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ABSTRACT
We present and compare various types of discretizations which have been proposed to
approximate the total variation (mostly, of a grey-level image in two dimensions). We
discuss the properties of finite differences and finite elements based approach and compare
their merits, in particular in terms of error estimates and quality of the reconstruction.
Keywords: Image processing, numerical analysis, total variation, finite differences, finite
elements, error bounds.
MSC (2020): 49Q06 49Q20 49M29 26A45 65K10 65N30

1 INTRODUCTION

1.1 The total variation

Inmathematical and computational imaging, images are represented by (possibly
multi-channel) intensity functions and typical inverse problems aim at recovering
such functions from measurements. Such problems are usually ill-posed and
require some a priori knowledge of the class of signals one wishes to recover,
this is usually expressed by means of a “regularizer”, which measures how likely
an image could be. The total variation has been proposed as a regularizer
for imaging in the 90’ [68]. It was introduced as a substitute to more common
quadratic penalizations of the gradient, which prevent large jumps in the solution,
and therefore are unsuited for recovering intensity functions representing images:
indeed, these are discontinuous as they jump across the edges and boundaries of
the objects. This regularizer is not so widely used nowadays as its performances
are below many state-of-the art reconstruction methods (in particular, based on
deep learning or other non-local techniques), yet, being convex and relatively
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simple, it is still useful and popular for large scale inverse problems (typically,
medical imaging applications) or in low noise regimes. We refer to [25, 23] for a
quick introduction to total variation for imaging and to [32] for more numerical
details and algorithms. In fact, these notes are not only focused on imaging
applications, as one might need to minimize the total variation for other goals,
such as computing minimal surfaces, equilibrium configurations of mixtures
with surface tension, etc. Our purpose is rather to discuss, from a numerical
analysis point of view, the discretization of the total variation functional. For
simplicity, we will mostly stick to the two-dimensional case, yet most of the
results we state are not limited to this case. We will particularly focus on the
quality (in terms of error bounds, when available) and the isotropic or anisotropic
behaviour of various possible schemes. Error estimates are not so standard nor
easy to compute for problems involving the total variation, as usual proofs rely
on regularity properties of the continous solutions, while the minimizers of
the problems we will be interested in are not regular and not even, in general,
continuous. We will try to mention as exhaustively as possible what is known in
this context.

1.2 Definition, basic properties

We consider throughout this note Ω ⊂ R= a bounded open set. In most of
the practical applications, Ω will be a planar rectangle. Classically, the total
variation is defined for a function D ∈ !1 (Ω) by duality [2, 44, 46] as follows:

)+ (D;Ω) = sup
{
−

∫
Ω

Ddiv i 3G : i ∈ �∞2 (Ω;R=), ‖i(G)‖ ≤ 1 ∀G ∈ Ω
}
. (1)

If D is a smooth function (or more generally, in the class,1,1 (Ω)), one sees that
after integration by part this is nothing else as

∫
Ω
|∇D |3G; however it is also finite

if D = j� is the characteristic of a smooth set. Indeed, using Green’s formula the
integral is

∫
m�
i · a�3H=−1 where here, a� is an inner normal to m� andH=−1

the (= − 1)-dimensional surface (“Hausdorff”) measure, see for instance [2, 44]
for a definition. Then the supremum (which is reached when i ≈ a� ) yields
)+ (D;Ω) = H=−1 (m� ∩Ω) (the perimeter of � inΩ), and indeed (1) is used, for
D = j� , as a defining a generalization of the perimeter for a measurable set [46].
Such a set is then called a “set with finite perimeter” in Ω (or “Caccioppoli set”)
as soon as )+ (j� ;Ω) < +∞.

In general, it is clear (by Riesz’ theorem) that )+ (D;Ω) < +∞ if and only
if �D, the distributional derivative of D, is a bounded Radon measure; one then
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has
)+ (D;Ω) = |�D | (Ω) =

∫
Ω

|�D |

the total variation of the vectorialmeasure�D. The space of functions D ∈ !1 (Ω)
with bounded variation is denoted �+ (Ω), with the norm ‖D‖�+ := ‖D‖!1 (Ω) +
|�D | (Ω), it is a Banach space.

For D ∈ �+ (Ω), it is shown (see for instance [2, 44, 74, 45]) that the measure
�D decomposes as

�D = ∇D 3G + (D+ − D−)aDH=−1 �D + �D (2)

where: ∇D is the absolutely continuous part of �D with respect to the =-
dimensional measure 3G, �D is the “jump set” (a (= − 1)-dimensional subset),
on whichH=−1-a.e. one can define a normal vector aD (G), an upper value D+ (G)
and a lower value D− (G) (the simplest way is by blow up, defining �D as the set
of points G where the functions H ↦→ D(G + dH), d > 0, converge in !1 (�1) as
d → 0 to H ↦→ D+ (G)j{H ·aD (G)>0} +D− (G)j{H ·aD (G)<0}). The remaining part,�D,
or Cantor part, can be seen as made of infinitely many infinitesimal jumps. One
has then obviously

)+ (D;Ω) =
∫
Ω

|∇D(G) |3G +
∫
�D

|D+ (G) − D− (G) |3H=−1 (G) + |�D | (Ω). (3)

One sees from the remarks above that this functional (which thanks to (1)
is trivially convex, lower-semicontinuous, with respect to the distributional con-
vergence for D) is finite for functions which are possibly discontinuous, which is
the main reason for its success in imaging. Indeed, if D represents the intensity
values of an image (in 2D or 3D), using the total variation as a prior or regular-
izer for inverse problems will possibly promote images D with discontinuities,
as expected across the edges or boundaries of objects (we refer to [25, 24, 23]
for a mathematical study of the properties of the total variation as a regularizer).

From the numerical point of view, this raises important difficulties. How
easy is it to precisely discretize a discontinuity and faithfully estimate its total
variation? This is the main issue we will address in this small note, where we
will review a few options proposed in the literature and discuss their merits and
drawbacks.

1.3 Variational problems involving the total variation

To simplify, in order to assess the quality of a discretization we will concentrate
on two simple reconstruction problems: the so-called “Rudin-Osher-Fatemi” or
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“ROF” denoising problem and the “inpainting” problem. The first was proposed
in [68] as an approach for image denoising (from the application’s point of view,
it is however a bit too elementary to be useful beyond the case of very low noise):
assuming an observation 6 ∈ !∞ (Ω) is the sum of a “clean” image D(G) and
an oscillatory signal =(G) (in the discrete setting, a random Gaussian noise with
known variance f2), the idea is to find D as the function with minimal total
variation )+ (D;Ω) among functions with

∫
Ω
(D − 6)23G = f2. In practice, it

is shown that the problem can be written (for an appropriate, and not obvious
choice of parameter _ > 0, see for instance [29]) as follows:

min
D∈�+ (Ω)

∫
Ω

|�D | + 1
2_

∫
(D − 6)23G. (4)

Even if this problem is elementary, one good reason for focusing on it is
that its solution corresponds to evaluating the “proximity operator” of the total
variation at 6, and can be used as a basic brick in many other minimization
algorithms involving this functional. Additionally, since we will focus mostly on
the discretization of the first term in this problem, our study will apply with little
or no change to many other second terms, such as appearing in more complex
inverse problems. A typical denoising result obtained by (4) is shown in Fig. 1.

FIGURE 1 Left: original image, middle: noisy (Gaussian noise, f = 5%), right: denoised with (4)

We will make use also of the convex dual problem to (4), which is easily
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shown to be:

sup

{
1

2_

∫
Ω

62 − (6 + _div I)23G :

I ∈ !∞ (Ω;R=), |I | ≤ 1 a.e., div I ∈ !2 (Ω), I · a = 0 on mΩ

}
(5)

where here the condition I · a = 0 on the boundary is understood in a weak sense,
namely div (IjΩ) ∈ !2 (R=). The solution D to (4) and a solution I to (5) are
linked through the Euler-Lagrange equation:

−_div I + D = 6 a.e. in Ω,

|I | ≤ 1 a.e. in Ω,

I · �D = |�D |.

(6)

The last equation in (6) is in the sense of Anzelotti [3]: in case D is differentiable
it implies that I(G) = ∇D(G)/|∇D(G) | where ∇D(G) ≠ 0. See [27] for more
precise results in dimension 2 and 3.

