
HAL Id: hal-02959080
https://hal.science/hal-02959080v1

Submitted on 23 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Economic optimization of feeding and shipping strategies
in pig-fattening using an individual-based model

M. Davoudkhani, Fabrice Mahé, Jean-Yves Dourmad, Alexandre Gohin, E.
Darrigrand, Florence Garcia

To cite this version:
M. Davoudkhani, Fabrice Mahé, Jean-Yves Dourmad, Alexandre Gohin, E. Darrigrand, et al.. Eco-
nomic optimization of feeding and shipping strategies in pig-fattening using an individual-based model.
Agricultural Systems, 2020, 184, pp.102899. �10.1016/j.agsy.2020.102899�. �hal-02959080�

https://hal.science/hal-02959080v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1 

 

Economic optimization of feeding and shipping strategies in pig-fattening using an individual-1 

based model 2 

 3 

M. Davoudkhani1, F. Mahé2, J.Y. Dourmad1, A. Gohin3, E. Darrigrand2, F. Garcia-Launay1 4 

1PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France 5 

2Université de Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France 6 

3SMART LERECO, INRAE, Institut Agro, 35011 Rennes, France 7 

Keywords: Optimization procedure, Bioeconomic simulation model, Gross margin, Evolutionary 8 

algorithm, Market price.  9 

 10 

ABSTRACT 11 

Economic results of pig-fattening systems vary greatly and depend mainly on prices of pork and 12 

feeds, and pig growth performance (e.g. feed efficiency, slaughter weight, lean percentage). Previous 13 

studies revealed that feeding and shipping strategies are critical factors in the economic outputs of 14 

pig production. However, they failed to consider both strategies and the variability in pig growth 15 

performance simultaneously. Consequently, we developed a new approach to improve the 16 

profitability of pig farms by estimating the best compromise among feeding costs, animal 17 

performance, and shipping constraints. We used an individual-based bioeconomic model that 18 

simulates the growth of each pig according to its biological traits (e.g. feed intake and protein 19 

deposition potential) as a function of different feeding and shipping strategies. The optimization 20 

problem is solved using an evolutionary algorithm (CMA-ES, covariance matrix adaptation evolution 21 

strategy) that manages the objective function, which is discontinuous, non-convex, nonlinear, and 22 

multimodal. Various case studies were constructed to investigate the behavior of the optimization 23 

procedure. Effects of pork price on optimal strategies were investigated using three different price 24 

scenarios: low (1.173 €/kg), medium (1.314 €/kg), and high (1.662 €/kg) pork prices. Optimizing 25 

only feeding strategies improved the gross margin per pig by 5.0% while optimizing shipping 26 
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strategies improved the mean gross margin per pig by 4.7%. Optimizing both feeding and shipping 27 

strategies improved the gross margin per fattened pig by 10% (2.88 €/pig, with medium pork price 28 

(1.314€/kg)) compared to the common practice on farms in France. Pork price had a limited effect on 29 

feeding decisions when optimized alone, but a strong impact on shipping decisions. Economic 30 

optimization of pig fattening inconsistently affected the environmental impacts. However, increasing 31 

pork price improved the optimized mean gross margin per pig but increased all environmental 32 

impacts. To our knowledge, this is the first tool able to optimize both feeding and shipping strategies 33 

while considering effects of variability in growth potential among a batch of pigs. These features 34 

allow consideration of the interaction effect of feeding and shipping strategies on the economic 35 

outputs of the batch, and investigation of the trade-off between production cost and technical 36 

performance. This tool should interest the pig sector since it can identify the best feeding and shipping 37 

strategies depending on the economic context. Further work should consider multiobjective 38 

optimization with both economic and environmental objectives. 39 

 40 

1. Introduction 41 

The world population is expected to reach 9.8 billion by 2050, an increase of 20 percent from today 42 

(FAO, 2017). Coupled with an improving standard of living in developing countries, this will increase 43 

demand for animal products by 50% (FAO, 2017). The expected growth in animal production raises 44 

many concerns about its short and long-term effects. Pork is the most consumed meat in the world. It 45 

accounts for 39% of the world's meat intake in 2015 (OECD/FAO, 2016) and its demand is increasing 46 

(+37% expected over the period 2010-2050).  47 

Pig production contributes to various environmental impacts, like climate change, acidification, and 48 

eutrophication (McAuliffe et al., 2016). Fattening pigs contribute to 70% of total phosphorus (P) and 49 

nitrogen (N) excretions on farrow-to-finish farms (Dourmad et al., 1999), and therefore to 50 

environmental impacts of pig production. In the past decade, European market prices of pigs and raw 51 

ingredients used in pig feeds began to vary greatly. Consequently, the profitability of pig-fattening 52 
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units has remained unstable. This new volatile context likely affects the optimal feeding strategy and 53 

optimal delivery of pigs to the slaughterhouse.  54 

The pig-fattening unit, which is the main contributor to environmental impacts of pig production, 55 

represents the majority of pig production costs (Pomar and Remus, 2019) and its profitability depends 56 

largely on market prices of pig carcasses and feed ingredients (Pourmoayed et al., 2016; AHDB, 57 

2018). Farmers receive revenue from delivering pigs to the slaughterhouse when pigs reach a 58 

marketable weight or when the fattening room must be emptied in the “All-in All-out” management 59 

system (Plà-Aragones and Rodríguez-Sánchez, 2015). In most European countries, the revenue from 60 

each pig depends on carcass weight and carcass leanness, which are assessed by a payment grid. 61 

Carcass weight resulting in a premium or a discount (per kg of carcass weight) is achieved at a 62 

different fattening duration for each pig in the batch. This is due to variability in feed intake and 63 

potential for body protein deposition among pigs. Feeding costs depend on the price of feeds and the 64 

total consumption of each pig, which also varies among pigs and depends on the ability of the feeding 65 

strategy to meet the pigs’ nutritional requirements. In practice, for a given pig, extending the fattening 66 

duration increases both carcass weight and feeding costs but decreases carcass leanness. Depending 67 

on each pig’s potential, the feeding strategy, and the market price, extending fattening duration may 68 

decrease or increase the gross margin (Leen et al., 2018). In the meantime, extending the fattening 69 

duration increases environmental impacts. The gross margin per pig, feeding costs and environmental 70 

impacts can thus vary considerably depending on the feeding program. Therefore, interactions 71 

between feeding programs, the delivery of pigs to the slaughterhouse, and the variability in pig growth 72 

performance largely determine the profitability of the pig-fattening unit and the consequences of the 73 

production on the environment; however, they are difficult to predict. The purpose of this study was 74 

to account for these interactions when optimizing the economic output of a batch of pigs. 75 

The scientific community has focused on the nutritional requirements of growing pigs for energy and 76 

amino acids (van Milgen et al., 2008; Van Barneveld et al., 2018). Nutritional requirements vary 77 

greatly among pigs and change over time during the fattening period. Most pigs on commercial farms 78 
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receive no more than two or three successive feeds in the fattening unit. Brossard et al. (2014) 79 

highlighted that regardless of the number of feeding phases, the percentage of pigs that have their 80 

digestible lysine requirements (i.e. the most limiting amino acid in the diet) met at the start of each 81 

phase is essential for the profitability of the unit. Given the complexity of the pig-fattening unit 82 

system, optimizing feeding and shipping strategies requires 1) predicting the variability in 83 

performance among pigs depending on the feeding strategy and 2) predicting deliveries to the 84 

slaughterhouse depending on a target weight.  85 

Effects of feeding and shipping strategies on animal performance and the economic return of the pig-86 

fattening unit have received substantial attention. They have been tested extensively via experiments 87 

(Conte et al., 2011; Pomar et al., 2013; Andretta et al., 2016; López-Vergé et al., 2018) and simulation 88 

models (Ali et al., 2018; Cadero et al., 2018a; Peña Fernández et al., 2019). However, experiments 89 

provide few insights into optimal strategies and simulation models compare scenarios that are not 90 

necessarily optimal.  91 

Previous studies have addressed the issue of economic optimization of pig-fattening units (Morel et 92 

al., 2012; Nadal-Roig et al., 2018; Leen et al., 2018) and broilers (Gous and Berhe, 2006). Most 93 

studies focused on optimizing pig deliveries to the slaughterhouse (Nadal-Roig et al., 2018; Leen et 94 

al., 2018; Kristensen et al., 2012) or optimizing the nutrients in feeds (e.g., energy and digestible 95 

lysine, Morel et al., 2012). Some studies also focused on feed formulation in the context of multiphase 96 

feeding (Joannopoulos et al., 2015; Joannopoulos, 2018). Morel et al. (2012) used a stochastic growth 97 

model that was sensitive to the feeding program to optimize feeding strategies and included the 98 

variability in growth performance. To our knowledge, only Niemi (2006) addressed optimization of 99 

feeding and shipping strategies. However, the model developed by Niemi (2006) was based upon an 100 

average pig performance and without the variability in growth performance. This is a major 101 

drawback, because there is an interaction effect of the variability in growth potential among pigs, and 102 

feeding and shipping strategies on the technical and economic performance of the pig-fattening unit 103 

