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ABSTRACT
Taking as an example the simple CH3 radical, this work demonstrates the cooperative character of the spin-polarization phenomenon of the
closed-shell core in free radicals. Spin polarization of CH σ bonds is not additive here, as spin polarization of one bond enhances that of
the next bond. This cooperativity is demonstrated by a series of configuration interaction calculations converging to the full valence limit
and is rationalized by analytic developments. The same phenomenon is shown to take place in those diradicals where spin polarization plays
a major role, as illustrated in square planar carbo-cyclobutadiene C12H4. The treatment of cooperativity represents a challenge for usual
post-Hatree–Fock methods.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011582., s

I. INTRODUCTION

This work is devoted to the theoretical treatment of the spin-
polarization phenomenon. It first recalls its manifestation in free
radicals and, in particular, in conjugated hydrocarbons, where ESR
experiments could only be interpreted by considering this effect.1–4

Taking the paradigmatic example of a CH3 radical, the occupation
numbers of the exact wave functions definitely support the basic
description of these monoradicals as the product of a closed-shell
core [doubly occupied molecular orbitals (MOs)] and a singly occu-
pied MO (SOMO), the corresponding electron having a well-defined
ms value, being, for instance, of spin-up character. Starting from
this single-reference determinant, the spin polarization is brought
by the single excitations that introduce the differential effect of the
exchange integrals between the core electrons and the unpaired
electron, depending on the spin of the core electrons. Even when
one involves spin-flip determinants, which change the spin of the
unpaired electron and excite the core to a triplet state, the phe-
nomenon is a priori confined to the so-called one-hole–one-particle
(1h–1p) excitations. These points are addressed in Sec. II. From a
series of configuration interaction (CI) calculations involving higher
and higher excitation levels, we show that the coefficients of 1h–1p
determinants systematically increase when one goes to higher

excitation degrees. These are unexpected and counterintuitive
results since a priori the wave function is diluted in a larger number
of determinants, and this is, indeed, in contrast with a systematic
decrease in the coefficient of the reference function. This proves
that higher excitations increase the weight of the single excitations.
Section II tries to interpret this behavior, apparently resulting from
two mechanisms. The first one is an interplay between correlation
and spin polarization, some double excitations increasing the coeffi-
cients of spin-polarizing determinants. The other contribution may
be seen as a cooperative effect since spin polarization of a given shell
is enhanced by that of another shell. This is the manifestation of a
cooperative effect—a rare phenomenon in electronic populations of
molecules.

In Sec. III, the same analysis is applied to diradicals, where
two orbitals are singly occupied, generating singlet and triplet states.
Depending on their spin-organization, the two unpaired electrons
induce a differential exchange field on the core electrons, and the
spin-polarization of the core is an important component of the
singlet–triplet gap. A dramatic example is the case of the 90○-
twisted ethylene molecule, where the singlet is below the triplet
state.5,6 While in the triplet state, the spin polarization may be
considered as “static,” at least in its ms = ±1 components, that of
the singlet is sometimes called “dynamic,” but this difference is
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artificial since it has the same status in the ms = 0 component of the
triplet.

The cooperative character of the spin polarization is scruti-
nized on a diradical situation exemplified by the conjugated system
carbo-cyclobutadiene C12H4 (−−CH−−C≡≡C−−)4 in D4h symmetry.
The energy of its singlet state is dramatically stabilized by spin polar-
ization of the doubly occupied π MOs, and a series of configuration
interaction (CI) calculations involving higher and higher excitation
levels again show that the coefficients of 1h–1p determinants sys-
tematically increase when one goes to higher excitation degrees up
to the full valence CI.

Finally, in Sec. IV, we will show why such phenomena represent
a challenge to the famous (and, in general, firmly grounded) coupled
cluster approaches, which rest on the additivity of excitation energies
and transferability of the interactions of the same operator applied
on determinants of various excitation levels. The specificity of this
cooperative effect will be discussed, which is “interaction driven,”
in contrast to other cooperative effects that are “excitation-energy”
driven.

