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Abstract

The language discrimination process in infants has been suc-
cessfully modeled using i-vector based systems, with re-
sults replicating several experimental findings. Still, recent
work found intriguing results regarding the difference between
monolingual and mixed-language exposure on language dis-
crimination tasks. We use two carefully designed datasets,
with an additional “bilingual” condition on the i-vector model
of language discrimination. Our results do not show any dif-
ference in the ability of discriminating languages between the
three backgrounds, although we do replicate past observations
that distant languages (English-Finnish) are easier to discrimi-
nate than close languages (English-German). We do, however,
find a strong effect of background when testing for the ability
of the learner to automatically sort sentences in language clus-
ters: bilingual background being generally harder than mixed
background (one speaker one language). Other analyses reveal
that clustering is dominated by speakers information rather
than by languages.

Keywords: language discrimination; language diarization; i-
vectors; bilingualism; speaker information

Introduction

Bilingualism is a widespread phenomenon, with the major-
ity of children being born in a bilingual environment. It
also appears that being raised bilingual does not result in
any particular delay in the language acquisition milestones
of children compared to the monolingual peers (Oller, Eil-
ers, Urbano, & Cobo-Lewis, 1997; Vihman, Thierry, Lum,
Keren-Portnoy, & Martin, 2007; Petitto et al., 2001), nor
to any confusion between the different languages (Petitto &
Holowka, 2002; Byers-Heinlein & Lew-Williams, 2013). In
fact, infants from both monolingual and bilingual environ-
ments seem to be able to discriminate between distant lan-
guages from birth (Byers-Heinlein, Burns, & Werker, 2010;
Mehler et al., 1988), and rhythmically similar languages as
young as 5 months old (Nazzi, Jusczyk, & Johnson, 2000;
Bosch & Sebastian-Gallés, 1997). How do they do it? What
kind of computational system can achieve language discrimi-
nation from the raw signal only? Are there pairs of languages
or language backgrounds which would make such discrimina-
tion easier or harder? One way of addressing these questions
is to use automatic language discrimination techniques as a
model of how infants process and discriminate languages.

Related work

I-vectors (Dehak, Torres-Carrasquillo, Reynolds, & Dehak,
2011) are fixed-length vector representations of entire utter-

ances which characterize how much an utterance deviates
acoustically from a background distribution of speech used
to train the system. These representations are typically used
for speaker identification and discrimination (Dehak et al.,
2011) but can also represent languages (Martinez, Burget,
Ferrer, & Scheffer, 2012; Martinez, Plchot, Burget, Glembek,
& Matejka, 2011).

I-vectors based systems have been shown to reproduce key
findings in language discrimination experiments: the ability
to detect a change in language within a bilingual speaker
(language discrimination) (Carbajal, Dawud, Thiolliere, &
Dupoux, 2016), the distance effect between different lan-
guage pairs, with close languages being harder to discrimi-
nate than more distant languages (Carbajal, 2018), and the
ability to discriminate based on prosody (Martinez, Lleida,
Ortega, & Miguel, 2013; Carbajal, 2018). However, they also
resulted in an intriguing prediction that has not so far been
verified experimentally. Notably, Carbajal et al. (2016) found
that learners exposed to a mixture of languages have more
difficulties to discriminate languages than learners exposed
to monolingual backgrounds. These results are counter-
intuitive: one would think that having a mixed background
should help discrimination not hinder it. They also have po-
tentially important empirical and practical implications. In-
deed, if true, they would reveal an undocumented discrimina-
tion deficit for infants in a bilingual or mixed background.
This is why we wanted to replicate them with more con-
trolled stimuli. Indeed, the initial study used English and
Xitsonga recordings from completely different datasets, rais-
ing the possibility that results might come from recording-
specific properties rather than the language characteristics.

Present work

The mixed background deficit effect found by Carbajal et al.
(2016), if true, is important both for theoretical and practi-
cal reasons. The current study is devoted to reproducing the
original effect, test its robustness, and to more fully under-
stand how language background may affect a learner’s ability
to discriminate languages.

