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Abstract

In a clinical decision support system, the purpose of case-based reasoning is to help clini-

cians make convenient decisions for diagnoses or interventional gestures. Past experience,

which is represented by a case-base of previous patients, is exploited to solve similar cur-

rent problems using four steps—retrieve, reuse, revise, and retain. The proposed case-

based reasoning has been focused on transcatheter aortic valve implantation to respond to

clinical issues pertaining vascular access and prosthesis choices. The computation of a rel-

evant similarity measure is an essential processing step employed to obtain a set of

retrieved cases from a case-base. A hierarchical similarity measure that is based on a clini-

cal decision tree is proposed to better integrate the clinical knowledge, especially in terms of

case representation, case selection and attributes weighting. A case-base of 138 patients is

used to evaluate the case-based reasoning performance, and retrieve- and reuse-based cri-

teria have been considered. The sensitivity for the vascular access and the prosthesis

choice is found to 0.88 and 0.94, respectively, with the use of the hierarchical similarity mea-

sure as opposed to 0.53 and 0.79 for the standard similarity measure. Ninety percent of the

suggested solutions are correctly classified for the proposed metric when four cases are

retrieved. Using a dedicated similarity measure, with relevant and weighted attributes

selected through a clinical decision tree, the set of retrieved cases, and consequently, the

decision suggested by the case-based reasoning are substantially improved over state-of-

the-art similarity measures.

Introduction

Aortic stenosis (AS) is the most commonly occurring valvular heart disease [1], and its sever-

ity, and prognosis are diagnosed using echocardiography. The management of patients is per-

formed by a multi-disciplinary team. This “heart team”, which consists in part of cardiologists,

cardiac surgeons, imaging specialists, anesthetists and cardiovascular nursing professionals,

have to consider several issues before making decisions [1,2]. The members of the heart team

have to review the medical condition of the patient (e.g., risk score and comorbidity), the
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clinical features, the anatomy, and technical factors (e.g., valve morphology, porcelain aorta).

According to clinical experience guidelines [1,3], the best treatment strategy is established

based on a benefit-risk assessment. In the case of severe AS, two strategies are considered: sur-

gical aortic valve replacement (SAVR) or transcatheter aortic valve implantation (TAVI).

TAVI was initially developed for patients who are not candidates for surgery or for high-

risk patients [4]. In just over the 15 years since it development, the technique has been shown

to be effective, revolutionizing the management of severe AS. TAVI is currently an alternative

treatment for intermediate-risk and low-risk patients [5,6]. This technique is continuously

being developed with the onset of novel clinical devices and recommendations, and this raises

new and complex issues about procedure planning, the anticipation of complications and

patients’ options to avoid futile gestures [7]. Options to be decided on include whether the

approach taken would be the vascular access route or the valve prosthesis type. The patient-

specific decision-making process, which is based on anatomical and clinical characteristics as

well as clinicians’ own prior experience, raises difficulties related to the comprehension of

available, useful and relevant data.

In this paper, a clinical decision support system (CDSS) [8] that relies on case-based reason-

ing (CBR) is introduced, with the goal of helping practitioners to make decisions about the

TAVI procedure.

The main concept of case-based reasoning is to learn from previous experiences, even with

a limited number of previous patient cases. This accumulated knowledge plays an essential

role in decision making when facing new problems. The basic assumption of a CBR system is

that similar cases should have similar solutions. CBR differs from other major artificial intelli-

gence (AI) approaches, especially those that are based on learning process such as machine

learning (ML), or other knowledge-based systems (e.g. rule-based reasoning—RBR) [9,10].

CBR learns from previously processed cases, and the knowledge is progressively acquired [11].

The learning process is more evolutive than ML methods that require a special training phase,

which is applied once from large datasets, to make future predictions. While CBR uses specific

knowledge in the form of previous experience (the solved cases in the case-base), RBR, which

is considered as pattern matching, represents general knowledge through a set of rules (if-then

statements) [9,10]. The increased knowledge and experience in CBR becomes an advantage for

medical applications when devices or clinical guidelines are continuously developed.

A case is represented by a set of attributes, which are obtained from clinical data and which

can have different types. The CBR is composed of four steps: retrieve, reuse, revise, and retain
[9,11]. The retrieve step is mandatory and requires data processing to evaluate reliably the sim-

ilarity between cases and to recover relevant past cases. The other steps are defined according

to the application, and users may be required to make decisions on reuse, revision, and case

retention after the application and evaluation of the proposed solution. CBR does not need a

substantial database. Even if the case-base increases according to the intended use of the CBR,

the case-base is maintained by keeping useful and relevant information [12,13].

CBR has already been applied in various domains, such as statistical quality control [14],

chemical engineering [15], signal-interpreting systems [16], and health science [17–19]. In the

medical domain, according to a survey [17,18], CBR systems have different applications, such

as diagnosis [20–22], classification [23–25], tutoring [26], planning [27,28], and knowledge

acquisition [29]. Most of these CBR applications have been developed for specific diseases. Gu

et al. [30] proposed a CBR to improve the accuracy of breast cancer recurrence prediction, and

Bentaiba-Lagrid et al. [31] reported an approach to classify mammography mass and thyroid

diseases. Torrent-Fontbona et al. [32] developed a CBR, using a numerical solution as an out-

put rather than predetermined class labels to quantify the bolus insulin dosage. CBR has also
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been recently used for medical image processing applications, e.g., to improve kidney tumor

segmentation as reported by Marie et al. [33].