FIGURE 2 Original image, same image with 65% missing lines, total variation-based inpainting,
elastica-based inpainting [33]

Variational “inpainting” is a bit more tricky to introduce. Formally, the
problem consists in recovering missing data in an image by minimizing some
functional, with a constraint that the image is known outside of some mask.
Using the total variation for solving this problem is a terrible idea, as one can
easily see that the best choice will consist in minimizing the length of each level
line2 inside the reconstructed region, which is not very wise: see Fig. 2 for an

2. thanks to the celebrated “co-area” formula which relates the total variation of a function and the
perimeter of its level sets:

∫
Ω
|�D | =

∫ +∞
−∞

(∫
Ω
|�j{D≥B} |

)
3B.
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example, where we compare TV-inpainting with a variant penalizing also the
curvature of the level sets, as proposed in [63, 57, 17, 33]. A simplified view
of the )+-inpainting problem consists in minimizing the total variation with a
Dirichlet boundary condition, formally:

min
D∈�+ (Ω)

∫
Ω

|�D | : D = 6 on mΩ

for 6 ∈ !1 (mΩ). In fact, it is well known that this need to be relaxed (as a
minimizing sequence (D=) with D= = 6 for all = on mΩ could converge to a limit
D with a different trace), and should rather be written (assuming here thatΩ is for
instance a Lipschitz domain — in practice we will consider rectangles or disks
—, as things would be more complicated in the presence of interior boundaries):

min
D∈�+ (Ω)

∫
Ω

|�D | +
∫
mΩ

|D(G) − 6(G) |3H=−1 (G). (7)

Here, D(G) in the second integral is the trace of D on the boundary (see for
instance [46, Chap. 2]). The energy in (7) coincides with the total variation if
the trace of D is equal to 6 on mΩ, while if not, it counts in addition, as part of
the energy and according to the penalization of the jump part in (3), the jump
from the trace D(G) to the value 6(G) on the boundary.

The dual formulation is a bit different from the definition in (1) as it is natural,
in that case, to consider dual fields which do not vanish near the boundary mΩ:
formally, one sees that

∫
Ω
−Ddiv i 3G = −

∫
mΩ
Di · aΩ3H=−1 +

∫
Ω
i · �D (where

aΩ is the outer normal to Ω) and one can show that the energy in (7) can be
defined as

)+6 (D;Ω) = sup

{
−

∫
Ω

Ddiv i 3G +
∫
mΩ

6i · aΩ3H=−1 :

i ∈ �∞ (Ω;R=), ‖i(G)‖ ≤ 1 ∀G ∈ Ω
}
. (8)

In order to assert the quality of a discretization we will particularly be interested
in (7) wheneverΩ ⊂ R2 is a square and 6 = j{G · ®=≥0} for some direction ®= ∈ S=−1

and 0 ∈ R. In this case, it is easily seen that the (unique) solution is D = 6 (that
is, a straight line is the shortest path between two points...)

The current note aims at reviewing a few of the discretization schemes which
have been proposed in the literature to numerically solve problems such as (4)
and (7). We will consider scalar (grey-level valued) 2 dimensional images. Most
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of what we will discuss can be extended without pain to vectorial (multispectral
or color) images although then, the metric which is used to measure distances in
the data space starts to be highly relevant, hence also the norm used formeasuring
the gradient tensor in (4), see for instance [47, 42]. Also, most of what we will
describe is trivially extended to three or higher dimensional problems. What we
will not address here, or minimally, on the other hand, are

• the algorithmic issues, except to discuss the relative complexity of various
discretizations from the optimization point of view (see for instance [32] for
an overview);

• graph based approaches, which in general can be very efficiently optimized
by combinatorial optimization techniques [52, 26], yet approximate, in the
continuous limit, “crystalline” total variations (such as, for instance,

∫
Ω
|m1D | +

|m2D | in 2D). From the numerical analysis point of view, theses approaches
yield much better error estimates (see in particular [11] for a study), however
the behaviour of the limiting functional can be very different from what
is expected with the isotropic total variation (1) (in particular, the set of
solutions for a crystalline version of (7) can be very large, contrarily to the
isotropic case where generic uniqueness holds). The use of such approaches
for approximating isotropic perimeters has been studied by many authors,
starting from [14, 15] and comparison with “continuous” approaches are
found for instance in [53, 56].

2 FINITE DIFFERENCES DISCRETIZATIONS OF THE TOTAL VARI-
ATION

2.1 Standard discretization

In what follows, we consider to simplify a rectangular or square domain Ω
and address the issue of discretizing problems such as (4). In most of the
inverse problems and imaging literature, the isotropic total variation (1) is simply
discretized as

)+ℎ (D) := ℎ
∑
8, 9

√
(D8+1, 9 − D8, 9 )2 + (D8, 9 − D8, 9+1)2. (9)

Here ℎ > 0 represents the size of the pixels, and D = (D8, 9 )8=1,...," ; 9=1,...# is a
matrix representing the values of a (rectangular) image. We denote

(ℎ
8− 1

2 , 9−
1
2
= [(8 − 1)ℎ, 8ℎ) × [( 9 − 1)ℎ, 9 ℎ)
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the square “pixel” of size ℎ2 centered in (8ℎ − ℎ/2, 9 ℎ − ℎ/2), for 8, 9 integers
indices. The standard convention in (9) on the boundary is to replacewith zero the
differences which involve indices which are out of range (e.g., D"+1, 9 −D", 9 = 0
for all 9 , etc), however for addressing the Dirichlet case (8) one should rather
replace the values of D out of range with the discretization of the boundary
condition 6.

Assume one views D as the discretization of an image defined in Ω =

(0, "ℎ)×(0, #ℎ): if D ∈ �1 (Ω), then clearly,3 letting D8, 9 = D((8− 1
2 )ℎ, ( 9−

1
2 )ℎ)

one has that

D8+1, 9 − D8, 9 =
∫ (8+ 1

2 )ℎ

(8− 1
2 )ℎ

m1D(B, ( 9 − 1
2 )ℎ)3B

and it is easy to see that )+ℎ (D) ≈
∫
Ω
|∇D |3G: however typical minimizers of (4)

are never�1 (at best, Lipschitz, and often discontinuous, see for instance [22, 25])
and one cannot hope such a strong result for discontinuous functions. Worse
than that: simple examples show that pointwise convergence obviously fails for
basic discontinuous functions, such as j{(8ℎ, 9ℎ) · ®=≥0} for well chosen directions
®=, see for instance [34, Fig. 1].

The convergence of )+ℎ to (1) is in fact quite weaker and needs to be
understood in a variational sense (that is, for minimization problems), and more
precisely in the sense of “Γ-convergence”:

Proposition 2.1. Let ℎ = 1/" = 1/# ,Ω = (0, 1)2, and consider, for D ∈ !1 (Ω),
the functional given by (9), if

D =

"∑
8=1

#∑
9=1
D8, 9 j(ℎ

8− 1
2 , 9−

1
2

, (10)

and +∞ else. Then, as ℎ→ 0, )+ℎ Γ-converges to:

)+ (D;Ω) =


∫
Ω

|�D | if D ∈ �+ (Ω) ∩ !1 (Ω),

+∞ if D ∈ !1 (Ω) \ �+ (Ω);
(11)

The proof of this result is easy and relies in part on a duality argument, as
developed in [36, Appendix] and [19] for variants. We refer to [38, 16] for
the definitions and main properties of Γ-convergence. It means in practice that

3. We apologize for the small inconsistency in the notation, yet denoting D
8− 1

2 , 9−
1
2
the pixel’s value

would have been a bit heavy and non standard.
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minimizers of discrete energies such as

)+ℎ (D) + ℎ
2

2_

"∑
8=1

#∑
9=1
(D8, 9 − 6ℎ8, 9 )2, (12)

where 6ℎ
8, 9

is any consistent discretization of the function 6 ∈ !∞ (Ω), such as

6ℎ8, 9 =
1
ℎ2

∫
(ℎ
8− 1

2 , 9−
1
2

6(G)3G,

will converge to the minimizer of (4) as ℎ → 0. This numerical analysis result
is a bit weak as it does not really specify how fast the discretization converges to
the continuous limit. It turns out that one cannot expect a very fast convergence,
as typical solutions to (4) have discontinuities [22]. In fact, if D ∈ �+ (Ω) and
one considers its piecewise constant projection

%ℎD =
∑
8, 9

Dℎ8, 9 j(ℎ
8− 1

2 , 9−
1
2

, Dℎ8, 9 =
1
ℎ2

∫
(ℎ
8− 1

2 , 9−
1
2

D(G)3G (13)

then it is standard that ‖D − %ℎD‖!1 ≤ �ℎ|�D | (Ω), where � depends on the
dimension. If in addition D is bounded (as the solution to (4) is, since one easily
shows that ‖D‖∞ ≤ ‖6‖∞), one has ‖D − %ℎD‖!2 ≤ �

√
‖D‖∞ |�D | (Ω)

√
ℎ. For D

with discontinuities, one cannot hope for a better result, indeed if for instance
D = j{G · ®=≥0}, a simple computation shows that ‖D − %ℎD‖!2 ≈ �

√
ℎ, unless

®= = (1, 0) or (0, 1) in which case one may have the error reduced to 0 (if the
discontinuity is precisely between two pixels), or of lower order.

