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ABSTRACT

We introduce a new collection of spoken English audio suit-

able for training speech recognition systems under limited or

no supervision. It is derived from open-source audio books

from the LibriVox project. It contains over 60K hours of au-

dio, which is, to our knowledge, the largest freely-available

corpus of speech. The audio has been segmented using voice

activity detection and is tagged with SNR, speaker ID and

genre descriptions. Additionally, we provide baseline sys-

tems and evaluation metrics working under three settings: (1)

the zero resource/unsupervised setting (ABX), (2) the semi-

supervised setting (PER, CER) and (3) the distant supervi-

sion setting (WER). Settings (2) and (3) use limited textual

resources (10 minutes to 10 hours) aligned with the speech.

Setting (3) uses large amounts of unaligned text. They are

evaluated on the standard LibriSpeech dev and test sets for

comparison with the supervised state-of-the-art.

Index Terms— unsupervised and semi-supervised learn-

ing, distant supervision, dataset, zero- and low resource ASR.

1. INTRODUCTION

Automatic Speech Recognition (ASR) has made striking

progress in the recent years with the deployment of increas-

ingly large deep neural networks trained on increasingly

large sets of annotated speech (from thousands to tens of

thousands of hours). This approach is hit by diminishing

returns as the costs of annotating even larger datasets become

prohibitive. It is also difficult to scale beyond a handful of

high-resource languages and address the needs of a long tail

of low-resource languages, dialectal and idiolectal variants,

accents, and registers. As such, there has been a recent surge

of interest in weakly supervised solutions that use datasets

with fewer human annotations. In the semi-supervised set-

ting, only a fraction of the dataset is labelled and the rest is

unlabelled [1, 2], while in a distant supervision setting, the

dataset is mostly or entirely unlabelled, but large quantities of

unaligned text provide a language model corpus [3, 4]. Other

approaches have addressed pretraining with labels from other

* Contributed equally, in random order.

languages [5, 6] or pretraining using unsupervised objec-

tives [7, 8]. At the extreme of this continuum, zero resource

ASR discovers its own units from raw speech [9, 10, 11].

Despite many interesting results, the field lacks a common

benchmark (datasets, evaluations, or baselines) for compar-

ing ideas and results across these settings. Here, we introduce

Libri-light, a large open-source corpus (60K hours) of unla-

belled speech and a common set of metrics to evaluate three

settings: (1) the zero-resource/unsupervised setting (ABX),

(2) the semi-supervised setting (PER and CER), and (3) the

distant supervision setting (WER). The last two settings use

a limited-resource training set (10 min, 1h, 10h), and the last

one large in-domain and out-of-domain text to train language

models. The test sets are identical to LibriSpeech [12] so

as to facilitate comparison of weakly supervised results with

the state-of-the art in supervised learning. We also provide a

baseline system on these three settings. All datasets, metrics

and baseline systems are open source1.

2. RELATED WORK

The release of open source software and datasets has facil-

itated rapid progress in machine learning and in particular

large vocabulary ASR. LibriSpeech is one of the first large-

scale open-source datasets and contains over 1000 hours of

audio books, together with textual annotations aligned at the

sentence level. Mozilla’s CommonVoice project has facili-

tated data collection across several languages and currently

contains 2900 hours of read speech in 37 languages2. A.

Black at CMU has compiled the Wilderness dataset which

consists of the text of the Bible read in 750 languages [13].

Other open-source resources are available from OpenSLR3.

The Zero Resource Challenge has released a series of

datasets and metrics for the unsupervised setting [9, 10]4,

but the datasets are generally small (between 2.5 and 50 h).

In this work, we substantially expand dataset size and use

the same evaluation metrics (ABX [14]) for comparability.

The IARPA Babel program [15] has also initiated a push

towards limited supervision for less studied languages. In

1https://github.com/facebookresearch/libri-light
2https://voice.mozilla.org
3http://openslr.org/
4https://zerospeech.com

http://arxiv.org/abs/1912.07875v1
https://github.com/facebookresearch/libri-light
https://voice.mozilla.org
http://openslr.org/
https://zerospeech.com


its most difficult track, the dataset contains only 10 hours of

transcribed speech in conjunction with with larger amounts

of untranscribed audio. Here, we retain 10 hours as a upper

bound, and add lower-resource sets containing 1 hours and 10

minutes of labeled audio. While distant supervision has been

the focus of two JHU-JSALT workshops (2016 [16], 2019

[17]) but no benchmark has yet emerged.

