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ABSTRACT

Resting-state functional networks such as the default mode network (DMN) dominate

spontaneous brain dynamics. To date, the mechanisms linking brain structure and brain

dynamics and functions in cognition, perception, and action remain unknown, mainly due to

the uncontrolled and erratic nature of the resting state. Here we used a stimulation paradigm

to probe the brain’s resting behavior, providing insights on state-space stability and

multiplicity of network trajectories after stimulation. We performed explorations on a mouse

model to map spatiotemporal brain dynamics as a function of the stimulation site. We

demonstrated the emergence of known functional networks in brain responses. Several

responses heavily relied on the DMN and were suggestive of the DMN playing a mechanistic

role between functional networks. We probed the simulated brain responses to the

stimulation of regions along the information processing chains of sensory systems from

periphery up to primary sensory cortices. Moreover, we compared simulated dynamics

against in vivo brain responses to optogenetic stimulation. Our results underwrite the

importance of anatomical connectivity in the functional organization of brain networks and

demonstrate how functionally differentiated information processing chains arise from the

same system.

AUTHOR SUMMARY

We demonstrate how functionally differentiated information processing chains arise from the

same anatomical network. The main result of the in-silico mouse brain simulations is the

emergence of specific functional networks based on structural data from the mouse brain.

When the brain is stimulated, for example, by sensory inputs or direct electrical stimulation,

the brain initially responds with activities in specific regions. The brain’s anatomical

connectivity constrains the subsequent pattern formation. We built a high-resolution mouse

brain network model. The model structure originated from experimental data. We

systematically explored the mouse model and investigated the simulated brain dynamics

after stimulation. Known functional networks emerged in the simulated brain responses. The

default mode network occurred in almost all characteristic response patterns. Simulated

brain response dynamics and in-vivo response dynamics of the mouse brain to optogenetic

stimulation showed similarities even without parameter tuning. Anatomical connectivity

and dynamics shape the functional organization of brain networks.
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Functional networks arise after stimulation in a mouse brain model

INTRODUCTION

Many structural and functional components of brain networks are known across spatial and

temporal scales. However, a computational integration framework enabling us to link brain

activity to its function in cognition, perception, and action is missing. The debate on the neu-

ral representation of behavior is longstanding and ongoing (see recent discussions, Huys et al.,

2014; Krakauer et al., 2017; Pillai & Jirsa, 2017) and is currently converging toward acknowl-

edging its dynamic nature. Mathematical models such as Structured Flows on Manifold (see

Pillai & Jirsa, 2017), Dynamical Causal Modeling (DCM; Friston et al., 2003), and Heteroclinic

Cycles (Rabinovich et al., 2008) are used to capture and model dynamical brain behaviors.

However, when it comes to large-scale brain activity, current models remain dominated by

static representations of brain activity, that is, mapping of brain states including sleep, seizure,

and behavior (e.g., sniffing). Such large-scale brain studies are prone to neo-phrenological

interpretations and localizationist perspectives.

An example is the representation of functions in cognition, perception, and action in brainDynamics:
Concerned with the study of the
time evolution of a system’s state
variables.

activity, observable in the magneto- (MEG) and electroencephalogram (EEG), as well as in func-

tional MRI (see, for instance, Dehaene et al., 2015; Kringelbach et al., 2015; Fuchs et al., 2000;

Calvert et al., 2004, and the discussion therein). To go beyond the sampling of brain states and

localization of their activity focus, brain activity/dynamic outside its attractor states needs to

be systematically measured and evaluated from a dynamics perspective (Deco et al., 2011,

2012, 2013). The spontaneous brain activity at rest, that is, in the absence of any specific task,

defines one of such nonattractor brain states. Spontaneous and task-related activity exhibits

correlated activity patterns, called resting-state functional networks (e.g., Mantini et al., 2007).

Such networks have been identified by investigating resting- and task-related brain dynamics

and sequences of brain activation patterns (microstates: Van De Ville et al., 2010; Michel &

Koenig, 2018), fitting low-dimensional dynamical systems to event-related potentials (for in-

stance, in generative Bayesian models via DCM: David et al., 2006; Ryali et al., 2016), and de-

riving estimators of various forms of causal interactions among brain areas (Wang et al., 2008).

Such inversion analysis relies on all cases on the model in use, the inversion data features, and

the model’s identifiability (Raue et al., 2009). However, in silico brain modeling avoids the

issues associated with model inversion and allows creating brain network dynamics on top of

biologically realistic structural connectivity (SC). When such brain models are implemented inStructural connectivity (SC):
The set of all material connections,
typically comprising short-range and
long-range axonal projections within
and between brain regions.

an appropriate neuroinformatics framework (see, for instance, http://www.thevirtualbrain.org),

biophysical forward solutions, linking the brain source signals to functional neuroimaging sig-

nals (e.g., M/EEG, BOLD, and MRI) can be computed. In silico modeling of stimulated brain

activity thus offers an excellent means of exploring brain dynamics inside and outside of at-

tractor states, with a direct link to measurable brain signals.

To perform systematic exploration of the brain dynamics via stimulation in silico, we con-

structed a large-scale network model with homogeneous short-range SC, the axonal connec-

tion between brain areas, and region-specific long-range SC in the isocortex (Figure 1). In our

description, boundary-crossing is possible. That is, short-range fibers can project to not only

the region from which they emanate but also to adjacent regions. To eliminate the impact of

diverse local activity on whole-brain dynamics, we used the same local dynamics (a simple

oscillator with the same parameters; see Supporting Information Figure S1) to represent the ac-

tivity of each network node. It allowed us to isolate the role of network anatomical structure on

whole-brain dynamics. Using the same local dynamics, we probed the experimentally derived

large-scale brain network to produce functionally relevant activity using focal stimulation.

Network Neuroscience 808
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Functional networks arise after stimulation in a mouse brain model

Figure 1. Modeling the mouse brain and simulating the mouse brain’s response to focal stimulation. The ABA database is isotropically
sampled with a resolution of 50 µm, resulting in a total of 3,300,706 voxels (1,653,785 voxels for left side), which encode the injection by
its spatial location and connectivity among 512 brain areas. Supporting Information Tables S1 and S2 list the 512 brain areas. (A) An axial
(horizontal) slice of the sampled database. Each dot indicates the center of a voxel, and the color indicates the different brain areas. To model
large-scale activity of the cortex recorded using various methods such as VSD imaging, the isocortex surface is reconstructed from the ABA
database (slice shown in panel A) using a regular triangle mesh of 7,020 vertices for the left and 6,952 vertices for the right hemisphere. The
quality of the mesh is quantified in Supporting Information Figure S2 shows the quality of the mesh. (B) The reconstructed isocortical surfaces.
All other areas are lumped in space to point masses (centroids) indicated by the gray circles in panels B, C, and G. (C) Each vertex in the
isocortical meshes is assigned to an area by the five closest voxels to the normal vector extended inside the volume of the ABA (slice shown
in panel A). Table 1 lists the areas of the isocortex and the number of vertices per area. (D) The model distinguished two types of structural
connectivity (SC). Long-range SC corresponds to the connections extracted from the ABA, such as tracts connecting brain areas over long
distances. Short-range SC corresponds to gray matter fibers in the isocortex, with short-range connections within a given isocortical area. It
also enables some communication over short distances between neighboring areas. Although in the ABA, cortical area 2 is not connected to
areas 1 and 3, it is weakly linked to both areas via a set of short-range SC. (E) Short-range SC matrix for the 13,972 vertices of the isocortex. The
synaptic weights are color coded. The diagonal describes in warm colors the strong SC of adjacent nodes. Cold colors show the SC decreases
with distance. SC of nearby nodes are scattered (e.g., blue dots) in panel E because each cerebral hemisphere is described by a surface, which
makes it impossible to cluster nodes locally along both vertical and horizontal axes of the weight matrix. Note the absence of interhemispheric
short-range SC. (F) Long-range SC for the 512 (84 isocortical plus 428 subcortical) brain areas for weights (left) and time delays (right). Within
one hemisphere, the 214 subisocortical areas mostly project to the 42 isocortical areas. Some connections between subcortical areas can also
be seen. The 42 cortical areas project heavily to both cortical and subcortical areas. Some interhemispheric connections can also be seen.
Note also the presence of relatively large time delays. (G) Stimulation paradigm. Dynamics are simulated without noise. Brief stimulation
induces activity in the targeted brain area. Panel G shows the mouse brain model responding (at different locations) to stimulation of the
primary somatosensory area. ss-DRN captures the spreading and dissipating activity via the SC. Each of the 512 cortical and subcortical brain
areas is stimulated individually, and the ss-DRNs are extracted and investigated.

The stimulus-related activity can spread from the stimulation site and synchronize in different

locations on the network over time.

To investigate whole-brain dynamics, we performed simulations and analyzed brain re-

sponses to brief stimulation. Stimulation of a brain area induced spatiotemporal patterns of

activity dissipating energy over the network. We systematically stimulated brain areas and

Energy:
The integral of power, i.e., the square
of brain activity over time. Induced
activity, and thus, energy dissipates
after stimulation.

Network Neuroscience 809
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compiled a catalog of brain responses. Individual trajectories in the responses provided finger-Trajectory:
The path in state space that is traced
out as the state variables evolve in
time.

prints of the mouse brain. The main result of in silico modeling is the appearance of specific

functional networks in the simulated brain responses.

To determine the dominant activity pattern of coactivated brain regions, we decomposed

each brain response. Three principal components (PCs) defined the stimulation site-specific

dynamically responsive network (ss-DRN), in which 12 consistent dynamically responsive net-
Dynamically responsive
network (DRN):
A coherent activation of brain
regions to focal stimulation.

works (DRNs) appeared across stimulation sites. The induced activity resolved in one of the

DRNs, irrespective of the stimulation site. The 12 DRNs had five recurring activity patterns.

These motifs correlate with functional networks (Sforazzini et al., 2014; Zingg et al., 2014). The

Motif:
is a recurrent activation pattern in
the brain following stimulation.

salience network and the default mode network (two well-characterized brain functional net-

works) occurred in almost all DRNs, indicating a connecting role for both networks between

the functional networks.

Using our novel network model of the mouse brain that permits systematic investigation

of peripheral pathways, especially the ones for sensory data processing, we showed that the

simulated in silico brain responses resembled in vivo brain dynamics after stimulation. Inter-

estingly, the simulated data bore a noticeable similarity to the empirical data, collected using

voltage-sensitive dye (VSD) imaging and laser stimulation in mice, even though we had not
Voltage-sensitive dye (VSD):
Changes its spectral properties with
the membrane potentials. Optical
imaging captures these changes as a
proxy for neuronal electrical activity.

attempted to fit our model to this empirical data.

RESULTS

The result section splits into two parts: (1) compiling of the whole mouse model and (2) the in

silico exploration study utilizing focal stimulation. The modeling work is fundamental to the in

silico exploration and is also suitable for many studies, and in this sense, the modeling work

stands for itself. The modeling work of the mouse brain was thus not solely driven by the goal

of performing in silico brain stimulation but is instead driven by the objective of obtaining a

systemic and holistic description of the mouse brain. The results emphasize the potential of

dynamic models to study the functional repertoire of the brain and the information processing

of networks.

Modeling the Mouse Brain

The Virtual Brain (TVB) network modeling approach involves three interacting systems: the

inputs, the dynamics, and the observations. The input system allows for interventions, the ob-

server system specifies the measurement modalities, and the dynamical system generates the

brain activity based on its structure and constitutes brain states. The physical and spatiotem-

poral properties of actions (e.g., focal brief, direct electrical stimulation, or transcranial direct

current stimulation) to brains determine the input to TVB. In general, models are agnostic

about the action. They hence have the potential to integrate and discuss the effects of different

modalities such as sensory, direct electrical, and transcranial stimulation as well as blocked

arteries. The input system relates action to the state variables of TVB (e.g., postsynaptic poten-State variables:
The quantities that unambiguously
define the state of a system.

tials and currents). The dynamical system describes the interactions between state variables

and their spatiotemporal evolution. As a result, the dynamical system produces a set of events

(over a relatively short timescale, e.g., event-related potentials (e.g., Shah et al., 2004) and

event-related (de)synchronization (Pfurtscheller & Lopes da Silva, 1999), and long-term effects

such as necrosis and changes in apoptosis and autophagy). Such events may be symptomatic

for medical conditions and diseases such as ischemic stroke (a blocked artery) and multiple

Network Neuroscience 810
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sclerosis (due to damage of myelin sheath). In the following, we present the modeling results

for the mouse brain and the VSD imaging data in detail.

Structure and parcellation of the mouse brain model originated from the Allen Brain Atlas

(ABA;Oh et al., 2014). It compiles the axonal projections labeled by viral vector tracer injectionsViral vector tracer:
A viral agent that causes a
fluorophore expression along
the axonal projections in the
mouse brain.

to a selective sample of adult mice brain regions (see Figure 1). The sampling is with high

spatial resolution such that the model distinguishes 512 distinct brain areas. From the ABA,

we reconstructed and approximated the smooth surface of the isocortex by using a regular

mesh (Supporting Information Figure S2). We then spatially divided the isocortex into cortical

areas given by the ABA. The 512 distinct brain areas comprise 84 isocortical areas (i.e., 42 per

hemisphere) and 428 nonisocortical (subcortical). Table 1 lists the division of structures into

areas. Supporting Information Table S1 and S2 provide a complete list of area names. Short-

and long-range SCs connected brain areas. Both SCs are exclusively excitatory. Inhibition,

however, is implicitly present in the local dynamic models to dissipate activity.

Table 1. Mapping of brain areas in the mouse model

Structure Division Areas

Cortex Isocortex 42

Olfactory areas 11

Hippocampal formation 10

Cortical subplate 7

Cerebral nuclei Striatum 13

Pallidum 8

Thalamus Sensorimotor related 13

Polymodal association cortex related 8

Hypothalamus Periventricular zone 3

Periventricular region 11

Medial zone 12

Lateral zone 7

Midbrain Sensory related 6

Motor related 17

Behavior-state related 7

Pons Sensory related 3

Motor related 7

Behavior-state related 7

Medulla Sensory related 9

Motor related 23

Cerebellum Cortex 12

Nuclei 3

Note. Mapping of brain areas in themousemodel refers to areas of brain structures
following the division of the Allen Brain Atlas (http://connectivity.brain-map.org).
Because of a total of 512 brain areas in the model, only the number of areas is
listed. Names are listed in Supporting Information Table S1 and S2.

Network Neuroscience 811
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Short-range SC comprises axonal projections within the isocortex (e.g., in a brain region)

over distances ofmicrometers up tomillimeters (Braitenberg & Schüz, 1998). Anisotropic radial

kernel described these short-range connections in our model for which the SC decays as a

function of distance for the center (Braitenberg & Schüz, 1991). Also, the same kernel was

applied homogeneously throughout the entire isocortex. Short-range SCs described by these

kernels allowed crossing the boundaries of brain areas. The model implemented short-range

SCs only in the isocortex and not for the rest of the brain.

Long-range SC comprises axonal connections between distant brain areas. The ABA pro-

vides these connections between the 512 distinct brain areas of the adult mouse brains. These

connections are directional (e.g., the SC of lateral geniculate complex (LGN) to V1 is stronger

than that in the other direction)), which introduces asymmetry and specificity for connec-

tivity between a pair of brain areas leading to the heterogeneity of long-range SC. Adjacent

brain areas in the isocortex exchange information via the short-range SC and, if available (by

ABA), via the long-range SC. At each network location, the activity enters and exits via affer-

ent and efferent projections whose weights are experimentally derived. These weights indicate

how strong a location in the network model collects and distributes activity—in other words,

how well the brain network embedded brain structures. It turned out that the hypothalamus is

the most embedded brain structure in the mouse brain model based on the ABA (Supporting

Information Figure S3 and S4). The hypothalamus and the cerebellum receive the strongest

and weakest input in the mouse brain model, respectively. Despite ample connections, the

graph-theoretic measures point, on average, to weakly connected isocortex with the subcortex

(see Supporting Information Figure S3). Hence, the dynamics of isocortex can exert functions

that are less sensitive to subcortical input from via long-range SC.