The first aim of the study is to reproduce the original ex-
periments using more controlled and ecological stimuli. First,
to discard potential acoustic artifacts, all recordings used in
the experiment were from the same corpus. Second, we used
a better counterbalancing design allowing the different con-
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ditions to be perfectly comparable, all containing the exact
same recordings. Third, the datasets are also more ecological,
containing a smaller number of speakers (N = 12), simulating
an infant’s exposure to speech better than the original study
containing an implausible number of speakers (N = 168).

We also introduce three novelties to explore the robustness
of the results. First, we compare two language pairs, one be-
ing closely-related (English and German) and the other one
being more distant (English and Finnish). Besides enhancing
the generalizability of the results, this also allows us to test
whether close language pairs are more difficult to discrimi-
nate than distant language pairs. Second, along the monolin-
gual and mixed conditions, we introduce a new “bilingual”
background condition, with speech from the same speakers
speaking in both languages. This new condition simulates
an environment in which the infant is exposed to bilingual
speech from the same persons (e.g. parents switching con-
stantly between language A and language B). Recent theo-
ries in psychology support the idea that such a fully bilin-
gual environment can harm the children’s linguistic develop-
ment and therefore suggests that parents should follow the
“One Parent, One Language” (or OPOL) strategy (Genesee,
1989). We are therefore able to investigate whether, in mod-
eling language discrimination, a mixed environment (OPOL)
and a fully bilingual environment result in any processing
differences. Finally, we analyze the effect of speaker infor-
mation on language discrimination. This was partly done
in Carbajal et al. (2016) by applying a Linear Discriminant
Analysis (LDA) to the i-vectors to select a new representa-
tion that increases the separation between speaker. Here we
add a method which, by taking the orthogonal complement
of this LDA representation, does the opposite, i.e. normalizes
the representation across speakers.

Finally, to more fully understand how language back-
ground could affect discrimination, we test language discrim-
ination in two different ways. The first one is based on psy-
cholinguistic experiments run in infants in the laboratory. In
such experiments, infants are presented with sentences from a
single bilingual speaker speaking one of their languages, and
the reaction of the infant to an unpredictable change in lan-
guage is measured (through behavioral proxies such as look-
ing time or non-nutritive sucking). Children are said to dis-
criminate the two languages if there is a statistical difference
between the set of children who had a switch of language and
those who did not. As in (Carbajal et al., 2016), we model
this task with a machine-ABX discrimination metric (Schatz
et al., 2013). We argue, however, that contrary to the standard
interpretation of the discrimination paradigm, a statistical dif-
ference between groups is not fully ecological. It does not
necessarily indicate that infants can sort out individual utter-
ances from their environment according to their language. In
practice, infants are not confronted with a single speaker, but
with multiple ones, the decision has to be made sentence by
sentence (sometimes words by words in the presence of code
switching), and the number of languages that they speak is
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unknown. This second problem can be defined as a language
diarization task, which we model as a clustering problem.
More precisely, we apply a clustering algorithm to the mod-
eled acoustic space of the different training backgrounds, and
look at the extent to which the formed clusters correlate with
language labels.

Methods
Materials

We used the EMIME bilingual corpus (Wester, 2010). It is
a read speech corpus containing bilingual speech (utterances
from two languages recorded by the same speaker) with a
16kHz sampling rate. It was split into two datasets, one with
English and Finnish speech, and the other with English and
German speech. In each subset, the speakers are bilingual,
although English is always their second language. For each
language, each speaker reads on average twice the same set
of 145 sentences, leading to some sentence repetitions in the
train set.

