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ABSTRACT

Hierarchical image segmentation provides region-oriented scale-spaces: sets of image segmentations
at different detail levels in which the segmentations at finer levels are nested with respect to those
at coarser levels. Guimarães et al. proposed a hierarchical graph-based image segmentation (HGB)
method based on the Felzenszwalb-Huttenlocher dissimilarity. It computes, for each edge of a graph,
the minimum scale in a hierarchy at which two regions linked by this edge should be merged according
to the dissimilarity. We provide an explicit definition of the (edge-) observation attribute and Boolean
criterion which are at the basis of this method and show that they are not increasing. Then, we propose
an algorithm to compute all the scales for which the criterion holds true. Finally, we propose new
methods to regularize the observation attribute and criterion and to set up the observation scale value
of each edge of a graph, following the current trend in mathematical morphology to study criteria
which are not increasing on a hierarchy. Assessments on Pascal VOC 2010 and 2012 show that these
strategies lead to better segmentation results than the ones obtained with the original HGB method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Hierarchical image segmentation gives a multi-scale repre-
sentation for image analysis. Hierarchical image analysis was
initially explored by [1] and has gained a lot of attention, as con-
firmed by the popularity of [2]. Mathematical morphology has
been used in hierarchical image analysis with, e.g., hierarchical
watersheds [3, 4, 5, 6], binary partition trees [7, 8, 9], quasi-
flat zone hierarchies [10, 11], and tree-based shape spaces [12].
Other methods for hierarchical image analysis consider regu-
lar and irregular pyramids [13], scale-set theory [14], multi-
scale combinatorial grouping [15], series of optimization prob-
lems [16], and generic image classification based on convolu-
tional neural networks [17].

A hierarchical image segmentation is a series of image seg-
mentations at different detail levels such that the segmentation
at a given level can be produced by merging regions of the seg-
mentation at the previous level. As a result, in such hierarchical
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representation, any region that belongs to a finer detail level is
included (or nested) within a region that belongs to a coarser
level. The level of a segmentation in a hierarchy is also called
an observation scale. In [18], Guimarães et al. proposed a hi-
erarchical graph-based image segmentation (HGB) method in-
spired by the Felzenszwalb-Huttenlocher dissimilarity measure
[19]. The HGB method computes, for each edge of a graph, the
minimum observation scale in a hierarchy at which two regions
linked by this edge should merge according to the dissimilarity.

In this article, we give an explicit definition of the edge ob-
servation attribute and Boolean criterion which are at the basis
of the HGB method and which make possible to select an ob-
servation scale for each edge of the graph. We show that this
attribute and the related criterion are not increasing with respect
to scales. We furthermore notice that the HGB method han-
dles this non-increasing behavior with a simple rule, namely the
min-decision rule, known in mathematical morphology since
the work of Salembier et al. [20]. Recently, more elaborated
strategies have been proposed to deal with attributes which are
not increasing with respect to scales [12, 21]. These strategies
are very successful in applications. Following these trends, we
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propose several new strategies to handle the non-increasing be-
havior of the observation attribute and criterion behind the HGB
method. These strategies allow us to select an observation scale
for each edge of the graph. Intuitively, they amount to filtering
the set of all the scales for which the Boolean observation crite-
rion holds true, before selecting one scale, with a simple strat-
egy (such as the min-decision rule), among the scales remaining
after the filtering. Such filtering is also done with rank and con-
nected filters [22]. Using the segmentation evaluation frame-
work proposed in [6], we show that the newly observation scale
selection strategies significantly outperform the original HGB
method on Pascal VOC 2010 and 2012 datasets [23, 24] (see
an illustration in Fig. 1). Compared to a preliminary version
of this work presented in a conference [25], the present arti-
cle furthermore introduces the observation attribute behind the
HGB methods, proposes several new strategies to select edge
observation scales, and includes a deeper assessment consider-
ing notably a larger image dataset.

Section 2 briefly reminds the main idea of the HGB method.
Section 3 introduces the edge observation attribute and criterion
behind the HGB method and shows that they are not increasing
with respect to scales. Section 4 presents an algorithm to com-
pute all scales for which the observation criterion holds true
making possible to consider new observation scale selection
strategies as proposed in Section 5. Finally, Section 6 presents
the assessment of the newly proposed method.

2. Hierarchical graph-based image segmentation

This section aims at explaining the method of hierarchical
graph-based image segmentation (HGB) [18]. We first give a
series of necessary notions such as quasi-flat zone hierarchies
[10], and then describe the HGB method.

2.1. Hierarchies
Given a finite set V , a partition of V is a set P of nonempty

disjoint subsets of V whose union is V . Any element of P is
called a region of P. Given two partitions P and P′ of V , P′ is
said to be a refinement of P, denoted by P′ � P, if any region of
P′ is included in a region of P. A hierarchy on V is a sequence
H = (P0, . . . ,P`) of partitions of V , such that Pi−1 � Pi, for any
i ∈ {1, . . . , `}.