Tracer injection techniques used for the ABA captures unidirectional connectivity patterns.

The ABA-derived long-range SC weight matrix was highly symmetric, pointing to a dominant

bidirectionality of the long-range SC. The used measures (described in Materials and Meth-

ods) indicated high symmetry in the long-range SC by low values Q0 = 238.2871 × 10−3 and

Q1 = 226.6417 × 10−3 (Q0 and Q1 range between 0 and 1; 0 for perfect symmetry and 1 for

asymmetry and antisymmetry in Q0 and Q1, respectively).

The local dynamicmodel allows each location in themouse brain network to show rhythmic

activity in the gamma range (at about 42 Hz), accounting for the coordinated interaction of

excitation and inhibition in local circuits (Buzsáki &Wang, 2012; Palmigiano et al., 2017) that

has been phenomenologically modeled by Palmigiano et al. (2017). A two-dimensional (2D)

model (i.e., consisting of two state variables: mean postsynaptic potential and current) was used

to provide the local temporal dynamics (see, e.g., Spiegler et al., 2016). We parameterized this

2D local dynamic model equally across the locations of the mouse brain network model. That

means, each isolated location in the brain network (with SC removed) behaves identically.

Note that the behavior at each network location was set to a subcritical working point, as
Criticality:
The set of characteristic behaviors
that occur when a system approaches
the critical point of a qualitative
transition (bifurcation) from one
behavior to another.

many authors suggest within the resting-state literature (Deco et al., 2011; Fagerholm et al.,

2015). A stable focus close to instability is here subcritical by showing damped oscillations in

response to perturbations.

In contrast to many other modeling studies, we considered the deterministic system only

to investigate brain responses to stimulation. It did not include dynamic noise to explore the

state space for describing ongoing brain activity. Hence, without stimulation or perturbationState space:
The space spanned by the state
variables.

(no noise, no nonzero time-varying input), activity was zero. Local response to stimulation

was a damped oscillation in the gamma frequency range. The long-range SC of the mouse

brain was heterogeneous (see Supporting Information Figure S5). The spatiotemporal patterns

Network Neuroscience 812
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of activity, generated by the model, were shaped by the brain structure through the network

interactions. Hence, the local response can be highly specific to a brain area even though

local dynamics were identical. The specific connections to a given location in the mouse

brain network and the transferred activity from a source location pushes the operating point

of the target location toward the critical point (i.e., Andronov–Hopf bifurcation) at which theBifurcation:
The mathematical mechanism
describing the qualitative change
of behavior of a system.

decay time of a stimulation response increases. We parameterized the brain model in a way

that none of the applied stimulation can lead to a self-sustained oscillation. Consequently, the

brain network segregates and integrates information, while the local dynamics dissipate the

activity.

Transmission speed and delays originated from mouse connectivity and physiological stud-

ies. Following the reasoning of (Buzsáki &Wang, 2012), the activity of local neural populations

in the brain shows gamma oscillations (30–90 Hz) with cycle duration between 11 ms and

33 ms. Let us consider the axonal lengths (20 mm to 40 mm) between lateral areas of two

hemispheres in mice (Schüz et al., 2006). The effective conduction speed should be less than

3.6 m/s (for the extreme with the longest axon (40 mm) and the fastest local activity (11 ms),

assuming that the timescales of transmission delays have to be similar to the characteristic

timescales of local brain activity. This estimation is in line with the range of conduction speed

found in myelinated visual cortical neurons whose axons pass through the corpus callosum

in mice (Waxman, 2012). Most of the cortico-cortical homolateral connections in mice are

shorter than 10 mm. For instance, Braitenberg and Schüz (1998, Chapter 26) report the longest

distance of 7 mm to the tracer injection site in a planar view on the isocortices with two modes,

at about 2 mm and about 3.5 mm. The effective conduction speed is estimated to be less than

1 m/s for a maximum connection of 11 mm divided by 11 ms to affect fast (90 Hz) gamma

oscillation. The upper bound of the speed for the longest distance to the tracer injection site

and the two modes of distance to the tracer injection site (see Braitenberg & Schüz, 1998,

Chapter 26) are 0.6364 m/s = 7 mm / 11 ms, 0.1818 m/s = 2 mm / 11 ms, and 0.31818 m/s =

3.5 mm / 11 ms. Transmission delays were assumed to affect intrinsic local activity hardly, that

is, gamma waves, which are most apparent at a frequency of >40 Hz across the brain. With a

modest speed of 3 m/s and a 10 mm connection length, the time delay is up to 3.333 ms. The

delay is rather short and plays a limited role in the mouse brain, especially if the speed can be

slowed down by a factor of 2 to 3. Thus, transmission delays could hardly affect intrinsic local

activity, that is, gamma waves, which are the most apparent at a frequency of >40 Hz across

the brain.

The time delay can be effective on a scale smaller than the characteristic time constant

of the intrinsic frequency (i.e., the period of a cycle), considering harmonic oscillations (i.e.,

sinusoidal activity) in the brain. Moreover, we expect time delays to be most effective within

a quarter of a full cycle because of the change in the wave. It results in effective time delays of

around 6.25 ms for 40 Hz and 2.77 ms for 90 Hz. Therefore, short and long time delays affect

mainly fast and slow oscillations, respectively. Since themajority of connections are about 6.25

mm long (and 2.77 mm for 90 Hz), we equipped each location in the mouse brain network

with simple dynamics. Each location responds with a damped oscillation in the gamma range

(at about 42 Hz) to stimulation and incoming input from other brain regions (see Supporting

Information Figure S1). The chosen intrinsic frequency for local dynamics leads to the effective

conduction speed of about 1 m/s.

The conduction speed for white matter fiber tracts was assumed in the model to be 1 m/s.

Given the distances between the brain areas present in the ABA, the transmission delays result

from the division of the mean connection lengths by the conduction speed (see Supporting

Network Neuroscience 813
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Table 2. Number of connections among areas in the isocortex is outnumbered by other areas
in the mouse brain model

Structure

Area Mouse brain (512) Isocortex (84) Subisocortex (428)

Intra 127,922 (97.98%) 003,444 (100%) 088,820 (97.43%)

Inter 127,814 (97.51%) 003,528 (100%) 088,788 (96.94%)

All 255,736 (97.75%) 006,972 (100%) 177,608 (97.18%)

Note. The table lists the number of connections of the mouse brain model and its division into
isocortex and subisocortex. In brackets are the numbers of different areas or the percentages of
connections concerning possible connections.

Table 3. Connection lengths in the mouse brain model and its subdivisions

Mouse brain Isocortex Subisocortex

Parameter Intra Inter Intra Inter Intra Inter

Minimum 0.1085 0.1083 0.4441 0.2352 0.1085 0.1083

Maximum 11.6731 11.8715 8.5598 10.0594 11.6731 11.8715

Expectation 4.0562 4.9721 3.7661 6.3171 3.6806 4.4273

Variance 3.3677 3.4961 2.8349 3.5418 3.0860 2.9773

Skewness 0.5133 0.2307 0.2042 −0.5012 0.6632 0.3889

Quantile-05% 1.3444 2.0139 1.1605 2.7377 1.1909 1.7948

Quantile-50% 3.8858 4.9148 3.6685 6.5294 3.4521 4.3090

Quantile-95% 7.2747 8.1711 6.5422 9.0240 6.8353 7.3476

Quantile-99% 9.0197 9.4866 7.7075 9.5383 8.4382 8.7810

Note. Note the difference between intra- and interiscocortical connections in terms of expec-
tation, median (i.e., 50% quantile), and variance. All values are in millimeters, except the
variance that is in square millimeters and the skewness that is a bare number.

Information Figure S5). First of all, the histograms in Supporting Information Figure S5 do not

indicate for bimodality, as reported by Braitenberg and Schüz (1998, in Figure 62, Chapter 26).

However, the technique is similar, and the distance measurement is slightly different. Our

investigation of intra- and interhemispheric SC, however, confirmed the second peak in the

histogram (see Supporting Information Figure S5B). The investigation is based on the division

of the mouse brain into areas and intra- and interhemispheric connections (e.g., among left

isocortical areas and between left and right isocortical areas, respectively). This second peak

reflects the long commissure connecting the two hemispheres, such as the corpus callosum.

The two peaks in the histogram for intra- and interhemispheric connection lengths are not

visible in the histogram of all isocortical connection lengths. The reason is that the number of

connections is similar within and between hemispheres of the isocortex (Table 2). The same

is true for all the connections in the entire mouse brain model (see Supporting Information

Figure S5A). Table 3 summarizes the descriptive statistics of the connection lengths.

In Silico Exploration of Mouse Brain Dynamics by Means of Stimulation

In in silico exploration, we have varied three parameters, namely, the following:

1. The scaling factor of the SCs to control the effectiveness of short- and long-range SCs

(only long-range SC for α = 0, only short-range SC for α = 1, a mix of both SCs for

0 < α < 1)

Network Neuroscience 814
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2. The characteristic distance of short-range SC within plausible bounds (Braitenberg &

Schüz, 1998)

3. The location of the stimulation according to the brain areas provided by the ABA

Effect of Structural Connectivity with Time Delays on the Brain Response to Stimulation

The formation of consistent patterns of coactivated brain regions due to stimulation, that is,

the ss-DRNs, was different for extreme sides of the scaling of SC (i.e., 0% (100%) and 100%

(0%) of long-range (short-range) SC; see Supporting Information Figure S6). The occurring ss-

DRNs differ at both extremes because of the change in communication via short-range and

long-range SCs. The results indicate that both extremes merge rather than reorganize (e.g., as

an effect of time delays in the long-range SC) as a function of each connectivity type. One

explanation for this behavior is that the short-range SC pertains to a minority of areas present

in the model, that is, 84 isocortical out of 512 areas. In contrast, the long-range SC (which is

heterogeneous and brain area specific) pertains to all of the 512 areas. The ss-DRNs were most

similar when the 512 areas were linked only by long-range SCs. The overall similarity decreases

as the proportion of short-range (long-range) SC increases (decreases), and the differentiation

of clusters of similar ss-DRNs becomes clearer (see Supporting Information Figure S6). The

cluster labels of ss-DRNs, however, stayed the same throughout. Structures within a cluster

may appear for higher scaling of the short-range SC, but clusters do not move, split, nor merge

(as observed in a similar human study; Spiegler et al., 2016). The behavior in the similarity of ss-

DRNs moderately depended on the spatial range of the short-range SC only for higher scaling

of short-range SC (e.g., 80%). All in all, both SC types of short- and long-range SCs in the mouse

model act as spatiotemporal filters of local dynamics in the emergent functional network. TheEmergence:
The process of self-organization
describing the formation of an
ordered state of the system.

results (Supporting Information Figure S6) do not provide evidence for a reorganization of

dynamics due to interplay between both types of SC in the mouse as opposed to humanmodels

(Spiegler et al., 2016).

Dynamically Responsive Networks

The spatial proximity of stimulation sites did not necessarily predict the similarity of induced

activities. The stimulation of several sites scattered all over the brain can induce the same

spatial pattern of brain activity (Figure 2). So there should be stable spatial patterns that underlie

similar ss-DRNs. Such stable patterns are called the DRN in contrast to the stimulation ss-

DRNs. The following three steps determined the DRNs: (1) each ss-DRN was decomposed

into three PCs conveying 99% of the stimulation-induced energy (i.e., integral of power over

time), (2) ss-DRNs were clustered into 12 clusters (12 was the optimum number; see Materials

and Methods) based on the similarity of their corresponding PCs, and (3) the PCs of all the

ss-DRNs in a given cluster were aligned, and then averaged. The resultant three averaged PCs

in a given cluster defined the components of the DRN associated with that cluster. DRNs were

consistent in response to different stimulation sites and consistent throughout the systematic

connectivity parameter exploration (Figure 2 and Supporting Information Figure S6). Therefore,

in silico exploration provided a spatiotemporal mapping of brain activity onto DRNs, which

inform what brain areas to stimulate (Figure 2A: the similarity matrix) to “push” the brain

into a particular state (see the catalog in Figure 2C and 2D). Please note that for the rest of the

manuscript, we refer to the 12 DRNs without indicating the stimulation side (left/right) because

of bilateral symmetry (in the spatial organization of brain activity due to left/right stimulation).
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Figure 2. Motifs in the DRNs extracted from the brain responses in the mouse brain model. (A) The similarity matrix of the 512 ss-DRNs.
Clustering the stimulation sites according to the correlation of ss-DRNs revealed 12 clusters (separated by the black lines). This suggests that
similar networks are activated in response to the stimulation of several distinct areas. The color bar on the x-axis and the y-axis displays the
structures to which a brain area belongs. The similarity matrix of ss-DRNs is color coded (warmer color means more similarity). The three
principal components of each ss-DRN cover more than 99% of the activity variance. (B) The correlated components (patterns) of clustered ss-
DRNs were aligned with the ss-DRN that shows the strongest correlation and is averaged to a characteristic DRN. (C) The 12 DRNs accessible
from different locations in the brain (see panel A). Panel C displays the spatial activity (topography) of each of the three components that form
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Figure 2 continued. a DRN from the left, top, and right view of the isocortex. Similar components among the DRNs are shaded in panel C
(yellow, teal, gray, orange, magenta) and show five motifs that recur in the DRNs. Experimentally known functional networks were compared
to the components. Shade indicates the correlation level (Corr) of the components (no shade, i.e., white for not significant correlations and
shades: dark, medium, light for significant correlation values greater than 0.8, 0.6, 0.5). Six components are unique (i.e., in DRNs 2, 4, 6, 7,
and 9) and not correlated to other DRNs. That makes DRN 7 the most unique one, and DRN 1 the most entangled motif (followed by DRNs
5, 11, and 12). (D) The organization of brain activity in the isocortex for the nine functional networks from the left, top, and right view (blue to
yellow scale gives the relative contribution). Four experimentally known functional networks match the motifs. They are shaded, according to
panel C. The (lateralized organization) of the frontal eye field network is the only sensorimotor network that is reflected in the DRNs (magenta
motif 4). The white components in panel C (DRNs 2, 4, 6, 7, and 9) are unique and do not match any of the functional networks. Similarly,
no match was found for motif 1 (yellow), but the pattern is not unique and recurs. The default mode and the salience networks (teal motif 2)
cover most of the DRNs (1 to 11), emphasizing their sensitivity and flexibility. In contrast, the lateral (orange motif 4 in DRNs 1, and 3 to 5)
and the medial network (gray motif 3 in DRNs 8 to 12) are less accessible, where the DRNs reflect the lateral organization of both networks.
The model configuration is 500-µm short-range SC with 40% of short-range SC to 60% of long-range SC.

