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Abstract

Adaptive feedback noise attenuation is a very efficient way of strongly attenuating multiple tonal
and narrow band disturbances with unknown and time varying characteristics. These adaptive
schemes implement the internal model principle (IMP) for canceling disturbances combined with
the Youla Kucera (YK) parametrization which allows to directly tune the disturbance compensa-
tion filter without explicit identification of the disturbance model. Efficient use of these schemes
requires a good knowledge of the compensatory path model, which can be obtained by experimen-
tal system identification. However, there are potential applications where the characteristics of the
compensatory path may change significantly during operation and this may lead to the instability
of the system. The paper addresses the problem of handling large plant model uncertainties by
overparametrization of the adaptive disturbance compensation filter. A methodology for design-
ing adaptive feedback noise cancelers in the presence of large model uncertainties is proposed.
In addition to the overparamtrization, a specific design of the linear feedback controller has to be
done in order to satisfy a frequency condition in the range of variations of the frequencies char-
acteristics of the compensatory path model. Experimental validation of the design is done on a
relevant active noise control bench test.

Keywords: active noise control, adaptive feedback compensation, Youla—Kucera parametrization

1. Introduction

For the rejection of multiple narrow band noise disturbances with unknown and time-varying

characteristics adaptive feedback solutions have shown to be very efficient. Using such a solution,
the need of an extra measurement of an image of the disturbance is removed as well as the pres-
ence of the undesirable positive internal feedback occurring in most of the adaptive feedforward
attenuation schemes.
The essence of the adaptive feedback approach is to use the Internal Model Principle (IMP) [1],
which requires, for asymptotic rejection of the disturbance, the inclusion of the disturbance model
into the controller, combined with a Youla-Kucera (YK) parametrization of the controller allowing
directly to adaptively tune the parameters of the controllers (no need for the explicit identification
of the disturbance model).

! Corresponding author: Ioan Doré Landau (ioan-dore.landau @ gipsa-lab.grenoble-inp.fr)
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The basic diagram of such a system is shown in Fig. In addition to a central polynomial
controller (Ro,So) there is a Q filter (FIR) termed the Youla-Kucera filter. This filter has as input
the signal w(r) which can be viewed as the output of a disturbance observer [2]

The first use of this approach in active noise attenuation is presented in [3]. A more recent
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Figure 1: Youla-Kucera direct adaptive feedback regulation scheme.

application is [4]. This approach has been extensively used in active vibration control [2] and has
been the subject of an international benchmark reported in a special issue of European Journal of
Control [3]].

In this context, it is assumed that the models of narrow band noise disturbances are unknown
but it is assumed that the compensatory (secondary) path model is known and almost constant.
Excellent models of the compensatory path in active noise attenuation can be obtained by exper-
imental system identification (very small differences between simulations and real experiments).
See for example [6} [7/]. Changes of the physical configurations and of various operational con-
ditions lead to models of the same structure but with different orders and parameters. There are
potential applications in active noise attenuation where large variations of the compensatory path
model may occur and this will lead in most of the cases to instability of the system. So one of the
crucial issues is how to take into account plant model variations.

There are several approaches discussed in the literature for handling model variations. A first
approach considers the injection of an external excitation signal allowing to identify in operation
the model of the system. However, the optimal choice of the type of signals, of the level and the
instants of application of these signals are quite complicated problems. A trade-off has to be found
between performance degradation due to model errors and injected signals. This approach is too
problem dependent. A second approach considers the performance oriented switching between a
collection of previously identified models [8]. It has an interesting potential for large and rapid
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variations of the models. However, fast switching requires to use a limited set of models (see [9],
chapter 13) and should be completed with a further adaptation of the model in order to achieve the
best performance. Another approach [[10] [[L1I],[[12],[13]] proposes to use an internal error and to
identify a model where the place of the controller and of the plant is reversed. This approach has
been used in ’feedforward compensation” schemes.

The idea of using overparametrization for handling model uncertainties in adaptive Youla-Kucera
feedback structures appeared probably for the first time in [[14] where an adaptive Youla-Kucera
feedback scheme has been used for rejection of an exponential type disturbance acting on a bio
reactor characterized by a first order model. It was suggested that overparametrization of the adap-
tive Q filter is a possibility for handling not only the disturbance but also the uncertainties on the
plant model. In [15] it is argued that overparametrizing the Q filter, enhances the robustness of
the control system and that it should be possible to account for changes in the plant models. In
[16] an approach for rejecting unknown disturbances acting on an uncertain system using the dual
Youla-Kucera parameterization [[17] has been proposed. However, no stability analysis is provided
for the full scheme. In [18]] the analysis of a scheme with an extended adaptive Q filter for the case
of a first order system is provided. However these results cannot be extended for systems of higher
order like in active noise control where the orders of the plant models can be very high (often over
25).

The analysis of the overparametrization approach has been investigated in [[19]. One of the ba-
sic finding is that it is not enough to oveparametrize the adaptive filter in order to guarantee the
stability of the system. The system with overparametrized Q filter should do simultaneously two
tasks: verify the internal model principle while guaranteeing the stability of the system. Even
assuming that one knows the uncertainty, it results that there is a frequency condition for stability.
In other terms, in addition to using overparametrization, the controller has to be designed such that
a frequency condition is satisfied for all the models in the set of possible models.

