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Abstract 

Genomic sequencing has been increasingly used over the last decade as part of the 

management of patients with cancer. Interpretation of somatic variants and their pathogenicity is often 

complex. Pathogenicity prediction tools are commonly used as part of the expert interpretation of 

somatic variants, but most of these tools were initially developed for germline variants. The aim of this 

study was to benchmark their performance on somatic variants. To achieve this, we assembled a « gold 

standard » list of 4,319 somatic SNVs, classified as oncogenic (N=2,996) or neutral (N=1,323), based 

either on their presence in curated databases or on their allele frequency (AF) in the general population. 

We annotated these variants with the most commonly used prediction tools using dbNSFP and UMD-

Predictor and we computed performance calculations. The stratification of the prediction tools based on 

Matthews correlation coefficient and area under the ROC curve allowed to identify the most performing 

ones, namely CADD, Eigen/Eigen-PC, Polyphen-2, PROVEAN, UMD-Predictor and REVEL. Interestingly, 

SIFT, which is a commonly used prediction tool for somatic variants, was ranked in the second 

performance category. Combining tools two by two only marginally improved performances, mainly 

because of the occurrence of discordant predictions. 

Introduction 

With the progress of sequencing technologies, the use of sequencing data for cancer patient 

management has been increasing. Next generation sequencing produces a huge amount of data. 

Sequencing data are first analyzed and annotated using bioinformatics pipelines. An expert 

interpretation is then mandatory in order to produce the clinical report, which will be used by the 

oncologist for discussion during a molecular tumor board and make the therapeutic decision. The 

interpretation is sometimes challenging. The difficulty is due to the complexity of the somatic context, 

but also to the larger number of variants typically observed, compared to germline variants. The stake of 



a correct variant interpretation is double; first, preventing orientation of a patient towards a therapeutic 

option, when the tumor does not carry the corresponding pathogenic alteration; second, allowing the 

orientation of a patient towards a therapeutic option, when the tumor does carry the corresponding 

pathogenic alteration. Therefore, prediction tools can be very valuable to assist therapeutic decision. 

Several computational tools are available to predict the pathogenicity of variants. These tools 

provide a pathogenicity prediction based on various criteria such as localization within the protein, 

conservation amongst species, biochemical properties of the mutant and wild-type residues, and the 

potential impact of the variation on mRNA. Some tools consist in a combination of prediction tools. 

Their performances have been evaluated for germline variants, variants from the IARC TP53 and from 

the ICGC databases1 but to our knowledge, such evaluation is still missing for a large dataset of cancer 

somatic variants with curated pathogenicity classification. Results from prediction tools are often taken 

into account at least to some extent in the interpretation process of somatic variants. In some cases, 

prediction results are even used as inclusion criteria for clinical trials. It is important to understand how 

reliable these tools are and establish what role they should be given in the process of expert variant 

interpretation in the context of cancer management and clinical research. Increasing the quality of data 

interpretation is particularly crucial for variants of unknown significance. The key point is to retain 

variants potentially of interest in order to enrich associated therapeutic trials and therefore have 

opportunities to increase our knowledge of these variants. The aim is also to exclude variants which 

have enough evidence of inactivity. 

In the current work, we are addressing the following questions. What is the reliability of 

prediction tools and databases most commonly used for interpretation of somatic variants? Should 

prediction tools be combined in order to increase reliability of the results? Is there an optimal 



combination of the currently available tools? Do the prediction performances for somatic variants 

depend on whether the mutation is present on an oncogene or on a tumor suppressor gene? 

Materials and Methods 

Benchmark dataset of missense variants 

Three independent data sources of missense variants were used to construct our benchmark 

dataset and compare the performance of 22 prediction tools (Table 1).  

The first set of missense variants was sourced from the OncoKB database18 

(https://www.oncokb.org, last accessed on 2020, September 10). We downloaded the bulk data release 

(on 2019, February 23rd) and retained only missense variants classified as oncogenic (N=773), likely 

oncogenic (N=1,546) or likely neutral (N=501). Overall, the OncoKB database provided N=2,820 missense 

variants (Supplemental Table 1, worksheet 1). The second set of missense variants was sourced from 

CIViC database19 (https://civicdb.org, last accessed on 2020, September 10). We downloaded the bulk 

data release (on 2019, March 1st) and retained only missense variants with somatic origin and evidence 

supporting a clinical significance (predictive of response to therapy, prognostic and/or diagnostic) with 

an A (validated association, N=4) or B (clinical evidence, N=47) evidence level. Overall, the CIViC 

database provided N=51 missense variants (Supplemental Table 1, worksheet 2). The third set of 

missense variants was sourced from DoCM database19 (http://www.docm.info/, last accessed on 2020, 

September 10). We used the DoCM web interface to download variants (on 2019, March 9th) whose 

mutation types were missense and whose tags were pathogenic and/or likely pathogenic. Overall, the 

DoCM database provided N=1,134 missense variants (Supplemental Table 1, worksheet 3). 