Disentangle the DRNs from the Structure

We have performed statistics on the catalog of DRNs (Figure 2) to (1) clarify whether the DRNs

are entangled in their components, and (2) to discuss how the formation of the stimulus-

induced brain activity follow the structure. For the first purpose, the analysis revealed five

significantly distinct spatial patterns in the DRNs, indicating that some of the DRNs are en-

tangled. Because these patterns recur in several DRNs, we call them motifs. Distinct motifs

could represent structural links for the transfer of brain activity at rest, transmitting informa-

tion about stimuli from one DRN to another. The reason for that conjecture is the occurrence

of five motifs in 12 DRNs (see the highlighted components in Figure 2), which, importantly,

also allow activation of more than one DRN at a time. The analysis also revealed six unique

components (i.e., see the components with white background in the DNRs 2, 4, 6, 7, and 9 in

Figure 2A) that were not correlated to other DRNs. Considering the components of the DRNs

and the occurrence of motifs, DRN with number 7 (see Figure 2A) is the most unique one, and

DRN with number 1 is the most entangled one (followed by the entanglements in the DRNs

5, 11, and 12) among all DRNs. The motif with number 2 (shaded in teal) is the most present

in the DRNs (part of 11 DRNs out of 12), whereas motif 1 occurs only within DRN 12. The

most present motif, that is, number 2 (shaded in teal), was also the pattern with the strongest

correlations (out of a total of 11 components, seven components were strongly correlated, and

four components showed good correlation), whereas motif 1 showed only good correlations.

Before interpreting the theme of the DRNs, we focused on relating the components of the

DRNs (and thus the motifs) to experimentally known functional networks and tested to which

extent the topology in the SC predicts the brain activity induced by stimulation.

The brain activity in response to stimulation follows the structural connections from the

stimulation sites. Among the 13 graph-theoretic measures on the long-range SC, the direct

projections from the stimulation sites were the best predictor for brain response, though the

correlation was rather moderate. The other 12 graph-theoretic measures (see Materials and

Methods) were poor, that is, less correlated, weakly predictive, and with fewer significant

configurations. The best prediction resulted from comparing the rank (Kendall’s tau) of the

activity at network locations after stimulation with the rank of connectivity strengths of the

direct projection from the stimulation site. The rank correlation was weak but significant for

most SC parameter configurations, that is, scaling α of long- and short-range SC and the spatial

range of short-range SC. By utilizing this simple measure on the large-scale SC, a high corre-

lation value means that energy (i.e., integral of power over time) induced by the stimulation

spreads into brain areas directly connected to the stimulation site. The values of (Bonferroni
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corrected) significant correlations were, however, reasonably low with an average maximum

value of 221.542 × 10−3 across all components of all DRNs (i.e., isocortex) and all connec-

tivity parameter configurations (maximum average correlation value of 253.889 × 10−3 for all

first components, 255.936 × 10−3 for all second components, and 338.724 × 10−3 for all third

components across all DRNs and all SC parameter configurations). The percentage of param-

eter configurations with significant rank correlation is 48.981% across all components and

all DRNs (49.706%, 56%, and 82.576% for the first, second, third components, respectively).

This low rate of significant configurations and the overall low correlation indicate that most of

the activity induced by the stimulation spreads over the network on short and long ranges in

specific ways. The “direct network response” to stimulation seems to be captured by the sec-

ond and third components of the DRNs because correlations were generally more reliable for

higher order components, that is, second and third components than for the first components

(and across all DRNs). The first components of each DRN reflect the reorganization of the

network activity caused by the stimulation. Because of the reorganization, these spatial forma-

tions of brain activity were not necessarily traceable to the site at which stimulation introduced

energy.

When considering stimulation-induced activities in the entire brain model (i.e., including

all substructure), the maximum correlation was the lowest. However, the number of parameter

configurations with significant correlations was the highest, which emphasizes the specificity

of responses of the brain (e.g., thalamus, isocortex). For instance, the cerebellar activity showed

the highest maximum correlation with the direct projections from the stimulation sites. In con-

trast, the number of configurations with a significant correlation was reasonably low. It is also

interesting to mention that activity in the isocortical subplate showed no significant correlation

with the underlying structure.

Comparison of Dynamically Responsive and Functional Networks

To probe the potential relationship between the identified DRNs and brain function, we com-

pared the DRNs with previously identified functional networks. Spatial organization of the nine

experimentally known functional networks derived from Sforazzini et al. (2014) and Zingg

et al. (2014) is shown in Figure 2B for the isocortex. Four of the nine functional networks

matched four of the five motifs in the DRNs (see Figure 2). Interestingly, the functional sensori-

motor networks were not similar to any of the DRNs. Merely the lateral organization (i.e., activ-

ity within one hemisphere) of the network associated with the frontal eye field was significantly

(but moderately) reflected in the magenta motif five that links four DRNs (see Figure 2). A rea-

son why the DRNs did not include functional sensorimotor networks could be that the stimulus

is brief. Furthermore, DRNs entail structures in which activity dissipates later because the activ-

ity can reverberate through the SC (see Supporting Information Figure S1B–S1D). The unique

components in the DRNs 2, 4, 6, 7, and 9 (see not highlighted components in Supporting

Information Figure S1A) were correlated with none of the nine functional networks.

Similarly, the yellow motif one does not match any of the nine functional networks. The

default mode and the salience networks have similarities at the isocortical level, match the teal

motif two, and occur in most DRNs (11 out of 12 DRNs). The motif of the default mode network

(and the salience network) appears to be the most sensitive because it was accessible from a

large number of locations in the brain. It was the most flexible because it connects the different

DRNs. The lateral network matches the orange motif four, which was less accessible because

it was present in a small number of DRNs (i.e., 1, and 3 to 5). Similarly, the medial network

Network Neuroscience 818



Functional networks arise after stimulation in a mouse brain model

matches the gray motif 3 (DRNs 8 to 12). In both cases, the motifs reflect the activity within

one hemisphere (lateralized organization).

Organization of Brain Activity Following the Sensory Pathways

To test whether the experimentally derived large-scale mouse brain network contains the struc-

tures and connections of sensory pathways, we extracted network descriptions (see Supporting

Information Figure S7) of five sensory systems (auditory, the visual, the whisker, fore, and hind

limbs). The networks are described according to the scientific consensus from the literature

(see Materials and Methods). The analysis shows that long-range SC statistically well represents

sensory networks. The brain areas in the sensory pathways (Supporting Information Figure S7)

provide prior knowledge about the brain’s response consistency when stimulating precisely

these areas. However, this is not trivial because the pathways are a small part of the large-

scale brain network. The sensory pathways in Supporting Information Figure S7 represent that

sensory processing follows specific paths of activations toward the primary somatosensory cor-

tices. Activation of sensory processing can be ipsilateral to the sensory organ, such as for the

whisker follicles up to the midbrain (see Supporting Information Figure S7D). The sensory pro-

cessing usually crosses to the contralateral side of the sensory organ, indicating the integration

of the left and right sensory organs of the samemodality (see Supporting Information Figure S7).

For instance, the auditory pathways show directed processing to the contralateral side (projec-

tions from the medulla to the pons). Then, the path continues to the midbrain, the thalamus,

into the primary somatosensory areas (see Supporting Information Figure S7B).

DRNs and Sensory Systems

We used the catalog of brain responses to examine those DRNs that respond to brain struc-

tures’ stimulation in the sensory pathways. We can thus trace the activity and dynamics in

each of the sensory systems. Brain areas involved in sensory processing along the primary

paths may be connected to other (secondary) brain areas supporting one or several functional

networks.

Primary Auditory Pathways

The catalog of DRNs and its stimulation sites (see Figure 2) responses were consistent and

altered along the auditory pathways (bottom-up). Three DRNs hierarchically organized the

formation from the cochlea to the primary auditory areas. From the cochlea up to the cortex

through the medulla, the pons, the midbrain, and the thalamus:

1. DRN number 5 (see Figure 2) due to stimulation in the medulla (DC, VC)

2. DRN number 9 due to stimulation of the medulla (Tz), the pons (NLL), and the midbrain

(BIC)

3. DRN number 10 due to stimulation of the midbrain (IC) and the thalamus (MG)

Primary Visual Pathways

The responses were consistent throughout the visual pathways and had the same DRNs (num-

ber 10 in Figure 2). The responses were consistent and altered along the pathways of the

whiskers (bottom-up).
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From the Whisker Follicles to Somatosensory Cortices

Three DRNs hierarchically organized the formation from the whisker follicles to the barrel field

in the primary somatosensory areas. From the follicles to the isocortex through the medulla,

the pons, the midbrain, and the thalamus (abbreviations of brain areas are given in Supporting

Information Tables S1 and S2):

1. DRN number 6 (see Figure 2) due to stimulation of the medulla (SpVc, SpVi, SpVo) as

well as the pons (PrV)

2. DRN number 6 due to stimulation in the midbrain (SuCo) and the thalamus (LD)

3. DRN number 8 due to stimulation of the two thalamic areas (VPM, Po)

From the Limbs to the Primary Somatosensory Cortex

The response to stimulation of the two nuclei in the medulla involved in the sensory pathways

of the limbs (CN, GN) was correlated and had the same DRN, number 6 in Figure 2 (abbrevi-

ations of brain areas are given in Supporting Information Tables S1 and S2). The responses to

stimulation of the nuclei in the thalamus (VPL, VPM) differed and belonged to two DRNs with

the number 8 and 7 (for the parvicellular part).

Activated Structures and Their Activated Areas Along Sensory Pathways

The cerebellum was the most active brain structure, in particular after stimulation of the au-

ditory, visual, and whisker pathways. In the case of the whisker pathways, the thalamus was

similarly active as the cerebellum. The cerebellar activation was the strongest of all modalities

and mainly focal after the auditory pathway stimulation (at the flocculus and the copula pyra-

midis). Significant activation of the isocortex occurred only upon stimulation of the auditory

and visual pathways. The laterointermediate area (LI) in the isocortex, which is interestingly

a visual area (Garrett et al., 2014), responded the most to stimulation of the thalamic visual

nuclei (dorsal part of the lateral geniculate complex of the thalamus, left and right) and, albeit

less, to stimulation of the auditory nuclei in the midbrain (the nucleus of the brachium of the

inferior colliculus, BIC, left and right). Activity in the other brain structures was less significant,

and the patterns were more scattered and complicated. Only the stimulation of nuclei in the

limb pathways showed activity that was less distributed within the cerebellum, the thalamus,

and the isocortex.

Areas in the hypothalamus were the most active ones throughout the stimulation sites and

modalities. Their activation patterns were lateralized (in the first (dominant) component of a

DRN). They showed activity contralateral to the stimulation sites in most of the cases (except

vision, i.e., not lateralized). The most active areas were the intermediate part of the periventric-

ular nucleus (PVi), the lateral mammillary nucleus (LM), and the arcuate nucleus (Arc). Table 4

ranks the activity of brain areas after stimulation of the pathways.

Symmetries in the Brain Responses

We found onlyweak stimulation asymmetries, which point toward homologous activation after

left and after right stimulations. Activation was left/right stimulation-symmetric in the sense

that the activity of the right areas after the stimulation of a left functional area (e.g., left LGN)

corresponds to the activity of the left areas after the stimulation of the same right functional area

(e.g., right LGN). Most of the activity after stimulation of the visual, auditory, whiskers, and limb

pathways showed lateralized and left-right stimulation-symmetric patterns. A reason for this

symmetry is that the tracer experiments compiled in the ABA mostly relate the spatial diffusion
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Table 4. Stimulation of the sensory pathways activated brain areas

Rank Visual Auditory Whisker Limbs

1 LI (isocortex) Arc (hypothalamus) PVi (hypothalamus) PVi (hypothalamus)

2 Arc (hypothalamus) DC (medulla) S1, mouth (isocortex) S1, lower limb (isocortex)

3 PVi (hypothalamus) PVi (hypothalamus) Arc (hypothalamus) AN (medulla)

4 AN (medulla) S2 (isocortex) GN (medulla)

5 A1 (isocortex) EC (isocortex) NA (medulla)

6 LI (isocortex) LI (isocortex)

7 Visc (isocortex)

8 LM (hypothalamus)

Note. Activated areas are ranked according to their strength of activity. Abbreviated brain areas are listed

in Supporting Information Table S1.

of the tracer to the injection site in the right brain. The SC was consequently left/right symmetric

in the mouse model. The activity mostly cumulated either ipsilaterally or contralaterally to the

stimulation site. However, only in the medulla, we found nonlateralized symmetries across all

modalities. Nonlateralized left-right stimulation-symmetric activation patterns also occurred

in the cerebral nucleus for stimulation of the auditory pathways and the pons for stimulation

of the whiskers pathways. The limb pathways showed most nonlateralized symmetries across

structures (olfactory areas, hippocampus, cerebral nuclei, pons, and medulla).

The majority of activation patterns in the subisocortex were significantly bilateral symmetric

(activity on the left side was similar to the ones on the right). In contrast, patterns on the iso-

cortex were more variable for stimulation of all brain areas involved in the sensory pathways

(across all modalities and left and right areas). Whether the activation patterns on the isocortex

showed no symmetry (sign for lateralization), antisymmetry (left/right inverted activity), or sym-

metries (bilaterally symmetric) was specific to the stimulation location in the auditory, visual,

whisker and limb pathways.

Comparison of In Silico and In Vivo Brain Dynamics After Stimulation

We have, so far, shown that our model is capable of generating brain-wide spatial patterns

resembling previously identified functional networks. To test our model in generating realistic

brain activity, we compared simulated and empirical dynamics after the focal stimulation of

isocortical regions. We used in vivo wide-field VSD imaging combined with optogenetic focal

stimulation (Figure 3A). This technique allowed us to capture brain activity over a large portionOptogenetic stimulation:
Uses light to activate ion
channels/pumps inserted in neuronal
membranes through genetic
modification.

of the isocortical mantle (Figure 3B). In contrast, an arbitrary point on the isocortical surface

was stimulated (Figure 3C). The observer system for VSD imaging linked themouse brain model

(mean postsynaptic potentials) to the 2D VSD images (see Figure 4, Table 5, and Materials and

Methods for further details). For comparing model and in vivo data, we used the exemplary

model configuration of 500-µm short-range SC with a ratio of 40% short-range SC to 60%

long-range SC (i.e., α = 0.4) and the stimulation period of η−1 = 13 ms.

In contrast to the model parameter exploration, we adjusted the size of the stimulation focus

to mimic the laser stimulation with a beam diameter of 360 µm on the surface in the center of

isocortical areas. We observed a qualitative similarity between the spatial extent of simulated

and empirical activity patterns. The patterns were evoked by the focal stimulation of the dif-

ferent isocortical regions, including retrosplenial (RS) and visual areas (see Figure 3D and E,
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Figure 3. Comparing the empirical and simulated stimulus-induced spatiotemporal pattern of activity in the neocortex. (A) Schematic of
the experimental setup. This setup consists of a 473-nm laser generator whose beam is directed by the galvo scan mirrors to a specific point
on the cortical surface. By changing the configuration of the galvo scan mirrors, we can change the coordinates of the stimulated point. The
CCD camera captures the voltage activity of the brain. (B) An example of a cranial window over the mouse cortex prepared for VSD imaging.
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Figure 3 continued. Neocortical regions are labeled according to the Paxinos mouse brain atlas based on their coordinates to the bregma,
marked by a white circle. ABA equivalent of these regions is listed in Table 5. (C) An example of the grid points mapped on the neocortical
surface by the galvo scans mirrors. The laser can stimulate each one of these points. Examples of the voltage activity right after stimulation of
some of these points are presented on the right. Comparing the empirical and simulated stimulus-induced spatiotemporal pattern of activity
in the neocortex. (D) Spatiotemporal pattern of voltage activity after optogenetic (top) and simulated (bottom) stimulation of V2M. (E) The
enlarged frames, specified by a red rectangle in panel D, juxtaposed for qualitative comparison. (F) Spatial distribution of the poststimulus
maximum voltage activity. (G) Temporal order of activation of neocortical regions after optogenetic (top) and simulated (bottom) stimulation.
Activation time stamp is when the poststimulus voltage level of a given area surpasses 20% of its peak activity. (H) Similarity matrix consisting of
the similarity values between all the pairs of the temporally ordered sequences of activated regions with length 8 (see the red dashed rectangle
in panel G) induced by optogenetic stimulation of neocortical regions. The similarity value between two sequences was calculated in three
steps: (1) The first element of each sequence is omitted, and then the nonoverlapping elements of two sequences were made the same. For
example, GABCD and HCFEA became ABCD, and CBDA (the identity of the elements chosen to substitute the nonoverlapping elements must
be different from the overlapping elements). It ensures that the two sequences are made of the same elements. (2) The total number of possible
transpositions normalized the number of transpositions needed to convert one sequence to another. That gives a measure of the distance
between the two sequences. (3) Thus, one minus distance gives a measure of similarity between the two. For example, the similarity value
between ABCD and CBDA is 1 −2/3 = 1/3). The similarity value is multiplied by the ratio of the number of overlapping elements between
the two original sequences and the total length of sequences. For example, the similarity value between sequences ABCD and CFEA is 1/2
1/3 = 1/6. The values on the diagonal of the matrix (self-similarity, which is always 1) were purposefully removed. The median of each row
gives an expected value for the similarity of the spatiotemporal patterns of activity induced by stimulation of the corresponding and rest of
regions. (I) (left) The same as panel H but for similarity values between empirical versus simulated spatiotemporal patterns of activity induced
by focal stimulation of different neocortical regions (see the red dashed rectangle in panel G); (right) the similarity matrix between empirical
and simulated patterns was thresholded and binarized using the threshold vector generated in panel H. To highlight how similar the empirical
and simulated patterns were, only the values on the diagonal are presented.

