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Abstract—Multivariate time series (MTS) have specific features
that complicate their analysis: interactions in space and time
between the MTS components, variable length, absence of trivial
alignment between samples and high dimensionality. Hence,
finding a representation of MTS from which we can extract
meaningful information is a challenging task. In general, specific
assumptions are needed to obtain a valuable representation. In
this paper, we assume that a dataset of MTS samples has an
underlying causal structure that we can exploit to represent
samples. Our contribution is a new representation framework
that consists of first finding the overall causality graph G in
a studied dataset and then mapping each sample onto G to
obtain a causality-based representation. Since causality is an
important feature underlying MTS data, we claim and show
that representating samples on G is meaningful. We name this
method Sequence-to-Graph (Seq2Graph). We apply Seq2Graph
on health monitoring tasks, using two MTS datasets coming from
ageing mechanical systems.

I. INTRODUCTION

Nowadays, more and more data is packaged as multivariate
time series (MTS), for example industrial records, physiolog-
ical data, vehicles sensors, etc. from which we may want to
extract information in order to take decision from data. An im-
portant preliminary step for data information mining involves
finding consistent and meaningful features that represent the
observed samples. For MTS data, numerous features exist, for
example moments or patterns. Each gives a certain amount
of information about the data. Depending on the objective of
the representation, certain features will be more relevant than
others. In this paper, we propose to represent MTS with a
particular feature: the causality.

The standard definition of causality used for time series data
is the Granger causality [11]. It consists in evaluating, for each
couple of variables (X(i), X(j)) of a MTS sample X , if the
variable X(i) (the cause) is useful to forecast the variable X(j)

(the consequence). Hence, Granger causality is a feature that
describes the causal dependencies underlying data. Causality
can be represented as a graph G, as in Figure 1.

When observed samples are generated from a unique me-
chanical system S, it is common to assume a unique causality
structure G for the whole dataset X . For example, G can be
the skeleton of an articulated body or represent the causal
relationships (statistical or physical) between sensors arranged
in an engine, from which we observe samples. An illustration
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Figure 1: Graphical representation of the causality underlying
a bivariate time series X . The edges are weighted with a set of
edge’s weights WX that depends on X . In this paper, we claim
that comparing MTS samples by comparing their causality
weights is relevant.

is given in Figure 2. The causal structure G is then shared
between all observed samples. When the assumption of a
unique graphical structure for all samples is valid, like in the
aforementioned examples, a causality graph G can be extracted
directly from the studied dataset X , using an appropriate
statistical method. G is then an abstract representation of the
system S (e.g. a mechanical system) that generated all the
observed samples.

Yet, Granger causality inference only aims at discovering
and interpreting causalities between observed variables at the
scale of the dataset (i.e. one graph for all samples). In this
paper, we propose to relegate the inference of the causal graph
G as a preliminary task preceding the representation inference
of individual MTS samples. Our assumption is the following:
since G is the graphical model of the system S that generated
all the observed samples (e.g. a mechanical system), G is
also a natural meaningful latent structure on which each data
sample can be represented. In particular, each sample X can
have its own set of edge’s weights WX on G, hence its own
causality-based representation. We can then compare samples
by comparing their causality graph edge’s weights. We claim
and show in this paper that such a representation is meaningful
for mechanical system’s state monitoring.

We divide the problem into two subproblems. First, the ex-
traction of the causal structure G using sparse MTS modeling
approach [28]. Second, the choice and training of a relational
neural network Fφ parametrized by φ that takes MTS samples
as input and maps them onto G [22] to obtain a causality-
based representation. Our main contribution is an unsupervised
multivariate time series representation framework based on
Granger causality, its implementation with neural networks



Figure 2: Under the assumption that a unique causal graph G
represents the causal structure underlying a mechanical system
(here a plane), we claim that, if the causality assumption
is relevant, the respective set of edge’s weights WX , WY

and WZ associated to the MTS samples X , Y and Z can
characterize the state of the system. Here, following the color
code, WZ should be closer from WX than from WY . We
note that a maintenance was effectuated between Y and Z to
restore the system’s state.

and its application to health monitoring. We name it Sequence-
to-Graph (Seq2Graph). Section II introduces the problem.
Section III details the learning procedure. Section IV gives
related work. Section V illustrates the interest of Seq2Graph
framework with two experiments of unsupervised mechanical
systems health monitoring.