II. SPIN POLARIZATION EFFECT IN MONO-RADICALS
The standard description of mono-radicals starts from a single

determinant where the unpaired electron occupies a SOMO a, while
the other electrons are paired in a closed-shell core,

ΦR = ∣a Πkkk∣.

In this restricted single-determinant wave function, the spin density
is simply expressed from the SOMO, ρ(r) = a(r)2.

The Fock operator for the closed-shell MOs is given by

F = h + Ja − Ka/2 +∑
k
(2Jk − Kk).

The concept of spin-polarization was introduced to rationalize
the properties of the simplest radical hydrocarbon, namely, CH3

•. In
this radical, which locates the four nuclei in a plane of symmetry, say,
the xy plane, the SOMO reduces to a 2pz type orbital on the carbon
atom, as pictured in Fig. 1. It has zero amplitude in the plane and
thus on the H protons. However, electron paramagnetic resonance
experiments detect an interaction between the electron spin and pro-
ton spins, meaning that the spin density is non-zero in the xy plane.
McConnell et al. and other authors simultaneously rationalized this
phenomenon and named it “spin-polarization of the doubly occu-
pied MOs.”1–4 This problem suggested the relevance of unrestricted
or broken symmetry (BS) self-consistent descriptions.7–10

A. First-order approach
The occurrence of a spin density in the plane of symmetry may

be rationalized along two directions. The most general and exact
one consists in a CI expansion of the wave function. A simpler one
consists in leaving the frozen character of the core, optimizing the
energy of a single determinant in which the α and β spin electrons
of the core have different space parts. This determinant no longer
respects the spin symmetry (namely, the character of eigenfunc-
tion of the S2 operator) and is designated as broken-symmetry (or
unrestricted),

FIG. 1. Molecular orbitals of the CH3 radical (drawn with gv, orbital visualization
software,39,40 isosurface value 0.08).

ΦU = ∣a Πii′i′′∣.
The difference between the spin-polarized MOs i′ and i′′ will intro-
duce spin density in the whole space.

ρ(r) = a(r)2 +∑
i
(i′(r)2

− i′′(r)2
).

The BS and the CI descriptions are related. One may expand both
wave functions in a perturbative power expansion and compare the
BS determinant to the CI wave function.

Among the excited determinants, the singly excited ones,

Φi→r = ∣ariΠk≠ikk∣

and
Φi→r = ∣a irΠk≠ikk∣,

have non-zero coefficients, despite Brillouin’s theorem, due to the
fact that the exchange field created by the unpaired electron is differ-
ent for α and β spin electrons of the “core,” while the Fock operator
for the reference function, written as

F = h + Ja − Ka/2 +∑
k
(2Jk − Kk),

introduces an average exchange operator −Ka/2. The coefficients of
the wave function on these two determinants are of opposite signs, as
expected from spin-symmetry reasons. One may demonstrate that

⟨ΦR∣H∣Φi→r⟩ = ⟨i∣ − Ka/2∣r⟩

and
⟨ΦR∣H∣Φi→r⟩ = ⟨i∣Ka/2∣r⟩.
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To the first order of perturbation, the coefficients of these
determinants are

cir = ⟨i∣ − Ka/2∣r⟩/(Fii − Frr),

cir = ⟨i∣Ka/2∣r⟩/(Fii − Frr),

respectively, where the energy denominator is taken as the energy
difference between Fock operator diagonal elements of the hole i and
the particle r.

One may now consider the broken symmetry single determi-
nant,

ΦBS = ∣a Πii′i′′∣,

where the α and β spin orbitals of the core are different. To the first
order of perturbation,

i′ = i +∑
r

⟨i∣Ka/2∣r⟩
Fii − Frr

r,

the mixing being opposite for i′′.
The energy lowering brought by this orbital relaxation may be

estimated to be

⟨ΦBS∣H∣ΦBS⟩ − ⟨ΦR∣H∣ΦR⟩ = 2∑
i,r

⟨i∣Ka/2∣r⟩2

Fii − Frr
.