Figure 4. Modeling the focal plane for voltage-sensitive dye (VSD) imaging. (A) 3D geometric model of the mouse brain reproduced the
camera setup in the mice experiments. The focus was first on the right isocortex surface and then adjusted 1 mm inside the cortex so that
the depth of field covers most of the right isocortex (for the experimental setup, see Figure 3A). The consequence is that the focal plane cuts
through the right isocortex (see the gray plane in panel A) and records brain activity from a wide field of the isocortex. (B) The visible neural
masses were projected onto the focal plane, using the normal vector of the focal plane (i.e., assuming an infinite focal length). The modeled
focal plane is sampled by an array of 128× 128 pixels by the camera sensor used in the experiments for the VSD imaging recordings. Because
each brain area in the isocortex comprises several neural masses, areas are colored in both panels A and B. Areas captured by the VSD imaging
are numbered in panel B and listed accordingly in Table 5. The labels A, P, L, R, M denote locations: (A)nterior, (P)osterior, (L)eft, (R)ight, and
(M)edial. (C) Experimental VSD imaging of spontaneous brain activity recorded in isoflurane-anesthetized mouse shows spatial organization
(here 10 typical patterns) demonstrating the qualitative correspondence of experimental and modeled VSD imaging purely based on the ABA
parcellation. Note that the (secondary and primary) motor areas (areas 3 in green and 4 in red in the panels A and B) and somatosensory areas
such as the barrel field (area 12 in magenta in the panels A and B) represent spatially extended and functionally undivided areas (e.g., by
topographic maps) in the ABA. VSD imaging can indicate activity patterns that are finer grained than the used ABA division of the isocortex
into brain areas in the model. Snapshots of the experimental VSD imaging of spontaneous activity in panel C were taken and adapted with
permission from Mohajerani et al. (2013) (Supporting Information Video S2).
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Table 5. Brain areas captured in vivo by the voltage-sensitive dye imaging and in the virtual mouse brain model

No. Areas captured by the VSD imaging No. Areas captured by the VSD imaging

1 Frontal pole 14 Primary auditory area, A1

2 Anterior cingulate area, dorsal part 15 Primary somatosensory area, trunk

3 Secondary motor area, M2 16 Anterior area, PtA

4 Primary motor area, M1 17 Rostrolateral visual area

5 Primary somatosensory area, mouth 18 Anterolateral visual area

6 Supplemental somatosensory area, S2 19 Retrosplenial area, RSC, dorsal part

7 Primary somatosensory area, upper limb, UL 20 Retrosplenial area, RSC, lateral agranular

8 Primary somatosensory area, nose 21 Anteromedial visual area

9 Ventral auditory area 22 Posteromedial visual area, V2M

10 Primary somatosensory area, lower limb, HL 23 Primary visual area, V1

11 Primary somatosensory area, unassigned 24 Lateral visual area, V2L

12 Primary somatosensory area, barrel field, BC 25 Laterointermediate area, LI

13 Dorsal auditory area 26 Temporal association areas

Note.The numbering (No.) of the 26 listed areas (out of 84 isocortical areas) in the isocortex (total number of 512

brain areas), captured by the voltage-sensitive dye imaging technique, corresponds to the labels in Figure 4B.

Table 6. Temporally ordered activated neocortical regions in response to focal optogenetic stimulation of different region

BC FL HL V1 A1 S2 M2 V2M V2L RS PtA

M2 M1 S2 M2 PtA PtA PtA V1 PtA PtA V2M

RS S2 M2 RS V2L M1 M1 PtA V2M V2M V1

PtA M2 PtA PtA M1 M2 BC V2L V1 M2 V2L

V1 V2M M1 V2M HL V2M FL BC M2 V1 HL

M1 BC FL V2L S2 V2L V2L M2 RS V2L S2

HL HL A1 BC M2 BC HL RS BC M1 M2

V2M PtA RS S2 V2M HL S2 HL S2 HL RS

V2L V2M M1 RS FL V2M S2 HL S2 BC

FL V2L HL A1 V1 M1 A1 A1 A1

S2 V1 A1 FL M1 FL

A1 RS RS A1 M1

Note. The first row of the table represents the stimulated regions, and the other rows in each column represent the sequence

of activated regions sorted by their activation latencies from earliest to latest.

and Supporting Information Figure S8 and Figure S9). This similarity became more evident by

comparing the pattern of the spatial distribution of maximum activation across neocortical re-

gions after focal stimulation (see Figure 3F and Supporting Information Figure S8 and Figure S9).

The spatial organization of these patterns was not trivially linked to the location of the stimula-

tion focus and showed reproducible large-scale activation across the imaged cranial window.

Both empirical and simulated data suggested that SC could predict the brain activity evoked

by the focal stimulation of different regions. For example, focal stimulation of the RS cortex

led to the activation of the visual and midline areas, which showed secure connections to the

RS cortex.
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Table 7. The temporally ordered activated neocortical regions in response to simulated focal stimulation of different regions

BC FL HL V1 A1 S2 M2 V2M V2L RS PtA

V2L HL FL V2L V2L BC M1 RS V1 V2M V2L

PtA M1 PtA V2M BC FL HL PtA A1 PtA BC

FL BC M1 PtA V2M M1 FL V1 PtA V2L A1

S2 S2 A1 RS PtA HL PtA V2L V2M V1 V2M

HL PtA M2 A1 S2 A1 S2 A1 RS HL RS

A1 M2 BC BC V1 PtA BC BC BC M2 HL

M1 A1 V2L HL HL M2 V2L M2 S2 M1 V1

V1 V2L RS S2 FL V2L A1 HL HL BC FL

M2 V2M S2 M2 M1 V2M RS S2 M2 S2 M1

V2M RS V2M M1 RS V1 V1 M1 M1 A1 M2

RS V1 V1 FL M2 RS V2M FL FL FL S2

Note. The first row of the table represents the stimulated regions, and the other rows in each column

represent the sequence of activated regions sorted by their activation latencies from earliest to latest.

Moreover, the temporal order of the activation of isocortical regions evoked by in vivo and in

silico focal stimulation showed a detectable level of similarity (Figure 3H and I; Supporting

Information Figure S1; Table 6 and Table 7). To measure the similarity between two ordered

sequences of activated regions (Figure 3G and Supporting Information Figure S8, Figure S9,

Figure S11, and Figure S13), the distance between the two sequences was first calculated us-

ing Kendall’s tau distance (Kendall, 1938). Then, one minus the distance between the two

defined the unnormalized similarity between the two sequences. Similarity values were nor-

malized. For that purpose, we multiplied each similarity value with the proportion of the

overlapping elements out of all elements in each sequence (see Materials and Methods for a

detailed description of calculating similarity values). To determine what range of normalizing

similarity values (similarity value for short) between in vivo– and in silico–ordered sequences

is considered meaningful, we calculated the similarity values between all possible pairs of or-

dered sequences generated by in vivo optogenetic stimulation of isocortical regions (Figure 3H).

The median of all similarity values, associated with all the pairs consisting of a given isocortical

region and all other regions, was considered as a threshold for evaluating the meaningfulness

of similarity values between in vivo and in silico patterns of activity evoked by stimulating

that region (Figure 3H). This analysis revealed that the model could generate stimulus-induced

activity patterns similar to those evoked by optogenetic stimulation, that is, the case for the

majority of the imaged regions—in particular the retrosplenial (RC), the posterior parietal (PtA),

and the associational visual areas. These results indicate that our model assumptions can rela-

tively explain the flow of information in some isocortical subnetworks. We want to emphasize

that we did not fit the network model on the empirical data. We repeated the same analysis for

two larger threshold values (75th and 90th percentiles of in vivo/in vivo similarity values). The

results still show a considerable number of regions, for which the in silico/in vivo similarity

passes the threshold (Supporting Information Figure S14 and S15).

We conclude that we observed a reasonable similarity between the simulated and empirical

patterns evoked by stimulating certain isocortical regions.
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DISCUSSION

Brain network dynamics can be systematically explored only in silico. To explore mouse brain

dynamics in silico, we built a high-resolution whole mouse brain network model. Our model

structure originates from ABA, comprising viral vector tracer studies. We investigated the net-

work behavior by assuming simple oscillatory but canonical dynamics at each location in the

brain model. Only the SC from the ABA differentiated the local dynamics. We simulated

the whole-brain mouse model on a computer by using the neuroinformatics platform TVB.

The emergence of specific functional networks in the simulated brain responses is the main

result of the in silico exploration. To test whether the mouse brain activity could be exclusively

inferred from the underlying connection topology, we performed a graph-theoretic analysis of

the model structure. The results showed that the overall performance of the 13 graph-theoretic

measures was rather weak. The best prediction of the simulated brain responses to focal stim-

ulation and the extracted DRNs resulted from comparing the activity’s rank with the rank of SC

strengths of the direct projection from the stimulation site. The high correlation observed indi-

cates that energy induced by the stimulation spreads into areas of the brain that were directly

connected to the stimulation site. The rank correlation was weak but significant for most con-

nectivity parameter configurations. Then, we compared measured and simulated brain activity

by using the observer model for (virtual) VSD imaging.

In our model for exploring the mouse brain dynamics in silico, we systematically varied

three model parameters, namely:

1. the ratio, to which extend brain areas can interact over short and long ranges,

2. the range of short connections in the isocortex, and

3. the location of focal stimulation.

The extent to which information is processed over short- or long-range SC is unclear. The

results show that both SC types of short- and long-range connections in the mouse model act

as spatiotemporal filters of local dynamics in the emergent functional network. Our results

(Supporting Information Figure S6) do not support evidence for a reorganization of dynamics

due to interplay between both types of SC in the mouse as opposed to human models (Spiegler

et al., 2016). We analyzed the brain responses to stimulation. The focal stimulation is closely

related to direct electrical, sensory, and optical stimulation. We identified consistent spatial

patterns of mouse brain activity in response to stimulation called the DRNs by using dimension

reduction methods.We observed some of the previously and experimentally known functional

networks, including the salience and default mode networks, in the DRNs.

Interestingly, the salience and the default mode networks spanned several DRNs, indicating

the salience and default mode networks are junctions for functional networks. Furthermore,

we investigated the spatiotemporal organization of brain activity in sensory pathways. We

considered the following sensory pathways: the auditory, the visual, the whisker, and the limb

somatosensory pathways.With the developed large-scale mouse brain network model, we had,

for the first time, the chance to systematically investigate sensory pathways and, primarily, the

processing of sensory data. In the end, we showed that the in silico brain responses, to some

extent, resemble in vivo brain dynamics after stimulation. In the following, we discuss the

results in more detail.

Modeling Results

The structure of the model (Figure 1), based on the ABA comprising viral vector tracer studies,

was co-registered with the anatomy of the mouse brain (see Oh et al., 2014). We spatially
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sampled the brain volume given by the ABA and obtained a network model composed of

512 distinct brain areas. The model incorporates the smooth surface of the isocortex that we

reconstructed from the ABA by using a regular mesh of 27,554 triangles with 41,524 edges

between 13,972 vertices (Supporting Information Figure S2) and the spatial extent of the 84

cortical areas given by the ABA. The 512 distinct brain areas contain the 84 isocortical areas

(42 per hemisphere) and 428 nonisocortex areas (see Table 1 for the division and Supporting

Information Table S1 and Table S2 for a complete list of area names). We lumped each of

these 428 subisocortical areas in the model to a point in physical space (i.e., centroid). From

these numbers, it is evident that the isocortex constitutes only a small proportion of brain areas

considered in the model (and in the ABA).

Moreover, the wide-field VSD imaging, used in this study, captures activity from only 26

isocortical areas in the ABA. Thus, we observed the activity of a small fraction of interconnected

areas (26 observables vs. 512 brain areas in the model). Here the spatial resolution in the

model must coincide with the resolution of the measurement. Although the resolution of brain

geometry (e.g., the isocortical mesh) agrees with that of the measurements (e.g., VSD imaging),

quality of the modeling highly depends on the division of the brain into areas (parcellation)

and the resolution and reconstruction of connections (Proix et al., 2016). In the version of the

ABA that we have used to construct the model, for instance, the barrel field of the primary

somatosensory areas is summarized in one area (see Supporting Information Table S1). The

model can be improved by using not only the new ABA model (Knox et al., 2019) but also by

incorporating other databases (e.g., Dorr et al., 2008; http://www.mouseimaging.ca/

research/mouse_atlas.html; www.mouseconnectome.org).

The experimental data collected by the ABA was the base for the model structure (i.e., ge-

ometry and connectivity) and the division of the high-resolution model into brain areas. The

local dynamics, though, were less grounded since less data is available from large-scale brain

measurements. Electrophysiology allows recording local activity (in a distinct brain structure)

from a limited number of sites. Such data do provide information about characteristic changes

in space and time. However, they do not clarify if an activation pattern is related to function or

dysfunction (e.g., epileptic discharges) originated locally or emerged throughout the network’s

interactions. Brain stimulation techniques are here an appropriate method to infer local char-

acteristics (e.g., cortical excitability) by probing the formation of characteristic patterns in the

brain activity (e.g., spreading and dissipation of activity from the stimulation site).

Modeling Brain Dynamics and Limitations

The large-scale network model contains the anatomy of the mouse brain, the geometry of the

cortices, the brain areas, and their axonal connections. We performed simulations assuming

that the structure of the mouse brain defines its function and dysfunction (and vice versa).

Both of them find reflections in brain signals such as electrophysiological recordings and VSD

imaging.

For each location in the network model, we used simple dynamics. Simple dynamics (e.g.,

planar systems can show smooth and rhythmic responses to stimulation) are often building

blocks of systems with higher complexity (e.g., Jansen–Rit model within specific ranges for

each parameter; see Spiegler et al., 2010, 2011). However, rich emergent spatiotemporal be-

havior (e.g., the occurrence and propagation of epileptic discharges across distant brain areas

(Jirsa et al., 2014; Proix et al., 2014), or network dynamics with nontrivial connectivity and time

delays (Jirsa et al., 1995; Feng et al., 2006; Jirsa, 2007; Pinotsis et al., 2013; Spiegler et al., 2016)
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further illustrates the complexity of systems. Therefore, it cannot be embedded in simple sys-

tems. The strategy to build models as simple as possible and as complex as necessary provides

a discussion about the integration and emergence of function and dysfunctions in the brain,

especially at the large-scale of entire brains (for a review, see Deco et al., 2011; Breakspear,

2017).