2.2. Graph and connected-component partition
A graph is a pair G = (V, E) where V is a finite set and E is

a subset of {{x, y} ⊆ V | x , y}. Each element of V is called a
vertex of G, and each element of E is called an edge of G. A
subgraph of G is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
If X is a graph, its vertex and edge sets are denoted by V(X) and
E(X), respectively.

If two vertices of a graph G are joined by an edge, we say that
they are adjacent. From the reflexive–transitive closure of this
adjacency relation on a finite set V(G), we derive the connectiv-
ity relation on V(X). It is an equivalence relation, whose equiva-
lence classes are called connected components of G. We denote
by C(G) the set of all connected components of G. Note that
C(G) is a partition of V(G), called the connected-component
partition induced by G.

2.3. Quasi-flat zone hierarchies
Given a graph G = (V, E), let w be a map from E in the set R

of real numbers. For any edge u of G, the value w(u) is called
the weight of u (for w), and the pair (G,w) is called an edge-
weighted graph. Any edge-weighted graph can be transformed
into a series of connected-component partitions, which consti-
tutes a hierarchy, called the quasi-flat zone hierarchy of (G,w)
(see a formal definition below). This transform is a bijection be-
tween the hierarchies and a subset of the edge weighted graphs
called the saliency maps [26]. Hence, any edge-weighted graph
induces a quasi-flat zone hierarchy and any hierarchyH can be
represented by an edge-weighted graph whose quasi-flat zone
hierarchy is precisely H [26]. This bijection allows us to han-
dle any hierarchy with an edge-weighted graph.

Given an edge-weighted graph (G,w), let X be a subgraph
of G and let λ be a value of R. The λ-level edge set of X for w
is defined by wλ(X) = {u ∈ E(X) | w(u) < λ}, and the λ-level
graph of X for w is defined as the subgraph wV

λ (X) of X such
that wV

λ (X) = (V(X),wλ(X)). Then, the connected-component
partition C(wV

λ (X)) induced by wV
λ (X) is called the λ-level par-

tition of X for w.
As we consider only finite graphs and hierarchies, the set of

considered levels is reduced to a finite subset of R denoted by E
in the sequel of this article. In order to browse values in this set
and to round real values to values of E, we define, for any λ ∈ R,
pE (λ) = max{µ ∈ E∪{−∞} | µ < λ}, nE (λ) = min{µ ∈ E∪{∞} |
µ > λ}, and n̂E (λ) = min{µ ∈ E ∪ {∞} | µ ≥ λ}. In our
experiments, the set E is a finite integer interval.

Let (G,w) be an edge-weighted graph and let X be a sub-
graph of G. The sequence of all λ-level partitions of X
for w, ordered by increasing value of λ, is a hierarchy, defined
by QFZ(X,w) = (C(wV

λ (X)) | λ ∈ E ∪ {∞}), and called the
quasi-flat zone hierarchy of X for w. Let H be the quasi-flat
zone hierarchy of G for w. Given a vertex x of G and a value λ
in E, the region that contains x in the λ-level partition of the
graph G is denoted byHλ

x .
Let us consider a minimum spanning tree T of (G,w). It has

been shown in [26] that QFZ(T,w) of T for w is the same as
QFZ(G,w) of G for w. This indicates that the quasi-flat zone
hierarchy for G can be handled by its minimum spanning tree.

2.4. Hierarchical graph-based segmentation method
The input of the HGB method is the edge-weighted

graph (G,w) representing an image, whose pixels correspond
to the vertices of G and whose edges link adjacent pixels. The
weight w(u) of an edge linking two pixels x and y represents the
dissimilarity between the pixels x and y. As the HGB method is
grounded in a general graph framework, it can be implemented
with any adjacency relation and dissimilarity measure. For the
experiments in Section 6, the 4-adacency relation and the L2
norm in the RGB color space are used.

Before presenting the HGB method, we describe the obser-
vation scale dissimilarity [18] used by the method and which
originates from the region merging criterion proposed in [19].

2.4.1. Observation scale dissimilarity
Let R1 and R2 be two adjacent regions. The dissimi-

larity measure between R1 and R2 consists of the so-called
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Fig. 1: (Left) original image extracted from the Pascal VOC 2010 dataset, and the saliency maps (an equivalent representation of hierarchical segmentation) resulting
from the HGB method using the original observation scale (middle) and from one of our proposed observation scale selection strategies (right). A video version of
this illustration showing the successive levels of the hierarchy is available at www.tobeinsertedByPRLwhenAvailable.com.