(Cadero et al. 2018a). 104 
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Given this context, the main goals of the present study were to investigate 1) the effect of the 105 

interactions between feeding and shipping strategies when optimizing the gross margin of a batch of 106 

growing pigs, and 2) the effect of pork price on optimal feeding and shipping strategies. For that 107 

purpose, we considered (for the first time) the variability in performances among pigs in an 108 

optimization model of a batch of pigs. In this article, we describe the model and the optimization 109 

procedure, and explore their behavior with different case studies. 110 

 111 

2. Materials and methods 112 

In this section, we first provide a general overview of the bioeconomic model. Next, we describe the 113 

complex features that make the optimization challenging and justify our optimization approach. Then, 114 

we explain how we explore the behavior of our model and the applications performed.  115 

2.1 General overview of the bioeconomic model 116 

This study couples a bioeconomic model of the pig-fattening unit adapted from Cadero et al. (2018a) 117 

with an optimization procedure that considers an objective function (i.e., mean gross margin per pig), 118 

to optimize feeding and shipping strategies (Figure 1). The bioeconomic model is a discrete-event 119 

mechanistic model that considers farm data and biological traits such as pig feed intake, growth 120 

potential, and mortality rate while addressing the stochastic nature of the pig production system. The 121 

main entities in the pig-fattening system represented are the batch of pigs, farm management, and 122 

farm infrastructure. Pig growth is represented using an individual-based model adapted from the 123 

InraPorc model (van Milgen et al., 2008). In this model, each pig is defined by a biologic profile that 124 

is used to calculate its growth and nutrient excretion depending on the feeding program. Five 125 

parameters are used to describe the pig profile: initial body weight, the two parameters in the equation 126 

for feed intake, average protein deposition between 70 days of age and 110 kg body weight (BW), 127 

and the shape parameter of the Gompertz function that describes the precocity of protein deposition. 128 

In the model, we use a database, which includes 1000 male and 1000 female pig profiles 129 

(characterized by individual growth and feed intake potentials). To create a batch of pigs, by default, 130 
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the model selects randomly from this database the same number of males and females to generate the 131 

appropriate variability within the pig herd. The model can be run either with all pigs characterized by 132 

the same average pig profile or with individual pig profiles taken at random within a set of 1000 male 133 

and 1000 female pig profiles (Brossard et al., 2014). These values for each pig are set according to 134 

the profile of the average pig and a variance-covariance matrix of the parameters to generate the 135 

appropriate variability within the pig herd (Vautier et al., 2013). Farm infrastructure consists of 136 

fattening rooms, with a number of pens of a given size in each room, and possibly a buffer room to 137 

extend the fattening duration of light pigs. This information is provided as input parameters of the 138 

bioeconomic model. Farm management includes batch management, allocation of pigs to pens, 139 

feeding practices, and shipping practices to send pigs to the slaughterhouse, as well as a calendar of 140 

events containing tasks to perform. 141 

In this model, feeding strategies combine a series of feeds in a feed sequence plan, a feed rationing 142 

plan, and a level of application. Feeds are described by their nutrient contents and formula (i.e. 143 

incorporation rates of each ingredient). The feed sequence plan describes which feed or which blend 144 

of feeds is distributed in each feeding phase of the sequence, and provides rules to shift from one 145 

feeding phase to the next. The feed rationing plan defines the quantity of feed distributed per pig for 146 

each day of the fattening period. The feeding strategy, as defined in the model, also includes a level 147 

of application of the feed sequence and feed rationing plans (batch, pen, or individual pig). 148 

In the model, shipping strategies are defined by the target weight at slaughter, the maximum fattening 149 

duration, and the maximum time that pigs are kept in the buffer room, when applicable. Target weight 150 

at slaughter is used to determine whether a pig is ready to be sent to the slaughterhouse. Once a week, 151 

the model compares the weight of each pig in the whole batch to the target weight. If any pig from 152 

any pen reaches the target weight, it is selected for shipment to the slaughterhouse (individual 153 

marketing). The maximum fattening duration depends on batch management and determines the date 154 

that fattening rooms must be emptied. In order to clean and disinfect the room before the arrival of a 155 

new batch, all pigs must be sent to the slaughterhouse or the buffer room. It means that the latest day 156 
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of a possible delivery of the batch to slaughterhouse corresponds to the maximum fattening duration 157 

minus the duration of the cleaning period. The maximum time that pigs are kept in the buffer room 158 

determines the date that the buffer room must be emptied. On most farms, light pigs are not transferred 159 

to the next batch. It is even highly recommended not to do this because of the high sanitary risk of 160 

contamination of the next batch. They are either delivered to the slaughterhouse or sometime 161 

transferred to a buffer room, but this is not the most usual practice. Indeed, the necessity of a buffer 162 

room depends on the adequation between batch management and the number of fattening rooms in a 163 

given unit. In our case, we considered a maximum fattening duration of 108 days, which corresponds 164 

to the usual practice in France (Cadero et al., 2018a). Therefore, we did not account for a batch with 165 

a buffer room but the model has the ability to handle it. The presence or absence of a buffer room is 166 

an input parameter of the model. 167 

The minimum number of pigs detected ready to be sent to the slaughterhouse to schedule a shipment 168 

was set to 1 because we considered that a truck is not only filled with pigs from a single batch but 169 

with pigs from the whole unit. However, we only allowed a maximum of one delivery per week to 170 

get a flow of deliveries consistent with what was observed in a previous study (Cadero et al., 2018c).  171 

The bioeconomic model produces technical results for each pig on a daily basis and throughout the 172 

fattening period. These outputs are then used to calculate the economic results and environmental 173 

impacts per kg of pig live weight gain according to life cycle assessment (LCA) approach (Cadero et 174 

al., 2018a). The perimeter of the environmental evaluation includes impacts from the extraction of 175 

raw ingredients for crop production used for feeds, up to the farm gate. Potential impacts of the pig-176 

fattening unit on climate change, eutrophication potential, acidification potential, cumulative energy 177 

demand, and land occupation were also calculated. Finally, the results for each individual pig were 178 

aggregated to calculate technical, economic, and environmental results at the whole-batch level. The 179 

model is described in more detail by Cadero et al. (2018a) (Figure 1).  180 
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 2.2. Definition of the optimization problem 181 

The model developed by Cadero et al. (2018a) is a simulation model, which is not able to find optimal 182 

feeding and shipping strategies in different economic contexts. Consequently, the present study 183 

developed an optimization procedure that overcomes this missing feature, maximizes the economic 184 

performance of a batch of pigs, and identifies the best feeding and shipping strategies in a given 185 

economic context.   186 

The optimization procedure attempts to maximize the objective function, which is the mean gross 187 

margin per fattened pig by optimizing the feeding and shipping strategies:  188 

Obj ��, �, ��, �	
�� = 

�  ∑ ∑ ������, �, ��, �	
�������� . (1) 

In this optimization problem, we consider a feeding sequence of p phases that uses two feeds, A and 189 

B which are mixed in variable proportions at each phase. In this context, feed A has high nutrient 190 

density to meet requirements at the start of the fattening period, while feed B has low nutrient density. 191 

The shipping strategy focuses on optimizing the decision to send pigs to the slaughterhouse up to the 192 

emptying of the fattening room (the use of a buffer room is not considered). The decision variables 193 

(Table 1) are as follows: 194 

- Pig weight at the diet change for each phase p, � = �
, 
�, 
� … 
�����, where 
� is the average 195 

pig live weight at which phase p is shifted to phase p+1 196 

- Percentage of feed A in each phase p, � = ��, ��, �� … ����, where �� is the percentage of 197 

feed A in a blend used during phase p 198 

- Target slaughter weight TW, which is the minimum live weight of a pig ready for slaughter. Pigs 199 

that have reached the target weight are selected for shipment to the slaughterhouse (individual 200 

marketing). Pigs that have not yet reached the target weight are kept until the next shipment, 201 

unless the maximum fattening duration has been reached.  202 

- Maximum fattening duration (�	
�) which is the maximum allowed duration including cleaning 203 

and disinfecting time before the arrival of a new batch of pigs. When the maximum fattening 204 

duration is reached, all remaining pigs are sent to the slaughterhouse in the next shipment. Light 205 
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pigs that have not reached the target weight at the maximum fattening duration result in a lower 206 

payment. 207 

2.3. Mathematical formulation of the bioeconomic model  208 

To capture the complexity of the system studied, the simulation of each pig is not independent of one 209 

another because 1) pigs are allocated to pens by weight at the start of the fattening period, i.e. there 210 

are pens of light pigs and pens of heavy pigs. Consequently, pigs from the same pen are fed the same 211 

way (pigs stay in the same pen during all the period), but it differs at any given time between pens 212 

(when the average live weight of pigs in the pen equals pig weight at the diet change, the model 213 

moves to the next feeding phase); 2) the model incorporates a density function, which affects growth 214 

when the animal density in the considered pen is above a threshold.  215 

Here, we present only the mathematical elements necessary to understand the optimization procedure. 216 

Tables 2, 3, and 4 provide indices, inputs, and quantities used in the bioeconomic model, respectively.  217 

The gross margin obtained from pig i of sex g is calculated as the selling price of pig i of sex g minus 218 

cost of piglet i of sex g minus feeding cost of pig i of sex g (Eq. 2): 219 

������, �, ��, �	
�� = "#$����, �, ��, �	
�� − $�&�� − "&����, �, ��, �	
��. (2) 

The feeding cost of pig i of sex g results from the cost associated with the consumption of feeds A 220 

and B in each phase of the sequence (Eq. 3):  221 

"&����, �, ��, �	
�� = ∑ '∑ (�
����� ∗  *�, + �1 − ��� ∗  *�,���∈./

���0� 1���� , 

where: 

 2
��= 34: 6��

�� < 
8, 

2�
��

= 34: 
�9 ≤ 6��
�� < 
�8 , 2 ≤ < ≤  <=9, 

2��
�� = 34: �� > 6��

�� ≥ 
���� , 4 ≤ �	
�  8 ⋃  34: 4AB
�� < 4 < min� 4F�4AB

�� �, �	
��8. 