The rhythmic activity allows for effective transmission of information via the connections

between brain areas. For this purpose, the rhythmic activity needs to be fast (e.g., faster than

40 Hz) or the conduction speed needs to be slow (e.g., less than 1 m/s) in consideration of

the length of axonal fibers connecting brain areas (e.g., mean length of about 6.25 mm). We

assumed a natural frequency of 42 Hz at each network location and conduction speed of

1 m/s, both within biologically plausible ranges. The axonal conduction speed is determined

by the axonal diameters as well as the degree of myelination, both of which vary through-

out the mouse brain (Wang et al., 2008; Foran & Peterson, 1992). Compared to larger mam-

malian brains, including human brains, axons are less myelinated and are shorter in the mouse

brain (see, e.g., Wang et al., 2008). The axonal conduction speed in mice is in the range of

0.2 m/s (Wang et al., 2008) for unmyelinated axons with an average axonal diameter of 0.3 µm

(Braitenberg & Schüz, 1998). The axonal conduction speed for myelinated axons is in the range

of 0.3 m/s and 3.5 m/s (Wang et al., 2008; Waxman, 2012; Salami et al., 2003). Axonal length

and conduction speed both cause time delays in the transmission of information processing.

Myelinated axons are slower in mice and more similar to unmyelinated axons in human brains

(Wang et al., 2008). The ratio of myelinated to unmyelinated axons is smaller in mice than in

human brains (Wang et al., 2008). Also, myelinated axons are shorter in mice brains than in

human brains (Wang et al., 2008). Note that the injection techniques underlying the ABA do

not provide an estimate of the axonal lengths. The Euclidean distances between brain areas

could be used as a proxy to estimate axonal lengths. Diffusion tensor MRI data are useful

datasets to estimate the axonal tracts and to compile a connectivity matrix.

In contrast to the ABA, the diffusion tensor MRI does not provide directionality but mouse

individual connectivity information. With the availability of diffusion tensor MRI data of mice,

the ABA connectivity could be co-registered with the diffusion tensor connectivity, and thus

provides information about axonal lengths. To the best of our knowledge, however, neither a

complete nor an extensive classification is currently available for the characterization of all

512 considered brain areas in the model.

By a simple local dynamic model, we probed the experimentally derived large-scale brain

network to produce functionally relevant organizations in the activity induced by stimulation.

If the model equipped with this simple dynamic does not show functionally relevant organ-

izations in the simulated brain activity, then the model lacks relevant complexity. When the

experimentally derived large-scale brain network activation misses essential features (perhaps

the average brain structure is not sufficient and averages out essential components), better

data (e.g., better estimation for the connectivity strengths) will be required. The behavior in

the large-scale brain signals (e.g., M/EEG and functional MRI) associated with brain function

and dysfunction is perhaps epiphenomenal at the large-scale of the brain. The behavior could

originate from processes on the micro- and mesoscopic scale (rather than through the inter-

action of brain areas) projecting onto the large-scale of the whole brain and its functional

measurements.

Another point is the local dynamics. The local model for the simple dynamics that we

used here includes a surrogate parameter for the ratio of excitation and inhibition. However,
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this model is generic and does not represent a particular local structure. If this model is not

sufficient, biologically informed models are available. The local dynamic models can be bio-

logically informed about the local circuitry and specific activities (e.g., certain rhythms). Local

circuitries are sketches of characteristic elements (e.g., projection neurons, interneurons) and

their connections involve in relevant processes (e.g., excitation/inhibition) based on morpho-

logical and physiological arguments. Using such biologically informed models increase the

repertoire of dynamics at network locations by their local circuitry, which are thus meso- and

microscopic descriptions. To the best of our knowledge, however, neither a complete nor an

extensive classification is currently available for the characterization of all 512 considered

brain areas in the model (e.g., to excite or to inhibit synaptically connected area).

DRNs and Functional Networks

We performed a systematic exploration of brain dynamics via focal stimulation to extract the

DRNs. The local model dynamics and the structural connectional topology determined the

DRNs. The interplay of these factors imposes conditions on the dynamic repertoire of a given

network, independent of the details of how these factors are physiologically realized. To be

specific, there is a multitude of ways to generate a particular behavior of a neural population

(Marder & Taylor, 2011), such as an oscillation. Once such behavior is established, it commu-

nicates via the connectivity with other regions. The actual physiological underpinnings then

play no role unless new factors such as spike rate adaptation arise. From this perspective, the

DRNs fundamentally reflect the functional dynamic repertoire of a network given particular

connectivity.

Using the mouse model, we extracted the characteristic brain responses, that is, DRNs and

the motifs of activity pattern linking the DRNs. We found five motifs of characteristic activity

patterns connecting the DRNs. The recurrence of a motif in several DRNs suggests that the

brain can phrase more than one motif (thus more than one DRN) at a time, endogenously

and exogenously by stimulation. Comparison of the motifs and experimentally known func-

tional networks suggest the role of the networks in dealing with stimuli. Four of the five motifs

in the DRNs matched four of the nine functional networks. We found the default mode net-

work (together with the salience network), the most dominant motif that connected almost all

DRNs. The DRNs do not include sensorimotor networks. One reason for this could be that the

DRNs entail structures in which activity can reverberate through the SC and dissipate later (see

Supporting Information Figure S1B–D). In other words, the early stages of the brain response,

which are not captured by the DRNs, reflect the sensorimotor networks. The catalog of re-

sponses and the mapping to stimulation gives the prospect of a coordinated interaction with

functional networks by using different types of stimulation (e.g., sensory and transcranial).

The used local model is simple and appropriate for investigating the large-scale spatiotem-

poral organization of brain responses, which includes the scope of this work. As a consequence

of the monorhythmic behavior and the uniform parameterization of the local dynamic model,

the simulated network dynamics show limitations in describing the various rhythms involved

in the brain organization (i.e., neuronal firing and brain rhythms alpha to gamma). To describe

the broadband frequency behavior (as observable in EEG), the network model has to allow

the generation of more complex activity, potentially subject to subsequent studies. The mod-

eling is challenging, and it goes hand in hand with the debate about the generation of brain

activity such as rhythms and especially its spatial extent. The risk in this kind of modeling

work based on large-scale data (as with modeling based on microscopy data, see Marder &

Taylor, 2011) lies in the overfitting (additional state variables increase the degree of freedom
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and may increase model complexity). One approach would be to use the same simple local

dynamic model for each location in the mouse brain network as we have done in this work but

then parameterize local dynamics differently to account for the spatial differences in natural

frequencies.

The applied measures to the SC evaluate the mapping of monosynaptic connections be-

tween neurons in a structure and the target neurons in the brain. Therefore, it is not surprising

that the measures were insufficiently able to predict the simulated brain activity following

stimulation. It becomes evident, considering the emergence of DRNs. The dissipation of brain

activity from several stimulation sites into one of the 12 DRNs required more than one con-

nection, simply because of distances. The DRNs also covered the entire brain of the mouse

(see Figure 2). Polysynaptic pathways connected stimulation sites and the activated DRNs,

comprising patterns of coactivated brain regions.

Recursively applying the SC renders polysynaptic connectivity pathways as follows. The SC

(monosynaptic connections) maps the activity from the stimulation site to targeted brain areas.

In subsequent steps, the SC maps activated areas to targeted areas of the brain. The iteration

forms pathways with polysynaptic connections.

That is what happens in dynamic models. A crucial point of the in silico modeling in this

work is the nonlinear (local) dynamics involved in the mapping of the SC onto itself at all

times. While the activity patterns of the DRNs reflect functional connection topologies, the

polysynaptic connectivity pathways between a DRN and its stimulation sites create a causal

relationship, known as effective connectivity, and for which axonal transmission times are

crucial. Measures of effective and functional connectivity (EC and FC) in empirical data assume

linear dynamics (see, e.g., Friston, 2011). In contrast, the nonlinear dynamics allow the model

to perform oscillations and more complex behaviors requiring higher order techniques for

model inversion (e.g., Monte Carlo Markov Chain methods; Hashemi et al., 2020). Measures

of FC dynamics have characterized the alteration of the functional connectional topology at

rest and the emergence of RSNs (e.g., Hansen et al., 2015; Allen et al., 2012). Here, stimulation

paradigms provide a causal link between brain activity and stimulation. For a current review

of the literature on the relationship between structure and function in the mouse brain in

conjunction with optogenetic stimulation, we would like to refer the interested reader to the

paper by Snyder and Bauer (2019).

Comparisons of FC derived from resting-state fMRI of mice and SC have been only partially

successful, for example, for cortico-cortical and cortico-striatal regions, which have been re-

lated to monosynaptic SCs (see, for instance, Grandjean et al., 2017). The synchronous activity

in homotopic cortical areas mainly causes the bilateral symmetry in the FC and may reflect

monosynaptic, transcallosal SCs, or coordination by subcortical structures (Snyder & Bauer,

2019). Our modeling results indicate that DRNs with bilateral symmetric activity patterns in-

volve stimulation of mostly deep (subcortical) brain structures (e.g., medulla, cerebellum, mid-

brain, and pons in DRN 5; see Figure 2). In contrast, DRNs with bilaterally asymmetric patterns

required stimulation of the cerebrum and thalamus. The DRN with number 10, for instance,

needed stimulation in the isocortex and the thalamus (see Figure 2).

EC after optogenetic stimulation has been reported to match SC more closely than resting-

state FC, using fMRI (Snyder & Bauer, 2019). According to our model, the analyzed hemo-

dynamic responses should reflect the early activity. Also, the captured brain activity should

have passed monosynaptic connections from the stimulation site. The model would otherwise
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predict that the EC seizes polysynaptic connectivity pathways (later response components),

which does not necessarily match the SC, as in the case of the DRNs.

To estimate EC and perform hypothesis testing, Ryali et al. (2016) used an autoregressive

model. This modeling is based on the empirical time series and can provide an interpretation

of network structures since they can distinguish between intrinsic and context-specific mod-

ulatory causal interactions in latent signals. Autoregressive models, as used by Ryali et al., do

not comprise biologically informed local dynamics but assume local linear dynamics. Besides,

the intrinsic connections are subject to the model inversions. In contrast, our in silico modeling

is based on the SC collected by the ABA (specifying causal interactions and transmission de-

lays) and works in conjunction with a nonlinear local dynamic model that enables oscillatory

behavior. Also, this in silico modeling allows for systematic exploration as well as hypothe-

sis testing. An advantage of modeling the mouse brain is that its global dynamics are more

readily perturbed and observed, permitting better comparison between in silico and in vivo.

Hence, connectome-based dynamical modeling has the potential to contribute significantly to

the field, particularly given increasing usage of wide-field imaging of the mouse brain.

Sensory Pathways

We investigated the DRNs that were responsive to the stimulation of areas involved in sensory

processing based on the catalog of brain responses. Such investigations are possible in silico

but hard to accomplish for an individual brain in vivo. Based on textbook descriptions (e.g.,

Watson et al., 2011), we compiled networks of sensory pathways (see Supporting Information

Figure S7). We found these networks back in the SC collected by the ABA and are thus part

of the mouse brain network model. However, the ABA needs refinements to distinguish lower

and upper limb (especially hind and forelimb); see Supporting Information Figure S7E. Nor

does the ABA include a division of the barrel field of the primary somatosensory areas. The

networks in Supporting Information Figure S7 indicate that information could flow to areas

that are not necessarily the primary sensory areas of the isocortex. For instance, the hypotha-

lamus and the midbrain are targets of the retinal ganglion cells (see Supporting Information

Figure S7A). Themidbrain nuclei are related to whisker movements (see Supporting Information

Figure S7D). These connections are well studied and usually not discussed in textbooks sec-

tions about sensory processing. As a result, the visual and the whisker systems meet in the

sensory-related superior colliculus regarding eye and whisker movements. It is worth men-

tioning that the model is agnostic about the (sensory) information, meaning that nuclei may be

activated, but the object of processing (information) is less defined. The vast amount of studies

about the physiology of nuclei allows attaching meaning to the modeling results. For instance,

the hypothalamic nuclei and nuclei in the midbrain receive input from the retina. The nucleus

of the optic tract, the olivary, and the posterior pretectal nucleus are the relevant nuclei in the

midbrain. However, they are not directly part of the visual pathways, running from the retina to

the primary visual cortices (see Supporting Information Figure S7A). The hypothalamic nuclei

play a role in the circadian timing system, and the nuclei in the midbrain are known to be

involved in eye movement coordination and reflexes.

Specific patterns in the auditory and visual pathways belong to the same cluster. The spatial

proximity of relevant nuclei may cause this result. In the midbrain, the inferior colliculus (IC)

and the sensory-related superior colliculus are neighboring. The resolution of the mouse tracer

studies may be low because of leakage.

There is also overlap between whisker and limb pathways. An explanation is that the barrel

cortex was not well separated. The primary somatosensory area distinguishes seven areas (see
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Supporting Information Table S1), including the barrel field (area 5), the lower limb (area 6),

and the upper limb (area 8). Consequently, the mouse brain’s parcellation might be misleading

because it stemmed from an average mouse brain compiled by many different brains (geneti-

cally the same mouse type).

Ventral posteromedial nucleus, ventral posterolateral nucleus, and posterior complex are

neighboring areas. All are part of the posterior nuclei of the thalamus. The grouping may indi-

cate uncertainty and limitation of the data. The spatial proximity and the local diffusion of the

tracer during the measurements are challenges for the agglomeration of various experiments.

Comparison Between the Mouse Brain Dynamics Model with Human Brain Dynamics Model

In this study, we adapted our published in silico human focal stimulation protocol to develop

a mouse model to explore mouse brain dynamics. The two models are quantitatively compa-

rable because the number of network nodes (locations) used to describe the brain anatomy

is similar (16,500 in human vs. 14,000 in mouse). However, there are differences in the de-

tails. Brain size differs as well as the number of brain areas in the subcortex. The human brain

model considered 76 cortical areas and 116 subcortical areas, which are all thalamic nuclei.

Our mouse brain model considers 84 isocortical areas and 428 subisocortical areas, including

38 thalamic nuclei. The mouse brain model used in this study is most detailed in the non-

isocortical structures, namely cerebellum, medulla, pons, midbrain, hypothalamus, thalamus,

and cerebral nuclei. Nevertheless, it does provide an excellent validation framework for the

large-scale brain network modeling approach.

One of the main questions in the brain network study is, to which extent information is pro-

cessed via short- and long-range connections. Results in human studies show that short-range

connectivity is relevant for explaining experimentally known functional networks. By varying

the spatial extent of short-range connections and the ratio of short- to long-range connections,

we observed a reorganization of the ss-DRNs and the brain dynamics in humans. In the mouse

model, we did not find a reorganization of brain dynamics due to changes in the connectivity.

Although the emergence of the ss-DRNs is sensitive to the transmission time delays between

brain areas, the interplay of the two connectivity types appeared to be less critical in the mouse

model than in the human model. The findings indicate that the used short-range SC in the iso-

cortex is not sufficient for observing reorganizations of functional networks due to changes in

the SC. The model suggests that 12 DRNs orchestrated the mouse brain dynamics around five

motifs (see Figure 2). These DRNs were reasonably stable for a variety of mixture of short-range

and long-range connections (see Supporting Information Figure S6).