Furthermore, as a consequence of using overparametrization, the argument of excitation rich-
ness of the disturbance can no longer be used for parameter convergence and stability analysis of
the adaptive scheme. A specific analysis has to be done (this aspect has not been discussed in
[19]). Since one uses overparametrization, the solution of the internal model principle is no more
unique and different solutions may result for various initial conditions. However for stability rea-
sons, the domain of possible values of the parameters should be bounded. Therefore the standard
parameter adaptation algorithms have to be completed with a projection procedure to maintain the
parameters within a certain domain of variations. For the case of unstructured uncertainties, this
problem has been discussed in [[15]. In the present paper, such a procedure is proposed for the case
of structured uncertainties and a stability analysis of the full scheme is provided.

A fundamental message which the paper tries to deliver is the following: A simple over-
parametrization of the adaptive Q filter is not enough for handling large plant uncertainties. An
appropriate design of the linear controller has to be done and the basic adaptation algorithms have
to be completed with a projection procedure. The paper also shows that this procedure for handling
large model uncertainties can be effectively implemented in adaptive feedback noise attenuation
of multiple unknown narrow band disturbances and an experimental evaluation on a relevant test
bench is provided.

The paper is organized as follows: In Section 2} the experimental setup will be described.
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The basic equations describing the system will be given in Section [3] Section [] will present
the methodology of designing the full system in order to handle plant model uncertainties. The
experimental results obtained on the test bench are summarized in Section[f] Concluding remarks
are presented in Section 7]

2. Experimental Setup

The test bench, used in the paper, allows to test active noise control in pipes for various physical
configurations. A detailed scheme of the test bench with the control loop is shown in Fig. 2] and
the views of the two implementations which will be considered subsequently are shown in Fig. [3]
The actual dimensions of the two implementations are given in Fig. 4]

@ Primary path

EI Secondary path
Interface

Residual noise measurement Control signal K\
Amplifier Amplifier
y(t) u(t)
PC Simulink
Development Real-Time . .
Matlab/ + PCIM- p(t) Disturbance source signal
Simulink DAS1602 16

EF= =

Figure 2: Duct active noise control test bench diagram.

In Fig. 2] the speaker used as the source of disturbances is labelled as 1, while the control speaker
is marked as 2. At pipe’s open end, the microphone that measures the system’s output (residual
noise) is denoted as 3. The control signal is denoted u(t), the residual noise is denoted y(¢). The
transfer function between the disturbance’s speaker and the microphone (1—3) is called Primary
Path, while the transfer function between the control speaker and the microphone (2—3) is denoted
Secondary Path. These marked paths have a double differentiator behaviour, since as input one
has the voice coil displacement and as output the air acoustic pressure.

Both speakers are connected to a target computer with Simulink Real-time® environment
through a pair of high definition power amplifiers and a data acquisition board. A second computer
is used for development, design and operation with Matlab®_. The sampling frequency has been



Figure 3: Duct active noise control test bench - Configuration Go (top), configuration G (bottom)

chosen in accordance with the recommendations given in [20]. Taking into account that distur-
bances up to 400 Hz need to be attenuated, a sampling frequency f; = 2500 Hz has been chosen
(Ty = 0.0004 sec), i.e., approximately six times the maximum frequency to attenuate.

In this configuration, speakers are isolated inside wood boxes filled with special foam in or-
der to create anechoic chambers and reduce the radiation effect. These boxes have dimensions
0.15m x 0.15m x 0.12m, giving a chamber volume of 2.7L.

3. System structure

The model of the real planiEl is denoted G(¢~!) and is decribed by the transfer operatorﬂ

Glg) = g ‘B'(q"") _Blg")

Alq ) Ag) M

%In active vibration and noise control, the plant is called “secondary path” or “compensation path”
3The complex variable z~! will be used for characterizing the system’s behavior in the frequency domain and the
delay operator g~ will be used for describing system’s behavior in the time domain.
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Figure 4: Duct active noise control test-bench dimensions - Go (top), G (bottom)

with:
d = plant pure time delay in number of sampling periods
A=1 _|_a1q—1 o dn, g™
B'=big '+ +byg ™ =q 'B";
B/* — b] + . +anq—nB+1 :
B=qB(q");
B* = q_dB/*(q_l) :
The model of the compensation path used for controller design (design model) is denoted G, (g~ ')
and is described by:
S = =
Aolg™")  Aolg™!)
The secondary path models of the two configurations have been identified from experimental data
using the methodology described in [6]. Fig. [5] shows the frequency characteristics of the iden-
tified models (magnitude and phase), and the phase lag of the two systems up to 250 Hz is given
in Table[I] There are important differences between the two models. These characteristics present
multiple resonances (low damped complex polesﬂ and anti-resonances (low damped complex ze-

4The lowest damping is around 0.01.



