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ABSTRACT

The launch of the last generation of Earth observation satel-
lites has yield to a great improvement in the capabilities of
acquiring Earth surface images, providing series of multitem-
poral images. To process these time series images, many
machine learning algorithms have been proposed in the lit-
erature such as warping based methods and recurrent neu-
ral networks (LSTM, . . . ). Recently, based on an ensem-
ble learning approach, the time series cluster kernel (TCK)
has been proposed and has shown competitive results com-
pared to the state-of-the-art. Unfortunately, it does not model
the spectral/spatial dependencies. To overcome this problem,
this paper aims at extending the TCK approach by modeling
the time series of second-order statistical features (SO-TCK).
Experimental results are conducted on different benchmark
datasets, and land cover classification with remote sensing
satellite time series over the Reunion Island.

Index Terms— Multivariate times series, classification,
second-order statistics, log-Euclidean, remote sensing.

1. INTRODUCTION

A time series is a sequence of data points which has been
acquired during an ordered time segment. Many real-world
pattern recognition tasks deal with time-series analysis [1]
such as biomedical signals (e.g. EEG and ECG), financial
data (e.g. stock market and currency exchange rates), indus-
trial devices (e.g. gas sensors and laser excitation), biomet-
rics (e.g. voice, signature and gesture), video processing, mu-
sic mining, forecasting, etc. Recently, the launch of the last
generation of Earth observation satellites such as Sentinel-1
and 2 has yield more recurrent acquisition of Earth surface
images. These sensors allow the acquisition of multivari-
ate time series such as spectral surface reflectance in several
wavelengths. The availability of these multivariate time series
has raised the interest of the image processing community to
develop novel machine learning strategies for supervised clas-
sification. In particular, many deep learning approaches have
recently been proposed [2]. They include convolutional neu-
ral networks (CNN) [3] and deep recurrent neural networks
(RNN) such as long short-term memory (LSTM) [4, 5] and
gated recurrent units (GRU) [6]. In the following, these ap-

proaches will not be considered since the training process in-
volves large data for avoiding overfitting and generalization
purpose, while the aim of this paper is to work with relatively
small datasets. Other non deep learning approaches can be
decomposed into three categories: distance-based time series
classifiers, feature-based time series classifiers and ensemble
classifiers. Distance-based strategies rely on a point-to-point
distance between time series which is then fed in a conven-
tional classifier such as a k nearest neighbor or SVM. In this
family, the most popular approach is certainly the dynamic
time warping (DTW) which measures the similarity between
two time series by aligning them [7, 8]. It has the ability to
match time series that are distorted and shifted along the tem-
poral axis. Inspired by the principle of DTW, some closely re-
lated approaches have been proposed such as derivative DTW
(DDTW) [9] or weighted DTW (WDTW) [10]. Kernel based
methods have also been introduced such as the global align-
ment kernel (GAK) [11] for the family of DTW distances.
More recently, many feature-based methods have been pro-
posed. It consists in extracting features such as wavelet co-
efficients or 1D SIFT descriptors from multivariate time se-
ries before the classification step. Among these feature-based
methods, codebook based representations have raised an in-
terest [12]. For example, the bag-of-words (BoW) model
has been used in [13] to obtain an histogram representation
of the time series by encoding SIFT features in a codebook.
The third family concerns ensemble based classifier systems.
The basic idea relies on the combination of multiple classi-
fiers in order to obtain more accurate and robust decisions.
Once again, many approaches can be considered. For ex-
ample, a random forest classifier trains a single base classi-
fier (i.e. decision tree) on different subsets of training data
(sample, attributes and/or temporal subsets). Another strat-
egy consists in using different classifiers on the same dataset
such as in the collective of transformation-based ensembles
(COTE) [14] and its extension based on a hierarchical vote
(HIVE-COTE) [15] where 35 and 37 standalone classifiers
are respectively considered. Even if this later has demon-
strated successful results and is considered as the reference
for time series classification [16], it suffers from an high com-
putation cost since each classifier should be trained on the
whole dataset. Since then, in order to get benefit of the ad-



vantages of kernel methods, codebook based representations
and ensemble learning strategies, Mikalsen et al. have in-
troduced the time series cluster kernel (TCK) method in [17]
which has demonstrated competitive results for times series
classification.