Before merging the three sets of missense variants into a single dataset, variant annotation was 

harmonized. Variants within a given gene could be annotated on multiple transcripts even if they were 

sourced from the same database. For example, TP53 had variants annotated on five different Ensembl 

transcripts (https://www.ensembl.org/Homo_sapiens/Info/Index, last accessed on 2020, September 10) 

when it was sourced from DoCM (ENST00000269305, ENST00000359597, ENST00000413465, 

ENST00000455263, ENST00000604348). As a consequence, for each gene, we considered a unique 

Ensembl transcript which was assessed in the OncoKB or DoCM database (Supplemental Table 1, 

worksheet 4) and we excluded from the three sets all variants which were annotated on a different 

transcript. We also excluded all variants with conflicting pathogenicity (N=19, Supplemental Table 1, 

worksheet 5). Finally, we merged the three sets of missense variants into a single dataset of N=3,176 

missense variants (Supplemental Table 1, worksheet 6) covering 230 genes from OncoKB, CIViC and 

DoCM (Figure 1). We divided the missense variants into two groups based on variant pathogenicity: (1) 

an oncogenic group of variants (N=2,686) which included retained OncoKB variants described as 

oncogenic or likely oncogenic, and all retained CIViC and DoCM variants; (2) a neutral group of variants 

(N=490) which included OncoKB variants described as likely neutral. 

In this compiled dataset of 3,176 missense variants, only 490 variants covering 83 genes were 

labeled as neutral and all were retrieved from OncoKB. In order to avoid an unbalanced dataset, we 

expanded the number of neutral missense variants by adding polymorphisms as follows. Within the 

assessed transcripts of the 230 genes with oncogenic missense variants in our dataset, we used 

dbNSFP3.520 to identify missense variants whose respective SNVs had an allele frequency (AF) ≥ 0.01 in 

any subpopulation from gnomAD exomes21. Those missense variants were considered as polymorphisms 

and were included in the neutral group of variants if they were not already present. By adding variants 

with an AF ≥ 0.01 into our neutral group, additional conflicting variants arose again in our dataset and 



consequently, they were excluded as well (N=25, Supplemental Table 1, worksheet 7) from both 

oncogenic and neutral group. 

Thus, after mapping all our missense variants to genomic coordinates using dbNSFP3.5, our final 

dataset included 4,319 SNVs (Supplemental Table 2) divided into two levels of clinical significance, 

namely oncogenic variants (N=2,996) and neutral variants (N=1,323). Variants covered 230 genes 

(Supplemental Table 1, worksheet 4), which were classified as oncogene (N=98), tumor suppressor gene 

(TSG) (N=97), both (N=6) or unknown (N=29) based on their main mutation effect (gain of function or 

loss of function) or based on the Cancer Gene Census resources22. Figure 2 shows that our dataset 

contains oncogenic variants which are mostly extremely rare (AF<0.1% in general population) and 

neutral variants which are extremely rare, rare (between 0.1% and 1% in general population) or 

common (AF>1% in general population). 

Prediction tools and prediction scores 

We used dbNSFP v3.5a to annotate the 4,319 SNVs with 20 prediction tools including SIFT, 

Polyphen-2 HDIV, Polyphen-2 HVAR, LRT, MutationAssessor, FATHMM, PROVEAN, VEST3, MetaSVM, 

MetaLR, M-CAP, REVEL, MutPred, CADD, DANN, FATHMM-MKL, Eigen, Eigen-PC, GenoCanyon and 

fitCons (Table 1). We also used authors’ publicly available website to annotate the 4,319 SNVs with 

UMD-Predictor21. Cut-off values recommended by dbNSFP or by the tools’ authors were used to 

generate binary predictions for these SNVs (Supplemental Table 3). Note that although MutationTaster2 

was also available through dbNSFP, it was not used in our study because it automatically predicts 

variants as disease causing when they are marked as pathogenic in ClinVar. 

We added another prediction algorithm based on the position of the SNV within a functional 

domain or not. We used dbNSFP to assign the SNV position to a domain annotated in the Interpro 



database. If the SNV was located in any known domain, then it was predicted as being oncogenic by the 

algorithm. On contrary, if the SNV was not located in a known domain, then it was predicted as being 

neutral. We named this qualitative prediction algorithm a functional domain-based tool. 

Overall, we processed predictions from 22 different tools on 4,319 SNVs. Some prediction tools 

provided multiple scores or predictions for the same SNV due to multiple transcripts for the same gene. 

Most published articles used the most damaging scores23 in their analyses or the average scores across 

all transcripts11, but we chose to use only the scores specific to the Ensembl transcript assessed in the 

OncoKB or DoCM database. If a score for a given SNV could not be provided in this assessed transcript, 

then it was considered as a missing value. Thus, all tools could not provide scores for all SNVs in the 

assessed transcripts and in these cases, the scores and the predictions were considered as missing 

values. 

When evaluating prediction tools on a dataset which comprises “likely” oncogenic SNVs or 

polymorphisms, a bias could be introduced in the results. Indeed, “likely” oncogenic SNVs may have 

been assessed by the very same tools that are being evaluated in this work. And in clinical routine, 

polymorphisms are generally not assessed by prediction tools, but they are rather filtered out by 

bioinformatic pipelines based on AF. Therefore, we also processed predictions on a subset of 1,440 SNVs 

retaining only “clearly” oncogenic SNVs (N=877) and likely neutral SNVs (N=563) from OncoKB database 

(Supplemental Table 4, worksheet 2). 