Freq- (H2) 126 | 90 | 110 | 130 | 150 | 170 | 190 | 210 | 230 | 250

System
Phase G, (°) 208 | 248 | 277 | -307 | -320 | -365 | -424 | -471 | -552 | -616
Phase G(°) 178 | <229 | -262 | -294 | -329 | -357 | -382 | -477 | -530 | -551
Phase (G, — G)(°) 30 | 19 | 15 | 13 | 9 | 8 | 42 | 6 | 22 | 65

Table 1: Phase (°) of the two systems

ros). The orders of the two models are summarized in Table 2] We will use the model of the
secondary path of configuration Go (design model) as the model for the design of a Youla-Kucera

adaptive feedback noise attenuation scheme to be applied to configuration G (current plant). The
experiments will be carried on configuration G.

Bode Diagram

Magnitude {dB})

0 200 400 600 800 1000 1200
Frequency (Hz)

Figure 5: Bode diagrams of the nominal and uncertain plants

’ Model ‘nA‘nB‘d‘
Secondary path Go | 38 | 32 | 8
Secondary path G | 27 | 20 | 7

Table 2: Orders of the identified models.




4. Controller Design

4.1. Closed-loop structure

Let {u(r)}, {y(¢)}, {d(¢)} be respectively the control input, the system output and the output
disturbance sequences. The narrow band disturbance can be modeled as

100 @)

where § is the Dirac impulse and Dy(g~") is a polynomial with all his roots on the unit circle. If
the real plant model is equal to the design model, one has

¥(t) = Go(q~ "u(t) +d(1) (5)

As shown in Fig. |1} the control structure is made of a disturbance observer providing an image
w(t) of the disturbance and a feedback structure yielding the signal u(7). The disturbance observer
output is given by:

w(t) = —Bo(g u(r)+Aolg " )y(t) = Aolg~")d(1) (6)
For the purpose of this paper the Q-filter of Fig. [T]is considered to be a polynomial of the form
Qg ") =qf +a%q '+ +a%q " (7)
In the general case, according to Fig. [T]a stabilizing R-S controller Cy is employed such that

1y Ro(g™")  Rylg HHr(g™)
CO(q )_ So(q_l) - Sg(ql)Hs(ql (8)

where Hg(g~ ') and Hg(q ") are some fixed parts imposed during the controller synthesis.
The polynomial defining the poles of the feedback system in the absence of the Q filter is given
by:

Po(q™") =Aolg)Solg™") +Ro(g™")Bolg™") ©)
The Q-filter combined with the nominal controller leads to the controller C(g~') = 1;((3:1‘)) with
R(g™")
u(t) = =<~y ¥(1) (10)
(")
where
R=R, +A()HRHSQ (11a)
S =S8, —B,HrHsQ (11b)

By simple computation, it can be shown that the poles of the closed loop remain unchanged in the
presence of a Q filter having the structure given in Eq. (7).
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According to the internal model principle of Wohnam [1, 2], in order to reject asymptotically the
disturbance d(t), the controller C must include in the polynomial S the denominator D), of the
disturbance model and owing to Eqs. (@) and (TT]) one must have

S=SD, =S, — HgHsB,0 (12)
and the optimal value of Q is obtained by solving the Bezout equation:
S'Da+ HrHsB,0 = S, (13)

for Dy(¢~') = 1+dig~ ' +---+dup,q ™. This Bezout equation has a solution if D, and
HRng*d”BO are coprime and a minimal solution is obtained for ng = np — 1.

4.1.1. The real plant differs with respect to the design model
_ B¢
o : Al :
Fig. |1|is modified: the true secondary path is now G instead of Gy, but the disturbance observer
remains the one given by Eq. (6]), and one has now

In the general case, the real plant G(g~!) differs from Gy. Consequently, the scheme of

B(g")

¥(t) = G(g u(t) +d(1) = A

u(t)+d(r) (14)

In a first step, we will analyze this configuration in order to see if assuming that the model of the
disturbance is known one can find a polynomial Q which leads to a stable closed loop system and
allows asymptotic rejection of the disturbance.

Different structures for the central controller can be considered. Since both G and G,, are asymptot-
ically stable and in order to avoid the design of controller stabilizing both G and G,, one considers
in the sequel a simplification to the controller structure by imposing Ry = 0 and Hg = 1. Therefore,
from Egs. (10) and (TTJ), the control signal becomes

R AoHRrO
= _K___AHrQ 15
) = =5 = 50— BoHrQ" (15)
To express the control u(t) as a function of w(t), one obtains from Eq. (15)):
Sou(t) = —HrQ[Aoy(t) — Bou(t)] (16)
from which it results using Eq. (6) :
Hr(g™') .
ut) = ————0 w(t (17)
()=S0l i)

This control structure corresponds to Fig. [6]
According to Eq. (I4), the closed-loop polynomial including G and the simplified version of the
controller is

P =ASo+ QHg (BAyg — BpA) (18)
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Figure 6: Linear controller structure for the case of known disturbances

which must have all its roots strictly inside the unit circle. In this case (G # Gy), the signal w(¢) is

expressed from d(¢) as:
ASpAg
w(t) =
ASo+ OHp (BA() — B()A)