We designed three conditions for each dataset: a mono-
lingual one composed of speech from a single language; a
mixed condition in which the two languages are represented
but with each person speaking only one of the two languages;
and a bilingual condition, containing speech from both lan-
guages, uttered by the same speakers. To ensure all condi-
tions are fully comparable, we further split the training sets
into subsets. Each subset was used independently, and re-
sults were then averaged within the conditions. This way,
within each dataset (English-Finnish and English-German),
each averaged condition contains the same speech utterances.
A summary of the different training conditions is presented in
Table 1. The average utterance duration is of 4.44 seconds in
the English-Finnish dataset and 4.52 seconds in the English-
German dataset. The total duration of each training set was
therefore between 4h23 and 4h37. Additionally, a test set
was created for each dataset, using bilingual speech from the
highest-rated accent male and female for each language (2
speakers per set). Each test set is composed of 200 utterances
(100 per language).

Pipeline

The following section describes the methodology behind the
different steps carried out in the experiment. The whole
workflow is applied independently to each training set. Un-
less stated otherwise, the open-source tool Kaldi (Povey et
al., 2011) was used for the different stages of the process.

Feature Extraction Mel frequency cepstral coefficients
(MFCCs) features (Mermelstein, 1976) were extracted for all
train and test sets, with 13 coefficients (including energy).
They were calculated on 25ms speech frames, using 10ms
shift. These features, widely popular in speech processing,
are based on human perception and are therefore adequate for
modeling cognitive processes of speech. Shifted-delta coeffi-
cients (SDC) are also calculated. They capture long-distance



Table 1: Summary of train datasets

N speakers N

Dataset Background (Nmales)  utterances

Mono 12 (6) 6910
English 6(3) 3480
Finnish 6(3) 3430

. Bilingual 12 (6) 6910
i?fg;i subset 1 6(3) 3454
subset 2 6(3) 3456

Mixed 12 (6) 6910
subset 1 6(3) 3480
subset 2 6(3) 3430

Mono 12 (6) 6960
English 6(3) 3480
German 6(3) 3480

. Bilingual 12 (6) 6960
f}rﬁgls;n subset | 6(3) 3504
subset 2 6(3) 3456

Mixed 12 (6) 6960
subset 1 6(3) 3480
subset 2 6(3) 3480

information from the neighboring frames, adding some dy-
namic information to the speech structure.

I-vectors model Following the I-vector model (Dehak et
al., 2011), a Gaussian Mixture Model (GMM) is first trained
over all speech features of the train set, resulting in a large
probabilistic representation of the acoustic space called Uni-
versal Background Model (UBM). It can be defined by a su-
pervector m containing the means of all gaussian components.
Using factor analysis, the components of highest variability
are then projected into a low-dimensional space, the Total
Variability space, which is defined by a Total Variability ma-
trix 7. An utterance u can then be defined as u=m—+Tv. The
variable v can be used as a fixed dimension representation of
u, and is typically referred to as an i-vector. This process is
depicted in Figure 1. We extracted i-vectors for utterances of
both the test and train sets. We used a GMM with 128 Gaus-
sians, and dimensionality of 150 for the i-vectors, as these pa-
rameters seemed to yield satisfactory results in small datasets
(Carbajal et al., 2016).

LDA and Orthogonal Complement Two additional steps
were also optionally performed, in an attempt to investigate
the effect of speaker information on language discrimination.
These supervised methods, applied on the i-vectors, use the
speaker labels from the train set to either enhance or diminish
the speaker information. They assume that the child is able
to identify speakers on an independent basis, and uses this in-
formation to either amplify speaker separation or decrease it.
To increase speaker information, Linear Discriminant Analy-
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Figure 1: The different stages of the experimental pipeline.
In a first training phase, indicated by dotted lines, we con-
struct an i-vector extractor in three steps (1,2,3), followed by
an optional step enhancing or reducing the effect of talker
variability (4). In the evaluation phrase, indicated by plain
lines, we either run a machine equivalent of a discrimination
task on novel sentences (5), or cluster the training utterances

(6).