Finally, we generated all possible pairwise combinations of prediction tools. For a given 

combination of two tools, a variant prediction was considered as neutral if both tools called it neutral 

and it was considered as oncogenic if both tools called it oncogenic. However, it was considered as a 

missing value if both tools within the combination did not provide the same prediction. Combinations 

were evaluated on the subset of 1,440 SNVs. 



Performance measures 

The performance of each tool was evaluated as a single tool and as a combination of tools two 

by two. Accuracy, Matthews correlation coefficient (MCC), sensitivity (Se), specificity (Sp), positive 

predictive value (PPV), negative predicted value (NPV), false positive rate (FPR) and false negative rate 

(FNR) were computed based on the number of true positives (TP), true negatives (TN), false positives 

(FP) and false negatives (FN). We also plotted the Receiver Operating Characteristic (ROC) curves and 

computed the Area Under the Curve (AUC) for different tools by using the R “ROCR” package.  
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Criteria of judgment 

MCC is recommended over accuracy as it is less sensitive to the proportion of oncogenic and 

neutral variants in the benchmark dataset. The ROC curve exhibits the sensitivity and the specificity for 



different cut-off values. The AUC value was not computed for LRT because its prediction is not solely 

determined by its score and for the functional domain-based tool because it is a qualitative prediction 

tool. When evaluating prediction tools individually, the percentage of missing values was considered 

acceptable when it was below 5%. 

Results 

Evaluating on a benchmark database of 4,319 SNVs 

Among the SNVs included in this study, 3,559 were sourced from curated somatic cancer variant 

databases (OncoKB, DoCM, CIViC) to support their classification as either oncogenic (N=2,996) or neutral 

(N= 563). In addition, 760 supplemental SNVs were considered as neutral because they had an AF≥0.01 

in any subpopulation from gnomAD exomes. Hence, the performance of the 22 prediction tools was 

assessed using these 4,319 SNVs as a set of « gold standard » list of variants based either on their 

presence in curated databases or on their AF. To our knowledge, none of these tools trained their model 

using variants sourced from the OncoKB, DoCM or CIViC databases. Missing values, accuracy, MCC, AUC, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), false positive rate 

(FPR) and false negative rate (FNR) were calculated to evaluate the performance of each prediction tool 

(Table 2). 

For the 4,319 tested SNVs, the tools MutPred, M-CAP, VEST3 and LRT had 1,197 (27.71%), 772 

(17.87%), 627 (14.52%), 395 (9.15%) missing prediction scores respectively. For VEST3, this can be 

explained by the fact that this tool could not provide prediction scores for some SNVs in the assessed 

Ensembl transcripts. For example, VEST3 could not provide scores for any SNVs in the Ensembl transcript 

of ALK which was assessed in the OncoKB database (ENST00000389048) but could provide scores in 

other Ensembl isoforms (ENST00000453137 and  ENST00000453137) or RefSeq 



(https://www.ncbi.nlm.nih.gov/refseq/ , transcript NM_004304). Consequently, performance of these 

four prediction tools (namely MutPred, M-CAP, VEST3 and LRT) were not further evaluated as their high 

percentage of missing values (above 5%) could introduce a bias in the interpretation of their results. 

The analysis of the accuracy (Table 2, Supplemental Table 5) revealed that the proportion of 

SNVs classified correctly by the different prediction tools varied substantially (median 77.14%; range 

from 60.18% to 83.19%). UMD-Predictor was the most accurate (83.19%), while FATHMM was the least 

accurate (60.18%). 

No prediction tools could achieve over 80% sensitivity and specificity simultaneously. FATHMM-

MKL achieved highest sensitivity (97.33%) but at the cost of lowest specificity (30.91%). In general, for a 

given tool, sensitivity was much higher than specificity, suggesting the tendency for all tools to predict 

somatic SNVs to be oncogenic, as it was already reported for germline variants1,23. 

When evaluating overall performance, the best prediction tools would exhibit simultaneously 

highest MCC and AUC (Figure 3, Supplemental Figure 1). Hence, UMD-Predictor, CADD, Eigen/Eigen-PC, 

PROVEAN, REVEL and Polyphen HVAR/HDIV could be considered as the top performing tools (MCC ≥ 

0.44 and AUC ≥ 0.78 simultaneously, Table 3). UMD-Predictor outperformed all predictions tools in the 2 

metrics simultaneously (MCC = 0.58 and AUC = 0.84). 

A second group of predictions tools with moderate overall performance (MCC ≥ 0.36 and AUC ≥ 

0.73 simultaneously) could be described and includes SIFT, FATHMM-MKL, MetaSVM, DANN and 

MetaLR. 

A last group of prediction tools with poorest overall performance (MCC ≤ 0.31 and AUC ≤ 0.72 

simultaneously) could be described and includes the functional domain-based tool, Mutation Assessor, 

GenoCanyon, FATHMM and fitCons. 



