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Abstract

Iris lutescens is a common species occurring mainly in dry limestone habitats in Western

Italy,  Southern France and Spain.  The species shows a remarkable polymorphism for

flower colour, and yellow and purple flowers can be found in the same population.  As

the  species  is  a  deceptive  one,  the  previous  studies  on  the  maintenance  of  such  a

polymorphism were linked to its  pollination ecology.   Here,  I  reported on the spatial

distribution  of  the  polymorphism,  and  showed  that  Spanish  populations  are  mostly

purple monomorphic.  In contrast, populations in the South of France and Italy show the

complete  range,  from  0  to  1,  for  the  frequency  of  yellow  morph,  and  the  spatial

autocorrelation for morph frequencies is very low.  To go further, correlations between

morph frequencies and abiotic factors, such as bioclimatic variables, UV irradiance and

aridity, were studied.  On the whole, the spatial distribution of the frequency of yellow

morph  can  be  hardly  explained  by  the  contributions  of  these  abiotic  variables,  and

historical contingencies, including the phylogeography of the species have to be invoked,

in particular to explain absence of polymorphic populations in Spain.
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Introduction

Because floral traits, such as colour, fragrance and perianth morphology, contribute to

pollinator attractivity, and thus to male and female fitness in animal-pollinated plants,

they are supposed to  be under a  strong pollinator-mediated selection  (Caruso et  al.

2019).  Therefore, observations of variation in floral traits, and in particular flower colour

polymorphism (hereafter FCP) in natural  populations,  raise an intriguing question for

evolutionary biologists (Dormont et al. 2019).

In some species, FCP has been associated to assortative mating : each colour morph is

preferentially pollinated by one type of pollinators, and geographical variations in the

pollinator guild lead to spatial variations in flower colour (e.g.  Sobel & Streisfeld 2015,

Sobral  et  al.  2015).  In  deceptive  plant  species,  where  individuals  do  not  reward

pollinators, pollinator behaviour has been proposed to maintain FCP within populations

by negative frequency-dependent selection (Gigord et al. 2001). However, many studies

have failed to detect such a mechanism  (Pellegrino et al. 2005,  Jersáková et al. 2006,

Groiß  et  al.  2017  and  references  therein),  and  suggest  that  other  mechanisms  not

related to pollinators should be investigated (Sapir & Ghara 2017, Sapir et al. 2019).

FCP  can  be  maintained  in  natural  populations  by  various  environmental  factors,

including abiotic factors (for a review see Narbona et al. 2018).  Indeed, pigments, such

as  anthocyanins,  increase  tolerance  to  UV  radiation,  water  stress,  or  extreme

temperature (Steyn et al. 2002, Tanaka et al. 2008), and pigmented flowers are typically

favoured under stressing conditions  (Tang & Huang 2010,  Arista et al. 2013,  Carlson &

Holsinger 2015, Vaidya et al. 2018, Sobel et al. 2019, Dalrymple et al. 2020, Peach et al.

2020).  Investigating the effects of abiotic factors on the relative fitness of each morph is

not  trivial.   A  possible  approach  is  to  manipulate  the  environmental  conditions  in  a

classical  common garden experiment to detect any effect of abiotic  stress   on plant

survival or reproductive output.  However, the result of such an experimental approach

depends  on  the  range  of  the  environments  tested.   Furthermore,  the  relative

importance of the stressing factors could be overestimated in comparison with their

effects in natural conditions.  This experimental approach also depends on our ability to

grow the study species, since the stress resulting from any environmental factor can vary

during the life-cycle of an individual.  For instance, in  Lysimachia arvensis, the negative

effects of water stress and light reduction were not constant over the life-cycle of the

species,  and  only  the  estimation  of  the  overall  fitness  of  this  annual  plant  lead  to

consistent conclusion (Arista et al. 2013).



Another approach is  to study the spatial  distribution of flower colour in relation to

environmental  gradients,  and even if  the existence  of  geographical  pattern  is  not  a

direct proof for a contribution of any spatially  varying factor,  it  provides some clues

(Veiga et al. 2016).  Although FCP has been described in several plant species, reports on

the spatial distribution of polymorphism is not so common.  Interestingly,  pattern of

spatial distribution of polymorphism across the distribution range of a single species

differs  depending  on  the  mechanism  contributing  to  the  maintenance  of  FCP.   For

instance,  premating  isolation  due  to  pollinators  preference  contributed  to  the

maintenance  of  the  red  and  yellow  flower  ecotypes  in  Mimulus  aurantiacus,  and

populations are mainly monomorphic with a disjunct distribution for each ecotype (Sobel

&  Streisfeld  2015).   In  the  South  African  species  Erica  coccinea,  maintenance  of

polymorphism is not associated with pollinators, but likely to abiotic factors, and most

populations are monomorphic, either with red or yellow flowers, but without any clear

spatial distribution (Ojeda et al. 2019).  On the contrary, in the autogamous Brassicaceae

Boechera stricta, flower pigmentation increases with drought stress and herbivory, and

frequency  of  purple  flowers  decreases  with  elevation  as  water  stress  and  herbivory

(Vaidya et al. 2018).  Such a clinal variation has also been observed at a local scale in

Linanthus parryae (Schemske & Bierzychudek 2007).  Clinal variation for flower colour

depends on the existence of clinal  variation for the selective factors acting on floral

traits, but also on correlation for pigment concentration between vegetative and floral

tissues (Carlson & Holsinger 2015).

Flower colour polymorphism within populations is quite uncommon, and mostly results

from  a  mutation-selection  balance  (Epperson  &  Clegg  1986),  as  observed  in  rare

hypochromic Orchids for  instance (but  see Dormont et  al.  2010).   In  such situations,

temporal variation in morph proportions can be observed and the rare morph tends to

disappear  (Keasar  et  al.  2016).  Only  some deceptive plant  species  showed a  stable

flower colour polymorphism within populations,  in particular Orchids  (Dormont et al.

2019).  

Flower colour polymorphism in the deceptive Iris lutescens has been studied for several

years  now,  and  several  experiments  in  natural  conditions  failed  to  detect  any

contribution from pollinators to maintenance of FCP (see  Imbert et al.  2014a,  Souto-

Vilarós et al.  2018).   A likely reason is  that the species flowers early in  the spring,  a

period with low resource availability for the newly emerged pollinators.   Thus,  naive

individuals show a low selective behaviour and are lured by any showy coloured pattern,

like Iris flowers.  Consistently with the deceptive strategy of the species, fruit set is very



low in natural populations  (Imbert  et  al.  2014a).   Furthermore,  pollinator-mediated

selection  may  be  weak  in  a  species  with  important  vegetative  reproduction  (Souto-

Vilarós et al. 2018).