II. SEQ2GRAPH

In this section, we give the main steps of Seq2Graph.
Training and implementation details are given in the next
section.

Let X ⊆ Rd×T be a finite set of d-dimensional multivariate
time series (MTS), each indexed over the discrete time range
t = 1, . . . , T . We want to represent each sample X ∈ X on a
causality graph G.

A. Problem formulation in linear setting

We first assume that for each time series X , there exists a
tensor WX ∈ RK×d×d such that

Xt =

K∑
k=1

WX
k Xt−k (1)

Model (1) is a K order linear vector autoregressive model
(L-VAR), with sample-wise parameter WX . We consider that
WX represents time series X under linear assumption (1). We
therefore can compare different samples X by comparing their
parameter WX .

In particular, the Granger causality is easily defined in VAR
model (1): WX

.,i,j = 0 means the absence of causality from
variable X(i) to variable X(j) [6]. The non-zeros entries of
WX are the weights of the causalities underlying sample X .

Each parameter WX can be estimated by maximum likeli-
hood (MLE), in closed form or with a generic likelihood term
(for example using a Kalman filter [3]). Yet, when the dataset
X is large, when the samples X are high-dimensional or when
WX has consistency or sparsity constraints, estimating every
individual WX by MLE can be expensive or untractable. As a
tractable alternative, we use [22]: a relational neural network
(RelNN) [14] Fφ with parameters φ is trained to transform
time series samples X directly into parameter WX , i.e.
Fφ(X) = WX . Hence, the representation problem becomes
an encoder-decoder representation learning scheme, with Fφ
the encoder and the VAR model (1) the decoder.

B. Representation on a common causality graph G
As mentioned above, in VAR model (1), WX

.,i,j = 0 means
the absence of causality from variable X(i) to variable X(j).
Yet, we want to insure that all samples X are represented on
the same causality graph G, i.e. all WX should share the same
zeros.

In consequence, we assume that each tensor WX has
three underlying components: a dataset-level component W̄ ∈
RK×d×d, a sample-level component PX and dataset-level
binary adjacency A ∈ {0, 1}d×d, such that:

WX = Ā�
(
W̄ + PX

)
(2)

where � is the Hadamard product and Ā the adjacency A
extended to match the dimensionality of W̄ . W̄ and A are
shared between all samples X . The entries of the sparse tensor
Ā�W̄ are the edge features of the causal graph G. The entries
of the tensor Ā�WX are the adjustment of the graph to match
the properties of sample X .

We note that the decomposition of a regression problem into
sample-level PX and dataset-level W̄ is known as random
coefficient regression (RCR) [18]. The particularity of our
approach is the shared sparsity given by adjacency A.

In practice, we first infer a sparse tensor W̄ from the whole
dataset X . Then we define a graph adjacency A from W̄ such
that ∀(i, j) ∈ J1, dK:

Ai,j = 1{∑K
k=1 |W̄k,i,j |>0}. (3)

We then build and train a neural network Pφ with parameters
φ that directly and efficiently outputs the adjustment PX in
the RCR. Hence, the previously introduced neural network
Fφ is defined as Fφ(X) := W̄ + PGφ (X), where PGφ (X) =

Ā � Pφ(X). The details of the learning procedure and the
implementation are given in Section III.

The Seq2Graph framework is illustrated in Figure 3.

C. Generalized L-VAR

To obtain a richer representation learning framework, we
extend linear approach to a generalized linear [19] vector
autoregressive model (GL-VAR) [28]. We remind that gen-
eralized linear models extend linear regression by relating the
linear transform and the response variable with a nonlinear



Figure 3: Seq2Graph. 1© is the dataset-level causal graph G
inference. X̂ is the set of predictions for the whole dataset X .
G is built such that it explains the mean dynamical behavior
of the dataset. 2© is the representation inference. X̂ is the
prediction of the sample X . The adjustments PGφ (X) are built
such that they explain the specific causality underlying sample
X , along the edge of the mean parameter W̄ . Here, K = 2.

link function. Hence, let g = {gθj}dj=1 be a set of shallow
neural networks with parameters θ = {θj}dj=1, gθj : Rl → R,
such that for each sample X ∈ X we can find a tensor
WX ∈ RK×d×d×l such that ∀j ∈ J1, dK:

X
(j)
t = gθj

(
K∑
k=1

WX
k,.,jXt−k

)
(4)

with l ∈ N∗. (4) is a neural generalized linear version of a
vector autoregressive (VAR) model, called generalized-linear
VAR (GL-VAR) [28]. We remark the the nonlinearities are
shared between all samples, like the common causal structure
G.