Basic functional connectional topology is conserved across mice, rats, primates, and hu-

mans (van den Heuvel et al., 2016; Betzel & Bassett, 2018, for a review, see Snyder & Bauer,

2019). In this work, the motifs of the DRNs in both the mouse and the human model reflect

functional networks. Whereas the DRNs in human span a variety of functional networks (e.g.,

default mode, memory, attention), the DRNs in mice mainly consist of functional networks at

rest such as salience, default mode, medial, and lateral networks and less the sensorimotor

networks (only the network of the frontal eye field).

The application of brain stimulation techniques is limited in humans to transcranial and

sensory stimulation and intracranial stimulation, specifically in patients. In animals, a battery of

interventions is available such as optogenetic tools and electrophysiology. These tools make the

validation of models feasible. Besides, these mathematical models enable knowledge transfer

from animals to humans. That is why modeling and in silico simulations are so important.
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In Vivo Sensory and Focal Stimulation in the Mouse Brain

Stimulation paradigms are critical for the validation of any model because conceptually, they

take the system out of its attractor states and allow the sampling of the dynamic neighborhood

of attractors. Thus, such paradigms significantly yield more predictive information than any

resting-state paradigms do.

Although we did not fit our model to the empirical data, our model could somewhat repli-

cate the stimulation-induced brain activity captured by VSD imaging. The simulated patterns

evoked by the focal stimulation of primary barrel and secondary somatosensory cortices, com-

pared with other considered areas, showed a low level of similarity to their in vivo counter-

parts. It could be due to some inaccuracies reported in the ABA. For example, a recent study

(Knox et al., 2019) has shown that there could exist a significant error in the strength of axonal

projections to primary somatosensory and, more importantly, from the thalamus to other re-

gions. One explanation could be an inaccurate representation of the projection strength of the

thalamus and the neocortex. The same reason could cause a lower level of similarity observed

between empirical and simulated data. We believe that by incorporating a more accurate SC

of neocortical networks, we can achieve a more realistic model that can produce patterns of

activity resembling those seen in the empirical data.

Beyond connectivity, there are other significant simplifications present in the current net-

work model affecting its validity, when confronted with empirical data. The most obvious one,

from the network perspective, is the assumed homogeneity of local network dynamics. It is well

established that local brain region dynamics vary across the network. Variations can occur dif-

ferently. For instance, in terms of excitability, physiological rhythms measured in intracranial

human EEG vary across brain regions (see Bartolomei et al., 2017). The intrinsic brain frequency

varies and forms the posterior to the anterior gradient of eigenfrequency ranging from 10 to

40–50 Hz (e.g., Rosanova et al., 2009). The rhythmic organization can change and show such

brain activity as bursts in the thalamic reticular nucleus (see Marlinski & Beloozerova, 2014;

Sherman, 2001) and harmonic activity (e.g., the alpha waves originating from the occipital

lobe; see Niedermeyer, 1997).

Another example is the activity change with the course of the circadian rhythm (see

Welsh et al., 1995). These factors are known to determine the synchronization behavior of

networks. However, their influence on spatiotemporal energy dissipation and the creation of

DRNs may be limited because of the large-scale nature of network propagation considered

here. Besides, our model did not incorporate the long- and short-range inhibitory mechanisms

that are known to shape the spatiotemporal brain dynamics. These are doubtlessly essential

factors in shaping brain dynamics. However, connectivity will remain the most critical one.

We are looking forward to extended investigations of the functional expression of SC.

Conclusion and Outlook

The whole-brain network perspective is very informative on a systems level. In its essence, it

decomposes the brain into a system composed of nodes and links, capable of spatiotemporal

pattern formation. This interpretation allows us to ask fundamental questions about stimulated

pattern propagation, which is at the heart of information processing in the brain. By system-

atically stimulating all brain areas in the model, we have mostly mapped out all the network

signal propagation pathways supported by the mouse brain model. It is remarkable that in the

absence of any extensive parameter fitting, our model demonstrates a moderate, but robust,

predictive power regarding signal propagation after stimulation of the sensory pathways.
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We applied the catalog of DRNs (Figure 2) to the sensory pathways. Here, the predicted sim-

ulated responses to stimulation within a sensory modality showed consistency along the paths

and were in line with the literature. Finally, we modified the model to meet the characteristics

of the optogenetic stimulation in the in vivo experiments and compared in silico and in vivo

brain responses. Our model could moderately replicate the realistic sequences of activations

in the neocortex, even without parameter tuning (Figure 3). It suggests that mesoscale SC is an

essential contributor in signal propagation in the neocortical networks.

In this study, using an in silico model, we individually applied focal stimulation, that is,

separately to single brain areas. This approach allows sampling of the behavior outside of

the attractor landscape and gaining more detailed knowledge of the network’s organization.

An extension of this scheme and a better understanding of the role of the DRNs would be

possible through the simultaneous stimulation of multiple brain sites. Unfortunately, to date,

achieving such a complete picture is impossible even in silico due to a large number of possible

combinations. However, we can extend the notion of the DRNs by stimulation of structures in

two or multiple sensory pathways. Coordinating stimulation in such an approach would also

contribute to a theoretical understanding of multisensory integration (Keil & Senkowski, 2018).

Interestingly, the default mode network arose in 11 out of 12 characteristic brain responses

(DRNs) in the model, emphasizing the functional role of this network in the brain model.

However, our presented results neither support the default mode network as a driver nor as

epiphenomenal. To clarify the nature of the default mode network, in a potentially upcoming

study, we could simultaneously stimulate two locations in the brain model. In that way, we

can investigate the order of occurrence and interactions in brain activity and compare it to the

catalog of individual stimulation responses. Another possibility is to use a more complex but

realistic resting-state dynamic model (e.g., Hansen et al., 2015) and investigate the effect of

stimulation.

In conclusion, we believe that our model provides a powerful tool for future studies, in

which new hypotheses could be built and tested empirically. Our model provides mechanis-

tic insight underwriting the fundamental nature of brain dynamics with until now unknown

physiological significance.

MATERIALS AND METHODS

To perform the exploration of brain dynamics in silico, we constructed a large-scale model

for the mouse brain, consisting of the geometry, the SC, and the local dynamics. We per-

formed simulations of the whole-brain network model in response to focal brain stimulation,

decomposed the brain responses, and extracted the DRNs. We tested the predictability of the

DRNs by the SC using appropriate statistical tools and compared previously known experimen-

tally functional networks with the DRNs. We furthermore investigated the integration of brain

stimulation and response along sensory pathways into the whole-brain network. Finally, we

compared the simulated brain response to focal stimulation and VSD imaging data obtained

during focal optogenetic stimulation in the mouse brain. The following sections provide a de-

tailed description of each step.

Modeling the Mouse Brain

We isotropically sampled the Allen Brain Atlas (ABA; http://connectivity.brain-map.org) with

a resolution of 50 µm (Melozzi et al., 2017), resulting in a total number of 3,300,706 voxels
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(1,653,785 voxels for left side), which encode the injection by its spatial location and con-

nectivity among 512 brain areas. To perform simulations of the mouse brain model on The

Virtual Brain platform (Sanz-Leon et al., 2013, 2015; http://thevirtualbrain.org/), we prepro-

cessed the data as follows. We triangulated the smooth surface of the isocortex using a regular

mesh, distributed across 84 cortical areas (Figure 1C). The mesh consisted of 27,554 trian-

gles and 41,524 edges (88 µm is the length of the shortest edge, 190 µm is the longest edge,

with a mean edge length of 125 µm) between 13,972 vertices (Figure 1A and Figure 1B, and

Supporting Information Figure S2). Each area of the isocortex contains between 69 and 667

nodes in the mesh (Table 1 and Supporting Information Tables S1 and S2) and, because the

mesh is regular, the number of nodes indicates the size of an area in the ABA. In addition to the

areas in the isocortex, the model includes 428 subisocortical areas. In contrast to the isocorti-

cal brain areas, we lumped each of these 428 subisocortical areas in the model to a point in

physical space (i.e., centroid). The mouse brain model is a network of 14,400 nodes (13,972

vertices for the 84 spatially extended areas on the isocortical surface, and 428 nodes, each for

a nonisocortical brain area). We performed the division of the reconstructed isocortical surface

into areas (i.e., the parcellation) by

1. extending the normal vectors of each vertex to about 200 µm inside the volume of the

isocortex,

2. determining the five closest injection sites, and

3. evaluating their classification to an area of the isocortex in the ABA.

We further corrected the isocortical parcellation for holes and isolated/mismatched vertices.

To connect nodes, we distinguish short-range structural connectivity (SC) from long-range

SC (Figure 1D– 1F). The short-range SC connects nodes within an area, and between areas,

if they are spatially close from one another with a homogeneous and isotropic connection

probability decreasing with distance (Braitenberg & Schüz, 1991, 1998) (Figure 1D–1F). The

long-range SC links all the nodes of an area with those nodes of another area (Figure 1D

and 1E), based on the ABA. The long-range SC is specific to the pair of brain areas and thus

heterogeneous. The tracer experiments, compiled in the ABA,mostly relate the spatial diffusion

of the tracer to the injection sites, mostly in the right brain. The connectivity is consequently

left/right symmetric in the mousemodel because we used amirrored connectivity pattern in the

left hemisphere. The ratio of the projection density provides the long-range SC weights to the

injection site volume (Oh et al., 2014). For that reason, results are shown for one hemisphere,

although we performed the model simulations using both left and right hemispheres as well

as the interhemispheric connections. For a sanity check, the simulated activity was correlated

between the same area in the left and right brain and confirmed the left/right symmetries.

Neighboring areas can exchange information via the short-range SC within the cortex and via

the white matter tract, that is, long-range SC (e.g., Area 2 with Areas 1 and 3 in Figure 1D).

Each vertex point is a network node holding a neural mass model connected to other nodes

via the short- and long-range SCs. When we stimulated an area, all the nodes of this area are

simultaneously and homogeneously activated. Then, the stimulation-induced activity in each

node decays differently according to the activity in the surrounding nodes via short-range SC

and remote nodes via long-range SC. The ability to drive the network does not depend on the

number of nodes within an area. In the model, mean activity across all nodes in a source area

is transferred to all nodes in a target area via long-range SC.

We considered the ratio of short-range SC to long-range SC as a degree of freedom and

performed parameter exploration (see Jirsa & Kelso, 2000; Qubbaj & Jirsa, 2007, 2009 for
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systematic studies with two-point connection). Others have previously estimated this ratio. For

instance, Braitenberg and Schüz (1998) assessed that pyramidal cells have synapses in equal

shares from long-range and local axons. The ratio of short- to long-range SCs mainly

depends on

1. the resolution of the used geometrical model of the cortex,

2. the representation of the SC, and

3. the network node description (e.g., canonical model, neural mass model).

The latter can incorporate local connectivity (see, e.g., Spiegler & Jirsa, 2013, for more

detail). At the two extreme connectivity configurations, we expect two different behaviors.

1. Two disconnected cerebral hemispheres with locally but homogeneously connected

nodes by 0% of long-range SC (and 100% of short-range SC) allows activity to prop-

agate only locally from a cortical stimulation site.

2. The purely heterogeneously connected 512 brain areas with locally unconnected nodes

by 100% of long-range SC (and 0% of short-range SC) allows activity to travel only long

distances via white matter fiber tracts with time delays.

Furthermore, since the characteristic distance of short-range SC is less known (Spiegler &

Jirsa, 2013), we also considered it as a parameter varying between 500 µm and 1,000 µm

(Braitenberg & Schüz, 1998). We then systematically stimulated each of the 512 areas with a

broad range of parameter values (for the ratio and the spatial range), resulting in a total of all

18,432 simulation trials.

Brain dynamics at rest have been found to operate near-criticality (Ghosh et al., 2008; Deco

et al., 2011, 2013; Spiegler et al., 2016). Near-criticality is a state of a system that is on the

brink of a qualitative change in its behavior (Shew & Plenz, 2012). The proximity to criticality

predicts that the brain’s response to stimulation will primarily arise from structures and net-

works closest to instability. Activities in those networks require the longest time to settle into

equilibria after stimulation and are associated with large-scale dependencies and scale invari-

ance (Haken, 1978). The behavior is consistent with the center manifold theorem. It states that

a high-dimensional system in a subcritical state will converge on a lower dimensional manifold

(here few networks) when we stimulate a system.

Consequently, we equally set each node in the brain network model to operate close to its

critical point, where the network shows no activity without stimulation. We used the stable

regimen of each network node (i.e., stable focus) to stimulate a given area in the direction of

its instability point (i.e., supercritical Andronov–Hopf bifurcation) and induce characteristic

energy dissipation through the brain network. The short-range SC and long-range SC, as well

as the associated signal transmission delays, and the local dynamics at the network nodes,

constrained the dissipation of energy. In the network model, the operating point of every node

disconnected from the network is at the same distance from its critical point, that is, the super-

critical Andronov–Hopf bifurcation (Supporting Information Figure S1A). If the system reached

the critical point, the node enters into a constant oscillatory mode. The SC determines thework-

ing distance to the critical point at each node in the network, at each timestamp by weighting

and delaying the incoming activity from other nodes in the network. Hence, network met-

rics of the SC, such as the in-strength, that is, the sum of weights of incoming ties to a node,

may indicate the distance of a node’s operating point to its critical point and thus criticality

(Kunze et al., 2016). The network model, however, was set so that the system never reaches

criticality. We achieved the subcritical behavior by normalizing the SC so that the maximum
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in-strength is one. It ensures that the mouse brain network segregates and integrates infor-

mation while the activity decays in the network. That is because the network cannot amplify

activity by SC less than one.

When we applied stimulation, the node operates closer to the critical point, and the re-

sponse is in the form of a damped oscillation (Supporting Information Figure S1A). The closer

a node operates to the critical point, the stronger the amplitude and the longer the decay time

of the node’s response (Supporting Information Figure S1A). Since the nodes were working

near-criticality, the response to the stimulation was transient and lasting a few milliseconds.

The damped oscillation generated in one stimulated node is then sent via its efferent connec-

tions to its target nodes, triggering there, in turn, a damped oscillation (Supporting Information

Figure S1B). If the network would mainly consist of nodes connected in series, the activity

would decay very fast after the stimulation (Supporting Information Figure S1B). However,

since the outgoing activity of a node can influence the nodes projecting back to it, recurrent

systems appear (Supporting Information Figure S1C and S1D), which allow the activity to dis-

sipate on a much longer timescale. After the initial decay, the evoked activity persists in the

DRNs (Figure 2C and 2D), which may reflect feedback loops and reentry points in the SC. A

DRN acts on perturbations due to, for instance, sensory stimuli or random fluctuations in the

network (flexibility), and outlasts the stimulation (criticality).

Supporting Information Figures S2 to S5, as well as Table 2 and Table 3, display the described

network properties. The differences in the responses stem from the proximity to criticality in

brain areas. The proximity depends on the SC (in particular, the extent of recurrent networks)

comprising the synaptic weights and the time delays (Figure 1). This behavior is predicted by

the center manifold theorem, which is the mathematical basis for criticality (Haken, 1978).

The directionality of the long-range SC, derived from the tracer studies provided by the ABA,

is assessed by two measures estimating the symmetry in the connectivity weight matrix. The

first measure, Q0 = [0, 1], gives 0 if symmetric and 1 if asymmetric and reads:

Q0 = ‖C − CT‖ / ‖C + CT‖, (1)

where A is here the square matrix containing connection weights between the 512 areas, and

‖C‖ is the matrix norm. The second measure, Q1 = [0, 1] is defined as follows:

Q1 = ‖C − CT‖ / ‖2C‖, (2)

and gives Q1 = 0 if the matrix C is symmetric and Q1 = 1 if antisymmetric. Bothmeasures indi-

cate a high degree of symmetry in the weight matrix of the ABA-SC and, therefore, a dominant

bidirectionality of connectivity.