Here,  I  studied  the  spatial  distribution  of  the  FCP  and  the  relationships  between

frequency of colour morphs and some abiotic factors.  I first reported on the frequency

of the yellow and purple morphs for populations distributed across all the distribution

area of the species.  Second, I studied the relationship between the frequency of the

yellow morph and bioclimatic variables, aridity and UV irradiance.  As a previous study

has suggested that gene flow is  very low among Spanish populations,  and drift  may

contribute to absence of polymorphism in this part of the geographical distribution of

the species (Wang et al.  2016),  these relationships were investigated over the entire

distribution area of the species, and in a second step also excluding populations from

Spain.  



Materials & Methods

Study species

Iris  lutescens Lam.  (Iridaceae)  is  a  widespread  species  in  the  Northern  part  of  the

Mediterranean basin. The species has been described in Spain, South of France and Italy

under various botanical names, including  I. chamaeiris Bertol.,  I. italica  Parl.,  I. neglecta

Parl., I. olbiensis Hénon, I. subbiflora Brot. and I. virescens Redouté (Crespo 2014, Tison et

al.  2014,  Colasante & Maury 2014).   The species is  rhizomatous and individuals show

sword-like green leaves that are persistent all over the year.  During the flowering period

(March-May), individuals produce flowering stems bearing a unique showy and coloured

flower (Figure 1).  Various colour morph have been described (white, yellow-pale, pure

yellow,  purple,  blue-purple...)  but  most  of  these  phenotypes  are  rare  in  natural

populations.  Only  the  yellow  and  purple  colour  morphs  are  constant  through  the

distribution range of the species.  The species is self-incompatible and nectar-less, thus

its pollination depends on naive insects emerging early in Spring (Imbert et al. 2014a).

Sampling design

Population locations were found using data  from herbaria  (VAL Valencia,  Spain  and

MPU  Montpellier,  France),  botanical  publications  (e.g.  Mateos  Sanz  et  al.  2003)  and

personal communications (P. Aymerich, A. Bonet, R. Calatyud, R. Leras J. Pedrol L. Serra,

M. Talavera and S. Talavera, for Spain, and L. Minuto, G. Pellegrino for Italy)   During four

consecutive years (2011-2015), 80 populations have been surveyed during the flowering

period (March-May).  The sampling covers the distribution area of the species (Figure 2).

For  each  population,  the  GPS  coordinates  and  elevation  were  recorded.   In  each

population, non-linear transects were defined using natural paths and the number of

flowering stems was counted.  Each flower was visually categorized either as yellow or as

purple.  The length and the number of the transects depended on the population size.

Some populations are very small and just contain less than ten patches on 25 m long (e.g.

Garraf  population  in  Spain),  while  some  populations  contain  thousand  of  individuals

distributed over more than 5 hectares (e.g. Vedas in France).  These countings were used

to estimate the population size (total number of flowering stems without information

about the number  of  genets),  the  frequency of  the yellow morph (FYM) and of  the

purple morph (1 – FYM).

Some populations (n=31) have been visited at least in two different years, in particular

populations  close  to  Montpellier,  to  confirm  the  constancy  of  the  frequency  of  the



yellow morph (see Appendix 1).   When several  FYM estimations were available for a

population, the estimation with the highest number of flowering plants was used in the

data analyses (in particular data collected in 2013, a favourable year for Iris blooming).

Abiotic data

Bioclimatic variables were extracted from the WorldClim version 2.0 database (Fick &

Hijmans 2017) using a grid of 1 km². Data are extrapolated from 1970-2000 observations.

From the 19 bioclimatic variables available, six variables describing temperature (annual

mean temperature, mean diurnal range, temperature seasonality, maximal temperature

of the warmest month, minimal temperature of the coldest month, temperature annual

range)  and  five  variables  for  precipitation  (annual  precipitation,  precipitation  of  the

wettest month, precipitation of the driest month, precipitation seasonality, precipitation

of the driest quarter) were retained (Walisch et al. 2015).  Because of correlations among

these climatic variables, a principal component analysis was used to reduce the number

of variables (see Appendix 2).  The first three axes of the PCA explained 89.6 % of the

total variance (40.9, 35.6 and 13.0 % respectively for PC1, PC2 and PC3).  These three

principal components were retained using the Horn’s parallel analysis performed using

the R package paran (version 1.5.2).

UV  irradiance  data  with  5  km  spatial  resolution  are  derived  from  the  HelioClim-3

database of solar irradiance  obtained from satellite data (Rigollier et al. 2004).  Albedo

of the ground was fixed at 0.2.  Raw data were recorded from the 1 February 2004 to the

31 October 2015.  Finally, aridity data have been extracted from the Global Aridity Index

database  (1  km²  resolution)  for  the  1970-2000  period  (Trabucco  and  Zomer  2018).

Aridity index is positively correlated to precipitation and low values are associated to

high water stress.

Data analyses

First, paired t-tests were applied using FYM values arc-sin transformed to test whether

FYM varied over years for the 31 populations visited several times.

The  variable  to  be  explained  was  the  number  of  yellow  flowers,  considered  as  a

binomial variable, compared to the number of purple flowers per population.  For each

population, the explanatory variables were the population size, elevation, coordinates

on the first three axes of the PCA for the bioclimatic data,  UV irradiance and aridity



index. We first performed a generalized linear model for binomial variable including all

the explanatory variables. Both residuals from the full model and from the null model

showed  a  significant  spatial  autocorrelation  (Moran’s  index  =  0.10,  p<0.003  and

index=0.34, p<0.0001, respectively for the full model and the null model). Thus, in order

to consider the spatial autocorrelation, all analyses were performed using the  spaMM

package (version 3.0.0,  Rousset & Ferdy 2014) under R version 3.6.2, including latitude

and longitude coordinates as spatial information.  To test for an effect of population

size, and thus random process on FYM, a specific linear model was implemented with a

random effect associated to population size (see Appendix 4).

Results

For the 31 populations that have been visited at least twice, no significant variation

over years could be detected (paired t-tests, p>0.64).  The mean frequency of the yellow

morph was 0.31,  but a huge variation for FYM was observed (SD 0.36,  coefficient of

variation 116%).  38 populations were monomorphic, either with the purple phenotype

(n=33) or the yellow one (n=5).  Purple dominant populations (FYM<0.25, n=45) were

more frequent than yellow dominant populations (FYM>0.75, n=12).  The frequency of

yellow morph showed a geographical structure , since populations in Spain are mostly

purple monomorphic (Figure 2a),  with the exception of two populations close to the

Pyrenees  which  were  yellow  monomorphic  (Figure  2a).   However,  no  structure  is

apparent in France and Italy (Figures 2b and c).

The generalized linear model including a random effect associated to population size

had a likelihood lower than the model excluding this random effect (-296.82 versus -

289.66, see Appendix 4),  thus this random effect was not conserved in the following

analyses.   Using  the  generalized  linear  model  taking  into  account  the  spatial

autocorrelation, none of the explanatory variables was significant (Table 1).