D. Why is causality-based representation relevant?

The causality graph G is a main parameter of the model
describing the system’s dynamics (Eq. (1) or (4)). Hence, it is
meaningful since it describes an important part of the physics
underlying the system. Comparing two samples X and Y by
comparing their respective weights WX and WY on the graph
G is therefore a substitute to the comparison of their physical
hidden state.

We note that we can compare time series X and Y by
comparing their respective set of causal weights WX and
WY with any relevant distance, for example the l2 distance∥∥WX −WY

∥∥
2
.

III. SEQ2GRAPH TRAINING

A. Inference of G with group-lasso training

We search a sparse W̄ from RCR model (2) and θ =
{θj}dj=1 the set of parameters of the neural link functions
(in the nonlinear case (4)). We therefore search a solution

to the following mean-squared regression with group-lasso
regularization:

min
W̄ ,θ

EX∼X

 d∑
j=1

T∑
t=K+1

∥∥∥∥∥X(j)
t − gθj

(
K∑
k=1

W̄k,.,jXt−k

)∥∥∥∥∥
2

2


+ λ

d∑
i,j=1

∥∥W̄.,i,j

∥∥
F

+ γ

d∑
j=1

‖θj‖ (5)

where ‖.‖F is the Frobenius norm. The group-lasso penalty for
W associated with coefficient λ encourages each ‖W̄.,i,j‖F
to be null, meaning that all causal links from X(i) to X(j)

would be cut. λ ∈ R+ controls the speed and intensity of the
pruning. Regularization ‖θj‖ compensates the effect of the
group-lasso to avoid the (theoretical) situation where W̄ goes
to zero while parameters θ tend to infinite sensitivity. Like
in the linear case, we estimate causality adjacency A with
Ai,j = 1{

∑K
k=1 ‖W̄k,i,j‖ > 0}.

B. Causality adjustment learning

In this section, we train a neural network that directly infers
the causality adjustment of RCR model for a given sample.

We assume that the parameters {g, W̄} has been learned on
the whole dataset (see Section III-A) and are fixed. We now
build and train a relational neural network Pφ to infer each
sample-wise adjustment. We note PGφ = Ā�Pφ the adjustment
constrained to live only on the edges of the inferred causality
graph G. Ā ∈ RK×d×d×l is the adjacency matrix A of G
expanded to match the dimensions of tensor PGφ . Then the
problem to solve is:

min
φ

EX∼X

[
d∑
j=1

T∑
t=K+1

∥∥∥∥X(j)
t − gθj

( K∑
k=1

(
W̄

+ PGφ (X)
)
k,.,j

Xt−k

)∥∥∥∥2

2

+ ηΩ
(
PGφ (X)

)]
(6)

Such learned inference network is therefore both meaningful
(since built to represent the dynamics underlying the data) and
sparse (since constrained on G).
η is a parameter controlling the intensity of the penalty

function Ω. A standard penalization Ω would be the l2

norm on the parameters φ, under the assumption that the
parameters of PG(X) are normally distributed around 0. A
more general penalty (yet equivalent when minimized), that we
use for Seq2Graph training is Ω(PG(X), P reg) = ‖PG(X)−
P reg‖2 + ‖P reg‖2. P reg is a parameter trained during the
optimization (6). We have found that such penalty helps to
obtain more consistent representation.