Recently, CBR systems have been developed using AI techniques. These hybrid CBR sys-

tems have been coupled with rule-based reasoning (RBR) [21,22], fuzzy logic [34], data mining

[35], neural networks [36], and genetic algorithms (GAs) [17,20]. Such combinations have

been reported for the different steps of the CBR. Recently, Homem et al. [37] used a partial

reinforcement learning algorithm to learn cases and to perform case-based maintenance in the

context of robot-soccer. Gu et al. [30] combined ensemble learning with CBR to explain breast

cancer recurrence prediction. Saraiva et al. [22] used rule-based reasoning to improve the

retrieve step in the diagnosis of gastrointestinal cancer.

CBR has recently been considered as a useful decision support system for the diagnosis of

clinical questions [17,18]. It is suited to medical problems, where knowledge is continuously

evolving and where cases include many features [17]. For treatment purposes, CBR has the

advantage of providing similar historical cases in addition to predictions. These similar cases

provide a large amount of relevant information for decision making about the current patient,

such as procedure and patient outcome after several months.

The feasibility of designing CBR for TAVI has been previously reported in [38]. That work

concentrated on the overall framework and its integration in the clinical workflow, but did not

focus on investigating the similarity functions. A classical definition of a similarity measure

was used, and only a simple representation of cases was considered. In the retrieve step, differ-

ent techniques can be used to obtain similar cases. While the most common retrieval technique

has been the nearest neighbour retrieval (k-NN), a few CBR systems have used inductive or

knowledge-guided approaches [17,39–41]. The similarity measure has represented a decisive

part in the context of nearest neighbour retrieval. Wilson and Martinez [42], Lesot et al. [43],

and Choi et al. [44] presented different comparison studies about similarity measures that

have been used in various applications (e.g., data mining, data analysis, or information

retrieval). Other research works studied the similarity measures in CBR systems, such as stud-

ies by Liao et al. [45], Núñez et al. [46], Avramenko and Kraslawki [15], and more recently, Gu

et al. [20]. These different studies emphasized that the types of different attributes representing

a case influenced the performance of the similarity measure, as did their degree of importance

and the consideration of missing values.

Our proposed approach focuses on defining a relevant similarity measure to retrieve similar

past cases. Depending on to the decision to be made, different issues have been addressed

when defining the similarity measure, such as the choice of metrics, the selection of attributes,

their degree of importance, and their mode of combination. In the design of the hierarchical

similarity measure, the experience and reasoning of the “heart team” have been incorporated

by the building of a clinical decision tree (CDT).

In the remainder of this paper, a description of related works about similarity measure is

presented. The characteristics of the CBR framework that are deployed for the planning of the

TAVI procedure are then presented in detailed. Next, the new hierarchical similarity measure

based on the CDT presented, as well as the criteria used for evaluation. Finally, the results are

presented and discussed for a case-base of patients who underwent the TAVI procedure.

Related work

To obtain similar cases in the retrieve step, similarity measures are generally computed using

dissimilarity measures (Eq 1) [42,47]. Most of the CBR system used a similarity measure that is

based on a generalised weighted distance metric (Eq 2). The dissimilarity measure diss(Cc, Ci)

between the candidate case Cc and a past case Ci is computed using the weighted sum of the

PLOS ONE Similarity measures and attribute selection for case-based reasoning in TAVI

PLOS ONE | https://doi.org/10.1371/journal.pone.0238463 September 3, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0238463


attribute differences and is in the range [0,1]. wa corresponds to the weight of attribute a, and

d(Cc,a, Ci,a) represents the distance between the attribute a in cases Cc and Ci. n represents the

number of attributes considered.

simðCc;CiÞ ¼ 1 � dissðCc;CiÞ ð1Þ

diss Cc;Cið Þ ¼

Pan
a¼a1

wadðCc;a;Ci;aÞ
Pan

a¼a1
wa

ð2Þ

A variety of distance measures were available, such as the Minkowski, Camberra, Cheby-

chev, Mahalanobis, Cosine, and Jaccard metrics [42–44,48]. A large number of CBR systems

used the weighted Euclidean distance. Although most attributes are quantitative, the Euclidean

distance and the other distance metrics are not suitable for all data types.

The Euclidean distance is more appropriate for continuous quantitative values. A few

works [14,15] converted ordinal attributes to discrete values. An integer value was assigned to

each category (for example, 1 for Mild, 2 for Moderate and 3 for Heavy.). Afterwards, the dis-

tance measure between these integer values could be used to compute their degree of similar-

ity. However, this type of discretisation was not applicable or suitable for a few of the cases.

The ratio between each category may be different, and this value inconsistent.

Another solution was to use a heterogeneous distance measure [20,42]. Wilson and Marti-

nez [42] proposed a distance function, the heterogeneous Euclidean-overlap metric (HEOM,

S1 Appendix), which used the overlap metric for qualitative (i.e., nominal) attributes and the

normalised Euclidean metric for quantitative attributes. The weighted heterogeneous Euclid-

ean-overlap metric (WHEOM) represented the HEOM metric, where each attribute is

weighted.

Wilson and Martinez explained that the HEOM metric corresponded to a simplistic

approach for the qualitative attributes [42]. Whether the values of the nominal and ordered

attributes were quite similar or different, their contributions were equivalent owing to the

binary process used in the distance computation. They proposed to use another metric, the

value difference metric (VDM), which was introduced by Stanfill and Waltz [49], instead of

the overlap metric. The heterogeneous value difference metric (HVDM) combined the benefits

of the Euclidean distance and VDM on the quantitative and nominal attributes, respectively.