(3) 

where 2�
��  is the vector of days belonging to the feeding phase p (p =1…<=) for pig i of sex g, 4AB

��  is 222 

the day on which pig i of sex g reaches the target weight (��), and 4F�4AB
�� � is the day of the next 223 
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shipment following 4AB
�� . Feed intake ((�

��) is modeled as a gamma function of NE requirements for 224 

maintenance. This calculation is part of the InraPorc model included in the present model and 225 

described in details by van Milgen et al. (2008). 226 

If the pig dies during the fattening period, its selling price equals zero. If not, the pig is slaughtered, 227 

and a premium or discount is added to the market price per kg of carcass weight. The premium or 228 

discount (ranging from -0.70 to 0.19 €/kg carcass weight) is determined from the carcass weight and 229 

lean percentage of pig i of sex g using a payment grid (Table S4 in Supplementary Material). This 230 

payment grid, which is described with threshold values to set the premium or discount, is a major 231 

source of discontinuity of the objective function. The selling price of pig i of sex g per kg of carcass 232 

weight is based on market price and the premium or discount. The carcass price paid to the farmer is 233 

based on the selling price #6$�� and cold carcass weight &&��� (Eq. 4): 234 

"#$����, �, ��, �	
�� =  #6$����, �, ��, �	
�� ∗  &&�����, �, ��, �	
��. (4) 

The cost of piglet i of sex g at the entrance of the fattening unit is based on a fixed cost and an 235 

additional cost that depend on piglet weight: 236 

In our model, transportation cost is not included. Indeed, in France, most of the farms belong to a 237 

producer association that manages the transport of pigs to slaughterhouse. In this case, a single truck 238 

can get pigs from various farms. Transportation cost is supported by the producer association. There 239 

are some articles in the literature dealing with transportation cost in the objective function (Nadal-240 

Roig et al., 2018; Nadal-Roig et al., 2019), but this is relevant for supply chain management problems 241 

with an integrator. Therefore, in this case, the objective function is about maximizing the profitability 242 

of the integrator itself and not for a single batch. The model is described in more detail in 243 

Supplementary Material (Tables S1 and S2). 244 

 2.4. Optimization approach  245 

The optimization approach was developed to address two issues in the optimization of the 246 

bioeconomic model. The first issue was finding an appropriate algorithm to optimize the objective 247 

$�&�� = PP +  H2$���I6����. (5) 
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function, which is discontinuous, non-convex, nonlinear, and multimodal (Leen et al., 2018; Dooyum 248 

et al., 2018; Accatino et al., 2019; Peña Fernández et al., 2019). The properties of the optimization 249 

function result mainly from the variability in pigs’ biological characteristics, the occurrence of 250 

discrete events such as deliveries of pigs to the slaughterhouse, the stochasticity related to pig 251 

mortality, and the payment grid. An objective function with these features may have a large number 252 

of local optima, with the global optimum located near the local optima but in an area smaller than the 253 

entire search space (Hansen and Kern, 2010). In this situation, a global optimization algorithm is 254 

needed to prevent convergence towards the local optima (Dooyum et al., 2018). The second issue was 255 

to decrease the number of functions evaluations during optimization. Since the bioeconomic model 256 

simulates the growth of each pig for each day, the pig-fattening unit model requires large amounts of 257 

computational time (Cadero et al., 2018b), and running an optimization with it could take a long time. 258 

In this case, applying exact methods is not appropriate because they are extremely time-consuming 259 

processes (Jourdan et al., 2009; Puchinger and Raidl, 2005).  260 

In order to model problems in pig farming systems, non-exact optimization algorithms have already 261 

been used (Morel et al., 2012; Lehmann et al., 2013; Britz and Kallrath, 2012; Accatino et al., 2019; 262 

Teillard et al., 2016; Groot et al., 2010; Groot and Rossing, 2011; Alexander et al., 2006). Among 263 

different evolutionary algorithms, the covariance matrix adaptation evolution strategy (CMA-ES) 264 

was chosen due to its ability to reach an excellent performance on the accuracy, its efficiency, and 265 

faster computing speed to deal with non-convex problems compared to other approaches (Hansen, 266 

2006; Hansen and Kern, 2010). CMA-ES belongs to the family of genetic algorithms (Holland, 1973). 267 

In CMA-ES, the multivariate normal distribution used to sample potential solutions is used as the 268 

mutation operator, and a covariance matrix is used to reach regions with expected lower objective 269 

values. Therefore, any result obtained from CMA-ES is a pseudo-optimum or a good-enough 270 

approximation to the optimum as CMA-ES is a non-exact optimization method. The model is 271 

available open access on the Datainrae data warehouse (https://doi.org/10.15454/OWJJUU). 272 

2.5. Model behavior and application 273 
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Multiple analyses were performed using the bioeconomic model coupled with the optimization 274 

procedure aiming at 1) investigating the effect of the variability in pig growth performance, 2) 275 

providing practical recommendations on how to use the optimization procedure, 3) illustrating the 276 

potential of the optimization procedure to improve the profitability of a batch of pigs in a given 277 

economic context, and 4) highlighting effects of pork price on optimal feeding and shipping strategies 278 

(Table 5). To this end, optimization of a single batch without mortality rate was considered to reduce 279 

the complexity of the problem and the computational time. Market prices for both pork and feed 280 

ingredients are exogenous in the model. They are given as an input, with a single value for each, 281 

referring to a given economic context. We used mean feed and pork prices over 2 years (2016 and 282 

2017). The years 2016-2017 are medium situation for pork price (1.314 €/kg carcass whereas in 2019 283 

it moved from 1.1 to 1.7 €/kg), and low feed price situation compared to 2014 (Notes de conjoncture 284 

Aliment IFIP, 2016; Marché du Porc Breton, 2017). Further description of inputs common to all case 285 

studies is available in Table S3 in Supplementary Material. 286 

Definition of different case studies. All feeding strategies were based on feed A and feed B, which 287 

were formulated on a least-cost basis to contain 9.75 MJ NE/kg and to meet 110% and 90% of the 288 

average SID lysine requirement of female pigs at 30 and 120 kg BW, respectively. This approach 289 

resulted in 1.05 and 0.47 g SID lysine/MJ NE in feed A and B, respectively (diet composition and 290 

economic data for feeds A and B are shown in Table S5 in Supplementary material). The supply of 291 

essential amino acids other than lysine met or exceeded ratios of the ideal protein profile. Feeds were 292 

formulated through a least-cost linear programming prior to the optimization procedure. Therefore, 293 

the feeds are inputs of the model. 294 

Two case studies were first simulated to be considered as baselines representative of situations on 295 

commercial farms:  296 

- Reference one-phase R-1 in which a single-phase feeding strategy was simulated with feed A 297 

supplied throughout the entire fattening period. 298 
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- Reference two-phase R-2, in which a two-phase feeding strategy was simulated with Growing 299 

(G) and Finishing (F) diets based on feeds A and B. Diet G (feed A only) was fed in the first 300 

phase from 70 days of age until a mean BW of 65 kg. In the second phase, diet F, supplied 301 

from 65 kg BW to the end of the fattening period, provided 0.76 g SID lysine/MJ NE, 302 

corresponding to 110% of the mean requirement at 65 kg BW. Diet F was obtained by mixing 303 

54.7% of feed A and 45.3% of feed B (Figure 2). This case study corresponds to a typical two-304 

phase feeding strategy used in practice in France (AGRESTE, 2008). 305 

Six case studies were obtained through optimization using different sets of decision variables. The 306 

purpose of the different case studies was to investigate interactions between feeding and shipping 307 

strategies. For that reason, we first considered feeding and shipping strategies separately using 308 

different case studies. Then, we considered both strategies simultaneously (Table 6):  309 