Method 1: HGB method
Input : A minimum spanning tree T of an

edge-weighted graph (G,w)
Output: A hierarchyH = QFZ(T, f )

1 for each u ∈ E(T ) do f (u) := max{λ ∈ E} ;
2 for each u ∈ E(T ) in non-decreasing order for w do
3 H := QFZ(T, f ) ;
4 f (u) := pE

(
λ?
H

(u)
)

;
5 end
6 H := QFZ(T, f ) ;

inter-component and within-component differences [19]. The
inter-component difference between R1 and R2 is defined by
∆inter(R1,R2) = min{w ({x, y}) |x ∈ R1, y ∈ R2, {x, y} ∈ E(T )},
while the within-component difference of a region R is defined
by ∆within(R) = max{w ({x, y}) |x, y ∈ R, {x, y} ∈ E(T )}. They
lead to the observation scale of R1 relative to R2, defined by
S R2 (R1) = (∆inter(R1,R2) − ∆within(R1)) |R1|, where |R1| is the
cardinality of R1. Then, a symmetric metric between R1 and R2,
called the observation scale dissimilarity between R1 and R2, is
defined by

D(R1,R2) = max{S R2 (R1), S R1 (R2)}. (1)

This dissimilarity is used to determine if two regions should be
merged or not at a certain observation scale in the following.

2.4.2. HGB Method
The HGB method [18] is presented in Method 1. The input

is a graph G representing an image with its associated weight
function w, where the minimum spanning tree T of G is taken.
Given (T,w), the HGB method computes a new weight func-
tion f which leads to a new hierarchy H = QFZ(T, f ). The
resulting hierarchy H is considered as the hierarchical image
segmentations of the initial image. Thus, the core of the method
is the generation of the weight function f for T .

After initializing all values of f to infinity (see Line 1), we
compute an observation scale value f (u) for each edge u ∈ E(T )
in non-decreasing order with respect to the original weight w
(see Line 2). Hence, at each iteration, the value f (u) is modi-
fied. This means that the weight map f is modified and we need
to update H (Line 3) such that we still have H = QFZ(T, f ).

An efficient algorithm for the hierarchy update can be found
in [27]. Once H is updated, the value λ?

H
(u) of a finite subset

E of R, with u = {x, y}, is obtained by

λ?
H

({x, y}) = min
{
λ ∈ E | D

(
Hλ

x ,H
λ
y

)
≤ λ

}
. (2)

We first consider the regionsHλ
x andHλ

y at a level λ. Using the
dissimilarity measure D, we check if D

(
Hλ

x ,H
λ
y

)
≤ λ. Equa-

tion (2) states that the observation scale λ?
H

({x, y}) is the mini-
mum value λ for which this assertion holds.

3. Non-increasing observation attribute and criterion

In this section, we provide a formal definition of the obser-
vation attribute and criterion involved in Equation (2). Then,
we discuss their non-increasing behavior opening the doors to-
wards new strategies to select observation scale values based
on Felzenszwalb-Huttenlocher dissimilarity measure as used in
Method 1.

In the remaining part of this section, we consider that H is
any hierarchy and that u = {x, y} is any edge of T .

The edge observation attribute (of u = {x, y} in H) is the
mapA from E into R defined by:

A(λ) = λ − D(Hλ
x ,H

λ
y ), (3)

for any λ in E. The edge observation criterion (of u in H)
is the map C from E in the set {true, f alse} such that C(λ) =

true if A(λ) is greater than or equal to 0; otherwise C(λ) =

f alse. Let λ be any element in E, we say that λ is a positive
observation scale (of u inH) whenever C(λ) holds true. On the
contrary, if λ is not a positive observation scale, then we say
that λ is a negative observation scale (of u inH).

Observe that the value λ?
H

(x, y) defined in Equation (2) is
simply the lowest element of E such that C(λ) is true. In other
words, λ?

H
(x, y) is the lowest positive observation scale of u

in H . Additionally, we denote by λ
?

H (x, y), the largest nega-
tive observation scale of u inH .

Intuitively, a positive observation scale corresponds to a level
of the hierarchyH for which the two regions linked by u should
be merged according to the observation criterion C. On the
other hand, a negative observation scale corresponds to a level
of the hierarchy for which the two associated regions should re-
main disjoint. Furthermore, for a positive observation scale λ,

www.tobeinsertedByPRLwhenAvailable.com
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the observation attribute A(λ) can be intuitively interpreted as
a measure of the strength at which the two associated regions
should be merged whereas, for a negative observation scale, the
observation attribute can be seen as the opposite of the strength
at which the two regions should remain disjoint: when the ob-
servation attribute is highly positive, the two regions should be
merged with a high confidence whereas when the observation
attribute is negative and low, the two regions should remain dis-
joint with a high confidence.

A desirable property would be that the observation crite-
rion C be increasing with respect to scales, a Boolean crite-
rion C being increasing whenever, for any scale value λ ∈ E,
C(λ) holds true implies that C(λ′) holds true for any scale λ′

greater than λ. Indeed, in such desirable case, any level in E
greater than λ?

H
(x, y) would be a positive observation scale,

whereas any level not greater than λ?
H

(x, y) would be a negative

scale. In other words, we would have λ?
H

(x, y) = nE
(
λ
?