3. DATASET AND METRICS

3.1. Dataset
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Fig. 1: Corpus statistics. (a) Durations in hours per speakers

(b) Durations for the 25 most frequent genres.

The dataset is composed four parts: a train set with unla-

belled speech, a train set with limited labels, dev/test sets, and

a train set containing unaligned text; see Table 1.

Unlabelled Speech Training Set. This dataset was ob-

tained by extracting audio files for English speech from the

LibriVox repository5 containing open source audio books.

Files were downloaded and converted to 16kHz FLAC. We

then removed corrupted files, files with unknown or multiple

speakers, and speakers appearing in LibriSpeech dev and test

sets. The potentially duplicated versions of books based on

titles were set aside (and distributed as a duplicate subset,

totalling 4500 hours). We then ran a Voice Activity Detec-

tion (VAD) model using the wav2letter++ framework [18] on

the recordings to tag onsets and offsets of speech segments.

5https://librivox.org

subset hours books files per-spk total

hours spkrs

Unlabelled Speech Training Set

unlab-60k 57706.4 9860 219041 7.84 7439

unlab-6k 5770.7 1106 21327 3.31 1742

unlab-600 577.2 202 2588 1.18 489

subset hours per-spk female male total

minutes sprks spkrs spkrs

Limited Resource Training Set

train-10h 10 25 12 12 24

train-1h 1 2.5 12 12 24

train-10m* 10min 2.5 2 2 4

Dev & Test Sets (from LibriSpeech)

dev-clean 5.4 8 20 20 40

dev-other 5.3 10 16 17 33

test-clean 5.4 8 20 20 40

test-other 5.1 10 17 16 33

subset tokens vocab

Unaligned Text Training Set

librispeech-LM (in-domain) 800M 200K

Table 1: Datasets stats in Libri-light. *Six different ver-

sions of the 10 min datasets have been constructed, the union

of these small datasets make up the 1h dataset.

The VAD segments were used to derive an average SNR

for each file. For each file, we constructed JSON metadata

including title, unique speaker ID, SNR, genre, and list of

valid VAD block (block of more than 500ms of speech indi-

cated by onsets and offsets). We created three dataset splits

based on different sizes: (unlab-60k), (unlab-6k) and

(unlab-600), matched in genre distribution (the smaller

cuts are included in the larger ones, see the stats in Table 1).

The distributions by speaker and genres are in Figure 1. The

total amount of speech in the dataset is 62.2K hours, including

the duplicate files.

Limited-resource Training Set. For training with lim-

ited supervision, we selected three subsets of the LibriSpeech

training set: a 10 hour set, a 1 hour set, and six 10-minute

sets (the six 10-minute sets together make up the 1h set, and

the 1h set is included in the 10h set). In each set, half of

the utterances are from the clean and other training sets, re-

spectively. We additionally provide orthographic transcrip-

tions from LibriSpeech and phonetic transcriptions generated

from phonemizer6.

Dev and Test Set. The dev and test sets are the same

as that of LibriSpeech (5.4 hours for dev-clean, 5.3 hours

for dev-other, 5.4 hours for test-clean, and 5.1 hours for test-

other) and are intended for testing and tuning. All dev or test

set audio has been removed from training sets. The ground-

6https://gitlab.coml.lscp.ens.fr/mbernard/phonemizer

https://librivox.org
https://gitlab.coml.lscp.ens.fr/mbernard/phonemizer


ABX within speaker ABX across speaker

System dev-clean dev-other test-clean test-other dev-clean dev-other test-clean test-other

MFCC Baseline 10.95 13.55 10.58 13.60 20.94 29.41 20.45 28.5

CPC unlab-600 7.36 9.39 6.90 9.59 9.58 14.67 9.00 15.1

CPC unlab-6k 6.51 8.42 6.22 8.55 8.48 13.39 8.05 13.81

CPC unlab-60k 6.11 8.17 5.83 8.14 8.05 12.83 7.56 13.42

Table 2: ABX errors on unsupervised CPC trained features. Within- and across-speaker phoneme discriminability scores

(lower is better) on the LibriSpeech dev and test sets as a function of varying quantities of unlabelled speech.

truth phonetic sequences for the dev and test sets were gener-

ated as above; in addition, for ABX evaluation, forced align-

ment was obtained using a model trained on LibriSpeech.