An increasing number of CBR systems have used the heterogeneous similarity measure

with the Euclidean distance for the continuous quantitative attributes. However, they had a

different approach for qualitative attributes. Sheraf-El-Deen et al. [21] and El-Fakdi et al. [38]

used as a basis a weighted heterogeneous distance metric in their retrieve step (generalised

weighted heterogeneous similarity measure–GWHSM), while Gu et al. [20,30] opted for the

WHVDM metric. Guessoum et al. [50] determined the similarity between qualitative attributes

by employing a similarity matrix built from expert knowledge. GWHSM [38] makes use of the

Euclidean distance for numerical attributes and the Hamming distance for the categorical data

(S1 Appendix). Attributes are discarded if the value is unknown in a case. Missing values do

not play any part in the similarity measure.

In addition to the metrics formulation, the weight of the attributes has an important impact

in case retrieval. Weighting and scaling were used to reflect the importance of attributes in

decision-making. Several ways to establish weight have been reported. They were fixed thanks

to expert knowledge [17], making them interpretable and not database dependent. Learning-

based approaches, such as GAs [17,51] were also used to weight the attributes. However, some

CBR systems assigned the same importance to each attribute [38]. The management of missing

values is also an issue in the similarity measure, and different approaches have been proposed
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[45,52,53]. Some CBR systems [38] discard the attribute when a value is missing. Other

approaches estimate the distance between two case attributes when at least one of them is miss-

ing [50] or tried to complete the voids directly in the case-base before using the CBR system.

CBR framework in TAVI application

This section presents the CBR concept that is proposed for TAVI. From our perspective, the

main goal of clinical CBR is to support the practitioner in decision-making. One of the first

intentions of this clinical CBR is to integrate the reasoning of practitioners in the system. For

TAVI, the decisions are related to the procedure characteristics: the implanted valve type,

valve diameter, and type of planned access. In clinical routines, practitioners follow the guide-

lines and decision trees, which they would have developed through experience. Given the rele-

vance of decision trees in the reasoning process, we choose to integrate them in the retrieve

step, i.e., in the proposed similarity measure.

Data and case definition

The dataset used in this paper was retrospectively constituted from patients included at the

University Hospital of Rennes in the registry FRANCE TAVI. Patients provided written

informed consent for the procedure and for the anonymous processing of their data. The regis-

try was approved (NCT01777828) by the Institutional Review Board of the French Ministry of

Higher Education and Research and by the National Commission for Data Protection and

Liberties.

A case, i.e., a patient, which is the central notion in a CBR system, represents the experience

of physicians. The set of past cases is used to build the case-base CB. Each case Ci(a,s,r)2CB is

composed of three categories of data that are specifically collected during the aortic valve

implantation (Fig 1):

• the description of the problem represented by a feature vector a = (a1, a2,. . .,an), where n is

the number of attributes (clinical attributes from patient characteristics and medical imaging

such as the age or the diameter and calcification state of the aortic annulus),

• the solution s (procedure characteristics, such as the choice of the vascular access),

• the results r (procedure outcome, such as the procedure success, the annulus rupture, and

the post-procedure aortic valve area).

S2 Appendix presents in detail the different data used in the clinical routine, and which was

considered in the CBR module for TAVI application. These clinical attributes are used in dif-

ferent steps of the CBR process. Their similarities between different patients are exploited in

order to propose a relevant solution for decision support. The input attributes acquired in the

feature vector a can be of different types:

• continuous and discrete quantitative attributes such as diameter, area of the aortic annulus,

and age,

• qualitative attributes that are ordered, called ordinal attributes, such as the tortuosity or the

calcification of the different arteries,

• qualitative attributes that correspond to the Boolean category, such as the presence of calcifi-

cation in the left ventricular outflow tract (LVOT).
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CBR solving cycle

The operation of CBR is based on human–machine cooperation. The reasoning system makes

suggestions, but the user remains in control of the final decision. CBR thus makes use of the

complementarity between the practitioner (reasoning and decision to take) and the machine

(computation).

The solution Ci,s of the past cases Ci stored in the case-base is already known. However, the

new case Cc(a,;,;), from which the CBR will be executed, is not in the case-base (Cc=2CB) and

its solution Cc,s is still unknown. Based on the four steps presented in the Fig 2, the goal of

CBR is to support the physician to make the most suitable decision about the solution Cc,s.

Fig 1. Three attribute categories of a clinical case in the TAVI database.

https://doi.org/10.1371/journal.pone.0238463.g001

Fig 2. CBR steps.

https://doi.org/10.1371/journal.pone.0238463.g002
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The retrieve step involves computing the similarity between cases to highlight the set of the

most similar previous cases based on the k-NN algorithm. Using the graphical user interface

(GUI), the user selects the value of k before launching the retrieve step. The design of the simi-

larity measure, which include a clinical decision tree, is presented in detail in the following

section.

In the reuse step, the CBR suggests a solution ss from the set of k most similar cases. This

step can be solved as a classification problem, where the class of the current case Cc has to be

determined. Different methods [38,47] enable determination of the class, i.e. the solution, of

the current case Cc. As shown in Eq 3, a democracy voting weighted both by the distance and

the rank of the similar cases is proposed. (s, Ci,s) returns 1 if the solution of the past case Ci,s

corresponds to s, and 0 otherwise. ranki denotes the ranking of the past case Ci2CB in the set

of k retrieved cases. It enables more weight to be assigned in the first similar cases for the class

determination. diss(Cc, Ci) represents the distance value between the current candidate case Cc

and a past case Ci.

Vote sð Þ ¼
Pk

i¼1

1

dissðCc;CiÞ
ðkþ 1 � rankiÞðs;Ci;sÞ ð3Þ

ss ¼ arg max
s
ðVoteðsÞÞ

The results of the CBR for a case are displayed in a user-friendly interface to facilitate the

relevant information derived from the set of k similar cases, and to enable the complete inte-

gration of the practitioner in the reasoning system. The most relevant attributes, such as the

procedure outcomes, are displayed for each similar case. For each possible solution s, the cor-

responding vote(s) obtained in the reuse step is converted into a percentage (vote(s)×100/

∑svote(s)). It is then used to represent the level of confidence in the solution, and to allow the

user to appreciate the reliability of the suggested solution.