Large-Scale Brain Model

Dynamics of a vector field Ψ (x, t) at time t ∈1 and position x ∈3 in space Ω are described by

a delay-integro-differential equation:

∂tΨ(x, t) = F (Ψ(x, t))− aI I(x, t)

+ (1 − α)aL

∫

L
dX′Ψ(x − X′, t)g(X′)+ (3)

+ αaΩ

∫

Ω
dX′Ψ

(

x − X′, t −
∣

∣x − X′
∣

∣

/

v
)

H(X)C
(

∥

∥x − X′
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∥

/

v
)

KT(X′),
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where ∂t is the derivative with respect to time, t. The input I (x, t) allows the stimulation

dynamics to intervene on a node. The operator F(Ψ(x, t)) locally links variables of the

vector field. The scalar α balances short- and long-range SCs (first and second integral) in

the vector field. The vectors, aI , aL, and aΩ of factors relate the input I, and both types of SC to

the vector field Ψ (x, t). The kernel g (x) describes the short-range SC. The field is time delayed

due to a finite transmission speed v via the long-range SC given by matrix C (x). The vectors H

(x) and K (x) establish the links among the long-range SC and the targets and the sources. Note

that the transmission speed enters the second integral concerning long-range SC. We assumed

the transmission via the short-range SC (first integral) to be instantaneous (to reduce the com-

putational expenses) to perform the parameter exploration study. We describe the spatial and

temporal aspects of the model in more detail in the following two subsections.

Geometry and Structural Connectivity

The spatial domain Ω = {L1 ∪ L2 ∪ S} separates both cerebral hemispheres L = {L1 ∪ L2}: left,

L1 and right, L2, from subisocortical areas S, that is,
⋂

Ω = ∅. Two open surfaces describe the

geometry of the left and right isocortex (L1 and L2) by a regular mesh of 27,554 triangles with

41,524 edges between 13,972 vertices. The short-range SC follows a Gaussian distribution g

(x) = exp (−x2 / ( 2σ2 ) ), which is invariant under translations on L (Spiegler & Jirsa, 2013). Each

open surface, L1 and L2, is divided intom = 42 areas, that is, L1 = ∪r∈R1
Ar and L2 = ∪r∈R2

Ar

with R1 = R(m), R2 = R1 + n: R( λ ∈ ) = {r | r ∈, r ≤ λ }, where n = 428 is the number of

subcortical areas. The division of the surfaces into areas is based on the ABA, Ar = A(r ∈ ) ∈

Ω :→3 onto space Ω for introducing long-range SC.We lumped each of the n = 428 considered

subisocortical areas to a single point in space S =
⋃

r∈R3
Ar with R3 = R(n) + 2m. The long-

range SC links all the vertices of an area with the vertices of another area. Note that every 428

nonisocortical areas represent a node in the large-scale brain network. Connections between

these nodes are point-to-point connections. Connections between an area of the isocortex and

one of the 428 nonisocortical areas are links between all nodes inside the isocortical area and

the node representing the nonisocortical area. The long-range connections, C transmit mean

activities of sources to target areas,H (x) and K ( X’) with a finite transmission speed, v = 1ms−1.

The square matrix, C (‖ x − X’‖/ v ) contains (2m + n)2 weights, cij ( ‖ x − X
′
‖ / v) : i, j = 1,

. . . , 2m + n taken from the ABA. The row vectors H (x), and K ( X’) contain 2m + n operations,

hi (x), and kj ( X’ ) on the targets and sources, respectively. The operations are hi (x) = δx (Ai)

and kj ( X’) = δ
X
′ (Ai) / | Aj| with the Dirac measure δΩ (A) on Ω and the cardinality | Ar| of

the set Ar.

The large-scale brain network model (Equation 1) is fully compatible with previous TVB

descriptions (Sanz-Leon et al., 2015; Spiegler & Jirsa, 2013; Spiegler et al., 2016). Note that

we used the set notation here to describe brain areas. We described the division of the SCs on

both isocortices in the cerebral areas with the same notation.

Local Dynamics

The vector field describes a two-dimensional flow (Stefanescu & Jirsa, 2008) linking two vari-

ables Ψ (x, t) = (ψ1ψ2)
T (x, t) in (1) as follows:

F (Ψ(x, t)) = η

(

ψ2(x, t)− γψ1(x, t)− ψ3
1(x, t)

−εψ1(x, t)

)

. (4)

The number of 28,800 variables thus represents the network state of the mouse brain model.

The parameterization γ = 1.21 and ε = 12.3083 sets an isolated brain area close to a critical
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point, that is, an Andronov–Hopf bifurcation (sketched in Supporting Information Figure S1)

with a natural frequency around 42 Hz using a characteristic rate of η = 76.74 s1. This rhythm in

the gamma band accounts for the local activity, such as a coordinated interaction of excitation

and inhibition (Buzsáki &Wang, 2012). It is not explicitly modeled here but represented by the

surrogate parameter γ. This damping factor γ determines the local excitability (i.e., the critical

distance to the Andronov–Hopf bifurcation) and is thus a surrogate for the ratio of excitation

and inhibition at each location of the brain network. The Dirac delta function is applied to a

brain area, Ir (x, t) = −5η δx (Ar) δ (t). The connectivities and the input act on the first variable

ψ1 (x, t) in (1) by aL = aΩ = (aI )
T = ( η 0 ). The connectivity-weighted input determines criticality

by working against inherent energy dissipation (i.e., stable focus) toward the bifurcation. So as

to avoid passing the bifurcation, both short- and long-range SCs, g (x) and C (‖x − X
′
‖/v), are

normalized to have unity maximum in-strength across time delays by (i) dx g (x) = 1 and (ii)

supλ∈Ω/v

{

∑
2m+n
j cij (‖λ‖)

}

= 1.

Simulation

We simulated the whole-brain mouse model on a computer using the large-scale brain net-

work simulation engine The Virtual Brain (TVB).We discretized themodel concerning physical

space and time, to run simulations on a digital computer. The mesh of 7,020 nodes (and 6,952

nodes) evenly filled the surfaces of the left isocortex L1 (and the right isocortex L2). Subcortical

structures in S remain unaffected by the discretization. The geometry of the brain is captured

in physical space, Ω, by a net number of 14,400 nodes (i.e., 13,972 cortical and 428 subiso-

cortical nodes). We rewrote the spatial integrals in (1) in terms of matrix operations, where

the long-range SC remains the same. For that matrix version of the short-range SC, we spa-

tially sampled the short-range SC on the cerebral surfaces (Spiegler & Jirsa, 2013). We used

Heun’s method to solve the resulting system of difference equations with a time step of 40 µs

for 1 second per realization. Each realization had a unique parameter setting. We sampled

the following parameters: 512 stimulation sites, SC balance α = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0},

and characteristic short-range SC distance, σ / µm ∈: 500 σ / µm 1,000. The spatial cutoff

range for short-range SC was eight times the standard deviation of the connectivity kernel 8σ

(Spiegler & Jirsa, 2013). That gives the six configurations of the short-range SC. We verified

the implementation by the algebraic solution of an isolated node (i.e., no connections) and by

the field properties (e.g., compact solutions spreading radially around a stimulation site) of the

homogeneously linked cerebral nodes.

The lower bound of the spatial range of σ = 500 µm results from the used geometrical model

for the isocortex. A nearly regular mesh of triangles approximates each cerebral hemisphere

with a finite edge length of 125 µm on average (see Supporting Information Figure S2). The

cortical meshes on the isocortices spatially sampled the continuous Gaussian kernel for the

short-range SC. Because of the finite edge lengths in the mesh, the characteristic distance of

the short-range SC should not fall below 207.78 µm for –3 dB cutoff of spatial frequencies

concerning their magnitude (Spiegler & Jirsa, 2013). The lower bound of the spatial range of

σ = 500 µm for the homogeneous Gaussian connectivity kernel causes a loss of at least 4.55%

of spatial information (mainly short-range), which corresponds to –17.37178 dB cutoff (see

Spiegler & Jirsa, 2013).

Stimulation and Decomposition

We uniformly stimulated all network nodes of a brain area for a period of the characteristic time

of the nodes, that is, η−1, to evoke damped oscillations with a maximum of one. We calculated
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the stimulation-induced activity in the brain responses by subtracting the stimulation response

of an isolated node from the response of stimulated nodes in the network. Principal component

analysis (PCA) was performed on the induced brain responses by using the covariance matrix

among the 14,400 network nodes’ time series. The time series were selected in the time interval

of 250 to 750 ms after the stimulus onset (similar to Spiegler et al., 2016). For further analysis,

we considered up to three principal components that hold more than 99% of the variance

across conditions.

Extracting Dynamically Responsive Networks

We extracted the DRNs by

1. determining the induced component of generated brain activity after stimulation,

2. decomposing the multivariate time series (of the 14,400 neural masses) of stimulation-

induced activity (in the period between 250 and 750 ms after stimulation onset t0) into

principal components (PCs: eigenvectors and corresponding eigenvalues),

3. correlating the eigenspaces spanned by the eigenvectors that cover 99% of the variance

in the brain activity (eigenvalues),

4. clustering the eigenspaces and

5. rotating the eigenspaces onto a common basis, and

6. lumping the clusters.

The decomposed activity patterns after focal stimulation resulted in step 2 are called ss-

DRNs. We identified a total of 18,432 ss-DRNs for all stimulation sites and all connectivity

parameter configurations. In contrast to the ss-DRNs, the DRNs are accessible from several

locations in the brain by stimulation. Similar to ss-DRNs, DRNs are composed of three com-

ponents. The components result from aligning and averaging correlated PCs of ss-DRNs within

each cluster (steps 3 to 6).

The dot product of the corresponding normalized eigenvectors (i.e., PCs), obtained from

the PCA of the stimulation responses (i.e., ss-DRNs), was used to measure the similarity of

the dissipation across different stimulation sites for a range of values of the balance of the

SC and a spatial range of the short-range SC. We clustered the eigenspaces using a k-means

algorithm based on the similarity measure for each SC balance and each range of the short-

range SC.We estimated the number of clusters by using the gap statistic (Tibshirani et al., 2001).

For each cluster, we rotated and aligned the eigenspaces onto the basis. The cluster basis

is the eigenspace with the highest similarity among all cluster members. That was achieved

using the singular value decomposition and calculating the optimal rotation matrix (Kabsch,

1978). Averaging the aligned basis vectors (i.e., PCs) of eigenspaces in a cluster gives the set

of eigenvectors for each cluster. The resulting vector indicates the contribution of each node

(e.g., belonging to a cortical or a subcortical structure) to a DRN.

Statistics on the DRNs and Prediction of the DRNs by the Structural Connectivity

To perform statistics on the catalog of DRNs, we extracted and correlated the DRNs from the

14,400 time series. We pairwise correlated each of the three components of each of the 24

DRNs, that is, 12 DRNs by stimulation of left areas and 12 DRNs by stimulation of right ar-

eas (comprising 72 components composing the 24 DRNs). The significance level of 1% was

Bonferroni corrected by the total number of components. In addition, three thresholds were

applied to the correlation values Corr in order to find strong (Corr> 0.8), good (0.6< Corr 0.8),
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and moderate agreements (0.5 < Corr 0.6) among the 72 components of the 24 DRNs. The

analysis revealed a total of five significantly distinct motifs in the DRNs, indicating links be-

tween DRNs.

To test to what extent the topology in the structural connectivity predicts the brain activity

in response to stimulation, we calculated the following graph-theoretic measures on the long-

range SC: in-degree (number of afferent connections), out-degree (number of efferent connec-

tions), total-degree, in-strength (afferent projections and arriving activity), out- strength (efferent

projections and exiting activity), total-strength (the combination of both), and clustering coef-

ficient (Rubinov & Sporns, 2010). We measured incoming, outgoing, or all connected ties to

an area regarding (1) their numbers and (2) their weights. By counting the connections, we

obtained the in-, the out-, and the total-degree. By calculating the sum of connection weights,

we obtained the in-, the out-, and the total-strength. The clustering coefficient measures the

degree to which areas in a graph tend to group. We correlated the activity (after stimulation)

with the graph-theoretical characterization across network nodes.

Furthermore, we correlated the activity at the network nodes after stimulation with the con-

nectivity strengths of the direct afferent (incoming connection to an area) and efferent connec-

tions (outgoing connection from an area). We compared each of the nine measures, applied to

the brain areas in the long-range SC, with the components of each DRN (i.e., the eigenvector).

We used the Pearson correlation, the rank correlation (Kendall’s tau), and the Bhattacharyya

coefficient for the correlation. We used the same permutation test to test statistical significance

as for the comparison of the DRNs with the functional networks. We Bonferroni corrected the

significance level of 5%.

Motifs Connecting DRNs

The pairwise correlation of the three components of the DRNs revealed five consistent activity

patterns that recur in the components of several DRNs. Because of the recurrence, we call them

motifs. Furthermore, to clarify the role of the five motifs in dealing with stimuli, the motifs were

correlated with experimentally known functional networks.

Functional Networks in the DRNs

Based on the ontology of ABA, we mapped the cartographic description of the resting-state

networks onto the mouse brain’s structural model to determine whether networks that are

dynamically responsive to stimulation (DRNs) resemble the experimentally known spatial ac-

tivity patterns. We followed the description of the networks by Sforazzini et al. (2014) and by

Zingg et al. (2014). In our geometrical model, the resultant map describes the probability of

contribution of an area to a particular functional network by the following three contribution

levels according to the references (Sforazzini et al., 2014; Zingg et al., 2014):

1. no contribution for unmentioned,

2. medium contribution for mentioned, or

3. high contribution for explicitly emphasized.

We then used the Pearson correlation and the Bhattacharyya coefficient (Bhattacharyya,

1946) to estimate the amount of overlap (i.e., the square root of the inner product) between

a functional network and a motif of the DRNs. The averaged eigenvectors within a cluster

are the components of each DRN. The components of each eigenvector were squared and

summed within each area to obtain coarse-grained eigenvectors. We normalized the resultant
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eigenvectors to unit length. Then, we compared functional networks and each normalized

coarse-grained component of a DRN. We corrected the p values due to 27 multiple indepen-

dent comparisons (nine functional networks with three eigenvectors per stimulation site) for a

significance level of 5%.

Sensory Pathways

If not explicitly cited, the primary reference for the description of the sensory pathways of the

mouse brain is the book authored by Watson, Paxinos, and Puelles (2011). The visual path-

ways run from the retina through the hypothalamus, midbrain, and thalamus to terminate in

the primary visual cortices. The retinal ganglion cells bilaterally connect to the hypothalamus.

Moreover, all cells project to the (sensory related) SuCo, according to the ipsilateral visual

hemifield. The (sensory-related) SuCo projects, through the pulvinar nucleus and lateral poste-

rior nucleus of the thalamus, to the areas of the cerebral cortex that are involved in controlling

eye movements (Stein & Meredith, 1991). Pulvinar nuclei are virtually nonexistent in the rat

and grouped as the lateral posterior-pulvinar complex with the thalamic LPN due to its small

size in cats. In humans, it makes up roughly 40% of the thalamus, making it the largest thalamic

nucleus (LaBerge, 1999).

Furthermore, the SuCo also receives activity from other sensory systems such as whisker

movements (Stein & Meredith, 1991). The retinal ganglion cells have ramifications to con-

tralateral structures in the midbrain, namely OT, OPT, and PPT (Pak et al., 1987). The retinal

ganglion cells also have ramifications that run into the V1 through the thalamus, namely IGL,

vLGN, and dLGN, according to the ipsilateral visual hemifield (abbreviations of brain areas

are given in Supporting Information Tables S1 and S2). Intergeniculate IGL seems to play an

essential role in mediating phases of the circadian rhythms that are light insensitive, as well as

phase shifts that are light dependent (Harrington, 1997; Edelstein & Amir, 1999). Supporting

Information Figure S7A summarizes the network with specific visual hemifield connections.