C. Implementation details

a) Neural network representation inference: For the rep-
resentation inference function PGφ , we use a relational neural
network (RelNN) [23]. The RelNN embeds pair of variables.
Its adaptation for time series data is taken from [14], where the



RelNN takes a MTS as input and embeds all pairs of variables
into a binary space. In [22], an equivalent RelNN embeds pairs
of variables as vectors specialized for linear causality, where it
proved to be expressive, noise resistant and able to generalize
over the notion of linear causality.

b) Sparsity inducing training for the dataset-level
causality-graph inference: Problem (5) is first optimized with
stochastic gradient descent. Then, we chose proximal gradient
descent (PGD) [20] as fine-tuning optimization procedure in
order to achieve true zeros in W̄ as in [28]. If we had a target
sparsity, we could stop the PGD when the level is achieved.
In our experiment, we do not have (or assume to not have)
the true sparsity level. We propose to monitor the impact of
the sparsity on prediction and chose the maximal sparsity that
does not degrade the prediction capacity of the model. See
experiments for illustration.

c) Multi-multivariate time series: There are cases where
the d components of a MTS are multidimensional. For ex-
ample, if the MTS has d variables situated in a 2D space
(see Experiment V-A), hence each variable is represented by
a 2D time series. More formally, the problem extends from
X ⊆ Rd×T to X ⊆ Rd×m×T , i.e. ∀X ∈ X Xt ∈ Rd×m,
with m the dimension of individual time series variables. The
approach presented in our paper adapts to this general case
by replacing WX ∈ RK×l×d by WX ∈ RK×l×d×1. The
additional dimension in WX enables to consider the m time
series of each variable as a whole.

IV. RELATED WORK

This section outlines main related work for the two key
concepts of our paper: MTS representation and causality
inference.

A. Time series representation

Finding interesting and relevant features from time series
data has a long-range history. A particularity of time series is
that they have no explicit and general features [31]. Hence,
unsupervised MTS representation requires strong assumptions
to be relevant.

The most common assumption is that similar samples have
similar shapes and patterns up to a warping alignment [7]
and can be represented closely using bag-of-patterns methods
[26]. This simple assumption gives good results for many time
series tasks as long as the sought representation is contained
in the observed patterns [30]. Yet, for multivariate time series,
it is limited since it generally does not take into account the
interactions between variables. In [25], they propose to had the
interplay of features in different dimension of MTS to obtain
a more relevant bag-of-patterns representation.

More recently, the usage representation learning methods
based on neural networks have emerged, giving new rep-
resentation learning models for MTS data. In [16], they
propose a method such that the distance between the learned
representations is the dynamic time warping (DTW) distance.
A powerful family of neural representation learning methods is
the autoencoders (AE) and related methods [2]. The principle

is to train an encoder and a decoder simultaneously, such that
the encoded signal of each sample can be correctly decoded.
If so, it means that the encoded signal contains the essential
information. The Sequential Autoencoders (SAE) [4], [17],
[33] is the most popular adaptation of AE for time series data.
A richer SAE proposed in [8] is based on the joint learning of a
discrete variational autoencoder (VAE) [29], a self-organizing
map (SOM) latent space [15] and a Markov transition model
[10]. Yet, the latter model only treats discrete representation
of time series. In [9], an unsupervised scalable time series
representation (USTR) is proposed using the notion of triplet
loss. The assumption is that a MTS sample is closer to one of
its subsamples (positive sampling) than to a randomly chosen
sample of the dataset (negative sampling). This model achieves
very good results in classification downstream task. Moreover,
it can handle many types of data since the assumptions
underlying the model are weak.

Closer to our work, [14] proposes the neural relational
inference (NRI), a VAE that transforms time series into a
binary relational graph, trained as a variable selection method
for neural time series model. Despite high interest and im-
pressive results, NRI is limited to binary representations. [22]
extends the binary relationships of NRI to a linear Granger
causality latent space, with a model called Seq2VAR. Their
model is applied to causality detection in contexts where NRI
fails (noisy environment, floating intensity of the causalities).
Our approach is built upon Seq2VAR, by adding non-linear
causality and dataset-level regularization.

In the current paper, we use SAE, USTR and Seq2VAR
as comparative models in the experiment part. The pattern-
based representation are not used since in both experiments we
search latent (hidden) signal that is not present the observed
patterns.

B. Granger causality inference from time series data

The global Granger causality problem is a statistical test
for all pairs of variables where null hypothesis is "absence
of causality". In its most common form, Granger causality
(GC) is defined in linear models (1), with the non zero entries
of the parameter of a sparse linear vector autoregressive (L-
VAR) model [5], [12], obtained with a penalization on L-VAR
parameters during training.