We selected from the benchmark dataset of 4,319 SNVs, either SNVs in oncogenes (N=2,023) or 

SNVs in TSGs (N=2,013) to assess whether prediction tools would have different performances. When 

SNVs in oncogenes only were assessed (Supplemental Table 6), UMD-Predictor achieved again best MCC 

(0.50) and best AUC (0.78). When SNVs in TSGs only were assessed (Supplemental Table 7), UMD-

Predictor achieved also best MCC (0.64) whereas REVEL achieved best AUC (0.89). Overall, the three 

groups of performance level remained unchanged beside REVEL which performed much better for SNVs 

in TSGs relatively to SNVs in oncogenes in terms of MCC (0.61 vs. 0.36) and AUC (0.89 vs. 0.76). 

Interestingly, considering MCC and AUC, almost all predictors performed better in TSGs variants 

compared to oncogenes variants. 

Evaluating on a benchmark database of 1,440 SNVs 

 In the above analysis, we merged SNVs with different levels of pathogenicity assertion 

(oncogenic and likely oncogenic SNVs from OncoKB database; A and B evidence level SNVs from CIViC 

database; pathogenic and likely pathogenic SNVs from DoCM database) into a single group of oncogenic 

variants and we included additional SNVs with AF ≥ 0.01 in the group of neutral variants. To identify if 

this approach could confound the analysis, performance of the prediction tools was also evaluated on a 

subset of 1,440 SNVs retaining only “clearly” oncogenic SNVs (N=877) and likely neutral SNVs (N=563) 

from OncoKB database (Supplemental Table 4, worksheet 2). 

On this subset of 1,440 SNVs, the best overall performance tools based on AUC and MCC were 

confirmed (UMD-Predictor, Eigen, Eigen-PC, CADD, PROVEAN, REVEL, Polyphen-2 HVAR, Polyphen-2 

HDIV) (Table 4). But interestingly, the ranking order of the prediction tools performance was not 

identical. Notably, PROVEAN ranked first with best MCC/AUC and Polyphen-2 HVAR ranked second. In 

addition, on this subset of 1,440 SNVs, almost all tools exhibited a performance drop in terms of MCC or 

AUC. 



We also assessed whether the combination of prediction tools could improve the performance 

on this subset of 1,440 SNVs (Supplemental Table 4). Results for combinations of the best overall 

performance tools with missing values below 300/1,440 are shown in Table 5. In terms of accuracy and 

MCC, the three best combinations of prediction tools included PROVEAN: PROVEAN and Polyphen-2 

HVAR/Eigen/UMD-Predictor. They could outperform the best individual prediction tool PROVEAN alone 

(accuracy 75.40%, MCC 0.47) due to a gain of sensibility but a loss in specificity. However, the number of 

missing values, mainly due to prediction discrepancies between two tools, increased drastically (about 

20% vs. 0.63%). 

Evaluating true concordance 

When considering only the best overall performance tools, we found that 372/1,323 neutral 

SNVs were simultaneously correctly predicted neutral (104/466 SNVs from pure oncogenes and 214/702 

SNVs from pure TSG) and 1,802/2,996 oncogenic SNVs were simultaneously correctly predicted 

oncogenic (902/1,557 SNVs from pure oncogenes and 831/1,311 SNVs from pure TSG). 

Evaluating false concordance 

There were 180/1,323 neutral SNVs distributed among 70 genes (30 oncogenes, 28 TSG, 2 both, 

7 unknown) for which the best overall performance tools simultaneously mispredicted them as 

oncogenic (Supplemental Table 8, worksheet 1). Among them, 159 SNVs were considered neutral 

because their respective missense variants were sourced from OncoKB as Likely neutral and 21 SNVs 

were considered neutral because their AF was greater than 0.01 in any subpopulation from gnomAD 

exomes. Three of them were also confirmed as Likely benign or Benign by a ClinVar recognized expert 

panel (three-star review status). 



There were 46/2,996 oncogenic SNVs distributed among 218 genes (96 oncogenes, 90 TSG, 6 

both, 26 unknown) for which the best overall performance tools simultaneously mispredicted them as 

neutral (Supplemental Table 8, worksheet 2). All of them were considered oncogenic because their 

respective missense variants were sourced from OncoKB, CiVIC or DoCM. However, none of them were 

confirmed Likely pathogenic or Pathogenic by a Clinvar recognized expert panel. It is interesting to note 

that CDH1 p.T340A was considered Oncogenic by OncoKB but has been recently reviewed and 

interpreted as benign by an expert panel based on a BA1 criteria of the ACMG/AMP classification. To 

date, this SNV is still sourced as Oncogenic from OncoKB (data version: v2.7). 

Discussion 

Performance results 

We have shown on a benchmark dataset of 4,319 SNVs that UMD-Predictor consistently 

achieved the best overall performance as compared to others prediction tools. It achieved best 

accuracy, best MCC and best AUC. Following UMD-Predictor, the performance was acceptable for 

Eigen/Eigen PC, CADD, PROVEAN, REVEL and Polyphen-2. A widely used prediction tool as SIFT ranked in 

the medium performance category. 