To go further, analyses were performed excluding populations sampled in Spain. Only

50  populations  were  thus  considered  in  this  new  dataset.  The  pattern  of  spatial

autocorrelation for FYM was less obvious (Figures 2b &c), and Moran’s indexes decreased

to 0.07 using the residuals from the null model (p<0.04) and to 0.06 using the residuals

from the full model (p=0.067).  Generalized linear models indicated a significant effect

for the first and the second principal components of the PCA performed on bioclimatic

variables (Table 1).   Consistently,  the estimated coefficients for the Matérn function,

representing the spatial autocorrelation, differed between the null model (ν=0.31,  ρ=



1.18) and the model including the two significant covariates (ν=4.40,  ρ= 41.36).  Spatial

correlation for FYM decreased very rapidly and populations more than 50 km away (263

comparisons) had a correlation below 0.6 (Figure 3).  Considering the null model,  the

correlation was below 0.2 for populations distant from 100 km (420 pairs out of 1225),

while the correlation was almost null  considering the model with the two significant

covariates (Figure 3).

The first component of the PCA is negatively correlated to annual temperature (r=-0.86)

and minimal temperature of the coldest month (r=-0.94) and positively  correlated to

variables representing precipitations, in particular to precipitations of the driest quarter

of  the  year  (r=0.93,  Appendix  3,  Table  A3).   The  second  component  of  the  PCA  is

positively  correlated  to  variables  representing  temperature  ranges,  in  particular  the

mean  diurnal  range  (r=0.71)  and  the  maximal  temperature  (r=0.66,  Table  A3).   The

coordinates  on  PC1  and  PC2  were  thus  replaced  by  the  observed  values  of  two

bioclimatic  variables,  one  representing  precipitation  and  correlated  to  PC1

(precipitations  of  the  driest  quarter  of  the  year,  r=0.93  with  PC1),  and  one  for

temperature  and correlated to PC2 (annual  range of  temperature,  r=0.66 with  PC2).

Both bioclimatic variables had a significant effect on FYM variation : Χ2 = 10.58, p<0.002,

for annual range of temperature and  Χ2 = 10.46, p<0.002 for  the precipitations of the

driest quarter.

The frequency of the yellow morph significantly increased with the annual range of

temperature  (Figure  4a).   Indeed,  yellow  dominant  populations  were  only  found  in

localities with large difference between the warmest month of the year and the coldest

month, while purple dominant populations have be found in all situations (Figure 4a).

Such differentiation was also observed in relation to precipitations of the driest quarter

(Figure  4b),  and  yellow  dominant  populations  occurred  in  localities  with  low

precipitations, while purple dominant populations were found over the complete range

of precipitations (Figure 4b).  Despite significant relationships, it should be noticed that

the correlation between FYM and annual range of temperature was very low (r=0.32,

p=0.02), while the correlation with the precipitation variable was not significant (r=-0.12,

p=0.39).  A linear model including both variables only explained 28.5% of the variance

observed for FYM.



Discussion

Flower  colour  polymorphism  has  been  described  in  several  plants  (Rausher  2008,

Narbona et al. 2018,  Dormont et al.  2019),  but few studies have reported the spatial

distribution  of  the  polymorphism  over  the  distribution  area  of  a  single  species.   In

deceptive  plant  species,  negative  frequency-dependent  selection  due  to  pollinator

behaviour  should  produce  a  stable  polymorphism  within  populations  and  no

monomorphic  population  should  be  observed.   In  the  deceptive  orchid  Dactylorhiza

sambucina, a well-studied species with FCP, the mean frequency of the yellow morph is

0.69 with a low variation among populations (SD 0.03) in the South of France (Cévennes),

(Gigord  et  al.  2001),  but  yellow  monomorphic  populations  have  been  observed  in

Germany (Kropf & Renner 2008).  In Sweden, populations are purple dominant with the

frequency of yellow morph ranging from 0.07 to 0.65  (Jersáková et al. 2006).  Finally,

Smithson et al. (2007) also reported a large range for morph frequencies, with purple

and  yellow  dominant  populations,  over  the  distribution  area  of  the  species.   In  Iris

lutescens, the purple phenotype appeared to be more frequent than the yellow one, in

particular in Spain, as reported by Crespo (2014), but also in Italy and in the South of

France.   While  yellow  monomorphic  populations  are  less  frequent,  yellow  dominant

populations have also been observed across the distribution area of the species.  These

observations,  combined with  other  studies  on the pollination biology of  the species

(Imbert et al. 2014a,  Imbert et al. 2014b,  Souto-Vilarós et al. 2018) are not consistent

with the expectations from negative-frequency dependent selection.

While  investigations  on  plant  physiology  suggest  pigment  concentrations  influence

plant resistance to various abiotic stresses (Steyn et al. 2002), few studies have reported

on the effects of abiotic factors, such as temperature, rainfall  and solar radiation, on

proportions of flower colour morphs.  In species where FCP is influenced by bioclimatic

variables, spatial autocorrelation and clinal variations are expected (Arista et al. 2013,

Carlson & Holsinger 2015, Vaidya et al. 2018).  The populations of Iris lutescens showed a

low spatial autocorrelation in morph frequencies, except in Spain, and clearly no clinal

variation  could  be  observed.   Actually,  observations  of  spatial  autocorrelation  also

depend  on  pigment  expressions  in  vegetative  tissues.   In  Iris  lutescens,  the

concentrations of both anthocyanins and flavonoids, responsible for the purple and the

yellow colouration respectively, are not different between morphs in vegetative parts

(Wang et al. 2013).  The differentiation in flower pigmentation often results from gene

mutation leading to loss of function, and because of the various role of anthocyanins



and flavonoids in plant physiology, lost of function for structural genes is supposed to be

highly  counter-selected  (Rausher  2008) As  a  consequence,  anthocyanin  production

should be quite similar in vegetative tissues, as observed in I. lutescens (Wang et al. 2013)

and only be modulated during flower bud production due to mutation in regulatory

genes.

Other  studies  have  reported  that  the  difference  between  morphs  in  pigments

concentration in vegetative tissues are induced by stress, and only visible in stressing

conditions (Warren & Mackenzie 2001 , Strauss et al. 2004, Sobel et al. 2019).  Therefore,

flower colour can be viewed as a phenotype related to the individual ability to resist to

abiotic  stress,  i.e.  plasticity  to  some  stressing  conditions.   In  such  situations,

pigmentation should show a geographic structure (Dalrymple et al. 2020, Peach et al.

2020).   Following  studies  reporting  that  anthocyanins  contribute  to  water  stress

resistance (Warren & Mackenzie 2001, Schemske & Bierzychudek 2007, Arista et al. 2013,

Sobel et al. 2019), the purple morph of Iris lutescens should be dominant in arid habitats.

Considering only  the Spanish localities  where populations of  Iris  lutescens have been

found, both the precipitations of the driest quarter (mean = 77.53 mm SD 29.45) and

annual  range  of  temperature  (mean  =  28.65°C  SD  3.03)  showed  extreme  values  in

comparison to values observed for South of France (precipitation mean = 105.97 mm SD

24.30, range of temperature mean = 25.94°C, SD 1.59) and for Italy (precipitation mean =

120.43 mm SD 24.96, range of temperature mean = 24.22°C, SD 1.18).  Therefore, the

observation  of  monomorphic  purple  populations  in  Spain  is  consistent  with  this

hypothesis  since  aridity  is  greater  in  Spain  than  in  the  South  of  France  and  Italy.