Derivation of this equation is given in

The output sensitivity function from d(¢) to y(¢) is given in this case by

d(1) (19)

_AS - A(So—BoHgQ)
) = A = S OHr (BAo — ABo)

d(1) (20)

The derivation of this expression is given in In the case of an uncertain plant a
stability condition appears: The polynomial ASy + QHg (BAg — BpA) must have all its roots strictly
inside the unit circle, and on the other hand the internal model condition (I3)) must be satisfied at
the same time, in order to reject asymptotically d(¢). In case of an uncertain plant, two conditions
appear: The polynomial ASy+ QHg (BAg — BpA) must have all its roots strictly inside the unit
circle for stability and the internal model condition must be satisfied at the same time, in
order to reject asymptotically d(¢). For a given order of the Q-filter, these two conditions may not
be simultaneously met. In such a situation one can augment the order of Q(¢~!). Non-minimal
solution to Eq. (T3] can be parametrized as Q(¢~') = 0(¢~ ) +V (¢ ")Dp(g"), [19] and Eq. (T3)
becomes /

(S — VBOHRH5> Dy + HrHsBo (0 +VDy) = S, 1)

where V(g ~!) is any polynomial (there is no need for it to be monic), and Q is the minimal solu-
tion of Eq. (T3). The basic question is: does it exist a polynomial Q(¢~!) with a degree ng < oo
satisfying Eq. and guaranteeing the closed-loop stability.

Under the hypothesis that Gy and G are stable and that Sy has all its zeros strictly inside the unit
circle, the sufficient conditions for the existence of a finite dimensional Q-filter which stabilizes
the closed-loop and ensures the asymptotic rejection of the disturbance d(z) are:
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1) At the disturbance frequencies ®; corresponding to Dy (¢!®) = 0, the transfer function

Az ") Boz™!) 1

— = 22
A ) BET) 2 2
is strictly positive rea]E]
2) For all other frequencies the following inequality is verified
) A —i® S —iw
10(e7®)| < | =—— Al™) || Sote™) (23)
B(e la))AO(e la)) —A(e ta))BO(e l(x)) HR(e l(l))

Derivation of conditions (22)) and (23)) is given in From this analysis, one concludes

that we have to satisfy two conditions. The first condition depends only upon the discrepancy

of the two models and defines the frequency zones where asymptotic rejection of the disturbances
BU(Z_I ) A(Z_l)
Ao(z71) B(z71)
phase within | —90?;490°[ in the frequency zone where asymptotic disturbance attenuation can
be done.

The second condition indicates that one has to design Sp and H, such that modulus of the right

hand side of Eq. (23)) is maximized in the frequencies regions outside the attenuation zone.

can be achieved. This result can also be interpreted as the condition that — % has a

4.2. Adaptive disturbance rejection

In the presence of unknown narrow band disturbances the polynomial Dy(g~') is unknown. In
this situation one can consider a Q-filter with adjustable parameters:

Olg 1) =g8(t)++--4% (1) " (24)

and the objective is to find a parameter adaptation algorithm driving this parameters towards the
values assuring asymptotic rejection of the disturbance and the stability of the system. We will
follow up to certain extent the development procedure described in [2] but including from the
beginning the presence of model uncertainties and the use of a Q filter of higher order than the
minimal one used for the nominal case (when G = Gy). From Eq. (I9) one can express d(t) as a
function of w(t) and plugging this expression in Eq. one gets:

(1 .HgBy
0= (5~ 05wty 25)

where now the Q filter has been replaced by its estimation. Since the purpose of the control
structure is to drive y(z) towards 0, it is the reasonable to define an a-posteriori prediction error
v(t+1) attimet+ 1, such that v(r + 1) = y(r + 1) i.e.

So ~HpBg

vit+1) = <AoSo — QAoSo ) w(t+1) (26)

>This means that the poles of the transfer function are inside the unit circle and for all frequencies ; (i.e. the
domain of operation) the real part is strictly positive real or equivalently, the phase lag is within | —907;+90°[
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According to the internal model principle, the expression of Q that satisfies the internal model
principle is given by Eq. (13), and by using this expression in Eq. one obtains

V(e 1) = (0 0) X (e + 1)+ ple +1) @7)
where )
plt+1) > D 0 (28)

~ ASo+ OHr(BAg — BoA) Dy

is a vanishing term assuming that the optimal Q stabilizes also the system. See also [2].
One can define:

wit) = Aiow(z) (292)
_ Bo(g ")Hr(g™")
wy(t) = Aoa VSolg ) w(t+1) (29b)
W) =(af(®), a2, --a2 ()] (29¢)
wl (1) = [qd (1), q (1), q2 (1)] (29d)
v’ (¢) = [wa(t), walt —1),---wo(t — ng)] (29e)
The a-priori adaptation error is given by:

Vot 1) =wi(t+1) =W (0)r(r) (30)

and the a-posteriori adaptation error is given by:
Vi+1) = — D 31)

1+l (1)F(0)r(r)
The a-posteriori adaptation error can be expressed now under the form
g(t+1)=H(g ) [w—w(t+1)]"r() (32)

where H(qg~!) = 1.