Error bounds for (12) are significantly larger than this theoretical limit. The
most precise study is found in [71, 54, 55]. The main result of Wang and Lucier,
[71, Thm 4.2], shows that if Dℎ is the minimizer of (12) and D the minimizer
of (4), then (here Dℎ is identified with the piecewise constant function with value
Dℎ
8, 9

on the pixel (ℎ
8− 1

2 , 9−
1
2
):

‖Dℎ − D‖!2 ≤ ‖6‖Lip(U,!2 (Ω))ℎ
U

2(U+1) (14)

where U > 0, and

‖6‖Lip(U,!2 (Ω)) = ‖6‖!2 (Ω) + sup
C>0

C−U sup
|I | ≤C
‖6(G + I) − 6(G)‖!2 (Ω∩(Ω−I))

is a measure of smoothness of the function 6. In particular, if 6 ∈ �+ (Ω) ∩
!∞ (Ω), then 6 ∈ Lip( 1

2 , !
2 (Ω)) and the rate of convergence (14) is $ (ℎ1/6).
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FIGURE 3 “Inpainting” with discretization (9): when solving (7) for 6 (G) = j{G· ®=≥0} for different
angles of the normal vector ®=, the quality of the result strongly depends on the orientation.

The proof in [71] relies on a refined implementation of a relatively standard
method for the numerical analysis of nonsmooth problems: the solution D is
smoothed at a certain scale and then discretized; thanks to the smoothness, pre-
cise error rates can be derived for the discretization of the energy. Then, one
selects the optimal scale for the smoothing, which depends on ℎ and U, to obtain
the bound (14). The same proof extends to many similar discretizations of the
total variation, in particular, in [71], the result also applies to symmetrized vari-
ants of (9), as well as to an “upwind” variant introduced in [28], see Section 2.2
for details.

FIGURE 4 Original 6: the characteristic of a disk. Solution D of (12). Details showing the
anisotropic behaviour. The direction in which (9) approximates best the total variation of the
discontinuity is better resolved (right).

On the other hand, it is known that (9) suffers important anisotropy issues and
is not very precise. This is illustrated in Fig. 3 where a discrete approximation of
the inpainting problem (7) is solvedwith this approximation in several directions:
in some of them, the output is very blurry. This is due to the fact that a sharper
result would have a very high discrete energy (and related to the fact that the
convergence of )+ℎ to )+ is not pointwise). Also Problem (4) is affected by this
issue. In Fig. 4, 6 is simply the characteristic of a disk, and so is D with a slight
loss of contrast (cf for instance [58]). However, one sees that the boundary of
the disc is sharper in some directions than other. The anisotropy is even more
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striking if 6 is the characteristic of a square, see Fig. 5, and leads to quite bad
results.

A precise study of this issue is presented in [20]. The following experiment
is studied: one considers a domain Ω which is a periodic strip, either of the
form {|G1 − G2 | ≤ !} or {|G1 + G2 | ≤ !}. In each case, 6 is the characteristic
of a half-strip (respectively, j{G1≥G2 } and j{G1≥−G2 }). The idea is that in both
cases, by translational invariance, both problems (4) and (12) boil down to a 1D
total variation regularization problem which is easy to analyse. It is then shown
that while in the second case, the recovery is perfect (the unique solution Dℎ is
precisely %ℎD), in the first, the difference of between the discrete and continuous
energies is of order ℎ2/3, and while it is yet not proven that ‖Dℎ − D‖!2 ≈ �ℎ1/3

as ℎ → 0, an almost optimal signal which achieves this rate is built (see [20,
Sec. 3]).

FIGURE 5 Original 6: the characteristic of a square. Here the
anisotropic character of (9) is striking (right, equalized version
of the solution D of (12) shown in the middle).

While the anisotropy is-
sue is easily corrected, as
we will see in the next Sec-
tion 2.2, it is yet not clear
that this error can be im-
proved by considering sim-
ple variants of this discrete
energy. Actually, the best
reason for using the dis-
cretization (9) is that it is
simple and easy to imple-
ment. In particular, Problem (4) can be easily solved by many standard proximal
algorithms for nonsmooth convex optimization, including with acceleration,
such as the accelerated primal-dual method proposed by Zhu and Chan [73] (see
also [43]) and its variant (with convergence guarantees and rates) [30, Alg. 2],
or an accelerated proximal gradient descent on the dual and in particular the
“FISTA” algorithm [13], see also [60, 62] or the variant in [61]. A slight
smoothing of the total variation (replacing )+ℎ with a “Huber” total variation,
quadratic when the differences are nearly zero) makes the problem even more
regular and the above algorithms converging with a very efficient linear rate
(cf [60, (2.2.19) and Thm 2.2.3]), see [32] for a general description.
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2.2 Improving the standard discretization

It is not hard to reduce the anisotropic character of discretization (9) by relatively
simple techniques, usually at the expense of (slightly) increasing the complexity
of the discretization. Wemention in this section a few straightforward techniques.
All produce energies which are invariant by a 90◦ rotation, however without
clearly improving the quality of the approximation in terms of precision (all
variants in this section could be analysed by the methods in [71] and enjoy
similar approximation properties).

The first variant, introduced and studied in [71, 54], consists simply in
averaging the four possible rotations of (9), by defining )+ℎ (D) as:
ℎ

4

∑
8, 9

√
(D8+1, 9 − D8, 9 )2 + (D8, 9 − D8, 9+1)2 +

√
(D8−1, 9 − D8, 9 )2 + (D8, 9 − D8, 9+1)2

+
√
(D8+1, 9 − D8, 9 )2 + (D8, 9 − D8, 9−1)2 +

√
(D8−1, 9 − D8, 9 )2 + (D8, 9 − D8, 9−1)2.

(15)
As before, the differences involving indices out of range are set to zero. Notes
that this cannot solve the issue of the precision and smoothing of discontinuities,
since in this case, all slanted sharp discontinuities are overestimated by the
energy. This is visible in both Figures 6 and 7 (left).

The “upwind” variant in [28] is defined by

)+ℎD (D) = ℎ
∑
8, 9

(
[(D8, 9 − D8+1, 9 )+]2 + [(D8, 9 − D8−1, 9 )+]2

+ [(D8, 9 − D8, 9+1)+]2 + [(D8, 9 − D8, 9−1)+]2
)1/2

. (16)

Here, the notation G+ stands for the positive part max{G, 0}. It is experimentally
demonstrated in [28] that this greatly improves the anisotropy issues raised by (9).
The error analysis in [71] is also carried on for this variant, with the same result.
In addition, one can see that that convergence to

∫
|�D | does hold pointwise

for D the characteristic of a half-plane bounded by a horizontal, vertical or ±45◦

diagonal line, so that one could expect a better behaviour in terms of precision
(no smoothing is required to approximate such a discontinuity, and probably less
in many directions than with (9)) and the analysis in [71] might be suboptimal
for this approach, yet a more precise analysis is not available. A strange feature
of (16), though, is that in general, )+ℎD (−D) ≠ )+ℎD (D). In Figure 6 we see that
using this latter version effectively improves the inpainting result of Fig. 3 in
the directions where (9) fails, while using the previous variant (15) gives a very
smooth reconstruction in all directions.
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FIGURE 6 Inpainting with (16) (left) and (15) (right).

We mention a last discretization also enjoying this isotropy property, intro-
duced in [31, 36] and defined as follows:

)+ℎ4 (D) = ℎ
∑
8, 9 even

√
2
(
(D8+1, 9 − D8, 9 )2 + (D8+1, 9+1 − D8+1, 9 )2

+ (D8, 9+1 − D8+1, 9+1)2 + (D8, 9 − D8, 9+1)2
)1/2

+ℎ
∑
8, 9 odd

√
2
(
(D8+1, 9 − D8, 9 )2 + (D8+1, 9+1 − D8+1, 9 )2

+ (D8, 9+1 − D8+1, 9+1)2 + (D8, 9 − D8, 9+1)2
)1/2

.