The user participates directly in the two last steps. The clinician has evaluated and applied

the suggested solution ss. This suggested solution of the current case Cc then becomes the con-

firmed solution Cc,s.

In the revise step, the information about the solution Cc,s and the result Cc,r (i.e., the proce-

dure outcomes) are incorporated into the current case Cc(a,s,r) through the GUI.

In the retain step, if the user considers that the revised case provides relevant information,

the retention of the case is performed through the GUI to update the case-base. The GUI allows

the user to add a new solved case or to choose to remove a previous solved case in the case-base.

The user can also add information about the follow-up of the patient. Thus, the CBR continu-

ously acquires knowledge by learning from the cases that have already been processed. When a

candidate case is retained, the associated retrieved cases are also memorized. As our work

focuses on the retrieve and reuse steps, this information is not currently processed in the CBR,

but it could be used to complete the learning process in a future version to automatically iden-

tify relevant cases and to strengthen the retain step, which is always under the user’s control.

Hierarchical similarity measure

The quality of the results given by the CBR system depends mainly on the definition and the

performance of the similarity measure. The definition of a convenient similarity measure rep-

resents an important issue at the retrieval stage. The goal is to help the practitioner to make

decisions about the vascular access, the type and the size of the prosthesis. Our approach relies

on the definition of a dedicated metric from clinical attributes, which is available in the clinical

database, combined with attribute selection and weight determination through CDTs.
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Clinical Decision Trees (CDTs)

It is essential to consider relevant attributes in the similarity measure. According to the different

decision levels, the attributes in the case-base do not have the same importance. From expert

knowledge and the literature (guidelines [1–3], expert consensus [2], and medical papers [6]), the

rules (which translate contraindications or preferences) and questions related to the decision mak-

ing process have been highlighted. They can be separated according to the type of decision: which

vascular access, which type and size of prosthesis. They have been represented using a CDT for

each type of solution supported by the CBR (Fig 3). A few rules may change depending on the

hospital and physician as well as the improvement of devices (e.g., prosthesis and catheter) and

new guidelines. These differences can be easily considered in the CDTs that are used in the CBR.

With respect to the vascular access, the left and right trans-femoral accesses are used in

most cases (more than 80% of the cases [2,6]). Then, the left trans-subclavian access or the

trans-carotid access is preferred depending on the hospital centre. In the current case-base, the

trans-carotid was not considered. The trans-aortic and trans-apical vascular accesses are

increasingly infrequent because they are more invasive. Further, they are highly contraindi-

cated for elderly patients. Specific decision rules and conditions must be respected in hierar-

chical order for each type of vascular access. For example, for the trans-femoral access, the

diameter of the arteries is first examined to determine if these two accesses may be used during

the intervention. If the diameters of the left and right arteries are adequate, the tortuosity and

the calcification are then checked. In addition, previous diseases on femoral arteries represent

a contraindication for use of this vascular access. A previous aneurysm or thrombus means

that arteries are frailer, and the risk of dissection is higher during the intervention.

The type and size of the prosthesis are linked, and they both represent the characteristics of

the device. The different available prostheses do not have the same range of sizes. For example,

the Medtronic CoreValve Classic exists in 23, 26, 29, and 31 mm while the Edward Sapien XT

is available in 20, 23, 26, and 29 mm. As mentioned above, decision rules can be highlighted

with respect to these questions. The most important attributes for the size decision are the

Fig 3. Attribute hierarchy in CDTs. Left: the CDT used in TAVI for the vascular access choice. Right: the CDT for the

prosthesis choice (both type and size). TF: trans-femoral, SC: left trans-subclavian, TAo: trans-aortic, TA: trans-apical.

https://doi.org/10.1371/journal.pone.0238463.g003
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dimensions (area and diameter) of the aortic annulus. In terms of prosthesis type, the choice

depends on the vascular access that was selected previously. For example, if the trans-apical

access is used, the Edward Sapien XT valve would be implanted, and operators would use the

Medtronic CoreValve for the left trans-subclavian access. When both prosthesis types can be

deployed, operators often choose according to their practice and preference, providing that

there is no contraindication. The authors in [38] separately treated the choice of prosthesis

type and size. In our approach, we propose only one decision for the prosthesis, as type and

size are closely related. In this way, the considered CBR is constrained, thus avoiding the pro-

posal of an incoherent combination of type and size of prosthesis.

Even though the selected attributes are relevant in terms of decision-making, they do not

have the same influence depending on their level in the CDT. Attributes in the root present a

higher importance in the decision-making process than attributes near the leaves. For instance,

for the decision related to the vascular access, the minimum diameters of the iliac arteries are

among attributes considered in the first level of the CDT because trans-femoral access is first

preferred clinically.

Distance metric

The clinical decision-making process is inherently hierarchical, and the reasoning and knowl-

edge of the clinician are transposed through the CDT. Even if all the attributes of the CDT can

be considered (weighted) using classical similarity measures, they can hardly be used to formu-

late the CDT hierarchy which implies a non-linear combination of the distance relative to the

attributes. The proposed hierarchical heterogeneous similarity measure H_WHSM (Eq 4) also

exploits the hierarchy of the CDT to select relevant attributes and to weight them.