In order to estimate the coefficients of O(g~!,1), it is natural to use a Parameter Adaptation Al-
gorithm (PAA). Taking into account the fact that the order of the polynomial Q is higher than the
minimal order required by the IMP, the parameter adaptation algorithm proposed in [9] has to be
completed with a projection of the estimated parameter vector on a bounded domain in order to
prove the stability of the adaptive control scheme (see [9]] p.340). Based on stability considera-
tions, a general form for the PAA has been proposed in [9]]. It can be expressed using the formalism
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of [21] as

W(it+1)=w,0)+F@)r(t)v(r+1) (33)
ve(r+1)
) = T R e (34)
1 _ F@)r()r" ()F (1)

ngl)kﬂf){FO) e ()R (0)r(r) B

1>M0)>0 ; 0<A()<2 ; F(0)>0 (36)
where

W (1) =F(t)""*w() (37a)
W, (1) =w (1) ifw(t) e (37b)
\?v;(t) 1 projofw () on 7 if w/(t) ¢ 7 (37¢)
Wy (1) = F(t)" /W, (1) (37d)

The projection domain ' is defined as follows

/

weg, Wit)=F@t) " *w(1t)e2 (38)
where the projection domain & is such that:
P ||W)|l3 < # <o (39)

The adaptive control structure is given in Fig. The stability analysis of the full system is

discussed in

In practice, in order to assure the alertness of the adaptation with respect to possible variations
of the disturbance characteristics, two particular choices for the adaptation gain are usecﬂ

e Constant trace: for a constant ratio A;(#)/A2(¢), A1(¢) is chosen such that the trace of the
adaptation gain matrix F(¢) remain constant (trace F(t) = trace Fp)

e Constant gain: Ai(t) = 1,A,(t) = 0 and therefore F(t) = Fp (usually Fp = al, o > 0)

Remark When using a constant adaptation gain, the change Of coordinates introduced in Egs.
and (38) is no more necessary (see [9], p.340-343) and Eqs. (37) and (38)) are replaced by:

W, (1) =W(t) ifw(t)e g (40)

w(t)= L projofw(t)on P ifwt)¢ o 41)

SFor other options see [9]
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Figure 7: Adaptive control structure

This drastically simplifies implementation of the algorithm. This simplification is also used for
the case of a constant trace adaptation gain.
Remark: The orthogonal projection, which gives the closest set of parameters to the estimated pa-
rameters at instant t and which are inside the domain ', can be replaced by any set of parameters
inside the domain &’ (sub optimal solution) and in particular by the initial value of the estimated
parameters (usually set at 0). This simplifies computations and has little impact on the perfor-
mance since the adaptation transients can be very fast. For more details see (see [9], p.341).

In practice a bound on the parameters of polynomial Q is fixed and when one of the parameters
hits the bound, the algorithm is restarted with all the parameters at O ( i.e. one takes W,(#) = 0 in

Eq. [37).

5. Tuning of the filter Hr/So

Firstly, it is necessary to check the frequency band for which a disturbance rejection is feasible,

or in other words the band where condition (22) is satisfied. For this purpose one plots the phase
of % — % as a function of @, which should be within | — 90?;4+90°[. In the specific
example of this paper, the corresponding graph is displayed in Fig. [§ and one concludes that an
adaptive rejection of the disturbance is feasible roughly up to 250 Hz.

Hr(q~") ' Ale™™®) ‘
So(g™") B(e™'®)Ag(e™'?)—A(e™"?)By (™)
?(top). In order to guarantee condition (23)) for the largest possible family of Q filters, the product

In order to design the filter

, it is useful to plot ‘ , see Fig.

| A(eiiw) ' ' So(efilw)
B(e™1®)Ap(e™'?)—A(e'?)Bo(e ') | | Hr(e™'®)

must be maximized, and for this purpose the magnitude

of ;(;((Z_,l)) is increased as much as possible at the frequencies where the magnitude of
()

A(q_l) . . . . . Hg -1
Blq DA 1)—A@ DBolg 1 S low. A solution consists in choosing the filter SolgT) 352 product of
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ny second order filters:

Hr(g™") % Lak(g™")
el ) Yowrey (+2

-1
where each filter % results from discretization of a continuous resonant filter at the frequency
oy for k < n; —1:
2
# + ZCNks +1
k
2
5 +20ms+1
k

1
with 0 < Sy < 1, 0 < {pr < 1 and Gy < {pi. Moreover, % has two zeros at +1 and —1
nk

and two poles at 0, in order to open the loop at 0 Hz (the system has no gain at this frequency and
it is not reasonable to send a dc signal) and at the Nyquist frequency (for reducing the gain of the
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filter in high frequencies).