Better performances were obtained by almost all predictors in TSGs compared to oncogenes. 

This might be explained by the broad range of inactivating mutations leading to loss-of-function often 

encountered in TSGs, while oncogenes usually exhibit well-localized hotspots of mutations leading to 

gain-of-function22. 

Another criterion which is widely used for the interpretation of somatic alterations is the 

localization of the variant with regards to the domains of the protein. Interestingly, the use of a 



prediction tool based on functional domains yielded extremely poor results for oncogenes (MCC=0.09) 

and better results for TSGs (MCC=0.48). This result suggests that predictions in oncogenes should rather 

be based on critical hotspots and functional domains of the protein (e.g. Tyrosine kinase, protein kinase 

and SH2 domains) than on any InterPro domain. 

We have confirmed on a subset of 1,440 SNVs, without “likely” oncogenic SNVs and additional 

polymorphisms, that the same prediction tools (CADD, Eigen/Eigen-PC, Polyphen-2, PROVEAN, UMD-

Predictor and REVEL) still achieved best overall performance. However, almost all prediction tools 

exhibited a performance drop due to a loss in specificity without substantial gain in sensitivity. This 

could suggest a higher ability for prediction tools to assess polymorphisms. In particular, UMD-Predictor 

prediction relies also on a penalty score for SNVs which are described with a frequency above 0.001 in 

the general population. This could explain why this prediction tool does not achieve the best overall 

performance anymore when switching on a dataset without additional polymorphisms. In clinical 

routine, polymorphisms are generally automatically filtered out by bioinformatic pipelines and are not 

reported. Consequently, to avoid bias, evaluation of any prediction tools should be made on rare SNVs 

only. But such a benchmark dataset with a significant number of neutral SNVs is difficult to construct.   

We have also highlighted on the subset of 1,440 SNVs, three combinations of prediction tools 

which all included PROVEAN: PROVEAN + Polyphen-2 HVAR/Eigen/UMD-Predictor. These combinations 

performed better than any individual prediction tools based on accuracy and MCC. However, this is 

achieved at the price of missing values (around 20%) and with hardly enough specificity for clinical 

routine. 

Due to inconsistent choice of transcripts between knowledge databases to describe a somatic 

variant, we selected the Ensembl transcript which was assessed in OncoKB or DoCM database. However, 

all prediction tools could not always provide scores for this Ensembl transcript. For example, VEST3 



could provide scores for ALK variants in RefSeq transcript (NM_004304) but could not provide scores for 

Ensembl transcript (ENST00000389048) and thus, it might have performed with fewer missing values if 

Refseq transcripts had been considered. 

Finally, the risk of circularity needs to be considered. Our benchmark dataset has a limited 

number of SNVs (N=4,319) and amongst neutral variants (N=1,323), a large proportion (N=760) was 

included based on an AF ≥ 0.01 in any subpopulation from gnomAD exomes. This subgroup of frequent 

germline variants could have been included in the training of those prediction tools.  To our knowledge, 

none of the 22 tools trained their model using variants sourced from the OncoKB, DoCM or CIViC 

databases although we did not examine the possibility of type 1 circularity24. In addition, due to the low 

number of neutral variants sourced in somatic databases, our benchmark dataset is particularly 

unbalanced towards oncogenic variants (N=2,996) vs. polymorphisms (N=1,323). For this reason, we 

cannot exclude type 2 circularity24 either. 

Quality of the sourced databases of missense variants 

We restricted our benchmark dataset of missense variants to the high-confidence variants 

sourced from three well-curated somatic databases and to polymorphisms, resulting in a “gold 

standard” set of 4,319 SNVs, with 2,996 SNVs labeled as oncogenic and 1,323 SNVs labeled as neutral. In 

the collecting process of missense variants, we raised the question of the quality of the somatic 

databases due to the relatively high number of missense variants with conflicting pathogenicity and the 

low number of variants reviewed by an expert panel.  

We found 19 missense variants with conflicting pathogenicity (Supplemental Table 1, worksheet 

5) which were sourced as Likely neutral from OncoKB but Pathogenic and/or Likely pathogenic from 

DoCM. We also found 25 missense variants (Supplemental Table 1, worksheet 7) in our combined 



dataset which were described as oncogenic but whose population allele frequency was greater than 

0.01 in any subpopulation from gnomAD exomes. Among them, 24 were sourced from one single 

database (either OncoKB or DoCM) but 1 was sourced from both OncoKB and DoCM 

(ENST00000367921:G505S). Two missense variants, one in ERCC4 and one in PMS2, were even sourced 

as Oncogenic from OncoKB although their AF was respectively greater than 0.02 in Finnish gnomAD 

exomes and 0.09 in East Asian gnomAD exomes.  

Moreover, among the 4,319 SNVs in our combined dataset, only 139 variants were reviewed by 

an expert panel on ClinVar database (Supplemental Table 1, worksheet 8). These variants included 96 

neutral variants sourced as Benign or Likely benign and 41 oncogenic variants sourced as Pathogenic, 

Likely pathogenic or Drug response. However, 1 neutral variant in BRCA1 (ENST00000357654:C1787S) 

was sourced as Likely neutral from OncoKB but was interpreted as Pathogenic by ENIGMA expert panel, 

and 1 neutral variant in TP53 (ENST00000269305:P72R), with an AF>0.73 in NFE gnomAD exomes, was 

interpreted as Drug response by PharmGKB expert panel. 