H (x, y)
)
.

Hence, it would be easily argued that the observation scale of
the edge u must be set to λ?

H
(x, y). However, in general, the

observation attribute A and thus the observation criterion C
are not increasing (see a counterexample in Fig. 2) and we
have λ?

H
(x, y) < nE

(
λ
?

H (x, y)
)
. Therefore, it is interesting to in-

vestigate strategies which can be adopted to select a significant
observation scale between λ?

H
(x, y) and λ

?

H (x, y). A graphical
illustration of different situations which may occur for a given
edge u and hierarchyH is presented in Fig. 2. In other words, it
is interesting to investigate strategies to transform the observa-
tion attribute A and criterion C into an increasing attribute A′

and an increasing criterion C′.
In the framework of mathematical morphology, non-

increasing regional attributes/criteria are known to be useful but
difficult to handle. Several rules or strategies to handle non-
increasing criteria have been considered in the context of con-
nected filters. Among them, one may cite the min- and max-
rules [20], the Vitterbi [20] and shape-space filtering strategies
[12], and the maxTree pruning strategies based on graph signal
processing [21]. Note that the strategy adopted in Equation (2)
corresponds to the min-rule and that the strategy consisting
of selecting λ

?

H (x, y) corresponds to the max-rule. Our main
goal in this article is to investigate other strategies to efficiently

(G,w)

(G, f ) H = QFZ(G, f )

Fig. 2: Counterexample for the increasing property of the observation at-
tribute A and criterion C: for the edge u = {x, y} with x = f , y = g, we
have D(H1

x ,H
1
y ) = 17, D(H23

x ,H23
y ) = 17, and D(H25

x ,H25
y ) = 28. Hence, we

haveA(1) = 1 − 17 = −16,A(23) = 23 − 17 = 6, andA(25) = 25 − 28 = −3,
so that C(1) = f alse, C(23) = true, and C(25) = f alse, which shows that A
and C are not increasing.

f (λ) = λ

g(λ) = D(H λ
x ,H λ

y )

observation scales

di
ss

im
ila

ri
ty

va
lu

es

λ3λ2λ1

f (λ) = λ

observation scales

di
ss

im
ila

ri
ty

va
lu

es

g(λ) = D(H λ
x ,H λ

y )

λ4 λ5 λ6

λ

A
(λ
)

λ

A
(λ
)

Fig. 3: Illustration of the observation attribute and criterion and of possible
observation scale selection strategies. The positive observation intervals (the
intervals in which the observation criterion holds true) are represented in gray.
On the top, the dissimilarity measure D(Hλ

x ,H
λ
y ) is depicted in green as a func-

tion of λ, whereas, on the bottom, the observation attribute A(λ) is depicted
in green as a functions of λ. On the left, the min-, the lower-length and the
lower p-rank selection strategies select the scales λ1, λ2 and λ3, respectively
(for a length threshold which is a little larger than the leftmost gray interval and
for p = 0.3), whereas, on the right, the max-, the upper-length and the upper p-
rank selection strategies select the scales λ6, λ4 and λ5, respectively. Note that,
for the sake of readability, the values of the functions are depicted for all scales
taken in R, whereas the definitions are given only for a finite subset E of R.

handle the non-increasing observation criterion C in the con-
text of hierarchical segmentation based on the Felzenszwalb-
Huttenlocher region dissimilarity measure. These strategies are
based on the analysis of all positive and negative observation
scales and their associated attribute values. Therefore, before
presenting these strategies, it is necessary to provide a method
to obtain all positive and negative observation scales.

4. Observation intervals: definition and algorithm

As established in the previous section, the observation at-
tribute and observation criterion (obtained by thresholding the
observation attribute at value 0) at the basis of the HGB method
are not increasing. Hence, in order to find the sets of all scales
for which the criterion holds true (i.e., the scales for which the
regions linked by an edge u should be merged), it is not enough
to find the minimum of the positive observation scales. In [27],
an algorithm to find the minimum observation scales such that
the observation criterion holds true is given. Instead, in this sec-
tion, an algorithm to find all scales at which the observation cri-
terion holds true is provided. The proposed algorithm searches
for the bounds of all (maximal) scale intervals for which the
criterion holds true. Before presenting the algorithm that com-
putes the bounds of all these intervals, we start with the defini-
tion of such intervals, called positive observation intervals.

Let λ1 and λ2 be any two real numbers in E ∪ {−∞} such
that λ1 < λ2. We denote by Kλ1, λ2KE the subset of E that con-
tains every element of E that is both greater than λ1 and not
greater than λ2: Kλ1, λ2KE = {λ ∈ E | λ1 < λ ≤ λ2}. We say
that a subset I of E is an open-closed interval of E, or simply an
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interval, if there exist two real values λ1 and λ2 in E such that I
is equal to Kλ1, λ2KE.