- Feeding case study F-1 (objective function (decision variables): Obj ���), in which a single-310 

phase feeding strategy is optimized by mixing two feeds with low and high nutrient contents, 311 

respectively. The decision variable is the percentage of the first feed (�). 312 

-  Feeding case study F-2 (objective function (decision variables): Obj �
�), in which pig weight 313 

at the diet change �
� is optimized in a two-phase feeding strategy that used diets G and F.  314 

-  Feeding case study F-3 (objective function (decision variables): Obj �
, �, ���), in which a 315 

two-phase feeding strategy is obtained by mixing feeds A and B. The percentage of feed A in 316 

the first phase (�) and the second phase (��) are optimized, as is pig weight at the diet change 317 

(
) (three decision variables). This case study addresses all the decision variables for the 318 

feeding strategy.   319 

- Shipping case study S-1 (objective function (decision variables): Obj ���, �	
��), in which 320 

the shipping strategy is optimized in a two-phase feeding strategy that used diets G and F. This 321 

case study explores when pigs must be sent to the slaughterhouse since over- and under-weight 322 

pigs affect the gross margin.  323 
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- Feeding and shipping case study FS-1 (objective function (decision variables): 324 

Obj �
, �, ��, ���) in which a two-phase feeding strategy is obtained by mixing feeds A and 325 

B, with four decision variables. Three decision variables are the same as those in F-3, and the 326 

fourth is the target weight at slaughter (��). This new decision variable addresses the trade-327 

offs among the increase in feed cost when keeping pigs longer, the risk of decreasing the 328 

premium per kg of carcass, and the potential increase in the selling price when shipping heavier 329 

pigs.  330 

- Feeding and shipping case study FS-2 (objective function (decision variables): 331 

Obj �
, �, ��, ��, �	
��), in which a two-phase feeding strategy is obtained using feeds A 332 

and B, with five decision variables. Four decision variables are the same as those in FS-1, and 333 

the fifth is the maximum fattening duration (�	
�), which specifies when the fattening room 334 

must be emptied (i.e., all remaining pigs must be sent to the slaughterhouse). Increasing �	
� 335 

extends the fattening of light pigs. This case study will optimize both feeding and shipping 336 

strategies and all five decision variables. 337 

Parameterization of the optimization procedure. All case studies that included the same decision 338 

variables used the same initial points for the CMA-ES algorithm: 50 kg for live weight at the diet 339 

change (
), 80% of feed A in the first and second phases (�, ��), 120 kg for target weight (TW), 340 

and 108 days for the maximum fattening duration (�	
�). The criterion for stopping the iterations 341 

was the function tolerance. Iterations end when the range of the values of the best objective function 342 

of the last 10+4n (n is the number of decision variables) generations and all function values of the 343 

current generation are lower than the function tolerance. The default value of the CMA-ES algorithm 344 

(10-12) was used for the results presented below. However, due to the limitation of function values to 345 

the second digit after the decimal point, the shape of the function, and the averaging performed for 346 

different choices of a set of pig profiles (different seeds of the pseudo random draw of the profiles), 347 

similar results are obtained with a less precise tolerance (10-6, see Table S6 in Supplementary 348 
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Material). The optimization procedure was coded in Python 3.7 and run on an Intel Core i5 CPU (3.40 349 

GHz). 350 

Analyses performed. Four sets of analyses were performed (Table 5). The first explored model 351 

properties. Since the variability in performance among pigs was assumed to generate discontinuity in 352 

the objective function, we simulated case studies F-1 and F-2 with 10 or 400 pigs (which is the mean 353 

size of a batch in France), while using either the same average pig profile for all pigs or randomly 354 

choosing a different profile for each pig to generate the appropriate variability within the pig herd, as 355 

described by Cadero et al. (2018a). 356 

The second set of analyses provided practical recommendations for running an optimization (i.e., 357 

defining the number of random seeds (i.e. numbers used to initiate pseudorandom-number generator) 358 

and the number of pigs per batch needed to run an optimization). To this end, we investigated the 359 

trade-off between the reliability of results and the computational time by varying the number of pigs 360 

per batch from 10 to 400 in F-2 and F-3. For each batch size, we used 60 different seeds to select 361 

different sets of pig profiles to generate as much variability in the results as possible. Python 362 

random.seed method was used to generate a pseudo-random number for selecting different sets of pig 363 

profiles. Each seed value corresponds to a sequence of generated values for a given random number 364 

generator. For this stage, 60 different seed values for each case study (F-2 and F-3) and for each 365 

number of pigs (10 up to 400 pigs) were chosen randomly. Effects of the number of pigs on the mean 366 

gross margin per pig and the computational time were analyzed using a one-way analysis of variance 367 

(ANOVA). The post-hoc Tukey Honestly Significant Difference (HSD) test was used to identify a 368 

significant difference between means at a significance level of 5%. We also investigated the effect of 369 

the number of seeds and the number of pigs in the simulated batch on the coefficient of variation 370 

(CV) of the gross margin.  371 

The third set of analyses illustrated the ability of the optimization procedure to improve the 372 

profitability of pig-fattening units. It also provided the environmental impacts of the production 373 

associated with each case study. All reference case studies (R-1 and R-2) and optimization case 374 
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studies (F-1 to FS-2) were run with the number of seeds and the batch size recommended from the 375 

second set of analyses. For each case study, the same sequence of generated values issued from a 376 

given seed number was used.  377 

The fourth set of analyses explored the effect of pork price on the mean gross margin per pig and 378 

optimal feeding and shipping strategies. We assumed that farmers have the possibility of buying feeds 379 

and selling pigs in advance (with forward or futures contracts) and these prices are fixed for a batch 380 

of pigs. However, pork price will change over the year and will be different for the next batch of pigs. 381 

Therefore, we considered three different pork prices representing low (1.173 €/kg), medium (1.314 382 

€/kg, the one used in the first three sets of analyses), and high price (1.662 €/kg) situations. These 383 

values were mean values of pork price over May to July 2018 (1.173 €/kg), years 2016-17 (1.314 384 

€/kg), and August to October 2019 (1.662 €/kg). For each pork price, R-2 and optimization case 385 

studies F-3, S-1, FS-1, and FS-2 were run with the same number of seeds and same batch size as those 386 

in the third set of analyses. Effects of all case studies (optimized and simulated) on mean gross margin 387 

per pig, decision variables, computational time, and technical outputs were tested with a one-way 388 

ANOVA. We again used the post-hoc Tukey HSD test to identify a significant difference between 389 

means at a significance level of 5%. 390 

 391 

3. Results 392 

3.1 Exploration of model properties 393 

The effect of the percentage of feed A in the diet on the mean gross margin per pig was explored in 394 

F-1 (Figure 3). As we expected, without variability among pigs, the response of the gross margin to 395 

the percentage of feed A in the diet was not affected by the number of pigs per batch (10 vs. 400) in 396 

the simulation. A jump discontinuity occurred, however, when the percentage of feed A increased 397 

from 30.3% (point Q in Figure 3, with mean gross margin of 28.39€/pig) to 30.4% (point P in Figure 398 

3, with mean gross margin of 30.17€/pig). In both case studies, all pigs were kept on the farm until 399 

the end of the fattening period, since no pig reached the required live weight at slaughter. The 400 
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corrected lean percentage for each pig was 61.01% for point Q and 60.99% for point P. Thus, different 401 

premiums were obtained according to the payment grid (Table S4). This discontinuity was due to the 402 

difference between premiums in the two case studies. By including the biological variability among 403 

pigs, the response of mean gross margin per pig to the percentage of feed A was clearly discontinuous 404 

for the simulation with 10 pigs. Increasing the number of pigs (400 pigs), however, reduced 405 

discontinuity.  406 

The effect of the live weight at the diet change on the mean gross margin per pig was explored in F-407 

2 (Figure 4). Without variability among pigs, the response of gross margin to live weight at diet 408 

change was nearly continuous and again not influenced by the number of pigs in the simulation. The 409 

optimum live weight at diet change was 47 kg for both sizes of the batch. When simulating 10 pigs 410 

and considering biological variability among them, the response of gross margin to live weight at diet 411 

change was clearly discontinuous. Discontinuity was dramatically reduced with 400 pigs in the 412 

simulation. The gross margin was always lower with variability among pigs than without variability 413 

among pigs, and the gross margin had many local optima when simulating 10 pigs (Figures 3 and 4).  414 

3.2 Providing users’ recommendations 415 

In F-2, the number of pigs per batch did not influence the mean gross margin per pig (Figure 5). 416 

However, increasing the number of pigs in the batch reduced the standard deviation, and decreased 417 

the difference between the mean and median, of the gross margin. Although increasing the number 418 

of pigs provided more consistent results, it also required longer computational time (Figure 6). 419 

Moreover, the variability in computational time increased significantly (p<0.05) with the number of 420 

pigs in the batch (Figure 6). 421 

In F-3, the number of pigs per batch did not influence the mean gross margin per pig (p>0.05). 422 