Although all missense variants with conflicting pathogenicity were carefully filtered out to 

collect a “gold standard” set of SNVs, the quality of the benchmark dataset is also a limitation of all 

studies on pathogenicity prediction tools. 

Overall, these findings demonstrate that despite huge efforts from well-curated databases, a lot 

of work remains to be done to catalog and curate somatic variants. To achieve this goal, a consensus 

guideline on somatic variant interpretation is necessary. 

Conclusion 

This work helps to better assess the performance of prediction tools for the somatic variant 

classification. Six prediction tools, namely CADD, Eigen/Eigen-PC, Polyphen-2, PROVEAN, UMD-Predictor 



and REVEL, have shown good performance in comparison to others. Performances on tumor suppressor 

gene variants were better than on oncogene variants. The combination of tools weakly improved 

performances at the expense of increased missing values. Those tools have to be combined with other 

classification evidence in order to decide the classification of a variant. The standardization of the 

classification of somatic variants is really important to achieve, as some discrepancies were identified in 

the different databases used in this study. 
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Figure Legends 

Figure 1 : Venn diagram representing compiled dataset of missense variants from OncoKB, CIViC and 

DoCM (N=3,176). 

Figure 2 : Distribution of Allele Frequency in general population for variants in our dataset (2,996 

oncogenic variants and 1323 neutral variants). 

Figure 3. ROC curves (including AUC) for six tools (two tools in each performance group). 

  



Table 1. List of prediction tools. 

Tools Ref Training data Type Criteria 

SIFT 2 None Function prediction Conservation data 

PolyphenHDIV 3 HumDiv Function prediction Conservation data, protein functional 

domain data and protein structural features 

PolyphenHsVAR 3 HumVar Function prediction Conservation data, protein functional 

domain data and protein structural features 

LRT 4   Function prediction   

MutationAssessor 5   Function prediction   

FATHMM 6 HGMD, SwissProt Function prediction Evolutionary conservation, for coding and 

non-coding variants 

PROVEAN 7   Function prediction  

 

VEST3 8   Combination   

MetaSVM 9   Combination SIFT, PolyPhen, MutationAssessor… 

MetaLR 9   Combination Very similar to MetaSVM, similar 

performance, more interpretable model 

M-CAP 10   Combination   

REVEL 11 HGMD, rare EPS Combination   

MutPred    Function prediction   

CADD 12  Simulated, Swissvar, 

HumVar 

Combination Integrates SIFT, GERP++, PolyPhen, CPG 

distance, GC content 

DANN 11   Combination   

fathmm-MKL 13   Combination   

Eigen 14   Combination   

Eigen-PC 14   Combination   

GenoCanyon 15   Combination   

fitCons 16 none Function prediction Functional genomics data mainly sourced 



from chromatin analysis and evolutionary 

conservation data 

UMD-Predictor 17   Function prediction Localization within the protein, 

conservation, biochemical properties of the 

mutant and wild-type residues, and the 

potential impact of the variation on mRNA 

Functional domain-

based tool 

  Function prediction Position of the SNV within a functional 

domain annotated in the Interpro database 

 

  



Table 2. Performance measures of the prediction tools on a dataset of 4,319 SNVs. 

 Missing value Accuracy MCC AUC Se Sp PPV NPV FPR FNR 

UMD-Predictor 23 (0.53%) 83.19% 0.58 0.84 93.40% 59.95% 84.15% 79.96% 40.05% 6.60% 

Eigen 65 (1.50%) 80.61% 0.52 0.80 91.92% 55.09% 82.19% 75.16% 44.91% 8.08% 

Eigen PC 65 (1.50%) 80.16% 0.50 0.80 93.11% 50.96% 81.06% 76.64% 49.04% 6.89% 

CADD 0 (0.00%) 79.56% 0.48 0.80 94.29% 46.18% 79.87% 78.13% 53.82% 5.71% 

PROVEAN 33 (0.76%) 77.60% 0.50 0.78 80.08% 71.93% 86.71% 61.23% 28.07% 19.92% 

REVEL 1 (0.02%) 77.30% 0.49 0.83 80.01% 71.18% 86.29% 61.10% 28.82% 19.99% 

Polyphen-2 HVAR 52 (1.20%) 77.41% 0.47 0.80 83.20% 64.30% 84.06% 62.86% 35.70% 16.80% 

Polyphen-2 HDIV 52 (1.20%) 77.43% 0.44 0.78 87.83% 53.90% 81.17% 66.20% 46.10% 12.17% 