Definition 1 (observation interval). Let H be any hierarchy,
let u be any edge in E(T ), and let I be an interval. We say that I
is a positive observation interval (resp. a negative observation
interval) for (H , u) if the two following statements hold true:

1. any element in I is a positive (resp. negative) observation
scale for (H , u); and

2. I is maximal among all intervals for which statement (1)
holds true, i.e., any interval which is a proper superset of
I contains a negative (resp. positive) observation scale
for (H , u).

The set of all positive (resp. negative) observation intervals is
denoted by ΛH (u) (resp. by ΛH (u)) .

In order to compute ΛH ({x, y}), we follow the strategy pre-
sented in [27], which relies on the component tree of the hierar-
chyH . The component tree ofH is the pair TH = (N , parent)
such that N is the set of all regions of H and such that a re-
gion R1 in N is a parent of a region R2 in N whenever R1 is a
minimal (for inclusion relation) proper superset of R2. Note that
every region in N has exactly one parent, except the region V
which has no parent and is called the root of the component
tree of H . Any region which is not the parent of another one
is called a leaf of the tree. It can be observed that any single-
ton of V is a leaf of TH and that conversely any leaf of TH is
a singleton of V . The level of a region R in H is the highest
index of a partition that contains R in H . Then, the proposed
algorithm, whose precise description is given in Algorithm 1,
browses in increasing order the levels of the regions contain-
ing x and y until finding a value λ such that D(Hλ

x ,H
λ
y ) ≤ λ,

or, in other words, such that A(λ) > 0 and hence, C = true.
This value is then λ?

H
(x, y) defined by Equation (2). This value

is also the lower bound of the first positive observation interval.
If we keep browsing the levels of the regions containing x and y
in this tree, as long as D(Hλ

x ,H
λ
y ) ≤ λ, we can identify the

upper bound of this first positive observation interval. We can
further continue to browse the levels of the regions containing x
and y in the tree in order to identify all positive observation in-
tervals. Therefore, at the end of the execution, we can return
the set ΛH ({x, y}) of all positive observation intervals. From the
set ΛH ({x, y}), we can obtain by duality the set ΛH ({x, y}) of all
negative observation intervals.

The time complexity of Algorithm 1 depends linearly on the
number of regions in the branches of the component tree of H
containing x and y since it consists of browsing all these re-
gions from the leaves to the root. In the worst case, at every
level of the hierarchy the region containing x is merged with a
singleton region. Hence, as there are |V | vertices in G, in this
case, the branch of x contains |V | regions. Thus, the worst-
case time complexity of Algorithm 1 is O(|V |). However, in
many practical cases, the component tree ofH tends to be bal-
anced and each region of H results from the merging of two
regions of (approximately) the same size. Then, if the tree is
balanced, the branch of x contains O(log2(|V |)) nodes and the
time-complexity of Algorithm 1 reduces to O(log2(|V |)).

Algorithm 1: Positive observation intervals
Input : The component tree T = (N , parent) of a

hierarchyH , an edge u = {x, y} of T , an array
level that stores the level of every region ofH

Output: A set L containing all elements of ΛH ({x, y})

1 Cx := {x}; Cy := {y}; ΛH ({x, y}) = {};
2 λ := min(level[Cx], level[Cy]); λprev := −∞;
3 do
4 while D

(
Cx,Cy

)
> λ do

5 λprev := λ ;
6 λ := min(level[parent[Cx]], level[parent[Cy]]);
7 if level[parent[Cx]] = λ then Cx := parent[Cx];
8 if level[parent[Cy]] = λ then Cy := parent[Cy];
9 end

10 λlower := max(nE
(
λprev

)
, n̂E

(
D(Hλ

x ,H
λ
y )

)
);

11 while D
(
Cx,Cy

)
≤ λ and (parent[Cx] , root and

parent[Cy] , root do
12 λprev := λ;
13 λ := min(level[parent[Cx]], level[parent[Cy]]);
14 if level[parent[Cx]] = λ then Cx := parent[Cx];
15 if level[parent[Cy]] = λ then Cy := parent[Cy];
16 end
17 λupper := max(nE

(
λprev

)
, n̂E

(
λprev)

)
;

18 L.add(Kλlower, λupperK);
19 while parent[Cx] , root and parent[Cy] , root;

5. Selecting observation scales

In this section, we investigate selection strategies to choose
an observation scale from the sets of positive (resp. negative)
observation intervals, i.e., the set of scales at which the obser-
vation criterion holds true (resp. false). In Section 5.1, we
present the min-, max-, and rank-rules to select observation
scales from either the set of positive or negative observation
scales. Note that the min- and max-rules correspond to sim-
ple strategies known in mathematical morphology to prune the
branch of a tree (aka a hierarchy) based on non-increasing re-
gional attributes and criteria whereas the rank rules extend them
to take a more robust decision. Then, in Section 5.2, we propose
to improve the results obtained with these rules by pre-filtering
out positive or negative observation intervals which might be
considered as irrelevant with respect to a given attribute, before
applying the min-, max- or rank-rules. Whereas, the selection
rules can be seen as a way to transform a non-increasing crite-
rion into an increasing one, the filtering strategies can be seen as
regularization strategy for the non-increasing attribute on which
the (observation) criterion is based. Overall, the proposed strat-
egy allows us to transform a non-increasing attribute-based cri-
terion into an increasing one based on a regularized version of
the observation attribute.