H WHSMðCc;CiÞ ¼ 1 � dissLðCc;CiÞ ð4Þ

with dissl Cc;Cið Þ ¼

Pan;l
al¼a1;l

wal
dðCc;al

;Ci;al
Þ

Pan;l
al¼a1;l

wal

and l 2 1; L½ �

l corresponds to the current level in the CDT, and L is the height of the CDT. Ci with i 2 0; m=2l½ � rep-

resents a retained case in the case-base, and m is the total number of cases in the case-base. dðCc;al
;Ci;al
Þ is

calculated for each attribute a that is available in the CDT, and it is defined according to the type of

attribu (Eq 5).

dðCc;al
;Ci;al
Þ ¼

dEðCc;al
;Ci;al
Þ if Cc;al

and Ci;al
are quantitative

dHðCc;al
;Ci;al
Þ if Cc;al

and Ci;al
are binary

doðCc;al
;Ci;al
Þ if Cc;al

and Ci;al
are ordinal

dMðCc;al
;Ci;al
Þ if Cc;al

or Ci;al
are missing

ð5Þ

8
>>>>><

>>>>>:

with dEðCc;al
;Ci;al
Þ ¼
jcc;al � ci;al j
rangea

dHðCc;al
;Ci;al
Þ ¼

0; if Cc;al
¼ Ci;al

1; if Cc;al
6¼ Ci;al

for Cc;al
;Ci;al

2 fyes; nog

(

dOðCc;al
;Ci;al
Þ ¼ O½Cc;al

�½Ci;al
�

dMðCc;al
;Ci;al
Þ ¼ 0; 5
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The Euclidean distance dEðCc;al
;Ci;al
Þ is computed for quantitative attributes, and the Ham-

ming distance dHðCc;al
;Ci;al
Þ is used for binary attributes. For each type of ordinal data, a dis-

tance matrix dOðCc;al
;Ci;al
Þ is built according to expert knowledge. This matrix converts the

distance between two ordinal attributes to a quantitative value, which is normalized within the

range [0,1]. The matrix determines how two attribute values are dissimilar according to the

decision to be make. The categories that are considered in an ordinal attribute do not linearly

qualify its influence on decision-making. Depending on the attribute, the decision can be

influenced in very different proportions when the grade goes from Mild to Moderate or when

it goes from Moderate to Heavy. This is why the distance transcribing the difference between

two grades is assessed empirically by an expert clinician. Table 1 presents an example of the

distance matrix used for the attribute relative to calcification. The distance between the attri-

bute Mild and Moderate is 0.2, i.e., dOðCc;al
;Ci;al
Þ ¼ 0:2 with Cc;al

¼ Mild and Ci;al
¼ Moderate.

In terms of decision making, an artery with no calcification is quite similar to an artery with

mild calcification. Even if the decision is different, the grades Heavy or Massive are also consid-

ered close. The distance value transcribing the gap between No and Mild is lower than the one

transcribing the gap between Moderate and Heavy. Moreover, an online approach [50] is used

to manage the missing value, if necessary. The neutral approach was chosen, which gives

directly the value 0.5 as distance dM between attributes.

The expression of the metrics dissl constituting H_WHSM (Eq 5) is adapted according to

each level l of the CDT. The different evaluation steps resulting in the complete metric dissL
are presented in detail in Algorithm 1. Starting with the first level of the CDT (Fig 3), only the

most relevant attributes al = (a1,l,a2,l,. . .,an,l), with l = 1, are considered in the evaluation of

dissl. According to the computed distance value, a selection of past cases is made to keep only

half of the most similar ones. The next levels of CDT are then considered. For each level, the

distance metric dissl is updated by considering the attributes present both in the previous levels

and in the current level l of the CDT. At the end of the process, only the m/2l most similar

cases are retained and the distance dissL enables the set of retrieve cases to be obtained.

The weighting scheme of H_WHSM makes use of the CDT. As it is expert knowledge-

driven, it relies on the hierarchy of the attributes in the CDT. The attributes in the first level of

the CDT, such as the aortic valve area for the type and size of the prosthesis (Fig 3), have more

importance in the decision-making process than attributes in the other levels. The weights wal
,

which are normalised within the range [0,1], are computed according to the attribute level la in

the CDT, while considering the total number of levels L (Eq 6).

wal
¼ ðL � la þ 1Þ=L; with la 2 ½1; L� ð6Þ

Algorithm 1: Computation of the similarity measure H_WHSM
Input: the initial case-base CB0, a case Ci2CB0 with i2[0,m], and m is
the total number of previous cases, Cc is the current candidate case,
which is the CDT of L levels.
Output: dissL(Cc,Ci) with Ci2CBL−1, and consequently H_WHSM(Cc,Ci)

Table 1. Example of distance matrix O used for the attribute calcification (ordinal data).

No Mild Moderate Heavy Massive

No 0 0.15 0.5 0.90 1

Mild 0.15 0 0.2 0.5 0.7

Moderate 0.5 0.2 0 0.2 0.5

Heavy 0.90 0.5 0.2 0 0.15

Massive 1 0.7 0.5 0.15 0

https://doi.org/10.1371/journal.pone.0238463.t001
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begin
1: For each level l2[1,L] of the CDT do
2: al = (a1,l,a2,l,. . .,an,l) // Attribute selection: to get all attri-
butes in the CDT from level 1 to l
3: Compute the weight wal

of each attribute al according to Eq 6
4: For each case Ci2CBl−1 with i2[0,m/2l] do
5: Compute dissl(Cc,Ci) //Eq 4
6: End for each
7: If m/2l>20 and l6¼L //the case-base cannot have less than 20 cases
8: Keep in CBl only half of the most similar cases Ci with i2[0,
m/2l] //Case selection
9: End if
10: End for each
11: Compute H_WHSM(Cc,Ci) //Eq 4
end

Evaluation approach

For evaluation purposes, the hierarchical weighted heterogeneous similarity measure

H_WHSM is compared with two state-of-the-art similarity measures, which are presented in

detail in S1 Appendix. In HEOM, no attribute selection and weighting scheme are performed

[42]. GWHSM enables attributes to be weighted, even though they were set to 1 in the results

reported in [38]. To compare the similarity measure based on expert knowledge and the CDT,

a learning-based approach is used as a weighting scheme in GWHSM_GA. Using a GA to

learn attribute weights; no prior expert knowledge is integrated in this last approach. GAs have

already been adopted successfully in several CBR systems for weight determination [20,51]. In

this approach, a floating-point chromosome representation is used to represent an individual.