For the nonlinear case, finding a useful latent representation
is far from obvious. Among standard approaches for nonlinear
GC detection in time series, we find kernel methods [1] or
information-theory [27]. These methods find the existence
of causality between variables, i.e., the causality graph. Yet,
these methods do not give information on the importance of
the causality where it exists. In Seq2Graph, as shown in the
following, we require continuous (real) features on the edges
of the causality graph. In [32], the authors extend VAR to
nonlinear causality with the linear combination of B-spline ba-
sis functions. The linear operator, once fitted with appropriate
penalization, contains continuous causal information. Another
nonlinear extension of L-VAR causality is presented in [28].
The authors build the nonlinearity with neural networks.



They find causality by applying a penalization on the input
convolutional kernel. We use this last work for our causality-
based dataset-level regularization.

V. EXPERIMENTS

We propose two experiments to illustrate the interest of
Seq2Graph. Both are based on multivariate time series data
generated from mechanical systems. For the first, we use
synthetic data with controlled causal structure to show the
interest of the regularization with global causality graph G with
a sparse random coefficient model (2). For the second, we use
a NASA dataset to assess Seq2Graph on real representation
task. In all experiments, we compare Seq2Graph to three time
series representation methods: a sequential autoencoder (SAE)
[17], to the unsupervised scalable time series representation
(USTR) [9] and to the sequence-to-VAR (Seq2VAR) [22].

For all experiments, we use PyTorch [21]. All models
were trained with Adam optimizer [13] with learning rate
5.10−4. For the sample-level representation training, we added
a learning rate scheduler with step size 100 and a decay factor
= 0.9. All experiments computations on a GPU Nvidia Quadro
K4000. The hyperparameters are given in Table I.

λ γ η
Experiment V-A 10−3 - 10−5

Experiment V-B 5× 10−3 5× 10−3 5× 10−4

Table I: Hyperparameters for our experiments.

Code to reproduce the experiments can be found at https:
//github.com/anonym-conf-submission/Seq2Graph.

A. Interacting Newtonian system

1) Dataset: We simulate samples from a 10-ball-springs
system, consisting of the simultaneous trajectories of 10 identi-
cal balls of unit mass in a 2-dimensional space, each ball being
connected to some others by springs (the rate of connection is
56%). This system has a natural bidirectional causal structure:
each ball’s trajectory acts as a cause for changes in the
trajectory of the neighbor balls, and conversely. Using the
previously introduced notations, we have d = 10 (10 balls) and
m = 2 (in a 2-dimensional space, see implementation details).
System dynamics follows Newton’s law of motion. We assume
that the system is ageing and is regularly restored. All samples
share a common graph graphical structure G whose adjacency
is the interaction matrix formed by the springs.

We simulate a synthetic dataset of 15000 samples (trajec-
tories), 5000 for train, 5000 for validation and 5000 for test.
Each trajectory is 49 time-steps-long (T = 49). For each batch
b of 50 samples, a constant ageing factor αb ∼ U([0.9, 1])
is applied to the system: at each sample X whose index is
s ∈ J0, 50K (within the batch b of 50 samples), we randomly
choose a spring (i, j) and multiply its rigidity by αsb , i.e. an
exponential ageing coefficient with respect to sample index.
Every 50 samples, we restore the state of the system and
another ageing factor is sampled and applied to the next batch
of 50 samples. For some trajectories, αb = 1, i.e. there is no
ageing: the initial hidden causality graph has binary adjacency

and remains the same along the life of the system. When
αb < 1, the initial graph is deteriorating during along the life
(observed through 50 samples) of the system, until restoration.

Figure 4: Top: Prediction MSE. Black line is the true sparsity.
Bottom: Causal graphs for different sparsity levels. The third
figure is the inferred causal graph, which matches the ground
truth.

2) Model: For this first experiment, we assume that the
model is linear, i.e. that functions gθj are identities. The
objective is to illustrate the impact of representing data on
the same causality graph G. We determine by cross-validation
that K = 2. The level of sparsity is determined by the quality
of the prediction for different levels of sparsity of the causality
graph, as shown in Figure 4. The prediction is almost invariant
until a sparsity of about 56%. We note that we find back the
true adjacency with (5).