Unaligned Text Training Set. For training a language

model in the distant supervision setting, we consider the LM

corpus provided in LibriSpeech7 which contains 800M tokens

and a vocabulary size of 200k from 14.5k public books from

Project Gutenberg. This corpus only partially overlaps with

the content of our unlabelled training set and can thus be con-

sidered in-domain. Several options exist for publicly available

out-of-domain corpora (wikitext103, 1Billion word, etc).

3.2. Metrics

We provide 3 sets of metrics for the unsupervised, distantly-

supervised, and semi-supervised settings.

For the unsupervised setting, the aim is to extract speech

representations (discrete or continuous) which encode the

phonetic content of the language while ignoring irrelevant

information (channel, speaker, etc). The representation is

evaluated using ABX error, a distance-based metric used in

previous zero resource challenges [9, 10, 11]. For a given pair

of sounds (for instance, ”bit” versus ”bet”), we compute the

probability that the distance between a random token of ”bit”

(X) is closer to another token of ”bit” (A) than to a token of

”bet” (B). The ABX error rate is obtained by averaging across

all such minimal pairs of phone trigrams in the corpus. For

the “within-speaker” score, A, B and X are from the same

speakers; in the “across-speaker” score, A and B are from the

same speaker, but X is from a different speaker (see [19]).

For the semi-supervised setting, we evaluate the quality

of learned acoustic representations with little annotated data.

Models can be trained either with character or phonetic tar-

gets using limited data and measured by either Character Er-

ror Rate (CER) or Phoneme Error Rate (PER).

For distant supervision, we evaluate how the learned rep-

resentations can be used to decode speech at the word level

using a pre-trained language model. We use Word Error Rate

(WER) for the evaluation. Because the dev and test sets are

from LibriSpeech, this allows to compare distant supervi-

sion directly with SOTA supervised models. More details on

dataset and metrics in Supplementary Section S1.

7https://openslr.org/11/

dev- dev- test- test-

System clean other clean other

no pretraining+train-10h 45.9 55.7 43.7 58.6

CPC unlab-60k+train-10m 40.1 51.5 39.4 53.3

CPC unlab-60k+train-1h 32.2 44.6 31.6 46.8

CPC unlab-60k+train-10h 28.4 41.4 27.9 43.6

Table 3: PER/CER in the semi-supervised setting. A pre-

trained CPC system plus a linear classifier trained on limited

amounts of labels compared to the same system trained from

scratch (PER).

4. BASELINE SYSTEMS

In the unsupervised setting, we use a PyTorch implementa-

tion of the Contrastive Predictive Coding (CPC) system [7]

trained to predict the hidden states of N future speech frames

and containing an encoder, a sequence model, and a predic-

tor. The encoder maps waveforms to hidden states (one 512

dimensional embedding every 10 ms frames) using a stack of

5 convolutional layers. The sequence model encodes the hid-

den states into a 512-dimensional phonetic embedding with

one layer of Gated Recurrent Units (GRUs). The predictor

maps the last phonetic embedding onto a future hidden state

using a linear projection (one linear projection per time step,

varying from 1 to 12). To avoid collapsing to a trivial solu-

tion, the model is trained discriminatively; the loss function

aims at decreasing the dot product between predicted and ac-

tual future frames while increasing it for frames belonging

to negative sequences (distant time windows). We used a

reimplementation of the original paper, which we modified

to increase stability and performance, as we could not repro-

duce the original paper results with the provided descriptions.

These changes are as follows: we replaced batch-norm with

channel-wise normalization, we reduced the hidden and pho-

netic embeddings to 256 dimensions, used a LSTM instead of

a GRU, and used a 1-layer transformer network instead of a

linear projection. The original paper obtained 65.5% accuracy

on phoneme classification with a linear classifier trained on

top of the frozen system’s phonetic embedding. Our modified

system obtained 68.9% accuracy, while using 4 times fewer

parameters in the encoder+sequence model part of the system.