However, the absence of clinal variation between the purple and the yellow morph is not

consistent  with  this  hypothesis.   Furthermore,  purple  dominant  populations  were

observed through all the range of bioclimatic factors, even in Italy where water stress is

low.

Producing  pigmented  flowers  also  influences  water  balance  in  floral  tissues,  since

darker  pigmentation  increases  light  absorbance  and  tissues  temperature,  and  finally

evapotranspiration  (Roddy  2019).   Dark  flowers  are  thus  more  costly  to  produce,  in

particular in arid habitats and in latitudes with high UV irradiance.  Flower colour also

influences  anther  temperature,  and  thus  pollen  quality  (Mu  et  al.  2017) or  pollen

resistance  to  heat  (Koski  &  Galloway  2018).   It  is  likely  that  all  these  factors  also

contribute  to  the  local  frequency  of  the  purple  and  yellow  morphs,  but  clearly  the

results from this study showed that the relationships between the considered abiotic

factors and morph frequencies were very low.



Since  flower  colour  is  genetically  determined,  classical  factors  affecting  allele

frequencies, such as migration and drift  (Epperson & Clegg 1986) and founder events

(Keasar et al.  2016) have also to be considered.  The karyotypes of individuals of  Iris

lutescens from Italian populations suggest the species is  closed to  Iris  attica,  another

species with FCP occurring in Eastern Europe (Greece, Balkans, Turkey…), a phylogenetic

proximity  confirmed by  molecular  approaches  (Wilson 2017).  Therefore,  the species

probably originates from the East of Europe and populations in Spain are likely to be the

most recent ones.  During the colonization from East to West, i.e. from Italy to Spain,

repeated founder events could have contributed to the loss of the yellow phenotypes.

Wang  et  al.  (2016) have  reported  that  Spanish  populations  and  monomorphic

populations from France have low genetic diversity which could result from such founder

events.  It can also be hypothesized that Spanish populations originated from a refugia in

Southern Spain, while French and Italian populations originated from other refugia, the

Pyrenees being a barrier between the two fronts of expansion (Médail & Diadema 2009).

While  floral  traits  have  been  repeatedly  studied  in  relation  to  pollinators,  historical

contingencies  have  also  to  be  considered  to  understand  the  spatial  distribution  of

phenotypes, and a phylogeography of the species has to be built.
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Table 1 : Summary of the likelihood-ratio test performed for each explanatory variable

to explain the frequency of the yellow morph (treated as a binomial variable, see text for

details).  GLM have been performed using the spaMM package. Analyses have first been

performed using the entire dataset (n=80 populations), and next excluding the Spanish

populations (n=50 populations).  All variables are covariates and df=1.

Variable All populations Excluding Spanish populations

Chi-square p Chi-square p

Elevation 0.62 0.43 0.003 0.95

UV irradiance 0.92 0.33 1.52 0.22

Aridity index 1.62 0.20 0.007 0.93

Coordinates on PC1 0.59 0.44 4.45 0.034

Coordinates on PC2 1.21 0.27 17.27 <0.0001

Coordinates on PC3 0.85 0.35 0.37 0.54



Figure 1 Purple- and yellow-flowered individuals of Iris lutescens. Picture was taken by B.
Hervouet, Causse de Blandas, Languedoc-Roussillon region, France.



Figure 2: Distribution of the sampled populations. The three maps differ in the scale and
(A) represents the entire dataset (n=80 populations), (B) dataset excluding populations
from  Spain  (n=50),  and  (C)  populations  sampled  around  Montpellier.   The  morph
frequencies (yellow/purple) for each sampled population are shown as a pie chart.

(A)

(B)

(C)





Figure  3 :  Spatial  autocorrelation  for  the  frequency  of  the  yellow  morph  for  all  the
sampled populations but the Spanish ones.  Autocorrelation has been estimated using
the Matérn function fitted in the generalized linear model including the two significant
covariates (coordinates on PC1 and PC2, see Table 1) and using a null model (see text for
details, and Appendix 4).



Figure 4 : Frequency of the yellow morph according to the annual range of temperature
(upper panel) and precipitations of the driest quarter (lower panel) for the populations
sampled in France and Italy (n=50). The size of each point depends on population size.
The solid line represents the frequency of yellow morph as fitted in the generalizaed
linear model including the two significant variables.  Dotted lines represent the 95 %
confidence intervals.



Appendix 1 : data table – Libreoffice format

Two datasheets :

data :  locality  name  (and  country),  GPS  coordinates  (WGS84  format),  elevation  (in
meters),  and number of yellow flowers and of purple flowers,  and the values of the
abiotic variables used in this paper.  Aridity index values have been multiplied by a factor
of 10,000.

Repetition : frequecy of yellow morph estimated for some populations that have been 
visited at least twice between 2011 and 2015.  Results from paired t-tests are also given.



Appendix 2 : Summary of analyses for bioclimatic data using the entire dataset

Using GPS coordinates of each population, bioclimatic data have been extracted from
the Worldclim database version 2.0. Six variables describing temperature and five for
precipitation were retained :

Temperature
BIO1 = Annual Mean Temperature
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO4 = Temperature Seasonality (standard deviation *100)
BIO5 = Max Temperature of Warmest Month
BIO6 = Min Temperature of Coldest Month
BIO7 = Temperature Annual Range (BIO5-BIO6)

Precipitation
BIO12 = Annual Precipitation
BIO13 = Precipitation of Wettest Month
BIO14 = Precipitation of Driest Month
BIO15 = Precipitation Seasonality (Coefficient of Variation)
BIO17 = Precipitation of Driest Quarter

PCA  was  performed  using  the  FactoMineR package  and  Horn’s  parallel  analysis  for
component  retention  (paran package).   For  results  of  the  Horn’parallel  analysis,  see
Appendix 4.  The first three components were retained.

The first three axes of the PCA explained 89.6 % of the total variance :

Eigenvalues
                  Dim.1   Dim.2   Dim.3   Dim.4 
Variance               4.507   3.919   1.430   0.793
% of var.             40.976  35.627  13.003   7.210
Cumulative % of var.  40.976  76.603  89.607  96.817

The first  principal  component  is  positively  correlated  with  precipitation  variables  (in
particular Bio12,  Bio13 and Bio17) and negatively correlated with temperature range
(Bio2 and Bio7), and thus represents the continentality of the station. The second PC
clearly reflects the temperature (Bio1 and Bio6) while the third PC is correlated with
seasonality (Bio13 and Bio15).



Table  A2 :  Correlations  and  contributions  of  bioclimatic  variables  for  the  first  three
principal components.