5.1. Min-, max- and rank-selection rules

In this section, the symbol K stands for a finite set of obser-
vation scales (either negative or positive) and we define several
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useful rules to pick one observation scale in such set. Let K be
any subset of E. We propose the two following selection rules
from K to set the value of f (u) in Method 1:

min-rule: f (u) := min{k ∈ K}; and
max-rule: f (u) := max{k ∈ K}.

Let us now provide a precise definition of the rank rules. The
intuitive idea of these rules is to remove from the set K the
scales higher or lower than a given quantile, which are then con-
sidered as non-significant, before applying the min- and max-
rules.

Let n be the number of elements in the set K of possible
observation scales, i.e., n = |K|. Let k be any positive inte-
ger less than n. We denote by rankk/n(K) the element e of K
such that there are exactly k distinct elements in K which are
less than e. Let p be any real value between 0 and 1, we
set rankp(K) = rankbp.nc/n(K), where bp.nc is the largest inte-
ger which is not greater than the real value p.n.

Let p be any real value between 0 and 1. We consider the
two following additional selection rules from K to set the value
of f (u) in Method 1:

lower p-rank-rule: f (u) := rankp(K); and
upper p-rank-rule: f (u) := rank1−p(K).

Using the above rules, we now define several strategies which
are tested in Section 6 to set the value f (u) in Method 1.

When K is equal to the set of all positive observation scales
(resp. the set of all positive observation scales not greater than
λ
?

H (x, y)) for given edge u and hierarchyH , the result obtained
with the min-rule (resp. lower p-rank rule) is called the min
strategy (resp. lower p-rank strategy). With the min-strategy,
the value f (u) in Method 1 is set to the minimum scale λ for
which the observation criterion holds true. Therefore, the re-
sults obtained with this strategy correspond exactly to the re-
sults obtained with the method presented in [18, 27], as de-
scribed by Equation (2). The lower p-rank strategy is a new pro-
posal to take more robust decisions, this assertion being prac-
tically evaluated in Section 6. Intuitively, it can be seen that
the lower p-rank strategy considers the lower p percentile of
the observation scales between λ?

H
(x, y) and λ

?

H (x, y). Hence, it
can be easily seen that, when p is equal to 0, the lower p-rank
strategy is exactly the min-strategy.

In this article, we also consider the max-strategy (resp. upper
p-rank strategy), that is the result obtained with the max-rule
(resp. upper p-rank rule) when K is the set of the negative ob-
servation scales (resp. the set of the negative observation scales
not less than λ?

H
(x, y)). It can be observed that when the obser-

vation criterion is increasing, the min-, max-, lower-p-rank, and
upper-p rank strategies all take the same decision. However, as
illustrated in Fig. 3, when the observation criterion is not in-
creasing, these rules provide different alternatives to set up the
observation scale f (u) in Method 1.

5.2. Filtering the observation scales with connected operators

In the previous section, we proposed several strategies to se-
lect an observation scale from the positive and negative obser-

vation scales. In particular, in order to provide a more robust al-
ternative to the classical min- and max-rules, the p-rank rule is
presented. In this section, following the same goal of robustify-
ing the observation scale selection process, we propose to filter
the set of positive and negative observation scales with a fam-
ily of filters, called connected operators, coming from the field
of mathematical morphology. The basic idea of the connected
operators is to act at the level of the connected components of
a set. Basically, each connected component of the input set is
either completely preserved or completely discarded but cannot
be partially included in the result of the operator. The choice
of the connected components which are kept is based on an at-
tribute designed to measure the importance of the connected
components. Such filters are very powerful and able to solve
many practical issues in image analysis and signal processing
as reviewed in [22]. In this section, we propose to filter the set
of positive and negative observation scales with connected op-
erators before selecting an observation scale with the strategies
presented in the previous section. We start this section by defin-
ing the notion of a component of a set of scales, and then give
a formal definition of a connected operator in this framework.
We also describe several measures to assess the importance of
a component of scales at the end.

Let K be any subset of E. Any interval I = Kλ1, λ2K that is
included in K and maximal for this property is called a compo-
nent of K. The set of all components of K is denoted by CC(K).
For instance, if K is the set of all positive (resp. negative) ob-
servation scales for a given pair (H , u), then CC(K) is precisely
the set ΛH (u) of all positive observation intervals (resp. the
set ΛH (u) of negative observation intervals). Any map from the
set of all intervals of E into the set of real numbers is called an
(interval) attribute. Let µ be any interval attribute, let t be any
real number, and let K be a subset of E. We set

γ
µ
t (K) = ∪{I ∈ CC(K) | µ(I) > t}.

