dependent reaction-diffusion-type example

Let κ = 0.6, λ = 1√
d1

, we use the following functions

f(t, x, y, z) = min

{
1,

[
y − κ− 1− sin

(
λ

d1∑
i=1

xi

)
e
λ2d(t−T )

2

]}
,

f(T, x) = 1 + κ+ sin

(
λ

d1∑
i=1

xi

)
and

Etk(x,w) = x+ w, Xt0 = 0.

We simulate the solution y(t, x) of the time dependent reaction-diffusion-type PDE (cf
[17], Section 6) defined as follows, y(T, x) = f(T, x),

∂y

∂t
(t, x) + min

{
1,

[
y − κ− 1− sin

(
λ

d1∑
i=1

xi

)]}
+

1

2
(∆xy)(t, x) = 0. (5.3)

The explicit solution of the PDE (5.3) is given in [Lemma 4.4; [11]].
Table 5 shows the approximated solution of the equation (5.3), calculated by the

average learned (3.20) and the simulated (3.21) expressions, with respect to the number
of inner trajectories M1. The standard deviation of each expression and the runtime
in milliseconds are also given. The benchmark solution is equal to 1.6000 for T = 1,
d1 = 100.

Table 5: Numerical simulations for PDE (5.3): T = 0.5, d1 = 100, M0 = 210, L = 3;
[Benchmark solution] yb(0, 0) = 1.6000.

M1 Average learned Simulated Runtime in sec. (10−3)
Y learn

0 std Y sim
0 std

25 1.8197 (± 0.0386) 1.7587 (± 0.0287) 244
26 1.7125 (± 0.0104) 1.6799 (± 0.0116) 311
27 1.6605 (± 0.0037) 1.6376 (± 0.0091) 466
28 1.6458 (± 0.0023) 1.6290 (± 0.0089) 817
29 1.6439 (± 0.0019) 1.6283 (± 0.0061) 1526

Due in part to small number of time steps (L = 3), we obtain very accurate solutions
within less than 2 seconds of execution.

5.4 A Hamilton-Jacobi-Bellman (HJB) equation

We assume here the driver to be equal to

f(t, x, y, z) = −|z|2d1
,
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f(T, x) = ln
([

1 + |x|2d1

]
/2
)

and
Etk(x,w) = x+

√
2w, Xt0 = 0.

We calculate the solution y(t, x) of the HJB equation (cf [9] Section 4.2) defined by
y(T, x) = f(T, x),

∂y

∂t
(t, x) + (∆xy)(t, x)− |(∇xy)(t, x)|2d1

= 0. (5.4)

PDE (5.4) admits a benchmark solution. We refer the reader to [Lemma 4.2; [11]] for
more details.

Related to inequality (3.19), Figure 2 shows between two approximations
1

M0

M0∑
m0=1

ỹm0,S
s,s

and
1

M0

M0∑
m0=1

(
ỹm0,S
δ(s),δ(s)

+ (δ(s)− s)f(s, ỹm0,S
δ(s),δ(s)

, z̃m0,S
s,s )

)
of the same quantity with respect

to the time discretization. The purpose here is to show the benefits of using the couple
(s, s) = (δ(s), s) to stop the bias backpropagation. On Figure 2 left, we perform the con-
ditional MC procedure taking s = T for all s ∈ S = {0, 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1}. On Figure 2

right, we take s =
(
s+ 3

8

)
∧T when s ∈ S. The latter choice of s is then clearly justified,

it can be even set automatically during the execution of the simulation using inequality
(3.19) without any manual intervention.

Figure 2:
1

M0

M0∑
m0=1

ỹm0,S
s,s vs.

1

M0

M0∑
m0=1

(
ỹm0,S
δ(s),δ(s)

+ (δ(s)− s)f(s, ỹm0,S
δ(s),δ(s)

, z̃m0,S
s,s )

)
[Left] s =

T , [Right] s =
(
s+ 3

8

)
∧ T : T = 1, d1 = 100, M0 = 27, M1 = 215.

Figure 3 shows the convergence of the expressions (3.20) and (3.21) to the benchmark
value with respect to the number of inner trajectories. In particular, we observe that both
expressions converge to the benchmark solution with a small variance when M1 = 217.
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Figure 3: Numerical solution of PDE (5.4) calculated by (3.20) and (3.21) expressions:
T = 1, d1 = 100, M0 = 27, L = 3.

5.5 Pricing of European financial derivatives with different in-
terest rates for borrowing and lending

Assuming µ = 0.06, σ = 0.2, Rl = 0.04 and Rb = 0.06, we introduce the following
functions

f(t, x, y, z) = −Rly − (µ−Rl)

σ

d1∑
i=1

zi + (Rb −Rl) max {0, 1

σ

d1∑
i=1

zi − y},

f(T, x) = max { max
1≤i≤d1

xi − 120, 0} − 2 max { max
1≤i≤d1

xi − 150, 0}

and

Etk(x,w) = x exp

(
(µ− σ2

2
)∆t + σw

)
, Xt0 = 100.