Variables PC1 PC2 PC3

Correlation Contribution Correlation Contribution Correlation Contribution

Temperature

Bio1 -0.12 0.32 -0.91 21.09 -0.04 0.12

Bio2 -0.79 14.02 0.53 7.17 -0.05 0.19

Bio4 -0.47 4.98 0.62 9.94 0.50 17.44

Bio5 -0.67 9.86 -0.49 6.18 0.13 1.24

Bio6 0.36 2.93 -0.91 21.19 -0.11 0.88

Bio7 -0.74 12.20 0.62 9.83 0.19 2.45

Precipitation

Bio12 0.84 15.52 0.14 0.49 0.50 17.41

Bio13 0.79 13.82 -0.02 0.01 0.58 23.85

Bio14 0.59 7.81 0.69 12.12 -0.22 3.40

Bio15 -0.37 2.99 -0.53 7.13 0.69 32.89

Bio17 0.84 15.55 0.44 4.85 -0.04 0.14



Appendix 3 : Summary of analyses for bioclimatic data excluding Spanish populations

For results of the Horn’parallel analysis, see Appendix 4.  The first three components
were retained. The 3 first axes of the PCA explained 91.38 % of the total variance :

Eigenvalues
Dim.1 Dim.2 Dim.3 Dim.4

Variance 6.279 2.080 1.719 0.567

% of var. 57.086 18.906 15.627 5.152
Cumulative % of var. 57.086 75.993 91.620 96.737

PC2 is  negatively  correlated with total  precipitation (Bio12) and positively  correlated
with variables representing temperature ranges (Bio2, Bio5 and and Bio7).



Table  A3 :  Correlations  and  contributions  of  bioclimatic  variables  for  the  first  three
principal components, excluding localities from Spain.

Variables PC1 PC2 PC3

Correlation Contribution Correlation Contribution Correlation Contribution

Temperature

Bio1 -0.86 11.81 0.26 3.33 0.34 6.70

Bio2 0.62 6.03 0.71 23.99 -0.04 0.08

Bio4 0.75 8.97 0.39 7.22 0.39 9.05

Bio5 -0.50 4.04 0.66 20.95 0.49 13.96

Bio6 -0.94 14.08 -0.13 0.79 0.19 2.15

Bio7 0.73 8.52 0.66 20.83 0.15 1.26

Precipitation

Bio12 0.69 7.66 -0.50 11.88 0.47 12.65

Bio13 0.55 4.78 -0.38 6.86 0.72 30.43

Bio14 0.92 13.52 -0.10 0.47 -0.06 0.19

Bio15 -0.66 6.87 -0.14 0.98 0.63 23.04

Bio17 0.93 13.71 -0.24 2.68 0.09 0.50

Appendix 4 : PDF output of the R script.

All analyses have been performed with R version 4.0.0 with R-studio version 1.2.5042



Data analyses for MS_XXXX

Eric Imbert

June 2020

rm(list=ls())
setwd("~/Recherches/iris/lutescens/abiotic")
library(spaMM)

## Registered S3 methods overwritten by 'registry':
## method from
## print.registry_field proxy
## print.registry_entry proxy

## spaMM (Rousset & Ferdy, 2014, version 3.2.0) is loaded.
## Type 'help(spaMM)' for a short introduction,
## 'news(package='spaMM')' for news,
## and 'citation(spaMM)' for proper citation.
library(FactoMineR)
library(car)

## Loading required package: carData
library(maps)
library(plotrix)
library(paran)

## Loading required package: MASS
#Import data => use the data sheet "census" from the Libreoffice file
donnees=read.csv('abiotic_data.csv',header=T, dec='.')
donnees$popsize=donnees$nbyellow+donnees$nbpurple
donnees$FYM=donnees$nbyellow/donnees$popsize

Step 1 : PCA for the abiotic variables Following Walisch et al 2015, just keep : Temperature : bio1, bio2, bio4,bio5,
bio6, bio7 Rainfall : bio12, bio13, bio14, bio15, bio17

Climate variables Temperature BIO1 = Annual Mean Temperature BIO2 = Mean Diurnal Range (Mean of monthly
(max temp - min temp)) BIO4 = Temperature Seasonality (standard deviation *100) BIO5 = Max Temperature of
Warmest Month BIO6 = Min Temperature of Coldest Month BIO7 = Temperature Annual Range (BIO5-BIO6)

Precipitation BIO12 = Annual Precipitation BIO13 = Precipitation of Wettest Month BIO14 = Precipitation of Driest
Month BIO15 = Precipitation Seasonality (Coefficient of Variation) BIO17 = Precipitation of Driest Quarter
attach(donnees)
val=cbind(bio1,bio12,bio13,bio14, bio15,bio17,bio2,bio4,bio5,bio6,bio7)
multi_ana=PCA(val, scale.unit=T, graph=FALSE)
paran(val, iterations=5000, centile=95)

##
## Using eigendecomposition of correlation matrix.
## Computing: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
##
##
## Results of Horn's Parallel Analysis for component retention
## 5000 iterations, using the 95 centile estimate
##
## --------------------------------------------------
## Component Adjusted Unadjusted Estimated
## Eigenvalue Eigenvalue Bias
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## --------------------------------------------------
## 1 3.675256 4.507412 0.832155
## 2 3.346847 3.918947 0.572099
## 3 1.031152 1.430383 0.399231
## --------------------------------------------------
##
## Adjusted eigenvalues > 1 indicate dimensions to retain.
## (3 components retained)
detach(donnees)

donnees$pc1=multi_ana$ind$coord[,1]
donnees$pc2=multi_ana$ind$coord[,2]
donnees$pc3=multi_ana$ind$coord[,3]

library(DHARMa)

## Registered S3 methods overwritten by 'lme4':
## method from
## cooks.distance.influence.merMod car
## influence.merMod car
## dfbeta.influence.merMod car
## dfbetas.influence.merMod car

## This is DHARMa 0.3.0. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa') Note: Syntax of plotResiduals has changed in 0.3.0, see ?plotResiduals for details
fullglm=glm(cbind(nbyellow,nbpurple) ~

popsize + elevation + UV + aridity + pc1 + pc2 + pc3,
family=binomial, data=donnees)

nullglm=glm(cbind(nbyellow,nbpurple) ~ 1,
family=binomial, data=donnees)

sims <- simulateResiduals(fullglm, n=1000)
testSpatialAutocorrelation(sims, x = donnees$lon, y = donnees$lat, plot = TRUE)
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## DHARMa Moran's I test for spatial autocorrelation
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##
## data:
## observed = 0.100551, expected = -0.012658, sd = 0.036735, p-value =
## 0.002058
## alternative hypothesis: Spatial autocorrelation
sims_null <- simulateResiduals(nullglm, n=1000)
testSpatialAutocorrelation(sims_null, x = donnees$lon, y = donnees$lat, plot = TRUE)
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##
## DHARMa Moran's I test for spatial autocorrelation
##
## data:
## observed = 0.345776, expected = -0.012658, sd = 0.036773, p-value <
## 2.2e-16
## alternative hypothesis: Spatial autocorrelation

Can FYM be explained by random process due to population size ?