(17)

As before, it does not converge pointwise for oblique discontinuity and it is
unclear that one could hope for better error estimates than obtained in [71]. The
only result proved for sure is again its Γ-convergence to the total variation (1),
see [36, Appendix]. This approach is introduced for optimization purposes,
indeed, dualizing (12) with )+ℎ4 yields independent problems on “even” and
“odd” squares (indexed by indices 8, 9 both even or both odd), which can be solved
in parallel, and an accelerated alternating descent method yields extremely fast
results on parallel hardware.

FIGURE 7 Same as Fig. 4 using (15) (left), (16) (center), (17) (right) (bottom: detail).
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Figure 7 compares these variants in the setting of Figure 4. In particular, the
last two approaches yield sharper results and are to be preferred.

2.3 The “Shannon” total variation [1]

While the (more) isotropic variants of (9) rely on heuristic arguments to make the
approximation more isotropic, a few authors have tried to address this problem
using a somewhat deeper analysis. An interesting attempt is found in [1] (see
also [59]), introduced as a “Shannon” total variation. The idea is to view
an image as a low frequency representation of a continuous signal and try to
estimate the total variation of the latter. This needs to be approximated: a
possibility is to over-sample a " × # image (D8, 9 ) as a =" × =# image, by
“zero-padding” the discrete Fourier coefficients (that is, considering the Fourier
transform D̂:,; , −"/2 ≤ : ≤ "/2, −#/2 ≤ ; ≤ #/2 as the low frequencies
of the larger signal, the other frequencies being set to 0). A striking property
of such a definition is that images with low total variation can be interpolated
via zero-padding without creating further artefacts (this is clearly the main
reason to do so, see [1] for many examples). On the other hand (and, in some
sense, as a consequence), sharp discontinuities cannot be represented by sharply
discontinuous discrete functions (whose interpolation will necessarily be altered
by an important “ringing” phenomenon).

We describe rapidly the construction in [1], using the notation in that paper.
Assuming D:,; 4 is defined for (:, ;) ∈ �" × �# where �" = {0, . . . , " − 1}, the
authors of [1] first introduced the “Shannon” interpolate of D by considering the
given data as a low-frequency image in R2: first letting

D̂(U, V) =
∑

(:,;) ∈�"×�#

D:,;4
−28 c

(
U:
"
+ V;
#

)

for (U, V) ∈ Z2, the Shannon interpolate is then given, for (G, H) ∈ Z2 (actually
it is a [0, "] × [0, #]-periodic function), by

* (G, H) = 1
"#

∑
−"2 ≤U≤

"
2

− #2 ≤V≤
#
2

Y"U Y
#
V D̂(U, V)4

28 c
(
UG
"
+ VH
#

)
. (18)

HereU, V are integers and the coefficients Y"U , Y#
V
, given by Y"U = 1 if |U | < "/2

and 1/2 else, etc, are introduced for symmetry reasons.

4. Here, the notation 8 is preserved to denote
√
−1.
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Then, one can compute the (true) gradient of * by simple derivation under
the

∑
sign in (18), and given a = ≥ 2 an oversampling factor, one lets for

(:, ;) ∈ �=" × �=#

∇=D:,; = ∇*
(
:

=
,
;

=

)
and:

()+= (D) =
1
=2

∑
(:,;) ∈�="×�=#

|∇=D(:, ;) |.

The paper [1] provide formulas for efficiently computing ∇= and its ad-
joint −div = (see [1, Prop. 8]), by means of two FFTs, and these can be used
to implement standard proximal algorithms for solving problems such as the
discretizations of (4) or (7).

In Fig. 13e we show a result of denoising obtained with this approach (for
= = 3). While the result is nice and does not seem to favor any direction, it is a bit
less sharp than with other discretizations of the total variation (cf. Figs. 13–14).
We refer to [1] for more applications (in particular to zooming, which really is,
by construction, where this approach is superior to many others). On the other
hand, this clearly is not adapted to inpainting very sharp edges, as such objects
can precisely not be “Shannon”-interpolated without a strong ringing effect, and
experiments will always produce smooth edges, in all directions.

3 FINITE ELEMENTS BASED APPROXIMATIONS

In order to introduce discretization with better approximation properties and
smaller error bounds, it is tempting to rely on the machinery of finite elements.
We now discuss this point of view and show that it can be actually fruitful,
provided one does not stick to the most straigthforward approximation spaces.

3.1 P1 discretizations

The most natural approaches rely on conforming “P1” representation: in this
case, the domain is discretized with a simplicial mesh (triangles in 2D) and
the functions are assumed to be piecewise affine, continuous, and defined by the
values at the vertices of the triangulation. The natural basis for this finite element
space is of course made of the functions which are 1 on one node and zero on all
other nodes of the mesh. To simplify, we assume the dimension is 2 (although
this does not really matter in this section). Assuming Tℎ = {)1, . . . , )# } is a
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triangulation5 of Ω (which for simplicity we assume is a polygon, typically a
square or rectangle), with triangles with maximal edge of size ≤ ℎ, we denote
P1(Tℎ) the space of such P1 functions. This approximation is “conforming” and
the the total variation at scale ℎ is simply given by the total variation itself:

)+ℎ (D) =
∫
Ω

|∇D |3G =
∑
) ∈Tℎ

|) | |∇) D | (19)

where ∇) D denotes the constant gradient of D on the triangle ) .
This representation enjoys slightly better error estimates than the finite-

differences based approximations, as shown in particular in [10] (see also [4]).
We consider as before the minimization of the energy:

)+ℎ (Dℎ) +
1
2

∫
Ω

(Dℎ − 6)23G (20)

for Dℎ ∈ P1(Tℎ), with )+ℎ given by (19). Then, we have the following result:

Proposition 3.1 ([10, Thm 7.1]). Let Dℎ be the minimizer of (20) and as before,
D the minimizer of (4), and assume Ω is star-shaped. Then one has:

‖Dℎ − D‖!2 ≤ 2ℎ1/4 |�D | (Ω).

Here the assumption thatΩ is star-shaped is used to show that an appropriate
smoothing DY of D at scale Y > 0 will satisfy |�DY | (Ω) ≤ |�D | (Ω) + 2Y. The
statement follows comparing the energy of Dℎ with the energy of the projection
of DY on P1(Tℎ), for the choice Y = ℎ1/2. It is also observed that if )+ℎ were
replaced with a “TV-diminishing” approximation of the total variation (ie., with
)+ℎ (Dℎ) ≤ )+ (D;Ω) for Dℎ the projection of D onto P1(Tℎ)), then the estimate
could be improved to ℎ1/2: such an approximation is however not known in this
context, see [11] for a diminishing interpolation for the anisotropic ℓ1-based total
variation.

Numerical methods for solving the discrete problems have been studied and
compared in particular in [8, 9, 69] and strategies for mesh refinement based on
a posteriori error estimates are found in [5, 9].

One must observe that P1 discretization suffers more or less the same draw-
backs as the finite differences based approaches mentioned before. The analysis
is very simple: consider a finite-perimeter set � ⊂ Ω ⊂ R2 (that is a measur-
able set with |�j� | (Ω) < ∞, but to simplify we even consider a smooth set).

5. That is, we assume Ω ⊂ ⋃#
8=1 )8 , the closed triangles )8 are non overlapping and share only

common edges and/or common vertices.
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Consider also triangulations Tℎ with maximal diameter ℎ > 0, and the basic
projection Dℎ of D = j� onto P1(Tℎ) consisting in letting Dℎ (G) = j� (G) for any
vertex, assuming that no vertex is on the boundary (which, up to an infinitesimal
translation, can always be assumed). Then, given a triangle ) ∈ Tℎ crossing
the boundary, one will have two vertices with value 0 and one with value 1, or
the opposite. It follows that the gradient �Dℎ ()) will be a vector orthogonal
to the edge � of ) with equal values, and magnitude 1/ℎ� the corresponding
height. In particular, |) | |�Dℎ | ()) = |) |/ℎ� will be precisely the length of the
segment parallel to � joining the middle of the two other edges, and in the end,
the total variation

∫
Ω
|�Dℎ | will be precisely the perimeter of the polygonal set

�̂ bounded by these segments, see Fig. 8.

m�

m�̂

FIGURE 8 With a P1 finite elements approximation, the perimeter
∫
|�j� | of � is approximated

with the perimeter of the polygonal set �̂ bounded by the jagged line passing through the middle of
the edges which are crossed by m� .