We trained it on the three cuts (unlab-600, unlab-6k and

unlab-60k).

https://openslr.org/11/


dev- dev- test- test-

System clean other clean other

Supervised systems (LibriSpeech 1000 h)

Gated Cnv+4gramLM[20] 4.6 13.8 4.8 14.5

Hybrid+seqdisc+4gramLM[21] 3.4 8.3 3.8 8.8

CPC pretrain + CTC fine-tuning + 4gram-LM

CPC unlab-600+train-10m 97.3 97.6 97.1 97.7

CPC unlab-600+train-1h 72.2 84.5 70.1 86.3

CPC unlab-600+train-10h 52.5 71.6 49.3 74.1

CPC unlab-6k+train-10m 93.6 95.2 93.2 94.9

CPC unlab-6k+train-1h 67.5 81.3 65.4 82.0

CPC unlab-6k+train-10h 46.4 66.7 44.7 69.3

CPC unlab-60k+train-10m 92.5 94.2 92.5 94.4

CPC unlab-60k+train-1h 66.6 80.0 64.7 81.6

CPC unlab-60k+train-10h 46.1 66.7 43.9 69.5

MFSC + TDS + CTC + Grapheme + 4gram-LM

train-1h 79.4 88.1 78.4 88.0

+ 60k pseudo-label 78.6 86.5 77.2 86.3

train-10h 34.0 60.9 33.5 62.1

+ 60k pseudo-label 30.5 55.8 30.1 57.2

MFSC + TDS + CTC + Phoneme + 4gram-LM

train-1h 81.1 88.5 80.2 88.7

+ 60k pseudo-label 84.3 90.0 84.0 90.5

train-10h 44.1 64.2 43.8 65.1

+ 60k pseudo-label 30.0 55.8 29.3 56.6

Table 4: WER in the distant supervision setting. Top:

State-of-the-art supervised systems using our 4-gram-LMs.

Middle: A CPC system trained with unlabelled speech, fine-

tuned with limited data and integrated with a 4-gram word

language model (Librispeech-LM). Bottom: A small MFSC

TDS system trained on limited labeled data (graphemes or

phonemes). The pseudo-labels for the 60k corpus segmented

into 36-second chunks are generated and are used to retrain a

larger TDS system.

In the semi-supervised setting, we use our baseline pre-

trained CPC system supplemented with a linear classifier

trained with CTC loss on the limited-resource set’s phone

labels (only the linear layer is fine-tuned). We also provide

a from-scratch control with the same architecture trained

end-to-end.

For the distant supervision setting, we run two exper-

iments: (1) we use our pretrained CPC system with an

improved CTC layer (LSTM) which we fine-tune with or-

thographic labels in the limited-resource set. We decode

with a python wrapped version of the wav2letter++ decoder

[18], using a 4-gram KenLM [22] language model trained on

the unaligned text set. (2) We use CTC to train small Mel-

filterbanks-based TDS systems[23], (7 TDS blocks, 20M

parameters, total stride 2) on phonemes/graphemes respec-

tively. We create pseudo-labels by beam-search decoding the

60k-hours unlabelled data with a 4-gram KenLM decoder

trained on LibriSpeech-LM. These labels are used to train

larger TDS systems (11 TDS blocks, 37M parameters) from

scratch which generate WERs when decoding with the same

LM. More details on baselines in Supplementary Section S2.

5. RESULTS

The results for the unsupervised setting are shown in Table 2.

CPC constructs embeddings with good ABX scores com-

pared to an MFCC baseline, and are in the same range as the

SOTA in the Zero Resource Speech Challenge 2017 for En-

glish (6.2% within and 8.7% across [24]). The results in the

semi-supervised setting (Table 3) show gains in PER in using

unsupervised pretraining for several different amounts of fine

tuning. The results on the distant supervision (Table 4), while

far from supervised state-of-the-art, show that increasing the

amount of unsupervised pretraining helps. Pseudo-labels are

beneficial but only if the generating and fine-tuned models

are initially good (Table 3 and 4).