The model includes a random factor associated to 1/sqrt(population size) Population size is standardized to avoid
estimation of large values of variances
donnees$std_popsize=donnees$popsize/mean(donnees$popsize)
donnees$popvar=1/sqrt(donnees$std_popsize)
fit1=fitme(cbind(nbyellow,nbpurple) ~

elevation + UV + aridity + pc1 + pc2 + pc3 +
Matern(popvar-1|lat + lon),
data=donnees, family=binomial(), method="REML",
control=list(max.iter=1000, max.iter.mean=500),
init=list(lambda=NaN))

## Iterative algorithm converges slowly. See help('convergence') for suggestions.
fit2=fitme(cbind(nbyellow,nbpurple) ~

elevation + UV + aridity + pc1 + pc2 + pc3 +
Matern(1|lat + lon),
data=donnees, family=binomial(), method="REML",
control=list(max.iter=1000, max.iter.mean=500),
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init=list(lambda=NaN))

## Iterative algorithm converges slowly. See help('convergence') for suggestions.
#Marginal value of Likelihood for each model
fit1$APHLs$p_bv

## [1] -296.8298
fit2$APHLs$p_bv

## [1] -289.6606

Likelihood is maximal without the random effect of population size.

Ad-hoc procedure to check the maximum value of likelihood - this part of the script has been written with François
Rousset - see various documents about spaMM for details.

oncherche=function(w) {
varfac=w+(1-w)*(donnees$std_popsize) #varfac=1 for w=1 and varfac=donnees$std_popsize for w=0
donnees$weisd=1/sqrt(varfac) # weisd=1 for w=1 and weisd=popvar for w=0

new_fit=fitme(cbind(nbyellow,nbpurple) ~
elevation + UV + aridity + pc1 + pc2 + pc3 +
Matern(weisd-1|lat + lon),
data=donnees, family=binomial(), method="PQL",
control=list(max.iter=1000, max.iter.mean=500),
init=list(lambda=NaN))

Rel=new_fit$APHLs$p_bv
print(c(w=w,Rel=Rel))
#return(-Rel)
}

a=optimize(oncherche, interval=c(0,1))
a

=> so the maximal value is obtained with the model without popvar, which excludes contribution of population size to
the observed pattern.

Global analyses
nullfit=fitme(cbind(nbyellow,nbpurple) ~ 1 +

Matern(1|lat + lon), data=donnees,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

fullfit=fitme(cbind(nbyellow,nbpurple) ~
elevation + UV + aridity + pc1 + pc2 + pc3 +
Matern(1|lat + lon),
data=donnees, family=binomial(),method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(fullfit,nullfit)

## chi2_LR df p_value
## p_v 8.568931 6 0.1993115
summary(fullfit)

## formula: cbind(nbyellow, nbpurple) ~ elevation + UV + aridity + pc1 +
## pc2 + pc3 + Matern(1 | lat + lon)
## Estimation of corrPars and lambda by Laplace ML approximation (p_v).
## Estimation of fixed effects by Laplace ML approximation (p_v).
## Estimation of lambda by 'outer' ML, maximizing p_v.
## Family: binomial ( link = logit )
## ------------ Fixed effects (beta) ------------
## Estimate Cond. SE t-value
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## (Intercept) 63.760270 47.265823 1.349
## elevation -0.009543 0.006306 -1.513
## UV -0.001315 0.001277 -1.030
## aridity -0.004258 0.002625 -1.622
## pc1 2.198891 1.649735 1.333
## pc2 1.495679 0.933498 1.602
## pc3 1.672643 1.564778 1.069
## --------------- Random effects ---------------
## Family: gaussian ( link = identity )
## --- Correlation parameters:
## 1.nu 1.rho
## 0.8551812 5.4681193
## --- Variance parameters ('lambda'):
## lambda = var(u) for u ~ Gaussian;
## lat + lon : 30.05
## # of obs: 80; # of groups: lat + lon, 80
## ------------- Likelihood values -------------
## logLik
## p_v(h) (marginal L): -278.873
summary(nullfit)

## formula: cbind(nbyellow, nbpurple) ~ 1 + Matern(1 | lat + lon)
## Estimation of corrPars and lambda by Laplace ML approximation (p_v).
## Estimation of fixed effects by Laplace ML approximation (p_v).
## Estimation of lambda by 'outer' ML, maximizing p_v.
## Family: binomial ( link = logit )
## ------------ Fixed effects (beta) ------------
## Estimate Cond. SE t-value
## (Intercept) -10.21 2.523 -4.048
## --------------- Random effects ---------------
## Family: gaussian ( link = identity )
## --- Correlation parameters:
## 1.nu 1.rho
## 0.5259553 1.2285802
## --- Variance parameters ('lambda'):
## lambda = var(u) for u ~ Gaussian;
## lat + lon : 61.12
## # of obs: 80; # of groups: lat + lon, 80
## ------------- Likelihood values -------------
## logLik
## p_v(h) (marginal L): -283.1574

No difference between the null model and the full model

one by one => p-values in Table 1
test_elevation=fitme(cbind(nbyellow,nbpurple) ~

UV + aridity + pc1 + pc2 + pc3 +
Matern(1|lat + lon), data=donnees,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

test_UV=fitme(cbind(nbyellow,nbpurple) ~
elevation + aridity + pc1 + pc2 + pc3 +
Matern(1|lat + lon), data=donnees,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

test_aridity=fitme(cbind(nbyellow,nbpurple) ~
elevation + UV + pc1 + pc2 + pc3 +
Matern(1|lat + lon), data=donnees,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

## Iterative algorithm converges slowly. See help('convergence') for suggestions.
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test_pc1=fitme(cbind(nbyellow,nbpurple) ~
elevation + UV + aridity + pc2 + pc3 +
Matern(1|lat + lon), data=donnees,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

## Iterative algorithm converges slowly. See help('convergence') for suggestions.
test_pc2=fitme(cbind(nbyellow,nbpurple) ~

elevation + UV + aridity + pc1 + pc3 +
Matern(1|lat + lon), data=donnees,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

## Iterative algorithm converges slowly. See help('convergence') for suggestions.
test_pc3=fitme(cbind(nbyellow,nbpurple) ~

elevation + UV + aridity + pc1 + pc2 +
Matern(1|lat + lon), data=donnees,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

## Iterative algorithm converges slowly. See help('convergence') for suggestions.
LRT(fullfit,test_elevation)

## chi2_LR df p_value
## p_v 0.6206077 1 0.4308215
LRT(fullfit,test_UV)

## chi2_LR df p_value
## p_v 0.9197677 1 0.337536
LRT(fullfit,test_aridity)

## chi2_LR df p_value
## p_v 1.626021 1 0.2022543
LRT(fullfit,test_pc1)

## chi2_LR df p_value
## p_v 0.5987665 1 0.4390491
LRT(fullfit,test_pc2)

## chi2_LR df p_value
## p_v 1.215451 1 0.2702553
LRT(fullfit,test_pc3)

## chi2_LR df p_value
## p_v 0.8511212 1 0.3562354

Figures 2

The same analyses but excluding populations from Spain
notspain=subset(donnees, country!="spain")
attach(notspain)
val=cbind(bio1,bio12,bio13,bio14, bio15,bio17,bio2,bio4,bio5,bio6,bio7)
multi_ana=PCA(val, scale.unit=T, graph=FALSE)
paran(val, iterations=5000, centile=95)