(")

As aresult, the magnitude of fl?e(T shows resonances at frequencies @y. Fig. @(middle) displays

the magnitude of this filter for this application. The first resonance frequency 1s equal to 225 Hz,
~1
and the magnitude of % for frequencies between 80 Hz and 210 Hz is left sufficiently low. For

frequencies higher than 225 Hz a series of resonances guarantee that this magnitude is sufficiently

high. Fig. 9] (bottom), presents the frequency characteristics of the right part of Eq. (23)). One can
see the effect of the filter Hg/S,.
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6. Experimental Results

The objective of the experimental validation is to assess the performance of the overparametrized
YK adaptive feedback scheme on the configuration G using the model of the configuration Go for
implementing the YK observer (uncertainty case)

6.1. Performance on configuration G when using model Go

The performance will be evaluated using: 1) a single sinusoidal disturbance, 2) two sinusoidal
disturbances with very close frequencies (interference phenomenon), 3) two, three and four sinu-
soidal disturbances with distinct frequencies.

This evaluation has been done over the frequency range of operation. For all the experiments a
constant adaptation gain algorithm (F = «) is used with a value of the adaptation gain (step size)
o =30/1.73 except for the case of four sinusoidal disturbances where the constant trace algorithm
is used with an equivalent adaptation gain by parameter (step size) of 30.

6.1.1. The case of a single sinusoidal disturbance

For the case of a single sinusoid it was found that using a Q filter with nQ = 15 (16 parameters),
good performance can be obtained over a range of operation between 80 Hz and 180 Hz. Use of
nQ < 11 (12 parameters) leads to instabilities for almost all the frequencies within this range. The
attenuation in steady statelZ] for various frequencies of the disturbance are summarized in row 2
of Table 3| . Fig. shows the time response for the rejection of a single 160 Hz sinusoidal

Frequency (Hz) 70 80 120 160 180 190 210 220
Model Go, 16 par.(dB) 45.64 69.04 61.89 81.05 8841 Oscil. Oscil Oscil.
Model Go, 30 par.(dB) 67.02 74.84 74.84 7798 9092 9044 7771 76.42.
Model Go, 60 par.(dB) 69.04 75.84 7294 7886 9042 9392 8495 81.34.

Table 3: Steady state attenuation for a single sinusodal noise disturbance on configuration G

disturbance . The system operates in open loop for the first 5 s. Fig. [IT|shows the power spectral
density (PSD) of the residual noise in open loop and in closed loop for the same disturbance (the
PSD is evaluated over an horizon of 3s). Fig. [I2]shows the response of the residual noise for a
sequence of step changes in the frequency of the disturbance around 160 Hz. The system operates
in open loop for 5 s and then at t = 50s a step of -10 Hz (150 Hz) is applied. Then the system
returns to the nominal frequency at t = 100 s and at t = 150 s a step of +10 Hz (170 Hz) is applied.
The corresponding evolution of the parameters is shown in Fig.[I3] When using a Q filter with
16 parameters (nQ = 15) oscillations occur for sinusoidal disturbances with frequencies equal or
higher than 190 Hz. However augmenting the size of the Q filter to 30 parameters (nQ = 29)
one can go up to 220 Hz. The steady state attenuation for various frequencies of the disturbance
for nQ = 29 can be found in Table [3| row 3. Augmenting the size of the Q filter to nQ = 59

7 Attenuation is defined as the ratio between the variance of the residual noise in open loop and the variance of the
residual noise in closed loop
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Figure 10: Evolution of the residual noise for a 160 Hz sinusodal disturbance (16 parameters).
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(16 parameters) .

(60 parameters) allows to improve performance at the border of the operation region but does not
allow to go up to higher frequencies. The steady state attenuation for this case is summarized in
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Figure 13: Evolution of the parameters for step changes in the frequency of the disturbance around 160 Hz (16
parameters)

Table [3] row 4.

6.1.2. Adaptive attenuation of interferences

Fig. [I4]shows the capability of the control scheme to strongly attenuate interference (interfer-
ence occurs when two sinusoidal disturbances have very close frequencies). A couple of sinusoids
at 140 Hz and 140.5 Hz is applied. Then at t = 50 s one switches to 130 Hz and 130.2 Hz, at t=100
s one returns to 140 Hz and 140.5 Hz and at t = 150 s one switches to 150 Hz and 150.3 Hz. The
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system operates in open loop for the first 5s. The corresponding evolution of the parameters (16
parameters) is shown in Fig. [T5]
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Figure 14: Time response of the residual noise for step changes in the frequencies of an interference phenomenon
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Figure 15: Evolution of the parameters for step changes in the frequencies of an interference phenomenon (16 param-
eters)

6.1.3. The case of 2 sinusoidal disturbances of distinct frequencies
To asymptotically reject the effect of two simultaneous sinusoidal disturbances with distinct
frequencies and to assure simultaneously the stability of the system, the dimension of the Q filter
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Figure 17: Evolution of the parameters for step changes in the frequency of two simultaneous sinusoidal disturbances
around 80 Hz and 180 Hz

should be significantly augmented. For nQ = 59 (60 parameters) it is possible to assure a stable
operation of the system for any combination of frequencies in the range 70 Hz to 190 Hz. Fig. [I6]
gives the time response for a sequence of steps on the frequencies of two sinusoidal disturbances.
The initial frequencies of the two sinusoids are 80 Hz and 180 Hz. At t = 25 s one switches to
70 Hz and 130 Hz. At t = 50s one returns to 80 Hz and 180 Hz and at t = 75, one switches to
90 Hz and 190 Hz. The corresponding evolution of the parameters is shown in Fig. Table [6]
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summarizes steady states global attenuation results for the case of two simultaneous sinusoidal
disturbances with distinct frequencies.