SIFT 93 (2.15%) 76.08% 0.42 0.77 85.06% 55.85% 81.26% 62.42% 44.15% 14.94% 

FATHMM-MKL 0 (0.00%) 76.99% 0.41 0.76 97.33% 30.91% 76.14% 83.64% 69.09% 2.67% 

MetaSVM 1 (0.02%) 69.25% 0.38 0.78 66.92% 74.51% 85.61% 49.85% 25.49% 33.08% 

DANN 0 (0.00%) 74.18% 0.38 0.73 82.41% 55.56% 80.77% 58.24% 44.44% 17.59% 

MetaLR 1 (0.02%) 67.99% 0.36 0.79 65.85% 72.84% 84.61% 48.49% 27.16% 34.15% 

Mutation Assessor 82 (1.89%) 67.64% 0.31 0.72 69.04% 64.49% 81.39% 48.08% 35.51% 30.96% 

GenoCanyon 0 (0.00%) 68.84% 0.23 0.67 81.94% 39.15% 75.31% 48.91% 60.85% 18.06% 

Functional domain 0 (0.00%) 72.59% 0.29  89.39% 34.54% 75.56% 58.97% 65.46% 10.61% 

FATHMM 17 (0.39%) 60.18% 0.20 0.48 59.34% 62.10% 78.07% 40.18% 37.90% 40.66% 

fitCons 65 (1.50%) 61.99% 0.14 0.59 69.12% 45.91% 74.23% 39.74% 54.09% 30.88% 

VEST3 627 (14.52%) 79.52% 0.49 0.83 87.38% 60.65% 84.21% 66.67% 39.35% 12.62% 

LRT 395 (9.14%) 80.45% 0.51  91.42% 55.43% 82.39% 73.91% 44.57% 8.58% 

MutPred 1197 (27.71%) 76.11% 0.16 0.67 81.19% 39.31% 90.64% 22.41% 60.69% 18.81% 

M.CAP 772 (17.87%) 80.97% 0.10 0.62 94.56% 12.29% 84.49% 30.90% 87.71% 5.44% 

 

  



Table 3. Ranking of the evaluated prediction tools on the data set of 4,319 SNVs. 

Best overall performance tools 

UMD-Predictor 

Eigen/Eigen PC 

CADD 

PROVEAN 

REVEL 

Polyphen-2 HVAR/HDIV 

Medium overall performance tools 

SIFT 

FATHMM-MKL 

MetaSVM 

DANN 

MetaLR 

Low overall performance tools 

Mutation Assessor 

GenoCanyon 

Functional domain-based tool 

FATHMM 

fitCons 

Excluded tools 

(missing values> 5%) 

VEST3 

LRT 

MutPred 

M.CAP 

 



Table 4. Performance measures of the prediction tools on a dataset of 1,440 SNVs. 

 Missing value Accuracy MCC AUC Se Sp PPV NPV FPR FNR 

UMD-Predictor 1 (0.07%) 70.88% 0.38 0.71 95.43% 32.68% 68.81% 82.14% 67.32% 4.57% 

Eigen 27 (1.88%) 71.69% 0.40 0.70 94.17% 37.05% 69.75% 80.47% 62.95% 5.83% 

Eigen PC 27 (1.88%) 71.83% 0.40 0.70 95.10% 35.97% 69.60% 82.64% 64.03% 4.90% 

CADD 0 (0.00%) 69.03% 0.34 0.68 96.35% 26.47% 67.12% 82.32% 73.53% 3.65% 

PROVEAN 9 (0.63%) 75.40% 0.47 0.74 86.40% 58.09% 76.44% 73.08% 41.91% 13.60% 

REVEL 0 (0.00%) 66.94% 0.28 0.71 82.21% 43.16% 69.26% 60.90% 56.84% 17.79% 

Polyphen-2 HVAR 22 (1.53%) 71.79% 0.39 0.72 86.64% 48.83% 72.36% 70.28% 51.17% 13.36% 

Polyphen-2 HDIV 22 (1.53%) 69.75% 0.34 0.70 90.71% 37.34% 69.12% 72.22% 62.66% 9.29% 

SIFT 18 (1.25%) 66.95% 0.27 0.65 86.21% 36.59% 68.18% 62.73% 63.41% 13.79% 

FATHMM-MKL 0 (0.00%) 68.06% 0.32 0.68 98.18% 21.14% 65.98% 88.15% 78.86% 1.82% 

MetaSVM 0 (0.00%) 61.32% 0.19 0.64 67.62% 51.51% 68.48% 50.52% 48.49% 32.38% 

DANN 0 (0.00%) 66.94% 0.27 0.64 83.92% 40.50% 68.72% 61.79% 59.50% 16.08% 

MetaLR 0 (0.00%) 58.82% 0.13 0.62 66.70% 46.54% 66.03% 47.29% 53.46% 33.30% 

Mutation Assessor 47 (3.26%) 57.93% 0.13 0.60 62.90% 50.36% 65.88% 47.12% 49.64% 37.10% 

GenoCanyon 0 (0.00%) 69.31% 0.33 0.62 89.51% 37.83% 69.16% 69.84% 62.17% 10.49% 

Functional domain 0 (0.00%) 64.86% 0.21  92.70% 21.49% 64.78% 65.41% 78.51% 7.30% 

FATHMM 1 (0.07%) 54.69% 0.06 0.55 60.73% 45.29% 63.33% 42.57% 54.71% 39.27% 

fitCons 27 (1.88%) 52.02% -0.01 0.51 60.68% 38.67% 60.39% 38.95% 61.33% 39.32% 

VEST3 246 (17.08%) 64.24% 0.23 0.71 88.09% 30.78% 64.09% 64.83% 69.22% 11.91% 

LRT 193 (13.40%) 73.22% 0.43  94.06% 41.02% 71.13% 81.71% 58.98% 5.94% 

MutPred 254 (17.64%) 69.39% 0.23 0.66 83.52% 37.12% 75.22% 49.63% 62.88% 16.48% 

M.CAP 35 (2.43%) 64.48% 0.17 0.62 97.14% 10.90% 64.15% 69.88% 89.10% 2.86% 

 

  



Table 5. Performance measures of the combinations of the best overall performance tools with missing values < 300/1,440. 