##
## Using eigendecomposition of correlation matrix.
## Computing: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
##
##
## Results of Horn's Parallel Analysis for component retention
## 5000 iterations, using the 95 centile estimate
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##
## --------------------------------------------------
## Component Adjusted Unadjusted Estimated
## Eigenvalue Eigenvalue Bias
## --------------------------------------------------
## 1 5.203709 6.279497 1.075787
## 2 1.345862 2.079679 0.733816
## 3 1.210014 1.719011 0.508996
## --------------------------------------------------
##
## Adjusted eigenvalues > 1 indicate dimensions to retain.
## (3 components retained)
detach(notspain)

notspain$pc1=multi_ana$ind$coord[,1]
notspain$pc2=multi_ana$ind$coord[,2]
notspain$pc3=multi_ana$ind$coord[,3]

library(DHARMa)
fullglm=glm(cbind(nbyellow,nbpurple) ~

popsize + elevation + UV + aridity + pc1 + pc2 + pc3,
family=binomial, data=notspain)

nullglm=glm(cbind(nbyellow,nbpurple) ~ 1, family=binomial, data=notspain)

sims <- simulateResiduals(fullglm, n=1000)
testSpatialAutocorrelation(sims, x = notspain$lon, y = notspain$lat, plot = TRUE)
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##
## DHARMa Moran's I test for spatial autocorrelation
##
## data:
## observed = 0.078290, expected = -0.020408, sd = 0.046344, p-value =
## 0.0332
## alternative hypothesis: Spatial autocorrelation
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sims_null <- simulateResiduals(nullglm, n=1000)
testSpatialAutocorrelation(sims_null, x = notspain$lon, y = notspain$lat, plot = TRUE)
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##
## DHARMa Moran's I test for spatial autocorrelation
##
## data:
## observed = 0.064322, expected = -0.020408, sd = 0.046355, p-value =
## 0.06757
## alternative hypothesis: Spatial autocorrelation
nullfit=fitme(cbind(nbyellow,nbpurple) ~ 1 +

Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

fullfit=fitme(cbind(nbyellow,nbpurple) ~
elevation + UV + aridity + pc1 + pc2 + pc3 +
Matern(1|lat + lon), data=notspain, family=binomial(),
method="ML", control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(fullfit,nullfit)

## chi2_LR df p_value
## p_v 19.8681 6 0.002923119
summary(fullfit)

## formula: cbind(nbyellow, nbpurple) ~ elevation + UV + aridity + pc1 +
## pc2 + pc3 + Matern(1 | lat + lon)
## Estimation of corrPars and lambda by Laplace ML approximation (p_v).
## Estimation of fixed effects by Laplace ML approximation (p_v).
## Estimation of lambda by 'outer' ML, maximizing p_v.
## Family: binomial ( link = logit )
## ------------ Fixed effects (beta) ------------
## Estimate Cond. SE t-value
## (Intercept) -2.941e+01 2.729e+01 -1.07762
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## elevation -3.369e-04 5.681e-03 -0.05931
## UV 8.298e-04 7.474e-04 1.11017
## aridity 1.199e-04 1.547e-03 0.07748
## pc1 -2.257e-01 6.956e-01 -0.32454
## pc2 1.505e+00 9.203e-01 1.63513
## pc3 -3.063e-01 6.282e-01 -0.48762
## --------------- Random effects ---------------
## Family: gaussian ( link = identity )
## --- Correlation parameters:
## 1.nu 1.rho
## 13.92716 80.69473
## --- Variance parameters ('lambda'):
## lambda = var(u) for u ~ Gaussian;
## lat + lon : 9.886
## # of obs: 50; # of groups: lat + lon, 50
## ------------- Likelihood values -------------
## logLik
## p_v(h) (marginal L): -240.2823
summary(nullfit)

## formula: cbind(nbyellow, nbpurple) ~ 1 + Matern(1 | lat + lon)
## Estimation of corrPars and lambda by Laplace ML approximation (p_v).
## Estimation of fixed effects by Laplace ML approximation (p_v).
## Estimation of lambda by 'outer' ML, maximizing p_v.
## Family: binomial ( link = logit )
## ------------ Fixed effects (beta) ------------
## Estimate Cond. SE t-value
## (Intercept) -2.916 1.641 -1.777
## --------------- Random effects ---------------
## Family: gaussian ( link = identity )
## --- Correlation parameters:
## 1.nu 1.rho
## 0.3138036 1.1852577
## --- Variance parameters ('lambda'):
## lambda = var(u) for u ~ Gaussian;
## lat + lon : 21.4
## # of obs: 50; # of groups: lat + lon, 50
## ------------- Likelihood values -------------
## logLik
## p_v(h) (marginal L): -250.2164

Covariates are removed sequentially according to t-values in the full model : elevation, aridity, pc1, pc3, UV, pc2
test_elevation=fitme(cbind(nbyellow,nbpurple) ~

aridity + pc1 + pc3 + UV + pc2 +
Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(fullfit, test_elevation)

## chi2_LR df p_value
## p_v 0.003203722 1 0.9548627
test_aridity=fitme(cbind(nbyellow,nbpurple) ~

pc1 + pc3 + UV + pc2 +
Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(test_aridity, test_elevation)

## chi2_LR df p_value
## p_v 0.007014488 1 0.9332532
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test_pc1=fitme(cbind(nbyellow,nbpurple) ~
pc3 + UV + pc2 +
Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(test_aridity, test_pc1)

## chi2_LR df p_value
## p_v 4.456966 1 0.03475919

PC1 is retained
test_pc3=fitme(cbind(nbyellow,nbpurple) ~

pc1 + UV + pc2 +
Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(test_aridity, test_pc3)

## chi2_LR df p_value
## p_v 0.378966 1 0.5381572
test_UV=fitme(cbind(nbyellow,nbpurple) ~

pc1 + pc2 +
Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(test_pc3, test_UV)

## chi2_LR df p_value
## p_v 1.527049 1 0.2165558
test_pc2=fitme(cbind(nbyellow,nbpurple) ~

pc1 +
Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(test_UV, test_pc2)

## chi2_LR df p_value
## p_v 17.27241 1 3.238551e-05

PC2 is retained Final model : pc1 and pc2
final_model=fitme(cbind(nbyellow,nbpurple) ~ pc1 + pc2

+ Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(fullfit, final_model)