Each individual of the population in the GA represents a particular weight of the attributes of

the similarity function. To calculate the fitness of each individual, the leave-one-out cross vali-

dation technique is employed. The average performance obtained using the weights for the

similarity function is calculated by repeatedly removing a case with a known solution from the

case base, the so-called target case, retrieving the most similar case from the remaining cases in

the case base and comparing the solution of the retrieved case with the actual solution of the

target case. The fitness function is defined as the precision (TP/(TP+FP)) of the number of

solutions that are correctly proposed. The used evolutionary operators are crossover, mutation,

and elitism (elitist selection). The best weight determination was obtained with the following

configuration. The crossover rate is 0.75 and the mutation rate is 0.20. The number of genera-

tions that are used in the GA is 300. The proposed GA uses the roulette-wheel selection

method. Elitism is used, and ensures that individuals in the top of 30% with respect to their fit-

ness are taken to the next generation.

These three similarity measures imply different combinations related to the weighting

scheme and attribute selection, and they are summarized in Table 2.

To evaluate the similarity measure performance through cross validation, two evaluation

criteria were considered. The first way to evaluate the performance of the similarity measure

Table 2. Overview of the similarity measures.

Similarity measure Attribute selection Attribute weight Case selection

H_WHSM Yes—CDT Yes–CDT Level and Hierarchical process Yes

HEOM No No No

GWHSM_GA Yes Yes–GA No

https://doi.org/10.1371/journal.pone.0238463.t002
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was to analyse the set of k similar cases that are obtained after the retrieve step: the retrieve-

based criterion. For each candidate case Cc, it is expressed as the number of cases with the cor-

rect solution Cc,s among the set of k retrieved cases.

Another way to evaluate the performance of the similarity measure was to analyse the cor-

rectness of the decision suggested by the CBR at the end of the reuse step: the reuse-based cri-

terion. From the set of k most similar cases obtained through a given similarity measure, only

one suggested solution was highlighted owing to Eq 3. The candidate case Cc was assumed to

have been correctly classified when the suggested solution ss was the same as the confirmed

solution Cc,s, i.e., the one that has been applied during the intervention.

The evaluations were performed on a real case-base of patients who underwent a TAVI pro-

cedure. To analyse the influence of the case-base content on the results, additional cases were

also generated from the real data. The data augmentation process was used to double the size

of the case-base with the generated cases. From a real case Ci(a,s,r)2CB, where CB is the real

case-base, all attributes Ci,a describing the problem were modified to obtain the generated

case. The solution Ci,s and result Ci,r were not changed. The distribution of generated cases

remains the same as in real cases. The value of attributes resulting from the measurement was

randomly modified to be consistent with the solution of the case. For instance, the area of the

aortic valve has been specified in the range recommended by the device manufacturer

(Instruction For Use) for a given prosthesis size. Other quantitative attributes, such as the age,

weight, and height (and consequently the body mass index and body surface area), were also

randomly modified until +/- 10% while respecting a clinically coherent interval. Categorical

attributes had their value randomly modified with the upper or lower grade (or there were left

identical).

Results

The real case-base that was used for the evaluation is composed of patients who underwent a

TAVI procedure. For all patients, the attributes used in the CBR (patient and procedure char-

acteristics) were directly obtained from data routinely available in clinical routines (S2 Appen-

dix). There was no missing value in the dataset. Fig 4 shows the distribution of the 138 cases in

the augmented case-base according to the two clinical decisions that were considered: the vas-

cular access and the prosthesis (both type and size). Five vascular accesses are represented in

the case-base. The number of cases with trans-femoral access (both the right and left sides) is

consistent with that in the literature (around 80% [2,6,7]). Four combinations of prostheses

Fig 4. Distribution of cases in the augmented case-base according to the decision type (vascular access and

prostheses). The number in bracket represents the number of real cases.

https://doi.org/10.1371/journal.pone.0238463.g004
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are available: the Edwards Sapien XT in 23 mm and 26 mm, and the Medtronic CoreValve in 26

mm and 29 mm, respectively.

After retrieving the set of similar cases, the CBR software displays the relevant information

for decision making in the form of charts and tables (Fig 5). First, the k similar cases are tran-

scribed with relevant attributes in a table on the right of the GUI. They are sorted according to

their distance with the candidate cases. These distances are also shown in the polar chart. The

suggested solution, which is computed using the Eq 3 in the reuse step, is presented as the

higher percentage in the bar chart, and represents the confidence in solutions suggested

(already applied in the set of past cases). Both suggested solutions with respect to vascular

access and prosthesis are computed by the CBR, and can be displayed in the GUI according to

the selection made by the user (radio button at the top-right).

Retrieve-based criterion

The first results relate to the global behaviour of the similarity measures when only the most

similar case (k = 1) is retrieved. The similarity measure H_WHSM introduced in this work was

compared using a leave-one-out cross validation, with the two state-of-the-art similarity mea-

sures: HEOM and GWHSM_GA (Table 2).