sis (LDA) based on the speaker labels is computed on the i-
vectors from the train set to estimate a transformation matrix
which maximizes the distance between speakers. I-vectors
from the train and test sets are then transformed using this
matrix, resulting in i-vectors of dimension 11 (N_speakers -
1). The opposite stance was also taken by calculating the or-
thogonal complement of the LDA subspace and then using it
to transform the i-vectors. This allowed us to retrieve all the
information from the initial i-vector space excluding the in-
formation which is in the LDA. By doing this, we remove the
information which is used to maximize the distance between
speakers, normalizing all speaker information. For clarity
reasons, we refer to this extra step as “anti-LDA”. The or-
thogonal complement was calculated using the scipy Python
package (Virtanen et al., 2019). In cognitive terms, this pro-
cess would amount to the ability of a child to identify the cues
which are speaker-specific, and then removing them from the
language identification processes.

Evaluation Methods

Two evaluation methods were implemented, each focusing on
one of the language discrimination and language diarization
processes.

ABX Scores Language discrimination experiments in psy-
cholinguistics often consist in a first familiarization phase
during which the child is exposed to speech from a language
A, and an evaluation phase during which the child is pre-
sented with two sentences uttered by a new speaker, one of
the sentence being from the same language A, and the sec-
ond sentence being from a novel language B. If the infant can
discriminate between the two languages, there should there-



fore be a surprise effect when language B is presented. Al-
though this method is often used as a proxy to assess if chil-
dren automatically differentiate languages, it is strictly a way
to evaluate if children are able to discriminate between two
languages, and we therefore restrict our discussion of such
results to this particular set-up.

We use the machine ABX paradigm (Schatz et al., 2013) to
simulate such a language discrimination experiment. This is
done by computing, over the whole set of test i-vectors, mul-
tiple triplets of items A, B and X; A and X being i-vectors of
utterances sharing the same language and B being an i-vector
from an utterance of a different language. For each triplet, the
cosine distances of A to X and B to X are then computed. If
the distance between A and X is smaller than the distance be-
tween B and X, a score of 1.0 is attributed to this triplet, other-
wise the score is 0.0. The average of scores across all triplets
is then computed, yielding an average ABX score. Perfect
discrimination would therefore yield an ABX score of 1.0 (or
100%), as the distance of same-language utterances would al-
ways be smaller than the distance of utterances from different
languages. To compare our results to psycholinguistics ex-
periment, we compute the triplets within speaker, that is all
three items A, B and X will always share the same speaker.

Clustering As a proxy for evaluating whether children
cluster multilingual speech from their environment into lan-
guages, we apply a clustering algorithm with K clusters to
the i-vectors from the multilingual train sets (bilingual and
mixed), and evaluate the purity of the formed clusters. If
languages are perfectly clustered in the acoustic space, we
would expect a purity score of 1.0 when K = 2. K-means al-
gorithm was ran 20 times for each K, in the range of K = 2
to K = 20, yielding an average and standard deviation of the
purity scores for each K. We also extended this method to
calculate the purity scores on speaker clusters, with K = 12
(i.e. the accurate number of speakers). This method was ap-
plied to the raw i-vectors from the train sets, as well as the
LDA and anti-LDA transformed i-vectors.

Results
ABX scores / Language discrimination

Within speakers ABX scores were computed on the raw, LDA
and anti-LDA test i-vectors for each train condition. Re-
sults for each dataset are presented in Table 2. Scores in
both datasets suggest that the i-vectors successfully allow dis-
crimination between the two languages in all conditions and
datasets (no discrimination would yield chance level scores at
50%). As expected, scores in the English-Finnish (different
language family) dataset are significantly higher than those in
the English-German (same language family) dataset.

There does not seem to be any significant difference with
the raw i-vectors between the bilingual, mixed and monolin-
gual conditions, suggesting that the input type in the back-
ground’s composition does not have an effect on language
discrimination of unknown speech. Removing speaker infor-
mation from the test i-vectors (using the anti-LDA transfor-
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Table 2: Summary of ABX results (in % correct) in both
datasets for the different training backgrounds, on the stan-
dards, LDA (+LDA) and anti-LDA (-LDA) i-vectors. The
scores are calculated within speaker.