6. CONCLUSION

We have introduced a new large dataset for benchmarking

ASR systems trained with limited or no supervision. We

found that unsupervised training with increasingly larger

dataset yield better features and can significantly boost the

performance of systems trained with limited amounts of

labels (from 10 min to 10 hours) both for a phoneme recog-

nition task in a semi-supervised setting and for a word recog-

nition in a distant-supervision setting. The baselines were

not particularly optimized for the tasks and are provided

only as a proof-of-concept; there is a significant margin with

fully-supervised systems. Obvious improvements include

using larger models, speaker-adversarial losses, fine tuning

the entire system (not just the top layers), and pseudo-labels

retraining in all settings. Active learning [25] could further

select useful parts of the dataset (we have provided SNR data

to facilitate this effort). Yet another approach might apply

language modeling techniques directly on unlabelled audio to

improve the representations before fine-tuning them [26, 27].
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S1. SUPPLEMENTARY DATASETS AND METRICS

S1.1. Datasets and meta-data

The dataset is constructed according to the following pipeline:

data download, exclusion of bad files, conversion to flac, ex-

traction of VAD, SNR, and Perplexity, the construction of

JSON files and the split in three cuts of varying sizes.

S1.1.1. VAD

Voice Activity Detection is accomplished using a TDS acous-

tic model [23] trained using CTC loss [28] on the LibriSpeech

dataset using the orthographic transcription. The trained

model was used to perform inference (greedy frame-by-

frame decoding) with the wav2letter++[18] audio analysis

pipeline on the unlabeled audio by mapping all of the letters

to SPEECH and the silence symbol to NONSPEECH. The

posterior SPEECH probability is added as meta data on the

JSON of each file.

The TDS model used for VAD has 100 million parameters

and consists of clusters of 2, 3, 4, and 5 TDS blocks sepa-

rated by 2D convolutions. The duration of audio contained in

each label is dependent on the stride of the underlying acous-

tic model; the model used has a stride of 8. The model is

trained with word-pieces using the recipe outlined in [23].

S1.1.2. SNR

The Signal-to-noise (SNR) ratio is calculated using the VAD

labels predicted above. For each 80ms frame the VAD will

return a posterior of whether the frame is speech or not. We

decided to take < 0.8 as the speech threshold, and > 0.995

as noise threshold. If a speech frame is detected, we also

automatically include 2 subsequent frames, to compensate for

the spiky predictions from the VAD model. Any other frames

that does not belong to either bucket are ignored since we

are not confident whether they are speech or noise. Finally

we compute the SNR ratio by using its definition SNRdB =

10 log10

(

Psignal

Pnoise

)
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Fig. S1: Librivox SNR histogram

S1.1.3. Perplexity

Perplexity was obtained by performing beam search decod-

ing of the trained TSD model defined above supplemented by

a 4gram word Language Model trained on LibriSpeech LM.

It was computed as the mean of the log probability of the pos-

terior on each file.

S1.1.4. JSON files and splits

To construct the JSON, we duplicated the metadata of the

original book JSON file from LibriVox into each of the files

associated for a given book (including unique book ID and

speaker ID, and we added tags for SNR, perplexity and our

own macro-genre tags, by folding the existing ones into 7 cat-

egories: ”Literature”, ”Science, Craft & Essay”, ”Ancient”,

”Religion”, ”Poetry”, ”Theater”, and ”Undefined”. We also

added VAD information as a list of onsets and offsets of voice

activity.

The files were splitted into cuts of different sizes by trying

to maintain the same distribution of macro-genres in the three

cuts.

S1.2. The ABX metric

Given a frame-wise distance metric, we want to check that

features coding for the same phonemes have a more similar

representation than features coding for different phonemes.

To quantify this property, we use a minimal pair ABX task as

defined in [14]; given a set of sounds S(x) from a category x

and a set of sounds S(y) from a category y we compute:

θ(x,y) =
1

nm(m− 1)

∑

a∈S(x)

∑

b∈S(y)

∑

c∈S(x)\{a}

θ̂(a, b, c)

With:

θ̂(a, b, c) = 1d(a,c)<d(a,b) +
1

2
1d(a,c)=d(a,b)

m,n = |S(x)|, |S(y)|

Here, θ(x,y) is the probability of a sample from category

x to be closer to another element from x than to one fromy.

To compute ABX we average the error 1 − θ over all cate-

gories.

S2. SUPPLEMENTARY BASELINE MODELS

S2.1. CPC model and training

To train a feature model in an unsupervised fashion, we used

the method implemented by Riviere and al. in [?], inspired by

the Contrastive Predictive Coding algorithm (CPC) presented

in [7]. We will briefly introduce the algorithm in this section,

though we refer the reader to the original papers for more

details.