Fig 6 shows the true positive rate (TPR) and the false positive rate (FPR) obtained in the

leave-one-out cross validation for the vascular access and prosthesis decisions. The similarity

measures are evaluated for the three case-bases that containing the real cases, the generated

cases, and both cases (global case-base). For all case-bases, the best results were obtained with

the hierarchical similarity measure H_WHSM, which surpass the state-of-the-art similarity

measures. With the global case-base, the TPR reaches 0.94 for the prosthesis choice, and almost

0.9 for the vascular access decision.

In the next section, the CBR performance is examined using each possible solution available

in the global case-base. Figs 7 and 8 show the specific results for the three similarity measures:

H_WHSM, HEOM, and GWHSM_GA. The sensitivity and specificity of the similarity mea-

sures are computed for each possible solution when only one similar case is retrieved (k = 1).

We assume that this most similar case has a higher probability to have the correct solution. We

Fig 5. GUI screenshot of a vascular access result with H_WHSM and k = 5.

https://doi.org/10.1371/journal.pone.0238463.g005
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observe that the sensitivity value obtained with HEOM and GWHSM_GA is low for some solu-

tions, such as the trans-apical access or the prosthesis Medtronic CoreValve 26mm. For

H_WHSM, the specificity values are always higher than those obtained with the two state-of-

the-art similarity measures. It should also be noted that lower specificity and sensitivity values

are obtained for the trans-femoral access (both the right and left sides). When the trans-femo-

ral access is considered as a single access irrespective of the side, the sensitivity and specificity

of H_WHSM increase and reach 0.98 and 0.97, respectively, for the global case-base.

As the value of k can be chosen by the user, the following results describe the behaviour of

the similarity measures when its value increases in the range k2[0;7]. In these results, the maxi-

mum number of most-similar cases (k = 7) is set to 10% of the total number of real cases. A

higher value could be chosen, which can lead to a less accurate suggested solution. In addition

to representing a large amount of information, the retrieval of too many cases would be unnec-

essary and would distort the user’s decision. By setting the maximum value of k to 10% of the

total number of real cases, which is assumed to be an upper limit, its impact on the results can

Fig 6. True positive rate (TPR) and false positive rate (FPR) for similarity measures according to the two

decisions when k = 1. The leave-one-out cross validation results are reported for real cases (A) and generated cases

(B), and for both real and generated cases (C).

https://doi.org/10.1371/journal.pone.0238463.g006

Fig 7. Sensitivity of similarity measures when one similar case is retained (k = 1) for the different solutions,

computed from the leave-one-out cross validation on the global case-base.

https://doi.org/10.1371/journal.pone.0238463.g007
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be determined. Because HEOM gives almost the worst result, as shown previously, only

GWHSM_GA, which also selects and weights the attributes, is kept for comparison purposes.

Hereafter, the evaluation is performed using a cross validation with the real case-base as the

training dataset and the generated case-base as the testing dataset. A candidate case Cc is now

considered as correctly classified when the correct solution Cc,s appears at least once among

the k retrieved cases. This analysis represents a consistent indicator of performance as the final

decision is left to the user.

Fig 9 describes the percentage of cases that are correctly classified when k2[1;7]. The per-

formance increases significantly with the value of k reaches 90−100% for each similarity mea-

sure. A sharp increase is seen between the lowest values of k. For instance, there is a gap of 20%

to 40% between k = 1 and k = 3, with the exception of H_WHSM, which already exhibits a per-

formance close to 100% for the prosthesis choice when k = 1. For both decisions, the proposed

measure H_WHSM improves the results for all k values. For the highest values of k in the

Fig 8. Specificity of similarity measures when one similar case is retained (k = 1) for the different solutions,

computed from the leave-one-out cross validation on the global case-base.

https://doi.org/10.1371/journal.pone.0238463.g008

Fig 9. Percentage of cases where the correct decision appears at least once into the k most similar cases for (A) the

vascular access and (B) prosthesis choice.

https://doi.org/10.1371/journal.pone.0238463.g009
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prothesis choice decision, the two measures present a similar performance. However, com-

pared to GWHSM_GA, H_WHSM enables a better set of k retrieved cases to be obtained.

Reuse-based criterion

The reuse-based criterion is based on the suggested solution given by Eq 3. Fig 10 describes for

k = 1 and k = 4 the percentage of cases that are correctly classified according to the solution

that is suggested for the vascular access and the prosthesis choice decisions. As was the case

previously, the evaluation was performed, using a cross validation. The real cases are used to

constitute the case-base and the training dataset. The generated cases constitute the validation

dataset. As previously highlighted, the performance of H_WHSM gives the best proportion of

cases correctly classified for the different values of k. Compared with GWHSM_GA, there are

significant differences between the percentages of cases that are correctly classified. When the

four most similar cases are selected (k = 4) for the prosthesis choice, 90% of the suggested solu-

tions are correct for H_WHSM as opposed to 63% for GWHSM_GA. The same trend can be

observed with k = 1. Results show that the best choice for k is not the same between vascular

access and prosthesis choice. Overall, the value of k has little influence with respect to only the

suggested solution, but it increases information about similar cases that are provided to the

user through the GUI.

Discussion

In order to support clinical decisions pertaining to vascular access and prosthesis choices in

TAVI, we focused on the similarity measure which is a key component of the CBR. We exam-

ined the importance of considering CDTs and the selection of relevant attributes.