3) Metrics and results: We assess the quality of the repre-
sentation inference function PGφ . We test if we can represent
the ageing of the system with respect to a reference healthy
sample Xref (first sample of a batch) picked in the validation
set. We then build the test ageing curve

X 7−→

∥∥∥∥∥
K∑
k=1

(PGφ (Xref )− PGφ (X))k

∥∥∥∥∥
2

2

(7)

for all samples X ∈ X test. This ageing curves are presented
in Figure 5 and Table II.

Models MSE Ageing score*
SAE 2.2× 10−5 0.09
USTR - 0.05
Seq2VAR 2.3× 10−7 0.62
Seq2Graph 4.4× 10−7 0.97

Table II: Performance of several models plus ours on ageing
ball-springs problem. The Ageing score is the correlation
between estimated and real ageing curve. *Higher is better.
MSE stands for mean squared error and serves only as a sanity
check (for MSE-based methods).

We see that Seq2Graph outperforms both SAE, USTR
and Seq2VAR for unsupervised representation learning, when
meaningful information is fully contained in the causality.

https://github.com/anonym-conf-submission/Seq2Graph
https://github.com/anonym-conf-submission/Seq2Graph


Figure 5: Unsupervised estimation of ageing curves for the 10
first batches of the test set. From top to bottom: USTR [9],
SAE [17], Seq2VAR [22], Seq2Graph. Orange curve is the
ground truth.

In particular, SAE and USTR completely miss the consis-
tent ageing information, as expected from pattern-based ap-
proaches. Although consistent, Seq2VAR seems to suffer when
the causalities become lower. In fact, lowering the causality
improves the difficulty to capture them, hence prevents to
find the trend hidden in causality. Adding a common causal
structure W̄ in Seq2Graph naturally helps the identification
and the consistency of the sample representations.

B. NASA turbofan degradation simulation dataset

1) Dataset: NASA public Commercial Modular Aero-
Propulsion System Simulation dataset (C-MAPSS) is a tool for
simulation of realistic large commercial turbofan engine data
[24]. An engine degradation simulation was carried out using
C-MAPSS, under different conditions and different faults. We
use the FD001 dataset which contains 100 time series recorded
at sea level with one fault mode for each (degradation of the
high-pressure compressor, a fundamental turbofan piece). The
time series are the output of the turbine-engine system that
takes a fuel flow as input and outputs 21 variables, whose 13
are not constant (we only keep these 13 variables). Time series
are 206 time-steps long on average. Each time series is the
recording of a turbine engine going to failure. The engine is
operating normally at the start of each time series and develops

a fault of unknown initial magnitude in its first moments. We
only know that the impact of this fault on the system grows
in magnitude until system failure.

For the results of the paper, we split the dataset: the first
60 time series are train set, the 15 next are validation set and
the last 25 are test set. We extract from these time series sub-
trajectories of length 25, with a rolling window with stride 5
to make our dataset. Hence, as for previous experiment, we
have several batches of samples. A batch corresponds to the
life of the system from start to failure. At the end of each
batch, the engine is restored and another batch of samples is
recorded.

2) Model: Using the previously introduced notations, d =
13. All samples share a common (unknown) structure which
is the turbine engine mechanics. We assume that this structure
can be represented by a sparse causality matrix. For this
experiment each link function gθj is a MLP with 2 hidden
layers of 4 channels. We determine by cross-validation that
K = 2. The maximal sparsity is determined by the quality
of the prediction for different levels of sparsity, as shown in
Figure 6. The prediction is almost invariant until a sparsity of
about 75%.

Figure 6: Top: MSE of the prediction. Black line is the
sparsity of the inferred causal graph. Bottom: Causal graphs
for different sparsity levels. Fourth image is the inferred causal
graph.

We solve (6) using the previously found causal graph.
Contrary to the previous experiment, the system is not isolated
since the observed variables are the response to an unobserved
command (the fuel flow). Yet, the variables can effectively
interact with each other and statistical causality still makes
sense as a representation assumption.