Optimizing three decision variables required 2.5 fold as much computational time as was required to 423 

optimize one decision variable in F-2. In F-3, increasing the number of pigs reduced the CV of the 424 

optimized gross margin and increased (p<0.05) computational time (Figures 8 and S1 and S2 in 425 

supplement material). 426 
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In F-3, regardless of the number of seeds, the CV of gross margin decreased exponentially from 14-427 

16% to a minimum of 2% as the number of pigs increased, and the mean gross margin stabilized 428 

when the batch contained at least 200 pigs (Figure 7). Moreover, no significant differences were 429 

observed in the means of decision variables obtained with more than 20 seeds and 200 pigs (P>0.05). 430 

Consequently, the third set of analyses was performed with 20 seeds and 200 pigs per batch.  431 

3.3 Model potentials  432 

Table 7 compares the mean gross margin per pig, decision variables, and technical outputs obtained 433 

in the simulation and optimization case studies. With a one-phase feeding strategy, optimizing the 434 

percentage of feed A in the blend increased the gross margin by 4.0 €/pig (29.28 €/pig in F-1 vs. 25.26 435 

€/pig in R-1). It also decreased the percentage of feed A (49% in F-1 vs. 100% in R-1) and the mean 436 

slaughter weight (115.1 kg/pig in F-1 vs. 116.1 kg/pig in R-1).  437 

With a two-phase feeding strategy, optimizing pig weight at the diet change (F-2) increased the gross 438 

margin by 0.9 €/pig compared to R-2, while it decreased pig weight at the diet change from 65 kg to 439 

38 kg. The number of decision variables increased from one to five when comparing F-2 to FS-2. 440 

Each increase in the number of decision variables increased the gross margin per pig (from 29.3 €/pig 441 

in F-2 to 31.3 €/pig in FS-2) and the computational time (from 11.3 min in F-2 to 53.7 min in FS-2). 442 

When optimizing only the feeding strategy (F-2 and F-3), mean slaughter weight remained nearly 443 

stable and did not differ significantly from that in R-2. Optimizing only the shipping strategy (S-1) 444 

increased the selling price and feed cost (€/pig). Optimizing both feeding and shipping strategies 445 

reduced the dietary digestible lysine content by 10-15% in FS-1 and FS-2 compared to that in R-2. In 446 

FS-1, optimizing the target slaughter weight yielded a mean slaughter weight of 117 kg. 447 

Consequently, revenue from selling pigs and the gross margin improved. In FS-2, optimizing the 448 

maximum fattening duration increased mean slaughter weight by an additional 3.7 kg, revenue per 449 

pig, and the resulting gross margin. The optimized percentages of feed A in phases 1 (from 69.4% to 450 

72.8%) and 2 (from 40.2% to 46.8%) and pig weight at the diet change were stable in F-3, FS-1, and 451 
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FS-2. The mean gross margin per pig increased much more when optimizing both feeding and 452 

shipping strategies (FS-1 and FS-2) than when optimizing just one strategy.   453 

Table 8 compares the environmental results obtained in the simulation and optimization case studies. 454 

With a one-phase feeding strategy, climate change (-8%), acidification (-13%), eutrophication (-455 

11.5%), and cumulative energy demand (-13.5%) decreased in F-1 compared to those in R-1 (p<0.05). 456 

However, land occupation increased (3.84 m2 year in F-1 vs. 3.72 m2 year in R-1). With a two-phase 457 

feeding strategy, optimizing either the feeding strategy or both feeding and shipping strategies (F-2 458 

up to FS-2) reduced the environmental impacts except land occupation. Conversely, when optimizing 459 

only the shipping strategy (S-1), all impacts increased compared to those in R-2 (p<0.05). 460 

3.4 Level changes in pork price  461 

Figure 8 shows effects of pork price on the mean gross margin per pig and technical outputs obtained 462 

in R-2, F-3, S-1, FS-1, and FS-2 strategies. Relative benefit (calculated as the mean gross margin of 463 

each optimization case study minus the mean gross margin of R-2) from optimization increased with 464 

increasing pork price except for F-3. Indeed, when increasing pork price, the revenue from selling 465 

pigs in R-2 increased more than that in F-3 because slaughter weight in F-3 was lower than that in R-466 

2. Figure 9 shows the effects of pork price on decision variables obtained in the various case studies. 467 

Optimizing only the shipping strategy (S-1) increased the target weight and maximum fattening 468 

duration, which increased slaughter age and weight. Therefore, S-1 had the highest feed cost (€/pig). 469 

The optimization procedure in FS-1 increased the percentage of feed A in both phases. However, pig 470 

weight at the diet change decreased as pork price increased. As a result, feed cost (€/pig) and slaughter 471 

weight remained rather stable with increasing pork price. The pork price had effects on slaughter 472 

weight, premium, and feed cost (€/pig) only when optimizing the maximum fattening duration (S-1 473 

and FS-2). Relative benefit increased much more when optimizing both feeding and shipping 474 

strategies (FS-1 and FS-2) than when optimizing just one strategy.  475 

Figure 10 shows the variation of gross margin and environmental impacts according to pork price in 476 

FS-2, i.e. the trade-off between economic and environmental outputs. With medium pork price 477 
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(1.314€/kg), environmental impacts remained stable relatively to the low pork price situation (1.173 478 

€/kg) while gross margin increased by 18%. With high pork price (1.662 €/kg), all environmental 479 

impacts increased compared to those in low pork price (1.173 €/kg) situation, by 1.5% to 2.7%: 480 

climate change (2.1%), acidification (2.7%), eutrophication (2.6%), cumulative energy demand 481 

(1.5%), and land occupation (2.3%). 482 

 483 

4. Discussion 484 

The objective of this study was to develop a bioeconomic model for the optimization of feeding and 485 

shipping strategies for a batch of fattening pigs in order to maximize profitability. We used an 486 

individual-based growth model to consider the variability in performance among pigs. To this end, 487 

the model developed by Cadero et al. (2018a) was used. However, the bioeconomic model of Cadero 488 

et al. (2018a) was a simulation model, which does not allow us to find the optimal feeding and 489 

shipping strategies. Therefore, advantages of the present model are to 1) maximize the economic 490 

performance of a batch of pigs, and 2) identify the best feeding and shipping strategies in a given 491 

economic context. Our approach considers both strategies and the variability in pig growth 492 

performance simultaneously, which was not previously made in the literature (Niemi (2006) only 493 

used an average pig growth model). However, the optimization process with such a model is 494 

challenging because of the complexity of decisions and discontinuous nature of the objective 495 

function. 496 

In the next sections, we discuss ability of the model to simulate the effect of variability among pigs 497 

and its added-value. We provide practical recommendations on the use of the optimization procedure 498 

in the bioeconomic model (number of pigs, number of seeds). Then, we evaluate its potential to 499 

identify optimal strategies that improve the profitability of a batch of pigs. We also discuss how the 500 

level of pork price modifies the optimal feeding and shipping strategies. Last, we analyze the 501 

consequences of economic optimization on the environmental impacts of pig production.  502 

4.1. Ability of the model to simulate the effect of variability among pigs    503 
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The first set of analyses using the optimization procedure highlighted the discontinuous nature of the 504 

mean gross margin per pig depending on the decision variables, and the relevance of variability 505 

among pigs in the model to simulate the economic outputs of the batch. This discontinuity of the 506 

objective function results from the various factors and processes modeled: 1) the use of the payment 507 

grid to calculate the selling price of each pig, 2) the scheduling of deliveries of pigs to the 508 

slaughterhouse, and 3) the variability among pigs. The payment grid defines the premium or discount 509 

for a given pig according to fixed thresholds for carcass weight and lean percentage. Therefore, a 510 

minor change in a decision variable could change the premium or discount for the pig considered and 511 

result in discontinuity. We observed this discontinuity of the objective function in the first set of 512 

analyses, even if we simulated the bioeconomic model without variability among the pigs (Figure 3). 513 

These results agree with those of Leen et al. (2018) who showed discontinuous evolution caused by 514 

carcass payment grid. In the bioeconomic model, deliveries to the slaughterhouse are scheduled once 515 

a week according to the farmer’s estimate of each pig’s live weight and the number of pigs that 516 

reached the target slaughter weight. Hence, a minor change in a decision variable can change a pig’s 517 

weight status, which can delay its delivery to the slaughterhouse for one week.  518 