In general (and in the limit ℎ → 0), the polygonal line m�̂ is much longer
than m� , so that one cannot expect a pointwise convergence of )+ℎ to )+ . This
means again that, as with finite differences, a characteristic function (and in
general any discontinuity) needs to be smoothed in order to have its energy well
approximated at the discrete level. This is visible in the example in Fig. 9 which
shows the solution Dℎ of (20) with 6 the characteristic of the unit disk, computed
using FreeFem++ [48].

In the next sections we describe recent approaches for tackling this issue.
The first series is based on non-conforming finite elements representations of
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FIGURE 9 “ROF” denoising of the characteristic of a disk with P1 finite elements (right: detail).

the functions. The second is related, but can be seen as a careful discretization
of the dual problem.

3.2 Non conforming FEM discretization

3.2.1 Definition. Denoising with non-conforming FEM.

In a recent attempt to improve over the standard P1 discretization, it has been
suggested in [34] to consider rather nonconforming P1 discretizations of �+
functions, following similar attempts for various nonlinear problems [49, 72, 41,
65, 64, 21]. A survey of such elements is found in [18]. The nonconforming-P1
or Crouzeix-Raviart (CR) functions over a mesh Tℎ of a domain Ω are functions
Dℎ with are affine inside each ) ∈ Tℎ , but required to be continuous only at
the center of each facet of m) . We will denote CR(Tℎ) the (finite dimensional)
vector space of such functions.

The natural projection Dℎ of a function D ∈ ,1,1 (Ω) onto CR functions is
obtained by averaging D on each facet of the mesh, and assigning the value to the
center of the corresponding facet. It is easily shown, by Green’s formula, that it
produces a piecewise affine function (not continuous) which is such that on each
) ∈ Tℎ , denoting ∇) Dℎ the (constant) gradient of Dℎ on ) , one has

∇) Dℎ =
1
|) |

∫
)

∇D(G)3G.

In other words, projecting D onto CR functions is equivalent to considering a
“P0” (piecewise constant) approximation of ∇D.

The situation is almost the same for a �+ function D. One just needs to be



191919

a bit cautious, as in case the jump �D of D has positive measure on a facet, then
“averaging” D on this facet does not really make sense (for instance one should
average the trace of D from either one side or the other, which might differ).

The simplest way to deal with this (technical) issue is to definemore precisely
the elements ) ∈ Tℎ as possibly semi closed / semi open simplices (and not just,
as usual, open simplices or closed simplices). Precisely, to each pair of elements
),) ′ withH=−1 (m) ∩ m) ′) > 0 (= being as before the dimension of the space),
we associate (arbitrarily) to one and only one of the elements ) or ) ′, say ) , the
common (= − 1)-dimensional facet � = m) ∩ m) ′, that is we assume that � ⊂ )
and ) ′ ∩ � = ∅.

Then, the average of D on the facet � is understood as the average of the trace
of D |) ′ restricted to ) ′. In this sense, ifH=−1 (�D ∩ �) > 0, so that in particular
|�D | (�) > 0 , the value �D(�) measures (thanks to the decomposition (2)) the
possible discrepancy between the average of the trace of D |) \� and of the trace
of D |) ′ , one obtains as before the formula

∇) Dℎ =
1
|) |�D()),

using that �D()) = �D() \ �) + �D(�).
Now, the interesting point about this construction, is that it obviously follows

(from Jensen’s inequality), that givenΦ : R= → R∪{+∞} any convex potential,∑
) ∈Tℎ

|) |Φ(∇) Dℎ) =
∑
) ∈Tℎ

|) |Φ
(

1
|) |�D())

)
≤

∑
) ∈Tℎ

Φ(�D())) =
∫
Ω

Φ(�D)

and in particular, this holds for the standard total variation which corresponds to
Φ = | · |. It makes interesting to define, for such Φ, the discrete functional

�ℎΦ (Dℎ) =
∑
) ∈Tℎ

|) |Φ(∇) Dℎ), (21)

over all CR functions on the mesh Tℎ . Indeed, as we just observed, one has
�ℎ
Φ
(Dℎ) ≤

∫
Ω
Φ(�D) if Dℎ is the projection of D onto CR functions. This is

interesting because of the following result: assuming Φ in addition is coercive:
lim |? |→∞Φ(?) = +∞, one has

Proposition 3.2. As ℎ→ 0, �ℎ
Φ
Γ-converges in !1 (Ω) to

�Φ (D) =

∫
Ω
Φ(�D) if D ∈ �+ (Ω),

+∞ else.
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The proof of this result is identical to the proof of [34, Prop. 3.1]. A corollary
(or part of the proof) is the following pointwise convergence:

Corollary 3.3. Given D ∈ �+ (Ω), denote Dℎ its projection onto CR functions
over the mesh Tℎ , defined as above. Then limℎ→0 �

ℎ
Φ
(Dℎ) = �Φ (D).

This is interesting, as even if it does not guarantee any precise error estimate, it
makes more likely that the solution of a discretized problem is close, or equal
to, the solution of the corresponding continuous problem.

We apply this construction to Φ = | · | (so that �Φ = )+ (·;Ω)), defining in
this way a Crouzeix-Raviart total variation )+ℎ

�'
= �ℎ

Φ
. A remark is that for

D ∈ �+ (Ω), the CR projection Dℎ also satisfies Dℎ ∈ �+ (Ω), so one could con-
sider CR functions as “conforming” in the �+ setting. We claim however that
the approximation )+ℎ

�'
is still “non-conforming” in the sense that it does not

consider the jumps of Dℎ , carried by the facets of the mesh, as part of its deriva-
tive, as done for instance in [50, 67] where the total variation is approximated by
the full functional

∫
Ω
|�Dℎ | evaluated on the approximate CR functions. In the

latter case, one has to expect a mesh dependency phenomenon similar to what
is illustrated in Fig. 8 for the approximation of the total variation and should
therefore also expect a smoothing of the discontinuity as observed in Fig. 9.
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FIGURE 10 “ROF” denoising of the characteristic of the unit disk with Crouzeix-Raviart finite
elements (right: detail). While in Fig. 9 the computed energy estimates a perimeter of 6.37, in this
experiments perimeter ≈ 6.29.

The difference between using (20) and the same problem with the variant
)+ℎ

�'
of the discrete total variation is striking in Fig. 10. Now, the orientation

of the discontinuity is better rendered and the transition region is sharper (in
our particular example, about 2 elements, while in Fig. 9 the discontinuity is
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smoothed over about 6-7 elements). On the other hand, as a drawback, the values
of the function are not well recovered at the discontinuity. However in general,
and particularly for this example, the precision of the algorithm is improved in
this framework. One finds in particular in [34] the following result:

Proposition 3.4 ([34, Sec. 5.1.1]). Assume 6 ∈ !∞ (Ω) is such that problem (5)
admits as a solution aLipschitz-continuous dual field. Then, ifDℎ is theminimizer
of (20) with )+ℎ replaced with )+ℎ

�'
and D as before the minimizer of (4), one

has
‖D0
ℎ − D‖!2 ≤ 2ℎ1/2 |�D | (Ω).

where D0
ℎ
is the P0 average of Dℎ and for a constant 2 depending on ‖6‖∞ and

the Lipschitz constant of the dual field.

Here, the P0 average is simply the piecewise constant function obtained
by averaging Dℎ over each element, or equivalently since Dℎ is affine on each
element, by assigning to each element the value of Dℎ in the center of the
element. Unfortunately, it is unclear when one can expect (5) to have a Lipschitz
continuous solution. Even in 2D, assuming that 6 ∈ !∞ (Ω) is not sufficient, yet
it is standard that it is the case in the setting of Fig. 10. The proof of Prop. 3.4 is
based on standard convex duality, and makes use in particular of an interesting
discrete duality property enjoyed by the Crouzeix-Raviart total variation and that
we rapidly mention in the next Section 3.2.2.

Other discontinuous Galerkin (DG) type approximations have been intro-
duced recently and less recently for tackling such problems, see in particular [7]
for a very general framework, and further estimates which generalize Prop 3.4.
We also mention [50] where is studied a conforming approximation which is
a special limiting case of [7], closer to the classical work of Repin [67] (see
also [9]), and for which we should not expect an error bound as good as in
Prop. 3.4. An interesting variant also based on a DG representation is de-
scribed [70], where the functions are sampled after convolution with a mask,
and mesh adaption is used, leading to an expression which enjoys also strong
isotropic properties — and could share similarities with the approximations pre-
sented later on (see Sec. 4.2 and 4.3). However, for the latter approaches, it is
quite unclear right now how to obtain sound error estimates.