ABX scores

Dataset ~ Background standard +LDA -LDA

Bilingual 75.1 66.0 74.4
subset 1 73.1 67.0 72.3
subset 2 77.1 65.0 76.5

English- Mixed 75.5 88.7 73.2
Finnish subset 1 76.4 91.1 74.1
subset 2 74.6 86.2 72.2

Mono 73.7 68.0 72.6
English 71.8 68.9 70.4
Finnish 75.5 67.0 74.8

Bilingual 63.3 65.3 62.8
subset 1 62.5 61.8 61.9
subset 2 64.0 68.8 63.7

English- Mixed 64.2 72.5 62.6
German subset 1 63.4 77.1 61.7
subset 2 64.9 67.8 63.4

Mono 63.6 64.9 62.9
English 63.1 63.3 62.5
German 64.1 66.4 63.2

mation matrix estimated on the train i-vectors) very slightly
lowers the discrimination scores in all conditions. In both
datasets, however, enhancing speaker information with LDA
leads to an increase in ABX scores in the mixed condition,
which can be explained by the additional use of speaker infor-
mation in the language discrimination task, each speaker only
corresponding to a single language. It does not yield a stable
pattern for the monolingual and bilingual conditions, deterio-
rating the scores in the English-Finnish dataset but leading to
a slight increase in the English-German dataset.

Clustering / Language diarization

Kmeans clustering with K clusters (from K =2 to K = 20)
was applied to the train i-vectors in each mixed and bilingual
conditions. Results are presented in Figure 2. The purity
score for K = 2 is close to O in all conditions with, for the
raw i-vectors, an average of 0.090 (S = .083) in the mixed
condition and of 0.003 (S = .008) in the bilingual condition.
This suggests that the acoustic space is not clustered primarily
by language.

As presented in Figure 2, with the raw i-vectors, the larger
the number of clusters, the larger the difference between the
mixed and bilingual conditions, with clusters in the mixed
condition getting significantly higher language homogeneity
scores. In the mixed condition, language identity is fully cor-
related with speaker identity, whereas there is absolutely no
such correlation in the bilingual condition, each speaker hav-
ing utterances in both languages. It is therefore probable that
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Figure 2: Average language purity as a function of the number of clusters for the different condition, with the standard, LDA
and anti-LDA i-vectors. Clustering was done over 20 trials using k-means clustering.

Table 3: Average language purity (in %) using K = 2 to
K = 20 clusters in the different training conditions, with the
standard (raw) i-vectors, LDA i-vectors (+lda) and anti-lda
i-vectors (-1da).

English-Finnish English-German

Background raw +1da -1da raw +1da -1lda
Mixed 77.0 832 13 716 683 10
Bilingual 14.6 0.6 170 43 03 13.6

the acoustic space is clustered primarily by speakers, explain-
ing the highest language purity scores in the mixed condition.
Moreover, when the number of clusters is equal to the num-
ber of speakers (K = 12), clusters in the mixed conditions
start reaching perfect purity, while bilingual condition purity
scores only start increasing.

The speaker-based cluster hypothesis seems to be con-
firmed by the results with the LDA and anti-LDA i-vectors.
Enhancing speaker information with the LDA favors the
mixed condition at the detriment of the bilingual condition,
whereas removing this speaker information by taking the
LDA’s orthogonal complement prevents any language clus-
ters to be formed in the mixed condition, but allows the i-
vectors in the bilingual condition to form clusters with lan-
guage purity scores > 0 when K < 12.

It is also worth noting that, in all conditions, the clus-
ters in the English-Finnish dataset have higher purity scores
than those in the English-German dataset, suggesting that the
language information present in the distant language pair’s
acoustic space is more discriminatory than those in the close
language pair.

We calculated the speaker purity scores for K = 12 (the
total number of speaker per set). As expected, anti-LDA i-
vectors do not cluster speakers at all (M = .011, SD = .003),
whereas the LDA i-vectors reach a nearly perfect speaker pu-
rity (M =.999, SD = .001). Raw i-vectors also yield very high
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speaker purity scores (M = .940, SD = .019), suggesting that
the standard i-vectors already hold a lot of speaker-specific
information.