Tools combination Missing value Accuracy MCC Se Sp PPV NPV FPR FNR 

SIFT + Polyphen-2 HDIV 288 (20.0%) 72.31% 0.38 95.05% 33.25% 70.97% 79.66% 66.75% 4.95% 

SIFT + REVEL 277 (19.2%) 70.85% 0.33 90.38% 36.94% 71.34% 68.86% 63.06% 9.62% 

SIFT + CADD 249 (17.3%) 71.70% 0.36 97.11% 26.57% 70.14% 83.82% 73.43% 2.89% 

SIFT + Eigen 286 (19.9%) 73.48% 0.40 96.34% 33.09% 71.79% 83.64% 66.91% 3.66% 

Polyphen-2 HDIV + Polyphen-2 HVAR 131 (9.1%) 72.50% 0.39 90.81% 42.19% 72.22% 73.50% 57.81% 9.19% 

Polyphen-2 HDIV + CADD 203 (14.1%) 72.03% 0.36 96.99% 26.82% 70.59% 83.10% 73.18% 3.01% 

Polyphen-2 HDIV + FATHMM-MKL 263 (18.3%) 72.64% 0.37 99.35% 21.14% 70.84% 94.44% 78.86% 0.65% 

Polyphen-2 HDIV + Eigen 219 (15.2%) 73.30% 0.41 95.99% 34.15% 71.55% 83.15% 65.85% 4.01% 

Polyphen-2 HDIV + Eigen PC 251 (17.4%) 74.01% 0.43 97.62% 32.95% 71.69% 88.82% 67.05% 2.38% 

Polyphen-2 HDIV + UMD 235 (16.3%) 73.78% 0.41 97.56% 30.28% 71.90% 87.16% 69.72% 2.44% 

Polyphen-2 HVAR + PROVEAN 278 (19.3%) 78.66% 0.52 92.07% 54.78% 78.38% 79.51% 45.22% 7.93% 

Polyphen-2 HVAR + CADD 266 (18.5%) 74.45% 0.41 96.73% 32.93% 72.88% 84.38% 67.07% 3.27% 

Polyphen-2 HVAR + Eigen 260 (18.1%) 75.34% 0.46 95.43% 41.06% 73.42% 84.04% 58.94% 4.57% 

REVEL + CADD 292 (20.3%) 72.56% 0.36 96.24% 28.78% 71.41% 80.56% 71.22% 3.76% 

REVEL + Eigen 293 (20.3%) 73.58% 0.40 94.41% 36.56% 72.57% 78.65% 63.44% 5.59% 

PROVEAN + Eigen 292 (20.3%) 78.75% 0.51 95.50% 46.56% 77.44% 84.33% 53.44% 4.50% 

PROVEAN + UMD 291 (20.2%) 79.03% 0.51 96.86% 43.64% 77.32% 87.50% 56.36% 3.14% 

CADD + FATHMM-MKL 130 (9.0%) 70.38% 0.34 99.52% 18.82% 68.45% 95.70% 81.18% 0.48% 

CADD + Eigen 143 (9.9%) 72.01% 0.39 97.43% 28.75% 69.95% 86.79% 71.25% 2.57% 

CADD + Eigen PC 157 (10.9%) 72.33% 0.40 98.39% 27.85% 69.95% 91.03% 72.15% 1.61% 

CADD + UMD 172 (11.9%) 72.63% 0.37 98.67% 23.98% 70.81% 90.60% 76.02% 1.33% 

FATHMM-MKL + Eigen 179 (12.4%) 72.09% 0.36 98.53% 23.60% 70.28% 89.74% 76.40% 1.47% 

FATHMM-MKL + Eigen PC 155 (10.8%) 71.75% 0.36 98.43% 23.75% 69.91% 89.34% 76.25% 1.57% 

FATHMM-MKL + UMD 147 (10.2%) 71.69% 0.36 99.16% 21.62% 69.76% 93.40% 78.38% 0.84% 

Eigen + Eigen PC 75 (5.2%) 72.53% 0.42 96.14% 36.01% 69.91% 85.78% 63.99% 3.86% 

Eigen + UMD 200 (13.9%) 74.03% 0.43 98.36% 30.87% 71.63% 91.39% 69.13% 1.64% 



Eigen PC + UMD 184 (12.8%) 73.81% 0.43 98.38% 30.55% 71.38% 91.45% 69.45% 1.62% 
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