Without biological variability among pigs, all pigs had the same growth performance and carcass 519 

traits and thus were sent together to the slaughterhouse. In this case, one shipment per batch was 520 

performed, which is not consistent with the reality of commercial farms, which usually have at least 521 

three shipments per batch (Aubry et al., 2016). Considering between-animal variation in the pig 522 

growth model resulted in different feeding and shipping practices for each pig and a decrease in the 523 

gross margin.  These results, already suggested by Cadero et al. (2018a) and Brossard et al. (2009), 524 

clearly support the use of a growth model accounting for variability among pigs. Indeed, Figures 3 525 

and 4 show that 1) not considering variability in animal performance results in overestimating 526 

economic results, and 2) when considering variability in pig performance, optimal strategies are 527 

different from the one obtained with an average pig growth model. For instance in Figure 3, with 400 528 

pigs, the optimal percentage of feed A without variability was between 42.5% and 44%, whereas the 529 
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optimal percentage was 51% when considering variability. In Figure 4, with 400 pigs, the optimal pig 530 

weight at the diet change without variability was 47 kg, whereas the optimal pig weight at the diet 531 

change with variability was 38 kg. These results also agree with those of Conte et al. (2011), Niemi 532 

et al. (2010), and Rodríguez-Sanchez et al. (2018), who indicated that the gross margin decreased 533 

when animal variability within herds increased. Considering variability among pigs also contributes 534 

to the discontinuous nature of the objective function of the bioeconomic model, because the random 535 

pig profiles can differ greatly from each other and result in different economic results depending on 536 

the decision variables. 537 

Considering variability in performance among pigs at the batch level means that the optimal time of 538 

marketing may be different for each pig. Kristensen et al. (2012) considered the optimization of 539 

marketing pigs at the pen level. They assumed that the first possible week of slaughter was week 9 540 

after the beginning of fattening. Once a week, they selected k heaviest pigs and sent them to the 541 

slaughterhouse. In the present study, the shipping strategy is applied over the whole batch of pigs 542 

considering the different pens. When the target slaughter weight is not optimized in our approach, the 543 

selection procedure of pigs to be slaughtered is rather similar to the one used by Kristensen et al. 544 

(2012), unless it is applied at the batch level. Our approach offers the additional opportunity to 545 

optimize simultaneously the slaughter target weight. Using a hierarchical Markov decision process, 546 

Pourmoayed et al. (2016) also optimized feeding and shipping strategies at the pen level (15 pigs) 547 

with different genetic properties of pigs in each pen. They also showed that optimal feeding strategy 548 

(time at diet change in a three-phase feeding program) and optimal time at shipping, differed between 549 

pens with different genetic potential. Compared to the model from Pourmoayed et al. (2016), the 550 

present model offers the possibility to modulate the proportion of each feed in each pen at each phase 551 

and predicts the response of pigs to these changes, on the basis of the individual growth model, 552 

whereas in Pourmoayed et al. (2016) time series of pig weights and feeding are obtained from online 553 

monitoring. Figures 3 and 4 compare optimal strategies at pen level (10 pigs) with those at batch level 554 

(400 pigs, 20 pens with 20 pigs per pen). In Figure 3, the optimal percentage of feed A with one pen 555 
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(10 pigs) was 55.5%, whereas the optimal percentage of feed A was 51% at the batch level (400 pigs). 556 

In Figure 4, the optimal pig weight at the diet change was 43 kg at the pen level (10 pigs), whereas 557 

the optimal pig weight at the diet change at the batch level (400 pigs) was 38 kg. Since the optimal 558 

strategies at the pen level differed from those observed at the batch level, ignoring variability between 559 

pens might change optimal feeding and shipping strategies and consequently reduce the profitability 560 

of a batch of pigs.    561 

4.2 Application of the optimization procedure 562 

The purpose of the second set of analyses was to find the adequate number of pigs and seeds to run 563 

the optimization procedure, in order to avoid too much discontinuity in the objective function, to 564 

reach acceptable stability and accuracy of predictions, while limiting computational time. Increasing 565 

the number of pigs per batch reduces the discontinuity of the objective function because a single pig 566 

profile that differs greatly from the average profile has less impact on the batch result when included 567 

in a batch of 100 pigs than in a batch of 10 pigs. The decrease in the discontinuity and complexity of 568 

changes in the gross margin may be due to averaging effects. As a result, the computational time 569 

increased, but the number of functions evaluations decreased. The computational time increased 570 

mainly due to simulating the growth of each pig individually. Consequently, it was necessary to 571 

analyze relationships between the number of pigs per batch, the number of seeds used to run the 572 

optimization, and the variability in mean gross margin per pig. Results of F-2 and F-3 indicated that 573 

increasing the number of pigs per batch tended to decrease variability in the gross margin per pig but 574 

required longer computational time. The CV of the gross margin per pig remained low and stable 575 

with a batch size of 200-400 pigs. The number of seeds had little effect on the mean and CV of gross 576 

margin per pig. Optimization with only 10 seeds resulted in a slightly higher CV of mean gross margin 577 

per pig (only with 10 pigs), while the mean gross margin per pig differed only slightly from those 578 

observed with 20-60 seeds. Consequently, the optimization procedure in future studies should include 579 

at least 200 pigs per batch and 20 seeds. 580 

4.3 Optimization of feeding and shipping strategies 581 
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Results of the third set of analyses highlighted that the economic optimum differs from the technical 582 

optimum. This is consistent with other studies observing that maximizing profitability differs from 583 

maximizing growth performance, and implies not meeting the nutrient requirements of all pigs 584 

(Chiba, 2000; Van Heugten, 2010; Niemi et al., 2010; Pomar and Remus, 2019). R-2 supplied 110% 585 

of the mean population requirement in digestible lysine at the start of each phase. This level of lysine 586 

meets the requirements of most pigs to express their growth potential, regardless of the economic 587 

aspects (Brossard et al., 2009). Optimizing the feeding strategy (F-3); however, decreased the 588 

digestible lysine supply (from 10.05 g/kg in R-2 to 8.42 g/kg in F-3 for the first phase, and from 7.62 589 

g/kg in R-2 to 6.95 g/kg in F-3 for the second phase) and also decreased pig weight at the diet change. 590 

It increased slaughter age and decreased average daily gain, slaughter weight, and lean percentage. 591 

Consequently, feed cost (€/pig) in F-3 was lower than that in R-2. Indeed, satisfying the need of all 592 

pigs requires supplying more feed A (rich diet), which is more expensive than feed B (poor diet). 593 

These results highlight the trade-off between feed cost and technical performance in the optimization 594 

procedure.  595 

When optimizing the target weight in addition to the feeding strategy (FS-1), target weight increased 596 

and gross margin per fattened pig improved by 6.84% compared to R-2. However, slaughter weight 597 

increased only for fast-growing pigs. Slow-growing pigs were delivered to the slaughterhouse at the 598 

end of the fattening duration and resulted in a discount. By optimizing target weight and the maximum 599 

fattening duration (FS-2 and S-1), the mean gross margin per pig improved, which is consistent with 600 

the results of Leen et al. (2018). This result may be explained by increased slaughter weight and 601 

premiums of slow-growing pigs. In the economic context used, extending the fattening duration (FS-602 

2) had a better outcome for the total gross margin per batch. However, the maximum fattening 603 

duration is a decision variable, which should be considered with care. On most farrow-to-finish farms, 604 

the maximum fattening duration is rather a constraint related to the number of rooms and the batch 605 

management system. This means that when performing the optimization, if modifying the maximum 606 

fattening duration, the gross margin per pig and per day should be examined as well. Optimizing only 607 
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the feeding strategy (F-3) decreased feed cost (€/pig) and slaughter weight while optimizing only the 608 

shipping strategy (S-1) increased feed cost (€/pig) and slaughter weight. These results highlighted 609 

that the trade-off between reducing feeding cost (feeding strategy) and delivering heavier pigs 610 

(shipping strategy) must be considered to benefit fully from the potential of the batch of pigs. 611 

Optimizing feeding and shipping strategies simultaneously provided more benefits for the pig-612 

fattening than optimizing only one strategy. Moreover, optimizing the shipping strategy at the same 613 

time modified the optimal feeding strategy, which indicates that the bioeconomic model and 614 

optimization procedure also consider the interaction between the feeding and shipping strategies. This 615 

is the first time that a bioeconomic model of the pig-fattening unit, coupled with an optimization 616 

procedure, was able to optimize both feeding and shipping strategies while also considering the 617 

influence of the variability in performance among a batch of pigs. This is of high relevance because: 618 

1) interactions between feeding strategies, shipping strategies, and the variability in pig growth 619 

performance largely determine the profitability of the batch of pigs; 2) optimal decisions and gross 620 

margin are very different from the one obtained with an average pig growth model. This is one 621 

contribution to the literature because most previous models optimized either the feeding (Morel et al., 622 

2012) or shipping strategy (Nadal-Roig et al., 2018; Leen et al., 2018), or both strategies, but with a 623 

model of the average pig (Niemi, 2006). However, some of the model's decisions are based on 624 

information that might be difficult to obtain on farms. For instance, weights of pigs are required to 625 

decide the time of diet change or to forecast pig shipping to the slaughterhouse. In practice, farmers 626 

may use weighting scales to sort the pigs before shipping, but this is time-consuming, and most often, 627 

they perform visual estimation of body weight. In the same way, there is also some uncertainty on 628 

the feed composition. For the future, it could thus be interesting to include this uncertainty in the 629 

model. However, thanks to the development of precision farming, this uncertainty should drastically 630 

reduce with the use of equipment and sensors providing real-time information on characteristics of 631 

pigs and their environment (Vranken and Bermans, 2017). 632 

4.4 Effects of pork price on optimal feeding and shipping strategies 633 
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Results of the fourth set of analyses allowed us to study the effect of changes in pork price on optimal 634 

feeding and shipping strategies. The pork price had a minor impact on decision variables associated 635 

with feeding strategies when optimizing only the feeding strategy (F-3). However, when optimizing 636 

either shipping or both shipping and feeding strategies, pork price had a major impact on shipping 637 

decisions. Indeed, shipping decision variables (�� and �	
�) increased as pork price increased. 638 