Discussion

Our experiments successfully replicate the major key find-
ings from previous language discrimination studies, with our
model being able to discriminate between languages even
with very small exposure. We also found that close language
pairs were harder to discriminate than distant ones. How-
ever, unlike Carbajal et al. (2016), we found no difference
in the standard system between the monolingual and mixed
conditions. These results, however, corroborate experimental
findings on bilingual children (Byers-Heinlein et al., 2010;
Bosch & Sebastian-Gallés, 1997). Although more careful
investigation would be required, it is strongly possible that
the model in the original study primarily captured recording-
specific differences rather than language-specific ones, as the
two languages come from distinct datasets. There was also
no difference in our raw system with the additional bilingual
condition. This would suggest that being exposed to a mul-
tilingual environment in which each speaker speaks multiple
languages does not hinder the language discrimination pro-
cess compared to an OPOL-like environment. Although this
does not necessarily extend to further processes of language
acquisition, such results emphasize the importance of quanti-
tative evidence in supporting psycholinguistics claims.

We found that manipulating the significance of speaker in-
formation led to small modulations in language discrimina-
tion. Enhanced speaker information slightly improved dis-
crimination in the mixed condition, sometimes to the detri-
ment of the other conditions. Removing this information on
the other hand only led to a common very small decrease
in discrimination. Such speaker information manipulations
assume, in terms of cognition, that infants are able to in-
fer the identity of the speakers in their environments from
external modalities (e.g. visual cues). External cognitive
processes would then either automatically diminish or en-
hance speaker-related information when processing speech.



Both theories are also as equally plausible as the standard
system, and experimental findings support both ideas: in-
fants are able to recognize speech from their mother (Mehler,
Bertoncini, Barriere, & Jassik-Gerschenfeld, 1978) but also
fail at strangers voice discrimination tasks when prosody is
disturbed (Johnson, Westrek, Nazzi, & Cutler, 2011). Be-
cause all three models (raw and with speaker modulation) are
reasonable, it would be imprudent to conclude that there are
any differences between any of the three exposure conditions.

Findings that bilingual infants are able to discriminate lan-
guages (Byers-Heinlein et al., 2010; Genesee, 1989) are not
sufficient evidence to assume that they necessarily cluster
speech from their multilingual environments into distinct lan-
guages. For both mixed and bilingual conditions, and even
when manipulating speaker information, the i-vectors used
to represent the acoustic space never clustered into two lan-
guage clusters. This suggests that, even when the number of
languages is known, sorting utterances in homogeneous lan-
guages clusters is extremely hard. If the number of clusters is
increased to the number of speakers, language purity scores
increase but only in the mixed condition, corresponding to the
intuition of some parents to adopt the OPOL strategy. This in-
dicates that speaker information is not only more salient than
the language one, but also that both are intertwined in a way
which makes it hard to get them disentangled, even by ampli-
fying or decreasing this speaker information. Nevertheless,
it does not mean that these results should be taken as an ar-
gument for the OPOL strategy, as there is still no evidence
that language separation is a necessary prior to later steps of
language acquisition for bilingual children. Hence the un-
derlying question: are children really able to do language di-
arization? If not, what consequences can it have on language
acquisition in bilingual environments?

Another point worth considering in future research is the
question of accented speech in bilingual environments. As
mentioned previously, the dataset used in the present experi-
ments is composed of non-native bilingual speakers, some-
times leading to the presence of slightly accented English
speech. This does not discredit the cognitive inferences made
from our results in that even in a family where both parents
are native of the two languages, they will often still display
accented speech in one language (Major, 1992). However, it
would be interesting to replicate the experiments with a cor-
pus solely composed of recordings from native bilinguals, not
only to confirm the present results but also to get more in-
sights on the effect of different input types and degrees of
accented speech on language discrimination and language di-
arization.
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