3.2.2 Duality

Let us first introduce some additional notation and definitions. In what follows,
given a mesh Tℎ and D ∈ !1 (Ω) we denote by Π0

ℎ
(D) the (!2) projection of D on
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P0 functions, that is functions which are constant on each element ) ∈ Tℎ . It is
defined as usual by

Π0
ℎ (D) =

∑
) ∈Tℎ

(
1
|) |

∫
)

D(H)3H
)
j) .

We denote P0(Tℎ) the vector space of the P0 functions over Tℎ .
We also define the space of “lowest orderRaviart-Thomas” vector field subject

to the mesh Tℎ , denoted RT0(T ℎ). The basis of this space is composed of the
affine vector fields which vanish on all but two elements ),) ′ (or one boundary
element), have flux |� | through the common facet � = m)∩m) ′ (or the boundary
facet in case of a boundary element) and zero through the other facets. If I (resp.,
I′) is the vertex of ) (resp., ) ′) opposite to �, this vector field (up to switching
the sign and/or exchanging ),) ′), is given by

q) ,) ′ (G) =


G−I
ℎ)

if G ∈ ),
− G−I′
ℎ) ′

if G ∈ ) ′,
0 else

where here, ℎ) = =|) |/|� | is the height of the element ) over the facet �, etc.
One sees that q) ,) ′ is not continuous, however its normal flux through � is one
(|� | after integration on the facet) and does not jump, so that

div q) ,) ′ =
=

ℎ)
j) −

=

ℎ) ′
j) = |� |

(
j)

|) | −
j) ′

|) ′ |

)
in the sense of distributions. Hence, a generic vector field qℎ : Ω → R= is
of the form

∑
) ,) ′ 5�q) ,) ′ +

∑
) 5�q) where the first sum is over elements

),) ′ such that � = m) ∩ m) ′ ≠ ∅, and the second over elements ) such that
� = m) ∩ mΩ ≠ ∅ (and q) is defined as above, but on ) only). Here 5� ∈ R
are the pointwise fluxes from ) to ) ′ across the common facet � (oriented in an
arbitrary but fixed direction). Such a field qℎ has a true divergence (in the weak
sense). We also define the subspace RT00 (T ℎ) of fields qℎ ∈ RT0(T ℎ) with
qℎ · a = 0 on mΩ, that is fields with only the sum over ),) ′ above, and for which
5� = 0 for � ⊂ mΩ.

Defining now, for D0
ℎ
∈ P0(Tℎ), the discrete total variation:

)+ℎ0 (D
0
ℎ) = min

{
)+ℎ�' (E) : E ∈ CR(Tℎ), Π0

ℎE = D
0
ℎ

}
,

one has the following result:
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Proposition 3.5 ([34, Thm. 1]). For any P0 function D0
ℎ
,

)+ℎ0 (D
0
ℎ) = sup

{
−

∫
Ω

D div qℎ : qℎ ∈ RT00 (T ℎ), |qℎ (2) ) | ≤ 1 ∀) ∈ Tℎ
}
.

(22)

Wemust observe a slight difference between this result and the result as stated
in [34], where D0

ℎ
is assumed to be already the projection of a CR function. This

is due to the fact, recently proved in [12, Cor. 3.2], that the operator Π0
ℎ
maps

CR(Tℎ) onto P0(Tℎ), so that it does not make any difference to assume D0
ℎ

is any P0 function. The above mentioned paper [12] studies more deeply the
connections between CR and RT spaces. This duality property has interesting
extensions studied by S. Bartels in [6] in the framework [7] of more general DG
approximations (see also [34, App. A] for an elementary generalization).

3.3 Inpainting with Crouzeix-Raviart finite elements

It turns out that the Crouzeix-Raviart total variation enjoys also a remarkable
isoptropic behaviour for inpainting problems. We consider an arbitrary (polygo-
nal) domainΩ and problem (7) with 6(G) = j{G · ®=≥C } for some direction ®= ∈ S=−1

and C ∈ R, that is, the characteristic function of a half-space. Then, one has the
following striking result:

Proposition 3.6 ([34, Prop. 3.3.]). Let 6ℎ ∈ CR(Tℎ) be the projection of 6 onto
CR functions. Then for any Dℎ ∈ CR(Tℎ) with Dℎ = 6ℎ on the middle of the
boundary facets (on mΩ), one has: �ℎ (Dℎ) ≥ �ℎ (6ℎ).

In other words, the discrete projection of the exact solution of the inpainting
problem solves the discrete inpainting problem, for any direction ®=. Unfortu-
nately, what the Proposition does not say, is that in general there could be many
other solutions and it is very unlikely to numerically find 6ℎ by solving the
discrete inpainting problem. This issue is studied in details in [34, Sec. 3.4]
and we refer to that paper for a numerical illustration. We will see later on that
Prop. 3.6 relies on general properties which can be shared by other discretization,
see Sec. 4.1.

4 DUAL DISCRETIZATIONS

We now turn to discrete total variations defined rather by a dual formulation and
appropriate constraints on dual fields, that is, by an appropriate discretization
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of (1), rather than by a primal energy. The CR approximation, which enjoys (22),
could fall into this category, however for the formulations we will now describe,
there is no obvious primal formulation such as (21) (for Φ = | · |).

4.1 Raviart-Thomas duals

The first and most natural way to define a discrete variation by a dual formula is
to let, given the mesh Tℎ and Dℎ ∈ P0(Tℎ),

)+ℎ') (Dℎ) = sup
{∫

Ω

Dℎdiv qℎ 3G : qℎ ∈ RT00 (Tℎ), |qℎ (G) | ≤ 1 ∀G ∈ Ω
}
(23)

Observe, actually, that this formula also makes sense if Dℎ is replaced with
D ∈ !1 (Ω), and depends only on Π0

ℎ
(D). In particular, it is easy to show that

(comparing with (1)) one will have, for any D ∈ !1 (Ω),

)+ℎ') (Π0
ℎ (D)) ≤ )+ (D;Ω).

It turns out that with this property, and the fact that if I(G) is a Lipschitz dual field
for problem (5), then one can easily “project” it as an admissible dual field for
the definition (23) (up to some small error), one can reproduce almost verbatim
the proof of Prop. 3.4 and get the same estimate for this variant, see [20] for
details.

In the same way, one can show also a variant of Prop. 3.6, valid for this
approximation. To make the statement precise, we assume Ω is a rectangle (or
a polygon) and we consider a mesh Tℎ over Ω, made of simplices (triangles in
2D). Then, we introduce the discrete version of (7)–(8), given 6 ∈ !1 (mΩ). We
let:

)+6,') (D;Ω) = sup

{
−

∫
Ω

Ddiv qℎ3G +
∫
mΩ

6qℎ · aΩ3H=−1 :

qℎ ∈ RT0(Tℎ), |qℎ (G) | ≤ 1 for a.e. G ∈ Ω
}
, (24)

which of course, since div qℎ ∈ P0(Tℎ), depends only on the %0 projection of D
and defines, in particular, a Dirichlet discrete total variation on P0(Tℎ).
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Integrating by parts, the expression in the sup is the same as∫
Ω

qℎ · �D +
∫
mΩ

(6(G) − D(G))qℎ · aΩ (G)3H=−1 (G)

≤
∫
Ω

|�D | +
∫
mΩ

|D(G) − 6(G) |3H=−1 (G)

which is the expression in (7), and equality is reached whenever qℎ · �D = |�D |
(in the sense ofmeasures) and qℎ ·aΩ (G) = sign(6(G)−D(G)) a.e. on the boundary
(which is of course ensured when 6(G) = D(G)). But it turns out that qℎ · aΩ
is constant on each facet m) ∩ mΩ =: � of a boundary element ) ∈ Tℎ , so that
the boundary integral

∫
�
(6 − D)qℎ · aℎ3H=−1 also vanishes if on average on � ,

D = 6.
It follows that if one considers, as in Prop. 3.6, 6(G) = j{G · ®=≥C } for some

®= ∈ S=−1 and C ∈ R, and one lets 6̄ℎ be the piecewise constant function on
mΩ given, on each boundary element, by the average of 6 on the facet, and
6ℎ = Π

0
ℎ
(6), then, on the one hand, one has for any other D ∈ �+ (Ω), considering

the constant vector field q ≡ ®= and using (8):