A weighted hierarchical similarity measure H_WHSM was proposed, and compared with

two state-of-the-art similarity measures. These three similarity measures have different charac-

teristics. Because the case-base did not have incoherent attributes (S2 Appendix), HEOM was

considered as the basic similarity measure, using all the attributes of the case-base without

weighting. Nevertheless, although the attributes were all related to the medical problem, they

were not specifically linked to one decision. GWHSM_GA was used as a weighted similarity

measure to select decision related attributes, even though results were initially reported with

the weight fixed to 1 [38]. In our study, a GA was used to tune the weights that were allocated

to the different attributes. The proposed similarity measure H_WHSM included a CDT in its

definition. This hierarchical approach exploited the CDT to select the most similar cases pro-

gressively as well as to weight attributes. Two types of evaluations were performed., and they

were related to the set of similar cases (retrieve step) and to the suggested solution (reuse step).

Fig 10. Percentage of suggested solutions that are correctly classified obtained for both decisions and two values

of k with real cases as the training set and generated cases as the validation set.

https://doi.org/10.1371/journal.pone.0238463.g010
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Regardless of the application that is envisaged, most works reported in the literature evalu-

ated their CBR for a given k using the suggested solution at the end of the reuse step. In our

approach, the choice of the number of k similar cases is left to the user. Experimental tests

showed that the results obtained with H_WHSM were weakly impacted by the k value. For

instance, the retrieval of four similar cases rather than one has little influence on the suggested

solution. However, it gives more information to the user about the coherence of the possible

solutions.

The selection of relevant attributes and the weighting scheme was believed to have a signifi-

cant influence on the similarity measure. To examine further the importance of using the CDT

for the selection of attributes, we presented the results that were obtained with the similarity

measure that do not propose the selection of relevant attributes. In most of the tests, HEOM
[42] is the worst measure with respect to the true positive rate and the percentage of correct

suggested solutions for all of the decisions. In addition, our results highlighted the importance

of choosing a pertinent weighting scheme approach. Indeed, when comparing GWHSM_GA
with H_WHSM, we observed that the weight had an impact on the determination of similar

cases. GWHSM_GA, which used a learning-based approach with no clinical knowledge, has a

lower sensitivity and specificity than H_WHSM. It is noted that the evaluation conditions were

to the advantage of the GA weighting approach for the leave-one-out cross validation. Con-

trary to the deductive approach, it required a learning case-base, which was identical to the test

case-base used to perform the leave-one-out cross validation. For the prosthesis choice, when

the real case-base is the training set, GWHSM_GA retrieves 65% of cases as the correct solution

when k = 1 as opposed to 98% for the hierarchical metric. Even if more similar cases are

retrieved (k = 4), the correct decision appears at least once in 95% of cases for GWHSM_GA,

and reaches 100% for H_WHSM.

Using the CDT in the similarity measure enables us to select gradually relevant past cases,

which is the key point of the hierarchical metric. This case selection allows the most relevant

attributes to be indirectly weighted. The sensitivity and specificity of H_WHSM were better

than those obtained for the two state-of-the-art similarity measures. We noted that for a few

specific vascular accesses (trans-subclavian, trans-apical and trans-aortic), HEOM and

GWHSM_GA had a low sensitivity value under 0.50. With these two similarity measures, the

CBR mostly suggested the wrong solution for each case having these particular vascular

accesses. With the hierarchical measure H_WHSM, the correct decision was suggested in

more cases, even though only few cases with these vascular accesses were available in the case-

base.

Although the proposed CBR, which was implemented using the H_WHSM based retrieve

process, can be implemented with a small dataset, the information that is available in the case-

base has an impact on the result. The issue related to the pre-processing (case maintenance) of

the case-base has not been addressed in this work. In future work, the enrichment of the case-

base will be considered.

The different results have shown that the selection of relevant attributes influenced the set

of similar cases, and consequently, the suggested solution. This impact was also observed

through the specificity and sensitivity of H_WHSM (Figs 7 and 8). Although the right and left

trans-femoral accesses represented the majority of cases, their specificity was lower than that

of the other accesses. The sensitivity reached 0.75 and 0.72 for the right and left trans-femoral

accesses, respectively. With the attributes being clinically available, it was difficult for the dif-

ferent similarity measures to distinguish the right trans-femoral access from the left trans-fem-

oral access. Only the clinical attributes related to the diameter of the femoral arteries were used

in the case description to discern these two trans-femoral accesses. These attributes are ordinal

data, and are known to be operator dependent. To better characterise cases, further
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quantitative attributes related to the tortuosity and the calcification of each femoral artery

could be extracted from CT images for inclusion in the case-base. More generally, the CBR

performance could still be improved by completing the case-base with additional relevant

attributes, consistently with the CDT (e.g., patient’s clinical history).

Even though the standard data available in the clinical routine are used in the proposed

approach, the issue of missing information may be an issue. Thus, an incomplete description

of cases could distort the results. There are different approaches to managing missing values.

Although CBR already integrates a neutral approach in the similarity measure, the behaviour

of the similarity measure when values are missing remains to be investigated. However, the

amount of missing data can be easily quantified and integrated into the GUI to indicate to the

user the data reliability of the retrieved cases.

Conclusion

This study addressed the issue of case-based reasoning for the planning of TAVI procedures,

focusing especially on decisions pertaining to the vascular access route and the valve prosthesis

type. Special emphasis was placed on the retrieve and reuse steps. A new hierarchical similarity

measure, that is based on clinical decision trees, was formulated to select and weight relevant

attributes. Results show that the CBR performance is improved by considering a problem-spe-

cific similarity measure that integrates expert knowledge and reasoning.

The similarity measure could still be enhanced. Commonly available clinical attributes were

used in the studied similarity measures. The evaluation of some relevant clinical attributes,

such as tortuosity and calcification, may be operator-dependent, imprecise, or even missing.

Pre-operative images or statistical shape models could be exploited to automatically extract

additional high-level quantitative attributes, making them more sensitive and further improv-

ing the similarity measure.
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