At the same time, second-order features have shown a
great interest for many image processing applications includ-
ing person re-identification, texture recognition, material cat-
egorization or EEG classification in brain-computer interfaces
to cite a few of them [18, 19, 20]. For example, the use of co-
variance matrices has demonstrated to be successful in [21]
for remote sensing scene classification. This strategy, Hybrid
LE FV, achieves better results than its analog Hybrid FV [22]
which exploits only first-order features. Since then, the main
contribution of this paper is to present how TCK proposed
in [17] for multivariate time series can be extended to work
with second-order feature time series. The paper is structured
as follows. Section 2 presents and discusses the principle
of TCK. Then, Section 3 introduces the proposed extension
of TCK for the modeling of the time series of second-order
statistics (SO-TCK). An application on different datasets is
next presented in Section 4. Finally, Section 5 concludes this
paper and provides some perspectives of this work.

2. TIME SERIES CLUSTER KERNEL (TCK)

TCK has recently been introduced in [17] for the classifica-
tion of multivariate time series. It exploits the power of ker-
nel methods, codebook based representations and ensemble
learning strategies. The global principle is explained in Fig. 1.
The main idea behind this method is to compute a positive
semi-definite similarity measure (i.e. a kernel) between two
multivariate times series (MTS). For that, a GMM model is
first trained on the training set, which is next used to encode
each multivariate time series. Moreover, to ensure robustness,
an ensemble learning strategy is considered. The next subsec-
tion presents the main steps during training and testing.

2.1. Training phase

An MTS X is represented as a matrix of dimension V × T
where V is the number of attributes and T is the time length.
It is a finite sequence of V univariate time series, i.e. X ={
xv ∈ RT

}
for v = 1, . . . , V . During this stage, N MTS

are considered for training, and X(n) represents the nth MTS
sample. To cope with missing data, a second MTS is con-
sidered. R(n) is a binary MTS defined by r

(n)
v (t) = 0 if the

value x
(n)
v (t) is missing and r

(n)
v (t) = 1 otherwise.

As explained before, TCK is based on an ensemble learn-
ing approach. Practically, Q subsets are considered, where
each subset is a subsample of Nq data, Vq attributes and Tq
time segments extracted from the training set. Then, for each
subset, a codebook is created by learning a GMM model
which is next used to encode each MTS.

2.1.1. Codebook: GMM modeling

For the qth subset, the training set is composed of Nq MTS
X

(n)
q of dimension Vq × Tq with their associated binary MTS

R
(n)
q . A GMM model with G components is considered to

learn a codebook, where its probability density function for
the incompletely observed MTS (X

(n)
q ,R

(n)
q ) is given by:

p(X(n)
q |R(n)

q ,Θ) =

G∑
g=1

ωg

Vq∏
v=1

Tq∏
t=1

N (x(n)
v (t)|µgv(t), σgv)r

(n)
v (t),

(1)
where Θ = {ωg, µgv, σgv} for g = 1, . . . , G. MTS are as-
sumed to have time-dependent means, i.e. {µgv ∈ RTq} for
each attribute v. To enforce regularity, a kernel-based Gaus-
sian prior is defined for the mean. In addition, the covariance
matrix for each Gaussian component is assumed to be diag-
onal and constant, that is Σg = diag{σ2

g1, . . . , σ2
gVq
} and

σ2
gv is the variance of attribute v for data belonging to the gth

cluster. To estimate the GMM parameters Θ, a MAP-EM al-
gorithm is considered. For more details, the interested reader
is referred to Algorithm 1 in [17]. The set composed by the
estimated GMM parameters represents the codebook. To en-
sure even more robustness, the number of GMM components
G and the initialization of the MAP-EM algorithm are ran-
domly selected for each subset.