The auditory pathways originate from the cochleae to the A1 through the medulla (DC and

VC), the pons (NLL), the midbrain (IC and BIC), and the thalamus (MG). Supporting Information

Figure S7B summarizes the specific contra- and ipsilateral connections.

The trigeminal nerve connects the whiskers with the somatosensory areas in the isocortex.

The nerve runs through the medulla, the pons, the midbrain, and the thalamus to finally ter-

minate in the barrel fields of the somatosensory areas. In the different brain structures, each

whisker is represented in a discrete anatomical unit, called a barrel (see Supporting Information

Figure S7C). Parts of the medulla, the pons, the thalamus, and the isocortex show topographic

organization of the major facial whiskers. Supporting Information Table S2 lists names and

abbreviations of nuclei. The somatotopy of whisker follicles in S1 and S2 mainly comes via

the thalamus. In the thalamus, the VPM shows a somatotopic arrangement of barreloids fed by

the trigeminal nerve nuclei through the pons (PrV) and the medulla. In the medulla, the SpVc

shows a somatotopic arrangement of barrelets. Specifically, the trigeminal nerve fibers have

ramifications to SpVc, SpVi, and SpVo (medulla), to the PrV (pons), and the MeV (midbrain;

Bosman et al., 2011). Via the MeV, whisker movements can activate the sensory-related parts

of the superior colliculus of the midbrain (Matesz, 1981; Ndiaye et al., 2000). The SuCo has

other parts related to sensory processing, such as the visual system and eye movements. The

pathway via PrV and VPL to the S1 conveys primarily somatotopic information of whiskers.

The other minor pathways are as follows: the PrV (part of the pons) mainly projects to the dor-

somedial part (and less to the head area) of the VPM and less to the Po (both thalamus). The Po
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receives connections from the ventral posteromedial nucleus, the SpVi, and SpVo and sends

input to the S1, S2, and M1 (Bosman et al., 2011; Lane et al., 2008). The SpVc sends input

to the VPM and the LD. Both send input to the somatosensory areas. Supporting Information

Figure S7D summarizes the specific contra- and ipsilateral connections.

The pathways from the fore and hind limbs pass via dorsal root ganglion to the ipsilateral

dorsal column nuclei of the medulla, comprising the CN and the GN. The upper limb, and

especially the forelimb, connects through the CN, whereas the lower limb, and especially the

hind limb, connects through the GN. The nuclei of the medulla connect to the contralateral

VPL (thalamus) via the medial lemniscus. The VPL has ipsilateral ramifications into the S1.

Supporting Information Figure S7E summarizes the specific contra- and ipsilateral connections.

We have quantified the quality of the sensory pathways represented in the ABA connec-

tome. Let us consider a particular set of structural connections (SCs) embedded in a large-scale

brain network forming subnetworks, which are involved in the processing of a particular brain

function. Such a large-scale brain network contains directed connections, whose weights are

assumed to be positively-defined, that is, between network nodes i and j: cij 6= cji, and cij ≥ 0

(the first index is the target, and the latter is the source). A particular network comprises a set

R of edges aka connections R ⊆ rn between index vertices i ∈ and j ∈ aka nodes in physical

space Ω, rl = { j → i} with i,j = 1, …, 2m +n. The arrow in the notation for the l ∈ -connection

rl indicates a directed projection from vertex j onto vertex i. Then, we can characterize the

embedding of a given connection by its particular in- and out-strength in a given large-scale

brain network or by the maximum in- and output value

W(rl)











cij

∑b cib
or

cij

maxb(cib)
for target i

cij

∑a caj
or

cij

maxa(caj)
for target j

, (5)

where the maximum income of a target i is maxb(cib) and the maximum output of a source j is

maxa(caj). Using both graph-theoretic measures color the edges rl with a positive scalar ql

ql(r) = c2
ij ×







1
∑a caj ∑b cib

< 1 colored by in- and out-strength measure

1
maxa(caj)maxb(cib)

≤ 1 colored by maximum input and output
(6)

We quantified the presence of a subnetwork of interest that is defined by N connections R ⊆

rl : n = 1, …, N, in a large-scale network U: R ⊆ U as follows:

R/U =
1

N

N

∑
l=1

ql(r). (7)

We used both normalization types to quantify the embedding of sensory pathways.

To study the response to stimulation of the pathways, we characterized activity patterns in

terms of (1) the most active structures (and most active areas) as well as (2) the most active

brain areas (irrespective of the total activity of structures), lateralization and symmetry.

Because the statistics on the DRNs (see section Statistics on DRNs in the Result section)

indicate that the responses are best predicted (although weak) by the strengths of the directly

outgoing connections from the stimulation site, we analyzed the spatial spread of the energy

in the brain responses (integral of the power over time, i.e., .2 s to .8 s after stimulation). To test
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whether the activity is focal or spread over the brain (or within a structure), we determined the

brain areas that contain more than 99% of the total energy in a brain response (entire brain and

within a brain structure). Brain areas were then ranked to their strength of activity, and com-

pared between left structures and contrasted with the homolog on the right. To clarify whether

activity spreads laterally, we determined the brain areas that contain more than 99% of the

total energy in the responses of the entire brain model and compared the location (left/right).

Activation is symmetric to the stimulation site when the response to stimulation of a particular

structure in one hemisphere is homologous with the stimulation response to stimulation of the

same structure in the opposite hemisphere. The activation patterns are tested on bilateral sym-

metry by correlating the activity in the left areas with the activity at homolog areas on the right.

A bilateral symmetric response means that the activity in the left side’s brain areas is similar to

the ones on the right. An antisymmetric bilateral response means that the activity on the left

side is the reverse of that on the right. Insignificant correlations (significance level of 5%) do

not support either type of symmetry.

So far, we have analyzed the brain response to the stimulation of brain areas in each sensory

pathway independently. To clarify whether the brain responses are consistent for a specific

sensory pathway summarized in Supporting Information Figure S7, for example, the auditory

pathways from the cochlea to the primary auditory areas, we used the catalog of DRNs as

described in the section Statistics on DRNs in the Results.

Observer System for VSD Imaging

The observer system is a physical forward solution that links the state system (the mean post-

synaptic potential and current) for the 2D model at each network location to an experimen-

tally observable measure. To compare the simulated and empirical activity in the isocortex in

response to stimulation, we projected the simulated brain activity onto the plane that recon-

structs the focal plane from which the camera setup captures the VSD images (Mohajerani

et al., 2013). Since the VSD imaging signal shows high correlations with the low-frequency

component of local field potentials (Mohajerani et al., 2013), the VSD imaging signal possi-

bly reflects postsynaptic potentials of neural populations. Therefore, we considered a direct

link between the local dynamic model in the mouse brain network and the VSD imaging. To

obtain smooth nonoscillatory responses in simulated VSD signals, the Hilbert transform of the

oscillatory signals, generated by the state-state system, was used. We performed that prepro-

cessing step because the VSD imaging optical signal is not typically oscillatory (Mohajerani

et al., 2013).

The VSD imaging provides a spatially flattened image of the brain activity while the surface

of the isocortex in physical space is curved. To find a projection form the curved surface of

isocortex, considered in our network model, to the flat focal plane of the VSD imaging, we

used the coordinates of the primary sensory areas in the model and the imaging data. We found

these coordinates in the VSD imaging data by using peripheral stimulation (Mohajerani et al.,

2013). We used these coordinates to find a projection plane (size given by the camera sensor

used for the VSD imaging) in the model that best corresponds to the VSD imaging data (see

Figure 4). This mapping, then, provides a direct link between the local postsynaptic potential in

the model and the measured VSD images. The isocortical areas, captured by the VSD imaging

setup (see, for more details, Mohajerani et al., 2013), are listed in Table 5. The simulated and

measured activity can thus be compared on the pixel level of the images as well as on the

coarse-grained level of brain areas, using the region mapping.
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Comparing Voltage-Sensitive Dye Imaging and Simulated Data

VSD imaging measures the intensity of emitted light from the superficial layers of the isocor-

tex stained with VSD molecules. The light intensity, normalized by its baseline, reflects the

neuronal membrane potential. Thus, we separately calculated the ratio of the deviation of

the baseline optical signal to the baseline (∆F/F0) per pixel. Then we converted this ratio to the

percentage by multiplying it by 100. We defined the baseline as the prestimulus level of

the optical signal for each pixel. A signal level of 0.2% in a particular pixel means that the op-

tical signal captured a 0.2% deviation from baseline. We then used the ∆F/F0 signal to identify

the activated pixels at each time point after the stimulation was applied. We defined the onset

of activation for a pixel as the time stamp, at which the pixel activity surpasses 20% of its peak

activity. We obtained the temporal order of activation among these regions by calculating the

onset of the activation for all the isocortical regions in our imaging window.

Moreover, we calculated the maximum of the ∆F/F0 signal for each pixel around a tem-

poral neighborhood of the stimulation timestamp. We obtained the maximum intensity maps

presented in Figure 3F and Supporting Information Figures S8 and S9. These maps ease the

qualitative investigation of the overlap of activated regions in the simulated and empirical

data.

For comparing model and in vivo data, we used the following exemplary model configura-

tion: 500-µm short-range SC with a ratio of 40% short-range SC to 60% long-range SC (i.e., α =

0.4), and the stimulation period of η−1 = 13 ms. The size of the stimulation focus was adjusted

to mimic the laser stimulation with a beam diameter of 360 µm on the surface in the center of

isocortical areas.

We used the following six steps to calculate the similarity between two spatiotemporal

patterns of brain activity evoked by the stimulation in vivo and in silico.

1. We calculated the sequence of activated regions ordered from earliest to latest for each

spatiotemporal pattern of activity (suppose the two sequences are ABCDEF andACHBFG,

for example).

2. We excluded the first region in each sequence (we get BCDEF and CHBFG).

3. A subsequence starting with the first element and with a specific length was chosen from

each sequence (if the chosen length is 4, we get BCDE and CHBF).

4. The corresponding nonoverlapping elements of the two subsequences were made iden-

tical (leading to BCDE and CDBE). After this step, we made the two subsequences from

the same elements.

5. We calculated Kendall’s tau distance (Kendall, 1938) between the two subsequences.

This distance is the same as the number of transpositions (swapping of adjacent elements)

to convert one subsequence into another. The value of this distance is then divided by

(n – 1) n / 2, which is the maximum number of transpositions between two sequences

with length n (the distance between BCDE and CDBE is then 0.33).

6. We defined the unnormalized similarity between the two subsequences as one minus

the value obtained in step 5 (unnormalized similarity between BCDE and CDBE is 1 –

0.33 = 0.67).

7. We multiplied the value obtained in step 6 with the ratio of the number of overlapping

elements to the total number of elements in each subsequence to get the similarity value

between the two subsequences (similarity between BCDE and CDBE is 0.67 / 2 = 0.335).
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We used the median of similarity values between only in vivo stimulus-induced spatiotem-

poral patterns of activity as a benchmark. We then evaluated the meaningfulness of similarity

values.

In Vivo VSD Imaging and Optogenetic Stimulation in The Mouse Brain

Weused adult ChR2 transgenic mice (line 18, stock 007612, strain B6.Cg-Tg (Thy1-COP4/EYFP)

18Gfng/J; The Jackson Laboratory) for in vivo imaging experiments. These transgenic mice ex-

press the light-activated ion channel, Channelrhodopsin-2 (ChR2), in layer 5B pyramidal neu-

rons across the cortex under the control of the mouse thymus cell antigen 1 (Thy1) promoter.

We housed the animals in clear plastic cages in groups of two to five, under a 12:12 h light/dark

cycle. Mice were given ad libitum access to water and standard laboratory mouse diet at all

times. The University of Lethbridge Animal Care Committee approved the animal protocols fol-

lowing the guidelines set forth by the Canadian Council for Animal Care. To perform the VSD

imaging experiments, we anesthetized the animals with 0.5% isoflurane. Then, we performed

a 7 × 6 mm unilateral craniotomy (bregma 2.5 to 4.5 mm, lateral 0 to 6 mm). We removed

the underlying dura as described previously (Kyweriga et al., 2017). We incubated the ex-

posed brain for 60 minutes with the dye RH-1691 (Optical Imaging, New York, NY) solution

prepared with the HEPES-buffered saline (0.5 mg/ml). Thirty minutes after we washed out the

unbounded dye solution from the brain, we covered the stained brain surface with the 1.5%

agarose dissolved in HEPES-buffered saline and sealed with a glass coverslip. We removed the

underlying dura. Throughout surgery and imaging, body temperature was maintained at 37◦C

degrees using a heating pad with a feedback thermistor. The VSD data was collected as 12-

bit images using a CCD camera (1M60 Pantera, Dalsa, Waterloo, ON) and EPIX E4DB frame

grabber with XCAP 3.8 imaging software (EPIX, Inc., Buffalo Grove, IL). We set the focal plane

to about 1mm below the cortical surface to reduce the potential brain surface pulsation arti-

facts. VSD was excited with the red light emitted from a LED (Luxeon K2, 627-nm center) and

filtered in the range of (630 ± 15) nm. We filtered the VSD fluorescence using a 673–703-nm

optical bandpass filter (Semrock, New York, NY) before being captured by the CCD camera.

To correct for time-dependent changes in VSD signals that accompany all imaging, we also

collected several nonstimulation trials that we used for normalization of stimulated data. We

used a 10-s interval between each stimulation (optical or sensory). To reduce potential VSD

signal distortion caused by the presence of large vessels, we focused on the cortex to a depth

of ∼1 mm. In our previous work, we measured VSD fluorescence across the cortex by using

histology and demonstrated relatively high labeling at even ∼750 µm in-depth (Mohajerani

et al., 2010, Greenberg et al., 2018). Nevertheless, to reduce regional bias in the VSD flu-

orescence signal caused by brain curvature or due to uneven brain staining, all the optical

responses were expressed as a percent change relative to baseline (∆F/F0 × 100%). The total

duration of excitation in a typical imaging experiment ranged from 1,200 to 1,500 s.

We identify the coordinates of the sensory areas by performing periphery stimulation com-

bined with VSD imaging. We performed the peripheral somatosensory stimulation by deliver-

ing 0.2 to 0.5 mA, 1-ms electrical current to either forelimb or hindlimb. The visual stimulation

was a 1-ms pulse of combined blue and green light to the contralateral (left) eye. For the au-

ditory stimulation, we played a sound clique next to the left ear of the mouse. We performed

tactile stimulation of a single whisker (C2) by using a piezoelectric device (Q220-A4-203YB,

Piezo Systems, Inc., Woburn, MA). We used the output of a diode-pumped solid-state laser

emitting light with a wavelength of 473 nm (Shanghai Dream Lasers Technology, ShangHai,

China) to stimulate ChR2-expressing neurons. The laser beam was directed to defined points of

stimulation (grids; 750 µm) on the cortical surface using Ephus toolbox (Suter et al., 2010). That
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Matlab (Mathworks, Natick, MA) toolbox controlled the galvanometer scanmirrors (Cambridge

Tech, Lexington, MA), via analog output voltage from PCI-6110 DAQ (National Instruments,

Austin, TX). The Ephus program controlled the overall timing of individual optical stimulation

trials with TTL triggers to XCAP software. Low amplitude (7.5 to 20 mW/mm2) and short dura-

tion (1 ms) single collimated (f-number = 36) laser beam (120 µm) were applied to the cortical

surface to ensure sufficient activation, low laser stimulus artifact, and low photobleaching. We

stimulated each site 5 to 10 times (10-s interstimulus interval) and averaged replicate responses.
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