)+6 (D;Ω) ≥ −
∫
Ω

Ddiv q3G +
∫
mΩ

6q · aΩ3H=−1 =

∫
mΩ

6q · aΩ

=

∫
Ω

q · �6 =
∫
Ω

|�6 | = )+6 (6;Ω)

that is, 6 is minimizing the total variation for its own boundary condition (this
is of course well known!). On the other hand, since q ≡ ®= ∈ RT0(Tℎ) and has
norm less than 1, one also has for Dℎ ∈ P0(Tℎ) that:

)+6̄ℎ ,') (Dℎ;Ω) ≥
∫
mΩ

6ℎq · aΩ3H=−1 =

∫
mΩ

6q · aΩ3H=−1 = )+6 (6;Ω)

while )+6̄ℎ ,') (6ℎ;Ω) is the sup over admissible qℎ of:

−
∫
Ω

6ℎdiv qℎ3G +
∫
mΩ

6̄ℎqℎ · aΩ3H=−1

= −
∫
Ω

6div qℎ3G +
∫
mΩ

6qℎ · aΩ3H=−1 =

∫
Ω

qℎ · �6

which is clearly reached for qℎ ≡ ®= and has value )+ℎ (6,Ω). We have proved
the following:

Proposition 4.1. For any ®= ∈ S=−1, C ∈ R, for 6, 6̄ℎ , 6ℎ defined as above, then
6ℎ is a solution of

min
D∈!1 (Ω)

)+6̄ℎ ,') (D;Ω).
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Moreover, the value of this problem is the same as the value )+6 (6;Ω) of the
minimization problem minD∈�+ (Ω) )+6 (D;Ω).

Hence again, in theory, the inpainting problem should be solved perfectly,
whatever the direction of the edge, by such a discretization. In practice, it
seems this is not necessarily the case, as there could be again (as shown in [34]
for Crouzeix-Raviart discretizations) other, more diffuse solutions to the same
problem, and for strange reasons this approach is not good at recovering missing
edges. This is illustrated later on (Fig. 11), for the variant we now introduce.

Cubic meshes

On the other hand, the implementation of (23) is not straightforward and opti-
mization might be more difficult than with the previous formulations. An easier
variant (which is the one actually studied in [20] and was first introduced and
analysed, in a slightly different form, in [39, 40]) consists in replacing the simpli-
cial mesh Tℎ with a cubic (square in 2D) mesh based on the pixel representation
of the images.

We briefly introduce this framework, whichwe describe only in 2D (extension
to higher dimension is obvious). Here to simplify, Ω is a rectangle (and to
simplify further the square Ω = (0, 1)2), we let # ≥ 1 and ℎ := 1/# . As in
Section 2.1, the pixels correspond to the little squares (ℎ

8− 1
2 , 9−

1
2
= (8ℎ − ℎ, 8ℎ) ×

( 9 ℎ − ℎ, 9 ℎ) for 1 ≤ 8, 9 ≤ # , with value D8, 9 . That is, the mesh Tℎ of the
previous section is replaced with the cubic mesh {(ℎ

8− 1
2 , 9−

1
2

: 1 ≤ 8, 9 ≤ #}, and
we can associate to the matrix (D8, 9 )#8, 9=1 the “Q0” (the cubic equivalent of P0)
piecewise constant function defined by (10). We introduce a “gradient operator”
as the simple difference operator JD = (�1D, �2D) where:

(�1D)8+ 1
2 , 9
= D8+1, 9 − D8, 9 8 = 1, . . . , # − 1, 9 = 1, . . . , # ;

(�2D)8, 9+ 1
2
= D8, 9+1 − D8, 9 8 = 1, . . . , #, 9 = 1, . . . , # − 1 ;

(25)

As before, we denote Π0
ℎ
the projection of a function D ∈ !1 (Ω) onto Q0

functions, consisting in replacing in each pixel the function with its average.
We introduce also dual variables defined on the edges of the mesh, and

representing average fluxes through these edges: ?1
8+ 1

2 , 9
is an horizontal average

flux “in between” D8+1, 9 and D8, 9 while ?2
8, 9+ 1

2
is a vertical average flux between

D8, 9+1 and D8, 9 . We denote p = (?1
•, ?

2
•) this dual variable.

This variable is naturally extended into a Raviart-Thomas vector field ?(G) =
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(?1 (G), ?2 (G)) by letting, in each pixel (ℎ
8, 9
, ?1 (G) be the affine interpolation

between ?1
8− 1

2 , 9
on {8ℎ− ℎ} × [ 9 ℎ− ℎ, 9 ℎ] and ?1

8+ 1
2 , 9

on {8ℎ} × [ 9 ℎ− ℎ, 9 ℎ], and
similarly ?2 (G) the affine interpolation between ?2

8, 9− 1
2
on [8ℎ− ℎ, 8ℎ] × { 9 ℎ− ℎ}

and ?1
8, 9+ 1

2
on [8ℎ − ℎ, 8ℎ] × { 9 ℎ}. In case of Neumann Boundary Conditions,

we let by convention the boundary fluxes (?1
1
2 , 9

, etc) be zero, while in case of
Dirichlet B.C. such as for the inpainting problem these values are also important
and need be defined.

With this convention, one has for a function D ∈ �+ (Ω), letting Dℎ = Πℎ0 (D) =∑
8, 9 D

ℎ
8, 9
j(ℎ

8− 1
2 , 9−

1
2

and assuming the boundary fluxes vanish:

∫
Ω

? · �D = −
∫
Ω

Ddiv ? 3G = −
∫
Ω

Dℎdiv ? 3G

= ℎ2
∑
8, 9

Dℎ8, 9

?1
8+ 1

2 , 9
− ?1

8− 1
2 , 9
+ ?2

8, 9+ 1
2
− ?2

8, 9− 1
2

ℎ

= ℎ
∑
8, 9

?1
8+ 1

2 , 9
�1D8+ 1

2 , 9
+ ?2

8, 9+ 1
2
�2D8, 9+ 1

2
= ℎ〈 p, JD〉 (26)

The Raviart-Thomas total variation on cubic meshes is defined as in (23) by

)+ℎ') (D) = sup
{∫

Ω

D div ? 3G : ? as above, |?(G) | ≤ 1 ∀G ∈ Ω
}
, (27)

observe that this is well defined, again, for any D ∈ !1 (Ω) even if it depends
only on Π0

ℎ
(D).

This variant on cubic meshes enjoys exactly the same properties as the
previous definition based on simplicial meshes, in particular the optimal error
bound in Prop. 3.4 holds with the same proof. One also easily defines, as before,
a Dirichlet version of this Raviart-Thomas total variation, suitable for inpainting
problem: then, Prop. 4.1 is easily seen to hold also in this case. We show in
Fig. 13c (see also the detail in Fig. 14) an example of denoising with this variant,
where one sees that the reconstruction is very sharp and probably closest to the
continuum limit with respect to other discretizations which we introduce later
on (with results displayed in Fig. 13d and 13h). Unfortunately, this is not true
for the inpainting problem (cf “RT” row in Fig. 11), despite the theoretical result
Prop. 4.1. It seems here that there are many possible solution with optimal
energy and that the optimization will not necessarily pick the sharpest one.

Using (26), we see that the discrete total variation introduced in this section
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can also be defined by a fully discrete expression: we have

)+ℎ') (D) = sup
{
ℎ〈 p, JD〉 : (?1

8± 1
2 , 9
)2 + (?2

8, 9± 1
2
)2 ≤ 1 ∀8, 9

}
.

In this expression, the constraints correspond to four norm constraints on the vec-
tors (?1

8+ 1
2 , 9
, ?2
8, 9+ 1

2
), (?1

8− 1
2 , 9
, ?2
8, 9+ 1

2
), (?1

8+ 1
2 , 9
, ?2
8, 9− 1

2
), (?1

8− 1
2 , 9
, ?2
8, 9− 1

2
), which

are equivalent to requiring that the Raviart-Thomas extension ?(G) has norm less
than almost everywhere in the pixel (ℎ

8− 1
2 , 9−

1
2
(as they correspond to bounding

?(G) at the four extremal points of (ℎ
8− 1

2 , 9−
1
2
).

In order to pave the way for the following sections, let us introduce four
operators !±,±, acting on the duals and defined at each pixel (8, 9), which are
given by

(!±,± p)8, 9 =
©­«
?1
8± 1

2 , 9

?2
8, 9± 1

2

ª®¬ , 1 ≤ 8, 9 ≤ #.