S2.1.1. Contrastive Predictive Coding

CPC relies on forward modeling: given an input sequence of

features, we try to predict the k future representations of the

sequence. The network must discriminate each future ground

truth feature from negative examples randomly sampled in the

batch.

More precisely, the model goes like this:

1. The raw waveform w goes through a convolutional net-

work gc, resulting in a feature sequence (xt)t∈1...T .

2. Then we form the current phoneme representation zt

by applying a recurrent network gar to xt.

3. Finally, we predict (xt0+1, ...,xt0+k) from (zt)t≤t0 us-

ing a prediction network gp.

When using theses feature for another task we always con-

sider zt, the output of the recurrent layer.

S2.1.2. Architecture Details

For gc, we use five convolutional layers with strides [5, 4, 2, 2,

2], filter-sizes [10, 8, 4, 4, 4] and 256 hidden units with ReLU

activations. Besides, the features are normalized channel-

wise between each convolution. In the end, this network has

a downsampling factor of 160, meaning that on a 16kH audio

input each feature will encode 10ms of data. Furthermore,

gar is a one-layer LSTM with also a 256 dimensional hidden

state. Finally, the predictor gp is a one-layer transformer.

S2.1.3. Training Details

We considered input sequences of 1280ms gathered in batches

of 32 sequences per GPU with a total of 128 GPUs. Our

training took approximatly two days on NVIDIA Tesla V100-

SXM2-16GB. Besides, in a given batch, all sequences were

sampled within the same speaker.

S2.2. TDS model and training

Given the limited amount of supervised training data, we se-

lect to use a smaller TDS model [23] with 20 million param-

eters. The model has a stride 2 in the first convolution, and

three groups of TDS blocks with channels (10, 14, 18) and

(2, 2, 3) blocks in each group. While on the whole 60k hours

training data, we use the original architecture introduced in

[23] with 37 million parameters. The only difference is that

we reduce the overall stride from 8 to 2. We use dropout to

prevent over-fitting, and its value is set to 0.4 and 0.1 in the

20M and 37M models.

In terms of model optimization, we use plain SGD with

momentum. The initial learning rate and momentum are set

to 0.1 and 0.5 respectively. In the supervised setting, the mod-

els are trained for 1500 epochs on 8 GPUs in total with learn-

ing rate halved after each 200 epochs and total batch size 64

and 16 for character- and phone- based system. In the semi-

supervised scenario, the models are trained for 150 epochs

on 32 GPUs in total with learning rate halved after every 30

epochs and total batch size 256.

The beam-search decoding parameters are tuned on only

dev-other for the 20M TDS models to generate pseudo-labels,

while they are tuned independently for the final 37M model.

The same official LibriSpeech 4-gram LM is used in both de-

coding procedures. The decoding beam size is 1000 in all the

experiments.

S3. SUPPLEMENTARY RESULTS

S3.1. Pseudo-labels experiment

dev- dev- test- test-

System clean other clean other

MFSC TDS + train-1h 44.4 57.7 55.6 65.9

+ 60k pseudo-label 57.6 68.1 59.5 72.3

MFSC TDS + train-10h 22.5 40.2 22.2 41.3

+ 60k pseudo-label 18.7 36.0 18.7 38.6

MFSC TDS + train-1h 44.3 53.9 46.9 55.4

+ 60k pseudo-label 43.4 52.6 43.2 53.9

MFSC TDS + train-10h 20.7 36.4 21.8 38.0

+ 60k pseudo-label 15.0 31.1 14.7 32.2

Table S1: PER/CER of acoustic models trained in with

pseudo-labels. Top: small phone-based TDS [23] models

with limited labels using wav2letter++[18], generating pseu-

dolabels on the 60K dataset with an in-domain LM, retraining

a larger TDS acoustic model (PER). Bottom: the same trained

on characters (CER).

Table S1 provides PER/CER in the distant supervision

setting with models trained on pseudo-labels. The TDS mod-

els above and generated pseudo-labels are trained and gener-

ated with the exactly the same procedure introduced in Sec-

tion 4. Note that the PER/CER results above are not compa-

rable to the semi-supervised ones in Table 3 as pseudo-labels

here are generated with the official LibriSpeech LM, whose

training set is a super-set of the transcriptions in the super-

vised training set.
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