Frequency (Hz) 80/180 90/190 130/170 80/110 80/150 90/120
Model Go, 60 par.(dB) 8595 90.72  67.04 7533 7221 76.02

Table 4: Steady state attenuation for two simultaneous sinusoidal disturbances with distinct frequencies.

6.1.4. The case of 3 sinusoidal disturbances of distinct frequencies

In this case, in order to assure both disturbance rejection and stability, the order of the Q filter
has been further augmented. A value of nQ=79 (80 parameters) has been chosen. Fig. [I§]displays
the time response of the residual error for the rejection of three sinusoidal disturbances located
at 70, 135 and 200 Hz. The system operates in open loop for the first 5 s. Fig. [I9] shows the
power spectral density in open loop and in closed loop. One notices the strong attenuation of the
fundamentals and of the first harmonics. Table [5] gives the steady state attenuation for various
combination of the frequencies of the three sinusoidal disturbances.
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Figure 18: Evolution of the residual noise for three sinusodal disturbances (70/135/200 Hz - 80 parameters).

6.1.5. The case of 4 sinusoidal disturbances of distinct frequencies

In this case also a Q filter with 80 parameters have been used. The same experimental protocol
as for the case of three sinusoidal disturbances has been used. It was observed that the convergence
towards the steady state attenuation is slightly slower and that the constant trace algorithm provides
better results than the constant gain algorithm. The results presented have been obtained with the
constant trace algorithm. Fig. [20] shows the time response of the residual error for the rejection
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Figure 19: Power Spectral density of the residual noise in open loop and in closed loop for three sinusoidal distur-
bances (70/135/200 Hz - 80 parameters).

Frequency (Hz) 70/95/120  70/135/200  70/145/220  80/120/160

Mod. Go, 80 par.(dB) 66.69 80.71 73.91 69.33
Frequency (Hz) 90/115/140 100/125/150 140/160/180 170/195/220
Mod. Go, 80 par.(dB) 66.19 64.81 60.58 79.73

Table 5: Steady state attenuation for three simultaneous sinusoidal disturbances with distinct frequencies.

of four sinusoidal disturbances located at 70, 135 and 200 Hz. Since the convergence is slightly
slower, a time horizon of 100s has been selected (instead of 50s for the previous disturbance
configurations). Fig. [21] shows the power spectral density in open loop and in closed loop for
this disturbance. One notices the strong attenuation of the fundamentals and of the first harmonics
below 300 Hz.

Frequency (Hz) 70/110  70/115  70/120  90/130
150/190 160/205 170/220 170/210
Mod. Go, 80 par.(dB)  66.69 80.71 73.91 69.33

Table 6: Steady state attenuation for four simultaneous sinusoidal disturbances with distinct frequencies.

6.1.6. Multiplicity of solutions

Since one uses an overparametrized Q filter with respect to the complexity of the disturbance
model, the solution for the asymptotic rejection of the disturbances is not unique and the values
of the Q filter will depend on the initial conditions and previous characteristics of the disturbance.
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Figure 21: Power Spectral density of the residual noise in open loop and in closed loop for four sinusoidal disturbances
(70/120/170/220 Hz - 80 parameters).

Not all of these solutions assure the stability of the system. Therefore once the parameters go
beyond certain limits it is necessary to keep them within certain limits as indicated by theoretical
analysis developed in this paper. For specific excitation protocols, this phenomenon is visible.
Once this limit is reached, the algorithm is re-initialized at O for all the parameters (projection to
the origin). Fig.[22]shows the evolution of the residual noise for a succession of step frequencies
changes in an interference phenomenon around 160 Hz and 160.5 Hz. A cycle of 4 steps changes
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in frequency of 120 s duration is repeated 10 times over an horizon of 1200 s. The associated
evolution of the parameters is shown in Fig. 23] One observes a drift in the parameters of the Q
filter despite the fact the performances are repetitive. As soon as one of the parameters reaches
the value 15 (which was set for illustrating the procedure), all the parameters are reinitialized at O.
This is clearly visible in Fig.[24] which is a zoom on the Fig. 22|
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Figure 22: Evolution of the residual noise for step changes in the frequencies of an interference phenomenon over an
horizon of 1200s

7. Conclusion

The paper has shown that it is possible to handle large uncertainties on the model of the sec-
ondary (compensatory) path in adaptive feedback noise attenuation schemes using overparametriza
tion of the compensation filter. However the feasible operation region depends upon a frequency
condition related to the discrepancy between the design model and the real model and in addi-
tion a linear feedback design has to be done in order to satisfy a frequency condition for stability.
Because of overparametrization, the standard parameter adaptation algorithm has to be completed
with a projection procedure.

Current research is directed towards allowing a larger discrepancy between the design model and
the real model.