2.1.2. Coding

The encoding of the nth MTS X
(n)
q for subset q is carried out

by computing the posterior assignment Π
(n)
q , obtained by:

Π(n)
q (g) =

ωg

∏Vq

v=1

∏Tq

t=1 N (x
(n)
v (t)|µgv(t), σgv)r

(n)
v (t)∑G

g=1 ωg

∏Vq

v=1

∏Tq

t=1 N (x
(n)
v (t)|µgv(t), σgv)r

(n)
v (t)

.

(2)
In the following, vector Π

(n)
q containing theG posterior prob-

abilities Π
(n)
q (g) is considered to define the feature map used

in the kernel.

2.2. Testing step

To compute a similarity measure between a training MTS
X(n) and a testing MTS X(m), a kernel based approach is
considered. It is built on the basis of an inner product be-
tween two posterior distributions to form a linear kernel in
the space of posterior distributions as:

K
(
X(n),X(m)

)
= Knm =

Q∑
q=1

Π(n)
q

T Π(m)
q , (3)

where Π
(n)
q and Π(m)(q) are respectively the vector of

posterior probabilities for the training and testing MTS ob-
tained with (2). In the end, a nearest neighbor classifier is
used with the induced distance d between X(n) and X(m)



Fig. 1. General principle of the time series cluster kernel (TCK) [17].

given by:

d2
(
X(n),X(m)

)
= K

(
X(n),X(n)

)
− 2K

(
X(n),X(m)

)
+K

(
X(m),X(m)

)
. (4)

As observed in (3) and (4), two MTS will be similar if their
posterior probability vectors Π

(n)
q and Π

(m)
q are similar for

each subset q. When a low number G of GMM components
are considered, the kernel measures the similarity at large
scale. While for largeG, it focuses more locally. Hence, vary-
ing the number of components in the GMM model allows to
capture both local and global structures in the data.

3. TIME SERIES CLUSTER KERNEL FOR
SECOND-ORDER STATISTICAL FEATURES

(SO-TCK)

In the literature, second-order features, in particular covari-
ance matrices features, have proved to play an important
role in different tasks related to visual recognition pro-
cess [23]. Compared to first-order feature based classifi-
cation algorithms, many authors have shown the interest of
exploiting second-order statistics such as covariance matrix
attributes [18, 19, 20]. This kind of data has a particular
structure, they are symmetric positive-definite (SPD) matri-
ces. This section’s focus is twofold. First, we present how
second-order features are extracted from a MTS to form SPD
matrix time series (SPD-MTS). Secondly, we introduce the
log-Euclidean representation of SPD-MTS in order to exploit
them in TCK, yielding to the proposed SO-TCK method.

3.1. SPD matrix time series (SPD-MTS)

In this work, each considered time series is represented by
a set of time-dependent second-order features which consti-
tutes a SPD matrix time series (SPD-MTS) as shown in Fig. 2.
Those latter are computed on a sliding temporal window of
dimension ∆t. Hence, for the qth subset, we associate for

each MTS of dimension Vq × Tq a SPD-MTS of dimension
Vq × Vq × (Tq −∆t+ 1).

Fig. 2. Illustration of SPD-MTS computation.

In order to improve the feature representation and enhance
classification performance, a full local Gaussian descriptor
can be exploited. In this model, the local mean vector µ is
jointly exploited with the Vq×Vq covariance matrix M which
gives the augmented SPD matrix of dimension (Vq + 1) ×
(Vq + 1) as proposed in [24]:

Maugmented = |M|−
1

Vq+1

[
M + µµT µ

µT 1

]
. (5)