When the attribute µ is increasing with respect to its parame-
ter (which can be any interval), the operator γµt is called the
µ-connected opening of parameter t and is indeed an algebraic
opening (i.e,, an increasing, anti-extensive and idempotent op-
erator). Hence, using an interval measure or attribute µ, we are
able to analyze and decide if a certain observation interval is
relevant or not. If an observation interval is not relevant, then,
it is simply discarded. Afterward, an observation scale is se-
lected among the remaining scales using one of the strategies
presented in the previous section. To decide if an observation
interval I is relevant, we consider the following attributes:

length: µ1(I) = |I| ; (4)
depth: µ2(I) = max {A(λ) | λ ∈ I} ; (5)

Ndepth: µ3(I) = max {−A(λ) | λ ∈ I} ; (6)

area: µ4(I) =
∑
{A(λ) | λ ∈ I} ; and (7)

Narea: µ5(I) =
∑
{−A(λ) | λ ∈ I} . (8)

We remind from Equation (3) that A(λ) = λ − D(Hλ
x ,H

λ
y ).

An illustration of these attributes is provided in Fig. 4. The at-
tributes of every positive and negative observation interval can
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Fig. 4: Illustration of the attributes used to filter the observation intervals. The
observation attribute A is depicted in green as a function of the scales. The
length µ1(I1) of the interval I1 is represented in red, the depth µ2(I2) of I2 is
represented in pink and the area µ3(I3) of I3 is shown in blue. Note that, for the
sake of readability, the values of the observation attributeA are depicted for all
scales taken in R, whereas the definition is given only for a finite subset E of R.

be computed on the fly during the execution of Algorithm 1. In
our experiments, the positive observation scales are filtered ac-
cording to the length (Equation (4)), depth (Equation (5)) and
area (Equation (7)) measures, whereas the negative observa-
tion scales are filtered according to the length (Equation (4)),
Ndepth (Equation (6)) and Narea (Equation (8)) measures. Be-
sides the min-, lower-p-rank, max- and upper-p-rank strate-
gies, which are presented in Section 5.1, we also assess in the
next section the results of the min-rule on the result of the µ-
connected openings applied to the positive observation scales
when the measure µ is either the length, the depth or the area
(i.e., either µ1, µ2, or µ4). These three strategies are called the
lower-length, lower-depth and lower-area selection strategies,
respectively. Similarly, we also consider the results of the max-
rule on the result the µ-connected openings applied to the nega-
tive observation scales, when the measure µ is either the length,
the Ndepth or the Narea (i.e., either µ1, µ3, or µ5). These three
last strategies are referred to as the upper-length, upper-Ndepth
and upper-Narea selection strategies, respectively. Overall, in
the next section, we assess 10 different strategies to set up the
observation scale f (u) at Line 4 of Method 1.

6. Experiments

This section aims to compare the results of the original HGB
method against the results of the new strategies described in
this article. Assessing a hierarchical segmentation, per-se, is a
difficult task, a hierarchical segmentation being generally not
an end-goal but an intermediary representation from which the
information that is of practical interest for a given task is ex-
tracted. In order to tackle this problem, we use the framework
described in [6]. It considers images and ground-truth from
Pascal VOC 2010 dataset [23] (2498 images) and Pascal VOC
2012 dataset [24] (3427 objects segmented from the 1449 im-
ages). One of the key propositions of [6] is to assess a hierarchy
from different view-points corresponding to different use cases
of hierarchies. In particular, two aspects are assessed:

• the quality of the “best” cuts or partitions in K regions
appearing at the same scale (FHC measure) or at different
scales (FOC measure) of the hierarchy. A cut is assessed
with respect to a human-provided ground truth and to a
segmentation quality measure (Bidirectional Consistency
Error). The measure is averaged for every K between 2
and twice the number of regions in the ground truth.

• the ease of finding a set of regions in the hierarchy cor-
responding to a semantic object when different levels of
information are given on the position of the object: an
object is considered easy to find when it can be well re-
trieved with few human-like-provided markers. Here, the
retrieved object is a union of regions which, in general,
does correspond to any cut of the hierarchy.

The assessment of the first aspect on Pascal VOC 2010
dataset is summarized with a score called FOC+FHC, whereas
the evaluation of the second aspect on Pascal VOC 2012 dataset
is summarized with the ODM score. More details on the com-
putation of these scores are given in [6]. Furthermore, as rec-
ommended in [6], to get assessable results, we perform an area-
simplification post-processing [28] of the hierarchies that re-
moves regions smaller than 0.04% of the image size. On a
typical hierarchy produced during our experiment, this post-
processing allows the number of non-singleton regions to be
reduced from 180000 to about 800. For the strategies which
depend on a parameter, a search was performed to find the op-
timal parameter. The tested parameters were:

• 3, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 800, 900, 1000,
and 1050, for the lower-area and upper-narea strategies;

• 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, and 70, for the
lower-depth and upper-Ndepth strategies;

• 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, and 80,
for the lower-length and upper-length strategies; and

• all values from 0.01 to 0.4 with an increment step of 0.01
for the lower p−rank and upper p−rank strategies.