When optimizing both feeding and shipping strategies (FS-1 and FS-2), effects of pork price on the 639 

optimal feeding strategy varied. As pork price increased, the optimization procedure in FS-1 supplied 640 

richer diets (including more feed A) than those in other case studies. However, since the optimization 641 

procedure in FS-2 extended the maximum fattening duration (�	
�) with increasing pork price, the 642 

amount of feed A in diets decreased at the same time to avoid increasing diet costs. This behavior of 643 

the optimization procedure highlights interactions between pork price and both types of strategies. 644 

Therefore, this indicates that our model is able to handle the effects of the economic context on 645 

optimal strategies.  646 

The purpose of the present paper was mainly the development of the optimization model and the 647 

identification of an adequate procedure for using it. However, the optimization was performed 648 

assuming that the pork price and feed cost are perfectly known. Although this is correct in the context 649 

of forward or futures contracts, it is not right for long periods. For future studies, this raises the 650 

question of the sensitivity of the optimal feeding and shipping strategies to the uncertainty of pork 651 

and feed price and also piglets cost. 652 

4.5 Environmental impacts  653 

Since balancing economic outputs and the environmental impacts is a big challenge for pig 654 

production, we examined the effect of economic optimization of pig-fattening on the environment 655 

burden. When optimizing only the feeding strategy, global warming potential and eutrophication 656 

decreased, but land occupation increased. These reductions in environmental impacts may be 657 

explained by decreasing the amount of feed A (high nutrient density), which is consistent with the 658 

results of Van Heugten (2010) and Monteiro et al. (2017). Conversely, when the shipping strategy is 659 
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optimized, especially maximum fattening duration, improving the gross margin resulted in an 660 

increase of all environmental impacts. These results showed that optimizing feeding and shipping 661 

strategies simultaneously may inconsistently affect the different categories of environmental impacts. 662 

When exploring the effects of pork price on both gross margin and environmental impacts (Figure 663 

10), we highlighted that with a high pork price, improving the mean gross margin per pig increased 664 

all environmental impacts, relatively to a low pork price situation. This result is explained by the fact 665 

that pigs stayed longer on farms, and consequently consumed more feed, excreted more nutrients that 666 

resulted in higher emissions. Therefore, further work should include multiobjective optimization in 667 

order to address the trade-off between economic and environmental objectives. 668 

 669 

5. Conclusions  670 

Economic optimization of pig-fattening has received substantial attention since the demand for pork 671 

products is expected to increase by 37% over the period 2010-2050. In this paper, we demonstrated 672 

interactions between feeding and shipping strategies while considering the variability in 673 

performances among pigs. We combined two tools, a bioeconomic model of pig-fattening and an 674 

optimization procedure which is able to maximize the mean gross margin per pig in a given economic 675 

context. To our knowledge, this is almost the first tool able to optimize both feeding and shipping 676 

strategies while considering effects of variability in growth potential among a batch of pigs. These 677 

features allow considering the interaction effect of feeding and shipping strategies on the economic 678 

and environmental outputs of the batch, and investigation of the trade-off between production cost 679 

and technical performance. Optimizing the shipping strategies modified the optimal feeding strategies 680 

and resulted in more economic benefit than optimizing only one type of strategy. Pork price had a 681 

limited effect on feeding decisions when optimized alone, but a strong impact on shipping decisions. 682 

This tool should interest the pig sector since it can identify the best feeding and shipping strategies 683 

depending on the economic context. The major concern for European pig production for the coming 684 

years is coping with both economic and environmental challenges. In the present study, we 685 
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investigated the effect of economic optimization of pig-fattening on the environment burden. We 686 

highlighted that economic optimization may increase environmental impacts. Therefore, in order to 687 

balance economic and environmental outputs, further work should consider multiobjective 688 

optimization with both economic and environmental objectives. Since feed has a major contribution 689 

to impacts, including feed formulation throughout the entire optimization process will give more 690 

opportunity to reduce environmental impacts. 691 
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Figure captions 856 

 857 

Figure 1. Diagram of the bioeconomic model and the optimization procedure. Decision variables 858 

addressed are the percentage of feed A in each phase (�), live weight at the diet changes (
), target 859 

weight (��), and the maximum fattening duration (�	
�). In each iteration of the optimization 860 

procedure different values for the decision variables based on CMA-ES algorithm are tested (1). 861 

Feeding and shipping strategies are defined by setting values for the decision variables, (2). The 862 

individual-pig growth model produces technical results for each pig on a daily basis and throughout 863 

the fattening period based on the feeding and shipping strategies defined in the last stage (3). These 864 

outputs are then used to calculate the economic results and environmental impacts (4). The results for 865 

each individual pig are aggregated to calculate the mean gross margin per pig (the objective function) 866 

(5). This procedure continues (6) until CMA-ES algorithm obtains a good-enough approximation to 867 

optimum (7). 868 

 869 

Figure 2. Digestible lysine requirement per kg of feed for growing pigs as a function of live weight 870 

and overview of 2-phase feeding strategy. In each case study, 2-phase feeding strategy is defined 871 

using feeds A and B. Feeds A and B had 110% and 90% of the average SID lysine requirement of 872 

female pigs at 30 and 120 kg body weight (BW), respectively. Decision variables can be pig weight 873 

at the diet change (
) and the percentages of feed A in the first (�) and second phases (��).  874 

 875 

Figure 3. Gross margin as a function of percentage of feed A (�) in a blend used in a one-phase 876 

feeding strategy (case study F-1: one phase with two feeds). Results are displayed with 10 or 400 pigs 877 

simulated per batch and with or without variability in pig growth performance, using a step size set 878 

to 0.1 for �. 879 

 880 
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Figure 4. Gross margin as a function of live weight at diet change (
) in a two-phase feeding strategy 881 

with a growing and a finishing diet (case study F-2). Results are displayed with 10 or 400 pigs 882 

simulated per batch and with or without variability in pig growth performance, using a step size set 883 

to 0.1 for 
. 884 

 885 

Figure 5. Boxplots of gross margin as a function of the number of pigs per batch in F-2 (two phases 886 

with growing and finishing diets and pig weight at the diet change as a decision variable) with 60 887 

random seeds for each number of pigs. The rectangular portion of each box covers from the first up 888 

to the third quartile. In order to illustrate the median, a straight line dividing the box into two equal 889 

parts is drawn. Crosses indicate the mean gross margins based on 60 random seeds for each number 890 

of pigs. Means that do not share a letter differ significantly according to the Tukey Honestly 891 

Significant Difference test, with α = 0.05. 892 

 893 

Figure 6. Boxplots of the computational time as a function of the number of pigs per batch in F-2 894 

based on 60 random seeds. Means that do not share a letter differ significantly according to the Tukey 895 

Honestly Significant Difference test, with α = 0.05. 896 

 897 

Figure 7. Influence of the number of pigs per batch and the number of random seeds on the mean (M) 898 

gross margin and the coefficient of variation (CV) of gross margin in F-3 (two-phase feeding strategy 899 

optimizing both pig weight at diet change and the percentage of feed A in each phase). 900 

 901 

Figure 8. Effects of pork price (low (1.173 €/kg), medium (1.314 €/kg), and high (1.662 €/kg) 902 

situations), in case studies with two-phase feeding strategy, on (A) mean gross margin per pig and 903 

relative benefit per pig (mean gross margin for each given case study minus mean gross margin in 904 

reference R-2 ( )) and (B) technical outputs. Results are displayed for case studies optimizing 905 

feeding ( ), shipping ( ), and both strategies ( ). F-3 optimizes pig weight at diet change and 906 
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percentage of feed A in both phases. S-1 optimizes shipping strategy (target weight and maximum 907 

fattening duration). FS-1 optimizes feeding (pig weight at diet change and percentage of feed A in 908 

both phases) and shipping (target weight) strategies. FS-2 optimizes feeding (pig weight at diet 909 

change and percentage of feed A in both phases) and shipping (target weight and maximum fattening 910 

duration) strategies.  911 

 912 

Figure 9. Effects of pork price (low (1.173 €/kg), medium (1.314 €/kg), and high (1.662 €/kg) 913 

situations), in case studies with two-phase feeding strategy, on decision variables. Results are 914 

displayed for case studies optimizing feeding ( ), shipping ( ), and both strategies ( ). R-2 (915 