Let y defined as the solution of the following PDE, y(T, x) = f(T, x),

∂y

∂t
(t, x) +

σ

2

d1∑
i=1

|xi|2
∂2y

∂x2i
(t, x) (5.5)

+max {Rb
(

d1∑
i=1

xi

(
∂y

∂xi
(t, x)

)
− y(t, x)

)
, Rl

(
d1∑
i=1

xi

(
∂y

∂xi
(t, x)

)
− y(t, x)

)
} = 0.

PDE (5.5) has a benchmark solution given in [Section 4.4; [11]]. This benchmark
solution is equal to 21.299 for T = 0.5 and d1 = 100.

Figure 4 shows the approximation of the solution of PDE (5.5) with respect to the
number of inner trajectories. As before, we illustrate the values given by both (3.20)
and (3.21) expressions. We show that 27 outer trajectories and 211 inner trajectories are
sufficient to get an accurate approximation of the solution as the obtained values are in
the corridor of the standard deviation of the benchmark solution given in [Section 4.4;
[11]]. No bias cut is needed here and sk = T for any sk ∈ S. The runtime with 27 outer
trajectories and 211 inner trajectories is 53 seconds.
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Figure 4: Numerical solution of PDE (5.5) calculated by the average learned and the
simulated expressions: T = 0.5, d1 = 100, M0 = 27, L = 2.

5.6 A PDE example with quadratically growing derivatives

Assuming the (ODP ) setting presented in Section 3.2, we introduce α = 0.4 and ψ(t, x) =
sin
([
T − t+ |x|2d1

]α)
and we define the driver functions

f(t, x, y, z) = |z|2d1
− |∇xψ(t, x)|2d1

− ∂ψ

∂t
(t, x)− 1

2
(∆xψ)(t, x),

f(T, x) = sin
(
|x|2αd1

)
and

Etk(x,w) = x+ w, Xt0 = 0.

Let y defined as the solution of the following PDE, y(T, x) = f(T, x),

∂y
∂t

(t, x) + |∇xy(t, x)|2d1
+ 1

2
(∆xy)(t, x) = ∂ψ

∂t
(t, x)

+ |∇xψ(t, x)|2d1
+ 1

2
(∆xψ)(t, x).

(5.6)

Straight use of Itô’s Lemma shows that PDE (5.6) has an explicit solution y(t, x) = ψ(t, x),
we refer the reader to [Section 5; [16]] for more details.

Considering equality (3.12), the coarse approximation ym0,S
248
256

, 250
256

(x) of y
(

250
256
, x
)
, learned

using
{
Xm0,m1

248
256

, 250
256

}
1≤m1≤M1

, can replace the coarse approximation ym0,S
249
256

, 250
256

(x) of y
(

250
256
, x
)
,

learned using
{
Xm0,m1

249
256

, 250
256

}
1≤m1≤M1

. The same can be said for y
(

254
256
, x
)

that can be approx-

imated by ym0,S
252
256

, 254
256

(x) instead of ym0,S
253
256

, 254
256

(x). In Figure 5 [Left], we then evaluate replacing

ym0,S
249
256

, 250
256

(
Xm0,m1

249
256

, 250
256

)
by ym0,S

248
256

, 250
256

(
Xm0,m1

249
256

, 250
256

)
used for the approximation of y

(
249
256
, Xm0

249
256

)
. In

Figure 5 [Right], the distribution of y
(

253
256
, Xm0

253
256

)
is either simulated using Y m0

253
256

that in-

volves ym0,S
253
256

, 254
256

or
1

M1

M1∑
m1=1

(
ym0,S

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
+ ∆sf

(
253

256
, ym0,S

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
, z̃m0,S

253
256

, 254
256

))
.
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Figure 5: [Left] Distribution of Y m0
249
256

called “Trained” vs. its “Tested” counterpart used for

the expression
1

M1

M1∑
m1=1

(
ym0,S
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256
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256

(
Xm0,m1

249
256

, 250
256

)
+ ∆sf

(
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256
, ym0,S

248
256

, 250
256

(
Xm0,m1

249
256

, 250
256

)
, z̃m0,S

249
256

, 250
256

))
[Right] Distribution of Y m0

253
256

called “Trained” vs. its “Tested” counterpart used for the ex-

pression
1

M1

M1∑
m1=1

(
ym0,S

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
+ ∆sf

(
253

256
, ym0,S

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
, z̃m0,S

253
256

, 254
256

))
: T = 1,

d = 100, M0 = 27, M1 = 212, L = 8, ∆s = ∆t = 2−8.

The obtained distributions are quite similar which strengthen the possibility of using
(3.12) not only for s = sk but for various intermediary discretization times s ∈ {sk, sk +
∆t, ..., δsj(sk)−∆t} (cf. CMCLDII [2]).

Figure 6: Numerical solution of PDE (5.6) calculated by expressions (3.20) and (3.21):
T = 1, d1 = 100, M0 = 27, M1 = 27.
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Figure 6 shows the numerical solution y(0, 0) of (5.6) with respect to various choices
of coarse time steps. L = 8 is sufficient to discretize the problem when the time horizon
T = 1. The latter simulation is achieved in 620 seconds of runtime.
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