3) Metrics and results: We assess the quality of the learned
PGφ by extracting ageing information from the representations,
like in the previous experiment. Yet, we remind that, this time,
we do not know the importance of the initial fault and we do
not know the regularity of the ageing nor its importance (the
ageing coefficient). What we know is that the 100 engines
go to failure and the degradation of the state is monotonic
until restoration. We propose a two-step process to validate
Seq2Graph for NASA, by showing our ability to infer from
data representation the imminence of a failure.

First, we build an ageing indicator assuming that is a relative
position compare to a healthy sample. We pick a healthy



sample Xref (first sample of a batch) in the validation set and
build the ageing curve (7) for all X ∈ X valid. We compute a
failure threshold τvalid that must indicate when an engine goes
to failure. We set τvalid to the maximal threshold that ensures
turbine engine failure detection for all validation batches, that
is:

τvalid = min
X∈Xval,def

∥∥∥∥∥
K∑
k=1

(PGφ (Xref )− PGφ (X))k

∥∥∥∥∥
2

2

(8)

where X val,def is the set of validation samples preceding the
engine failure. We note that τvalid has no safety margin, i.e.
any threshold above τvalid misses at least one engine failure
in the validation set. It is possible to add a margin by lowering
τvalid.

Second, we build the test ageing curve (7) with the samples
of X test. We apply the detection test using τvalid (represented
by the horizontal dotted line in Figure 7.

Figure 7: Unsupervised estimation of C-MAPSS ageing curve
with different models on the 7 first test batches. From top
to bottom: USTR [9], SAE [17], Seq2VAR [22], Seq2Graph.
Orange picks are engine failures and repair. Long red dotted
horizontal line is the threshold τvalid. Black dashed horizontal
lines are the estimated initial states of each engine, computed
as the mean value of the curve on the 10 first samples of each
batch.

Figure 8: Early alarm on CMAPSS data using MTS repre-
sentation models USTR, SAE, Seq2VAR (see related work
for details) and Seq2Graph. Means and standard deviations
are built using all batch’s first samples as Xref and several
encoders trained with different seeds.

As a first assessment, we see in Figure 7 that the estimated
ageing curves built from SAE, Seq2VAR and Seq2Graph are
almost monotonic inside each batch (between two vertical
orange lines). We recall that monotony is the only ground
truth information we have on the ageing of the system. The
fact that SAE, Seq2VAR and Seq2Graph unveils monotonic
signal means the ageing information is present both in patterns
and values (SAE) and in causality (Seq2VAR and Seq2Graph).
We do not find consistent representations with USTR. We also
observe that the batch’s ageing curves do not begin at the
same value (dashed horizontal lines in Figure 7), whatever the
method. It is partly imputed to the fact that the mechanical
faults are located at the beginning of each batch and that they
vary in intensity. Hence, the inferred first samples of each
batch do not have to be equal.

We now compare the ability of the different MTS repre-
sentations to relevantly detect failures. In Figure 8, we see the
proportion of alarm at different time steps before actual failure
happens, built from the estimated ageing curves illustrated in
Figure 7. First, we note that all models detect almost 100% of



failures before it happens. Second, we want detection of the
coming failures to be reasonably early to avoid false alarms.
If curves cross threshold too early, the MTS representation is
useless. Figure 8 shows that Seq2Graph is the most consistent
in early detection with no alarms far from failure, due to the
consistency of the extracted monotonic signal. On the contrary,
SAE always finds early failures, hence is less confident in
failure detection.

We conducted two experiments on datasets samples from
ageing mechanical systems. We have shown that using a
common causality graph G is relevant to representation data
samples. We show that we can find continuous signal hidden
in data (ageing) from the causality based representation. These
experiments validate our assumptions.

VI. CONCLUSION

In this paper, we have presented a multivariate time series
(MTS) representation framework under the assumption that
Granger causality contains relevant information about data.
We have proposed a two-step approach, based on neural
networks. First, the global causality graph G is found using
the weights of a (generalized) linear autoregressive model
trained with a group-Lasso penalization (to obtain sparsity).
Second, a relational neural network is trained to efficiently
infer the representation of each sample, constrained by the
mean causality graph G. Our approach was motivated by health
monitoring problems. We therefore illustrated Seq2Graph on
two tasks of mechanical system health monitoring.
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