3.2. Log-Euclidean representation of SPD-MTS

In order to adapt TCK to work with SPD-MTS, the geome-
try of the space Pd of d × d symmetric and positive definite
(SPD) matrices should be considered. In case of using covari-
ance matrices, d = Vq , while for the augmented SPD matrix:
d = Vq + 1. As observed in Fig. 2, SPD matrices lie in a con-
vex cone which is a Riemannian manifold. Tools developed
in the context of Euclidean geometry are hence not adapted
to manipulate these data points. A Riemannian metric is bet-
ter suited such as the log-Euclidean (LE) one [25]. It consists
in projecting the set of SPD matrices on a tangent space de-
fined at a reference point, classically considered at the identity
matrix. After being projected on the tangent space, tools of



the Euclidean geometry can used such as the MAP-EM algo-
rithm defined in Section 2.1.1 to estimate GMM parameters
and the Kernel method presented in Section 2.2. Practically,
each SPD matrix M is mapped on the tangent space by ap-
plying the following operations:

m = Vec(logm(M)), (6)

where logm() is the matrix logarithm and Vec() the vectoriza-
tion operator:

x = Vec(X) =
[
X11,

√
2X12, . . . ,

√
2X1d, X22,

√
2X23, . . . , Xdd

]
. (7)

To summarize, these operations lead to a transformation from
a SPD matrix M ∈ Rd×d to a vector m ∈ R

d(d+1)
2 .

4. EXPERIMENTS

In this section, we illustrate the potential of the proposed ap-
proach to multivariate time series classification on four bench-
mark datasets from UCI machine learning repository [26] and
one on a remote sensing (RS) application. For this latter, the
goal is to predict 9 land cover classes from a set composed
by a series of T = 23 Landsat 8 images above the Reunion
Island. It contains V = 10 attributes (7 surface reflectances
and 3 vegetation/water indices) for each pixel at each times-
tamp. Table 1 gives the main characteristics of these datasets.
In the following, performance are measured in terms of mean
overall accuracy evaluated over 5 runs.

Datasets V T Train Test Classes
Libras 2 23 180 180 15
Natops 3 51 180 180 6

Char.Traj. 3 23 300 2 558 20
RacketSports 6 30 151 152 4

RS 10 23 900 900 9

Table 1. Presentation of the five time series datasets.

Fig. 3 draws the evolution of the overall accuracy on the
Libras dataset as a function of the temporal support ∆t for
the proposed SO-TCK approach. Three kind of second-order
descriptors are considered: the covariance matrix (in red), the
second order moment (E

[
xxT

]
, in blue) and the full local

Gaussian descriptor (Augmented SPD matrix in green). As
observed, best results are obtained for this latter. In the fol-
lowing, SO-TCK will refer to the classification performance
obtained with this full local Gaussian descriptor. Note also
that the choice of ∆t reflects a trade-off. It should be small
enough to preserve a good temporal localisation, and at the
same time sufficiently large for estimation purpose.

Secondly, a classification comparison is conducted over
five datasets. Two state-of-the-art approaches are employed,
namely DTW [7] and TCK [17]. We have adopted the same
experimental setup as the one used in [17]. For reproducibil-
ity purpose, TCK has been launched with the authors Matlab
implementation. As observed in Table 2, the best results are
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Fig. 3. Classification comparison between three considered
second-order statistics for SPD-MTS computation (Vq = 2).

obtained for the proposed SO-TCK approach with a gain of
2 to 15 % compared to DTW and TCK, hence illustrating its
potential for various application on time series classification.

Datasets DTW [7] TCK [17] SO-TCK
Libras 85.6 72.6 87.1
Natops 57.2 61.4 71.3

Char. Traj 90.5 91.7 93.9
RacketSports 82.6 81.5 85.2

RS 64.7 63.7 74.5

Table 2. Comparison of classification performance on five
benchmark datasets.

5. CONCLUSION

Inspired by the time series cluster kernel (TCK) and the
potential of second-order statistical descriptors for many
classification tasks, this paper has extended the formalism
of TCK to second-order features: SPD matrix time series
(SPD-MTS). For that, the log-Euclidean metric has been con-
sidered to represent a SPD-MTS as a multivariate time series
where the principle of TCK can be employed. Experimental
results on benchmark datasets and land cover classification
with remote sensing data have shown the potential of the
proposed method compared to state-of-the-art times series
classification algorithm. Future works will include the eval-
uation of the proposed method for forest health monitoring
using Sentinel-2 time series images.
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