## chi2_LR df p_value
## p_v 1.916233 4 0.7511623
LRT(nullfit, final_model)

## chi2_LR df p_value
## p_v 17.95187 2 0.0001264159
#nu and rho from the Matern functions for figure 3
nu_final_model=final_model$ranFix$corrPars$`1`$nu
rho_final_model=final_model$ranFix$corrPars$`1`$rho
nu_nullfit=nullfit$ranFix$corrPars$`1`$nu
rho_nullfit=nullfit$ranFix$corrPars$`1`$rho
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multi_ana$var$contrib

## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## bio1 11.814598 3.3339214 6.70189425 11.5611583 1.05966846
## bio12 7.655811 11.8842834 12.64617258 0.5019176 4.82351327
## bio13 4.781314 6.8569997 30.42572442 2.7814081 0.31254713
## bio14 13.521535 0.4719496 0.19004627 16.8976626 1.20845910
## bio15 6.866375 0.9822782 23.04267948 24.2057884 0.04325935
## bio17 13.712704 2.6812438 0.49845154 8.2247276 8.15862369
## bio2 6.026762 23.9900636 0.08230053 11.1691344 26.18143065
## bio4 8.973139 7.2200724 9.04935264 2.6590314 52.36727842
## bio5 4.044744 20.9546096 13.96164593 10.6273750 3.79406689
## bio6 14.084525 0.7946890 2.14614035 9.8518911 2.01339195
## bio7 8.518494 20.8298894 1.25559202 1.5199056 0.03776109
multi_ana$var$cor

## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## bio1 -0.8613346 0.26331515 0.33942055 0.25596319 0.047864814
## bio12 0.6933588 -0.49714683 0.46625005 0.05333264 0.102120541
## bio13 0.5479439 -0.37762891 0.72320231 -0.12554783 0.025994959
## bio14 0.9214578 -0.09907087 -0.05715695 0.30944977 0.051114880
## bio15 -0.6566383 -0.14292738 0.62936970 -0.37037056 -0.009671000
## bio17 0.9279487 -0.23613824 0.09256585 0.21589253 0.132812766
## bio2 0.6151832 0.70634012 -0.03761323 -0.25158608 0.237918414
## bio4 0.7506451 0.38749754 0.39441017 0.12275483 -0.336481640
## bio5 -0.5039738 0.66014290 0.48990024 0.24540864 0.090569894
## bio6 -0.9404453 -0.12855731 0.19207392 0.23628527 0.065977451
## bio7 0.7313813 0.65817541 0.14691415 -0.09280794 -0.009035531

Retained two variables, one for each component PC1 : bio17 : precipitation PC2 : bio7 : temperature

Model including these variables
new_model=fitme(cbind(nbyellow,nbpurple) ~

bio7 + bio17
+ Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(new_model,nullfit)

## chi2_LR df p_value
## p_v 16.35225 2 0.0002812896
summary(new_model)

## formula: cbind(nbyellow, nbpurple) ~ bio7 + bio17 + Matern(1 | lat + lon)
## Estimation of corrPars and lambda by Laplace ML approximation (p_v).
## Estimation of fixed effects by Laplace ML approximation (p_v).
## Estimation of lambda by 'outer' ML, maximizing p_v.
## Family: binomial ( link = logit )
## ------------ Fixed effects (beta) ------------
## Estimate Cond. SE t-value
## (Intercept) -23.79279 8.72148 -2.728
## bio7 1.28714 0.38359 3.355
## bio17 -0.09549 0.03158 -3.023
## --------------- Random effects ---------------
## Family: gaussian ( link = identity )
## --- Correlation parameters:
## 1.nu 1.rho
## 5.043636 43.053313
## --- Variance parameters ('lambda'):
## lambda = var(u) for u ~ Gaussian;
## lat + lon : 10.98
## # of obs: 50; # of groups: lat + lon, 50
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## ------------- Likelihood values -------------
## logLik
## p_v(h) (marginal L): -242.0402

Testing each variable
bio7_test=fitme(cbind(nbyellow,nbpurple) ~bio17

+ Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(bio7_test,new_model)

## chi2_LR df p_value
## p_v 10.5895 1 0.001137315
bio17_test=fitme(cbind(nbyellow,nbpurple) ~ bio7

+ Matern(1|lat + lon), data=notspain,
family=binomial(), method="ML",
control.HLfit=list(max.iter=1000, max.iter.mean=500))

LRT(bio17_test,new_model)

## chi2_LR df p_value
## p_v 10.46968 1 0.001213496

FYM is affected by : BIO5 = max Temperature of the warmest Month BIO6 = min temperature of the coldest month
BIO17 = Precipitation of the driest Quarter
cor.test(notspain$FYM,notspain$bio7)

##
## Pearson's product-moment correlation
##
## data: notspain$FYM and notspain$bio7
## t = 2.4, df = 48, p-value = 0.02032
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.05388611 0.55509711
## sample estimates:
## cor
## 0.3273243
cor.test(notspain$FYM,notspain$bio17)

##
## Pearson's product-moment correlation
##
## data: notspain$FYM and notspain$bio17
## t = -0.87009, df = 48, p-value = 0.3886
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3894477 0.1592640
## sample estimates:
## cor
## -0.1246077
m1 = glm(cbind(nbyellow,nbpurple) ~ bio7 + bio17, family=binomial ,data=notspain)

#% variance explained
(m1$null.deviance-m1$deviance)/m1$null.deviance

## [1] 0.2846171

Figure 3 autocorrelation

Extraction of the bioclimatic data bio7 and bio17
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cat("France Meam Bio7=",mean(donnees$bio7[donnees$country=="france"]))

## France Meam Bio7= 25.94419
cat("france SD Bio7=",sd(donnees$bio7[donnees$country=="france"]))

## france SD Bio7= 1.59169
cat("Italy Mean Bio7=", mean(donnees$bio7[donnees$country=="italy"]))

## Italy Mean Bio7= 24.22857
cat("Italy SD Bio7=", sd(donnees$bio7[donnees$country=="italy"]))

## Italy SD Bio7= 1.179992
cat("Spain Mean Bio7=", mean(donnees$bio7[donnees$country=="spain"]))

## Spain Mean Bio7= 28.65333
cat("Spain SD Bio7=", sd(donnees$bio7[donnees$country=="spain"]))

## Spain SD Bio7= 3.027772
cat("France Meam Bio17=",mean(donnees$bio17[donnees$country=="france"]))

## France Meam Bio17= 105.9767
cat("france SD Bio17=",sd(donnees$bio17[donnees$country=="france"]))

## france SD Bio17= 24.29137
cat("Italy Mean Bio17=", mean(donnees$bio17[donnees$country=="italy"]))

## Italy Mean Bio17= 120.4286
cat("Italy SD Bio17=", sd(donnees$bio17[donnees$country=="italy"]))

## Italy SD Bio17= 24.96569
cat("Spain Mean Bio17=", mean(donnees$bio17[donnees$country=="spain"]))

## Spain Mean Bio17= 77.53333
cat("Spain SD Bio17=", sd(donnees$bio17[donnees$country=="spain"]))

## Spain SD Bio17= 29.4545
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