Appendix A. Derivation of Eq. (19)

By combining Eqs. (3) and (@), one has w(t) = —Bou(t) +Ao [Su(t) + d(t)] = (—Bo+Ao%) u(t) +
Aod(t), and by including Eq. (I3) in the previous equation, one obtains w(t) = (—Bo + Ao %) [—I;—gQw(t)] +
Aod(t), which yields [ASy + HrRQ(AoB — ABy| w(t) = ApASd(t), hence the result. [
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Appendix B. Derivation of Eq. (20)

By combining Egs. (19) and (20) one has u(r) = _%QASHQSE?QXO—BOA)‘{(O’ thus y(r) = & —

ASedo )d (1) +d(t) which leads to the expression y(¢) = [=BHROAV+AS +HRQ(AB=ABy)] (1)

Hp
So QAS(H»QHR(BAQ*B()A ASo+HRrQ(A9B—ABy)
and one gets y(t) = 3 Soﬁ?}:&f‘ggfg Bo)d (1), and the result is obtained. [J

Appendix C. Derivation of conditions and

According to the expression of the direct sensitivity function (20), the closed-loop is stable
if and only if the polynomial ASy+ HrQ(AoB — ABy) has all its roots strictly inside the unit cir-
cle. This stability condition is equivalent to the stability condition of the closed loop shown in
Fig. [C.25). and according to the small gain theorem ([9]) condition 2) is obtained. Now at

QHg

BA, — AB,
AS,

M

Figure C.25: Equivalent closed-loop

the frequencies ®; of the disturbance, where D(e™'®) = 0, the Bezout equation (I3), becomes

—i; —i; —iw;\ _ —i; . So(e ™)
Hg(e ®)By(e ) Qe @) = So(e~'®), therefore Q = TR
comes

B(e_’:‘”f )Ao(e_’:“’f')
A(e "®i)By(e )

and condition 2) be-

<1

)= |1

for all ;. By using the results of [9] (p. 564) concerning the equivalence between the small
gain theorem and the asymptotic hyperstability (passivity) theorem, one gets from Eq (C.73), p.
564 that the equivalent expression of the transfer function which should be positive real is given

by H= (1+S)/(1 —S) which leads to the condition: % — % is a strictly positive real

transfer function for all ®; and condition /) is proved. [

Appendix D. Stability analysis of the adaptive scheme
The following theorem summarizes the stability analysis of the adaptive scheme

Theorem 1. Under the assumptions:
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e Plant G is asymptotically stable.
e Disturbance d(t) has the form (@) and is bounded

o Itexists Q(q~") € D withnp—1< ng < oo satisfying and assuring that the polynomial
(18) has all its roots strictly inside the unit circle.

then one has:
limv(r+1)=0 (D.1)

t—roo

and if in addition:

Hg(BAg — BoA)

. ) — 1 D.2
maxg_ o, (10 QHI)”ASO—f—QHR(BAo—BOA)Hl < (D.2)
one has:
w(t),u(t),y(t) are bounded (D.3)
and:
lim v° (t+1)—11my( +1)=0 (D.4)

t—o0

Remark : For G = Gy, condition is automatically satisfied. Similar situation occurs for the
case ng = np — 1 if (I8) is satisfied, since the persistence of excitation drives Q(t) = Q(¢) — Q to
Zero.

Proof: The equation of the a posteriori adaptation error has the form considered in Theorem
3.2 from [9] (pp 104-105) and since H(g~') = 1, one immediately concludes that holds. To
go further one has to show that w(z) and respectively w(t) are bounded (w() contains delayed and
filtered signals generated by w(z)).

SetI' = ASy and A = Hg(BAog — ABy). In an adaptive context using (T9), one can write:

[T+AQ(1)] w(t) = (TA,)d(t) (D.5)

or alternatively: ) )
[T+ AQ(1) £ AQ) w(t) = (TA,)d(r) (D.6)
Set N =TA,, and O(t) = O(t) — Q and can be written as:
N A

W“):HAQ (t)—O( )HAQ w(t) (D.7)

which corresponds to a feedback system with an external bounded _excitation whose output is w(t),
shown in Fig. [D.26 The input to the equivalent feedback system d = —"—d(t) has the property:

F+AQ

ld ()]l

FjLAQHldm(t) (D.8)
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where d,, (1) = supld(t)| = ||d(¢)|| and || ||1 is finite. The output of the feedback path x(z) is

_N_
I'+AQ

given by -
__AQ
x(t) = F—i—AQW(t) (D.9)
and therefore: i
Iw(t) [l < [ld(2)]|o + HQHlI@HlHW(ﬂHw (D.10)

Applying small gain arguments [22] and taking into account that the equivalent feedforward path
has unitary gain one concludes that condition assures the boundedness of w(t). From the
definition of r(¢) given in (29), one concludes also that w(z) is bounded and taking in account
one concludes that is true. Since y(¢) is bounded in finite time (and goes to zero), w(z) is
bounded and Q is bounded, one concludes that u(z) is also bounded. [J

d(t) T4, a(f)h w(t)
T +AQ _L J
2 | A

Figure D.26: Generation of w(t).
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