Then the above definition takes the form

)+ℎ') (D) = sup
{
ℎ〈 p, JD〉 : ‖!±,± p‖2,∞ ≤ 1

}
. (28)

where ‖!±,± p‖2,∞ is the maximum (over 8, 9) of the 2-norm of the 2-vector
(?1
8± 1

2 , 9
, ?2
8, 9± 1

2
)) . We now introduce a variant of this definition, first appeared

in [51] and further analysed and implemented in [37]

4.2 Hintermüller et al / Condat’s approach

In [51, 37] a variant of (28) is proposed in the following way: using the notation
of [37], one introduces the operators

(!l p)8, 9 =
©­­«

?1
8+ 1

2 , 9

1
4

(
?2
8, 9− 1

2
+ ?2

8, 9+ 1
2
+ ?2

8+1, 9− 1
2
+ ?2

8+1, 9+ 1
2

)ª®®¬ ,

(!↔ p)8, 9 =
©­­«

1
4

(
?1
8− 1

2 , 9
+ ?1

8+ 1
2 , 9
+ ?1

8− 1
2 , 9+1

+ ?1
8+ 1

2 , 9+1

)
?2
8, 9+ 1

2

ª®®¬ ,
(!• p)8, 9 =

1
2

©­«
?1
8− 1

2 , 9
+ ?1

8+ 1
2 , 9

?2
8, 9− 1

2
+ ?2

8, 9+ 1
2

ª®¬
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In
pu
t

FD

80.366 26.937 86.226 27.024 80.967 23.615 22.899 23.299

81.726 27.021 86.223 26.989 80.357 23.733 23.190 23.609

RT

69.822 23.605 22.407 23.602 69.940 23.615 22.620 23.605

69.797 23.615 22.423 23.614 69.809 23.617 22.825 23.602

C
D

71.509 40.505 36.030 41.699 71.537 41.714 35.853 40.273

71.465 40.055 35.890 38.027 71.447 39.842 51.409 41.768

FIGURE 11 (From [35, Fig. 2]) Reconstruction quality of various discrezization schemes for the
problem of inpainting a straight discontinuity (FD is (9), RT is (28), CD is (29)). The numbers above
the images refer to the reconstruction error with respect to the ground truth, measured in PSNR.

and one lets

)+ℎ�� (D) = sup
{
ℎ〈 p, JD〉 : ‖!l,↔,• p‖2,∞ ≤ 1

}
. (29)

Enforcing the constraints in this way, it is not guaranteed any longer that
the Raviart-Thomas interpolation of the dual field is feasible and in general,
)+ℎ

��
(D) ≥ )+ℎ

')
(D). In particular, up to now, no error bound is known for

this approximation, in addition, whether it is consistent was not even clear up
to the recent work [35] (see Prop. 4.2 in Sec. 4.3). Yet, it turns out to be much
more “isotropic” than any other approximation introduced so far, in particular
for the inpainting problem. Numerous experiments are computed in [37] but
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the most striking results are the inpainting results shown in [35, Fig. 2], which
demonstrate this approximation is able to recover sharp missing edges in almost
any direction, see Fig. 11.

4.3 Learned dual discretizations

In [35], we have generalized the framework of the two previous sections, as
we now describe. The idea is to replace the operators !↔, !l, !•, by generic
convolution operators (!1, . . . , ! ) of the form, for : = 1, . . . ,  :

(!: p)8, 9 =
(
(!:,1 p)8, 9
(!:,2 p)8, 9

)
=

©­«
∑a
<,==−a b

:
<,=?

1
8+ 1

2−<, 9−=∑a
<,==−a [

:
<,=?

2
8−<, 9+ 1

2−=

ª®¬ , (30)

where (b:<,=, [:<,=) are weights with a small support of maximal size (2a + 1) ×
(2a + 1) for some integer a ≥ 0 and which satisfy in addition:∑

<,=

b;<,= =
∑
<,=

[;<,= = 1. (31)

Notice that the non-negativity of these coefficients is not required. A discrete
total variation is defined by generalizing (28)–(29) as follows:

)+ℎ! (D) = sup
{
ℎ〈 p, JD〉 : ‖!: p‖2,∞ ≤ 1, : = 1, . . . ,  

}
.

We then have the following consistency result:

Proposition 4.2 ([35, Thm. 2.4]). As ℎ → 0, the discrete total variations )+ℎ
!

Γ-converge to

)+ (D;Ω) =

|�D | (Ω) if D ∈ �+ (Ω) ,
+∞ else.

We refer to [35] for a more precise statement, in particular concerning the
boundary conditions. In addition to Proposition 4.2, a compactness result for
sequences bounded in energy is also shown.

Now, what is interesting in this framework is that all coefficients which
satisfy (31) allow to define a consistent total variation. This means that given
a specific task, such as inpainting, one can try to “learn” the best coefficients,
which solve this task best. This is a bi-level optimization program, which is hard
to solve, but is stated in relatively low dimension (as the parameters which are
learned are just the coefficients of the convolution operators !: ).
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FD RT CD

TABLE 1 Filters corresponding to respectively definitions (9), (28), and (29) of a dis-
crete total variation, with which the inpainting results of Fig. 11 have been computed.

 = 2  = 2 (sym)  = 8 (sym)

TABLE 2 Learned filters for the inpainting problem. The filters may contain negative
values but are normalized to the interval [0, 1]. In the second column, a symmetry by
transposition was enforced, while in the third a symmetry by 90◦ rotation was enforced.

As an illustration, we show in Table 2 pair of filters learned to best solve the
inpainting task of Fig. 11. In these experiments, we consider small filters: the
horizontal one (coefficients b• in (30)) has 2×3 components and the vertical one
(coefficients [•), 3 × 2. In this setting, the filters corresponding to Fig. 11 are
shown in Table 1. The result produced by the learned filters are much sharper
than with the ad hoc discretizations, see Fig. 12.

In Figures 13–14 we show the ROF denoising (Problem (4)) of the image
in Fig. 13a, with various choices of the discrete total variation. Figs. 13b–13e
show the results with the handcrafted discretizations discussed so far. In the
three last figures (13f–13h), the discrete total variation is )+ℎ

!
, with various

strategies for learning the filters. In Fig. 13f, the filters are learned by trying to
best recover orignal images from their noisy version. Observe that it produces
visually the best reconstruction, with sharp edges but a result which does not
look too artificial and almost no visible influence of the underlying pixels (the
quality of Fig 13d is almost as good, but staircasing is reduced in 13f without
altering the important details, see in particular the detail in Fig. 14). The filters
in Fig. 13g are learned by trying to best recover the exact minimizer of (4) for
6 the characteristic of disks of various radii. The edges are sharper than in the
previous, but the result is a bit less pleasing. In the last experiment, the filters
are learned for inpainting (cf. Table 2,  = 8). The result for denoising is almost
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=

2

94.660 44.851 52.628 44.384 93.402 44.494 51.018 46.186

93.081 44.511 66.054 43.255 94.856 46.236 39.184 46.159

 
=

2
(s
)

94.447 45.229 51.389 44.518 93.034 45.529 51.198 46.509

93.159 44.749 58.361 43.579 94.464 45.047 47.856 46.441

 
=

8
(s
)

92.128 49.213 49.124 49.019 93.084 49.504 51.485 48.702

93.011 49.387 51.004 46.966 91.664 49.321 52.209 47.755

FIGURE 12 Reconstruction quality for the filters in Table 2. The results are much sharper, in all
directions, than in Fig. 11, and the PSNR values much higher.

the same as in the previous figure, or with the Raviart-Thomas total variation
(Fig. 13c), with very sharp edges and crisp details, maybe too aggressive for a
natural image. See also Fig. 14 which shows an enlarged detail from Fig. 13.
In [35], manymore experiments are carried on and the process for learning filters
for denoising synthetic or true images is explained with further details, still in
the context of consistent discrete total variations. On the other hand, clearly,
proving numerical errors for these general filters remains an open question.

5 CONCLUSION AND PERSPECTIVES

In this note, we have reviewed various approaches to consistently approximate, in
an implementable way, the isotropic total variation. We have shown that different
points of view can lead to qualitatively very different results, and sometimes
provable optimal or non-optimal error estimates. In addition, the choice of
a discretization should probably depend on the particular task the functional
is used for. These ideas and approaches should be kept in mind when trying
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(a) noisy (b) forward diff. (c) RT (d) Condat

(e) “Shannon” (f) learned
(natural images)

(g) learned
(disk denoising)

(h) learned
(inpainting)

FIGURE 13 Original noisy image (Fig. 13a), and denoised variants.

to approximate similar but more complex variants of the total variation, such
as non-homogeneous versions (or total variation on a Riemannian manifold), or
non-local or singular variants (as for instance in [66], which could most probably
be drastically improved).
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