) simulates a reference two-phase feeding strategy. F-3 optimizes pig weight at diet change and 916 

percentage of feed A in both phases. S-1 optimizes shipping strategy (target weight and maximum 917 

fattening duration). FS-1 optimizes feeding (pig weight at diet change and percentage of feed A in 918 

both phases) and shipping (target weight) strategies. FS-2 optimizes feeding (pig weight at diet 919 

change and percentage of feed A in both phases) and shipping (target weight and maximum fattening 920 

duration) strategies. 921 

 922 

Figure 10. Variations of economic (left y-axis) and environmental (right y-axis) outputs in case study 923 

FS-2. FS-2 optimizes feeding (pig weight at diet change and percentage of feed A in both phases) and 924 

shipping (target weight and maximum fattening duration) strategies. Black dashed line ( ) 925 

represents the economic results. Grey lines ( ) represent the environmental impacts. GM: mean 926 

gross margin per pig (objective function); CC: Climate change; AC: Acidification; EU: 927 

Eutrophication; NE: Cumulative energy demand; LO: Land occupation. All environmental impacts 928 

are expressed as a percentage of the environmental impacts obtained in the low pork price situation 929 

(1.17 €/pig) (right y-axis).   930 
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Table 1. Description of the decision variables of the optimization procedure.  931 

Decision variables Description  Unit  

� = �
, 
�, 
� … 
�����  Where 
< is the live weight at which phase p is shifted to p+1 kg  

� = ��, ��, �� … ���� Where �< is the percentage of the first feed in phase p % 

�� Target weight kg 

�	
4 Maximum duration in the fattening unit days 

932 
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Table 2. Subscripts and superscripts used in the bioeconomic model equations.  933 

 Description Range of values 

� Pig  � = J1, ⋯ , IL 

d Day 4 = M1, ⋯ , 2�N 

p Phase  < = J1, ⋯ , $=L 

g Sex � = J1: OPQ	RP, 2: Q	RP, 3: T	UVW	VP4 Q	RPL 

k XVℎ bound of lean percentage in the payment grid  X = J1, ⋯ , X=L 

n ZVℎ bound of carcass weight in the payment grid Z = J1, ⋯ , Z=L 

934 
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Table 3. Abbreviations and description of the bioeconomic model inputs.  935 

Abbreviation  Description  Unit  

*�, Price of the first feed in phase p €/t 

*�,� Price of the second feed in phase p €/t 

PP Piglet price (weight: 25 kg)  €/piglet 

I6��[  Initial live weight of pig i of sex g kg 

936 
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Table 4. Quantities used in the bioeconomic model. 937 

Notation Description  Unit  

6�4
�[

 Live weight of pig i of sex g on day d kg 

(4
�[

 Feed intake of pig i of sex g on day d kg 

"&�[��, �, ��, �	
4� Feeding cost of pig i of sex g € 

#6$�[��, �, ��, �	
4� Selling price of pig i of sex g €/kg carcass weight 

2<
�[��� Vector of days belonging to phase p of pig i of sex g day  

"#$�[��, �, ��, �	
4� Final selling price of pig i of sex g € 

���[��, �, ��, �	
4� Gross margin of pig i of sex g € 

H2$�[�I6��� Additional price of piglet i of sex g € 

$�&�[  Cost of piglet i of sex g € 

  938 
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Table 5. Description of the four sets of analyses including objective, number of pigs per batch and 939 

seeds, and types of case studies used. 940 

1 Case studies simulated with one decision variable varying from lower to upper bound. 941 

R: reference strategy simulated, F: Feeding strategy optimized, S: Shipping strategy optimized, FS: Feeding 942 

and shipping strategies simultaneously optimized 943 

Set of 
analyses 

Objective Types of case studies Number of simulated pigs per 
batch and number of seeds 

1 Explore the behavior of 
the optimization 
procedure 

R1 10 and 400 pigs 

2 Define recommendation 
of use of the 
optimization procedure 

F  From 10 to 400 pigs 
 with 60 random seeds 

3 Explore some practical 
questions 

R, F, S, and FS  200 pigs with 20 seeds 

4 Explore effects of pork 
price 

F, S and FS 200 pigs with 20 seeds 
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Table 6. Description of the simulated and optimized case studies, indicating the decision variables (D) and their bounds during optimization. Asterisks 944 

indicate when they are considered as input parameters. 945 

 
 Case studies 

Simulated Optimized Bounds 
 R-1 R-2 F-1 F-2 F-3 S-1 FS-1 FS-2 Min Max 

Percentage of feed A in 
each phase (�1, �2) 

�1 = 100* (100*, 55*) D (100*, 55*) D (100*, 55*) D D 0 100 

Live weight at the diet 
change (
, kg) 

- 65* - D D 65* D D 30 120 

Target weight (��, kg) 116.4* 116.4* 116.4* 116.4* 116.4* D D D 110 130 

Maximum fattening 
duration (�	
4, day) 

108* 108* 108* 108* 108* D 108* D 100 125 

R: reference strategy simulated, F: Feeding strategy optimized, S: Shipping strategy optimized, FS: Feeding and shipping strategies simultaneously optimized946 



41 

 

Table 7. Mean (± 1 standard deviation) of gross margin, decision variables, and technical outputs obtained in the simulation and optimization case 947 

studies, run with 20 random seeds and 200 pigs per batch in the third set of analyses. Bold text indicates decision variables in each case study.  948 

Case 
studies 

Gross margin 
(€/pig) 

LW at the diet 
change (kg) 

(
) 

% of feed A 
in phase 1 

(�) 

% of feed A 
in phase 2 

(��) 

Target weight 
(kg) (��) 

Maximum 
fattening 

duration (days) 
(�	
�) 

Computational 
time (min) 

Slaughter 
weight (kg) 

Feed cost 
(€/pig) 

R-1 25.26e* ± 0.86 - 100 - 116.4 108 - 116.13c ± 0.51 47.91b ± 0.18 

F-1 29.28c ± 0.80 - 49.11 ± 4.04 - 116.4 108 14.99c ± 3.73 115.30d ± 0.60 42.49g ± 0.17 

R-2 28.37d ± 0.81 65 100 54.65 116.4 108 - 
115.79c,d ± 

0.46 
44.44d ± 0.15 

F-2 29.30c ± 0.82 38.26c ± 4.04 100 54.65 116.4 108 11.37c ± 3.24 
115.69c,d ± 

0.56 
43.22f ± 0.19 

F-3 29.78b,c ± 0.73 54.17a,b ± 2.84 69.51 ± 4.48 42.08 ± 3.41 116.4 108 24.27b ± 5.73 115.43d ± 0.36 42.45g± 0.17 

S-1 29.69b,c ± 0.89 65 100 54.65 124.27c ± 0.52 114.73a ± 2.06 13.33c ± 3.37 121.13a ± 0.57 48.16a ± 0.17 

FS-1 30.31b ± 0.84 52.97b ± 2.44 72.81 ± 3.34 46.83 ± 2.20 124.92b ± 0.87 108 26.25b ± 5.89 117.00b ± 0.68 43.47e ± 0.21 

FS-2 31.26a ± 0.84 55.70a ± 2.73 71.41 ± 4.67 40.22 ± 2.68 125.48a ± 0.42 113.65a ± 1.32 51.79a ± 6.38 120.73a ± 0.71 46.02c ± 0.17 

*Means that do not share a letter differ significantly according to the Tukey Honestly Significant Difference test, with α = 0.05 949 

LW = live weight  950 
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Table 8. Mean (± 1 standard deviation) of environmental impacts per kg live weight gain obtained in 951 

the simulation and optimization case studies, run with 20 random seeds and 200 pigs per batch in the 952 

third set of analyses.  953 

Case 
studies 

Climate change 
(kg CO2−eq.) 

Acidification 
(g SO2−eq.) 

Eutrophication 
(g PO4−eq.) 

Cumulative energy 
demand (MJ) 

Land occupation 
(m2 year) 

R-1 2.19a* ± 0.02 56.51a ± 0.67 19.11a ± 0.21 13.88a ± 0.10 3.72f ± 0.03 

F-1 2.02d,e ± 0.01 49.13e ± 0.47 16.93f ± 0.03 12.02f,g ± 0.08 3.84b,c ± 0.03 

R-2 2.07c ± 0.02 51.55c ± 0.53 17.63c ± 0.17 12.70c ± 0.08 3.76e ± 0.03 

F-2 2.03d ± 0.02 49.83d ± 0.56 17.12e ± 0.18 12.26d ± 0.09 3.79d,e ± 0.03 

F-3 2.01e ± 0.01 48.93e ± 0.42 16.87f± 0.13 11.98g ± 0.08 3.84b,c± 0.03 

S-1 2.11b ± 0.02 52.97b ± 0.61 18.09b ± 0.19 12.90b ± 0.09 3.85b ± 0.03 

FS-1 2.02d,e ± 0.01 49.23e ± 0.48 16.95f ± 0.15 12.09f ± 0.08 3.82c,d ± 0.03 

FS-2 2.06c ± 0.01 50.32d ± 0.46 17.32d ± 0.15 12.17e ± 0.06 3.94a ± 0.04 

*Means that do not share a letter differ significantly according to the Tukey Honestly Significant Difference 954 

test, with α = 0.05 955 
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