The scores obtained with the 10 strategies described in Sec-
tion 5 are presented in Tables 1 and 2. The associated source
code and the saliency maps of our results on numerous images
are given at https://cayllahe.github.io/hgbcode.

A visual inspection of the resulting saliency maps shows that
there is significant variation between the considered strategies.
From the numerical results, we can observe that filtering the
observation intervals leads to a significant improvement against
the raw min- and max-strategies, hence over the original HGB
method. More specifically, we observe that:

1. for the best cuts assessment:

• among the strategies based on min-rule, lower p-rank
obtains the highest score (0.9138);

• among the strategies based on max-rule, upper p-
rank obtains the highest score (0.9357);

• max-rule based strategies systematically perform
better than their min-rule counterpart;

2. for the supervised object retrieval assessment:

• among the strategies based on min-rule, lower-area
and lower-depth obtain the highest score (0.877);

• among the strategies based on max-rule, upper-
Ndepth obtains the highest score (0.870);

• min-rule based strategies systematically perform bet-
ter than their max-rule counterpart.

https://cayllahe.github.io/hgbcode
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Table 1: Best cuts assessment results (Pascal VOC 2010 dataset).
Strategy Param. FOC FHC FOC+FHC

Min - 0.4917 0.4010 0.8927
Lower-length 3 0.4904 0.3993 0.8897

Lower-area 5 0.4901 0.3988 0.8889
Lower-depth 3 0.4897 0.3986 0.8883

Lower p-rank 0.17 0.5020 0.4117 0.9138
Max - 0.5184 0.4092 0.9277

Upper-length 35 0.5189 0.4099 0.9288
Upper-Narea 15 0.5194 0.4096 0.9290

Upper-Ndepth 20 0.5189 0.4100 0.9289
Upper p-rank 0.36 0.5193 0.4164 0.9357

Table 2: Supervised object retrieval assessment (Pascal VOC 2012 dataset).
Strategy (min-rule) ODM Strategy ( max-rule) ODM

Min 0.868 Max-rule 0.865
Lower-length 0.871 Upper-length 0.866
Lower-area 0.877 Upper-Narea 0.867

Lower-depth 0.877 Upper-Ndepth 0.870
Lower p-rank 0.870 Upper p-rank 0.866

In order to go one step further, we also tested some strate-
gies with different parameters for the area-simplification post-
processing leading to the following results:

1. for the best cuts assessment, upper-length is the best strat-
egy (FOC+FHC score: 0.9369); and

2. for the supervised object retrieval assessment, lower-
length is the best strategy (ODM score: 0.911).

Overall, we see that there is a clear benefit of filtering the
observations scales with the proposed strategies. However, the
strategy which leads to the best result depends on the targeted
assessment and end-use of the hierarchies.

7. Conclusions

This article revisits the HGB method to propose new observa-
tion scale selection strategies leading to better segmentation re-
sults. We introduce the notion of edge observation attribute and
criterion, and establish their non-increasing behavior. Then, we
propose an algorithm to compute all scales for which the cri-
terion is true. By analyzing these scales, we propose several
strategies to select different observation scales among these val-
ues. We assess the performance of our strategies on Pascal VOC
2010 and 2012 datasets showing that these strategies outper-
form the original HGB method. As future work, we will study
the impact of the chosen region dissimilarity measure. The
inter- and the within-component differences can be computed
based on the properties of each region using, for instance, a sta-
tistical approach [29]. Another promising direction consists of
replacing the region size term of the Felzenswalb-Huttenlocher
dissimilarity measure by a different measure of the importance
of a region, such as compactness or visual saliency [30].
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[29] S. J. F. Guimarães, Z. K. G. do Patrocı́nio, Y. Kenmochi, J. Cousty, L. Na-
jman, Hierarchical image segmentation relying on a likelihood ratio test,
in: V. Murino, E. Puppo (Eds.), ICIAP, Springer, 2015, pp. 25–35.

[30] G. Li, Y. Yu, Visual saliency based on multiscale deep features, in: CVPR,
2015, pp. 5455–5463.


	Introduction
	Hierarchical graph-based image segmentation
	Hierarchies
	Graph and connected-component partition
	Quasi-flat zone hierarchies
	Hierarchical graph-based segmentation method
	Observation scale dissimilarity
	HGB Method


	Non-increasing observation attribute and criterion
	Observation intervals: definition and algorithm
	Selecting observation scales
	Min-, max- and rank-selection rules
	Filtering the observation scales with connected operators

	Experiments
	Conclusions