The doubly excited determinant belonging to the same space config-
uration,

Φai→ra = Φir,sf = ∣iarΠk≠ikk∣,

must be considered if one wants to have a pure doublet spin state. It
represents both a spin-flip of the singly occupied orbital and a triplet
excitation in the core and will hereafter be called spin-flipped. Con-
sistently with spin-symmetry requirements, its interaction with the
reference function is

⟨ΦR∣H∣Φai→ra⟩ = ⟨ia∣r
−1
12 ∣ar⟩ = ⟨i∣Ka∣r⟩,

and its coefficient is

cai→ra = cir,sf = ⟨i∣Ka∣r⟩/(Fii − Frr),

where the index sf indicates the spin-flipped character of the deter-
minant. Figure 2(a) presents its first-order coefficient.

To the first-order, the spin-polarized configuration relative to
i→ r excitation is

Ψ(1)ir = (∣Φi→r⟩ − ∣Φi→r⟩ + 2∣Φai→ar⟩)⟨i∣Ka/2∣r⟩/(Fii − Frr),

which is a pure doublet.
The energy correction brought by the double excitation is not

incorporated by the BS determinant but is the major part of the
spin-polarization (or spin-correlation) energy. Due to its double-
excitation character, this spin-flip correction has a minor effect on
the spin density, the operator of which is mono-electronic. In con-
trast, the spin-flip component is included in the CI running on
the 1h–1p excited configurations. This CI should a priori give a
correct estimate of the coefficients of the spin-polarizing 1h–1p
configurations. We are aware that this truncated CI may slightly

TABLE I. Total Mulliken spin population per center in the CH3 radical.

C H % Spin polarization

CAS(1, 1) 1.0000 0.0000 0.00
1h–1p 1.1614 −0.0538 84.86
2h–2p 1.1795 −0.0598 94.37
3h–3p 1.1892 −0.0631 99.47
4h–4p 1.1901 −0.0634 99.95
CAS(7, 7) 1.1902 −0.0634 100.00

underestimate their values due to size-consistency defects, i.e. to
the normalization of the wave function, as occurs for the sin-
gle and double configuration interactions (SDCIs). This defect of
the 1h–1p CI is, however, of modest amplitude since the norm
of the wave function on the 1h–1p excited determinants remains
small.

B. A numerical surprise
Let us consider the archetypal methyl radical CH3. All the

computational details can be found in the Refs. 11–15 and in the
supplementary material. In a minimal basis set, one electron occu-
pies the 2pz orbital of carbon, and there are three doubly occupied
CH σ bonding MOs and three unoccupied valence σ∗ antibond-
ing MOs (Fig. 1). As spin polarization is essentially a valence effect,
a valence basis CI (isomorphous to a minimal basis set) contains
the main physics of the phenomenon. We next perform a series of
calculations starting from the restricted function ΦR and adding suc-
cessively higher excitations, therefore performing successively 1h–
1p, 2h–2p, 3h–3p, . . . up to the full CI (FCI) of seven electrons in
seven orbitals. Table I reports the evolution of the Mulliken atomic
spin densities when the CI is pushed toward FCI and shows a sys-
tematic increase in the spin densities (positive and negative) when
adding multiply excited configurations. We then concentrate our
attention on the coefficients of the spin-polarizing determinants,
i.e. those belonging to the 1h–1p category (Table II). The com-
putations reported in Tables I and II have been performed from
the symmetry-adapted MOs, the three doubly occupied MOs are of
different symmetries, as are the three virtual valence MOs, with a
one-to-one correspondence between the occupied and virtual MOs
(see Fig. 1) so that only three singly excited configurations appear

TABLE II. Weights of spin-polarization configurations in the CH3 radical.a

CI level 1→ 7 2→ 5 3→ 6 C2
0 η (×100)b

1h–1p 0.004 91 0.000 97 0.000 97 0.993 14 0.690
2h–2p 0.005 01 0.001 08 0.001 08 0.969 01 0.740
3h–3p 0.005 27 0.001 20 0.001 20 0.968 09 0.792
4h–4p 0.005 28 0.001 20 0.001 20 0.967 16 0.794
CAS(7, 7) 0.005 28 0.001 20 0.001 20 0.967 16 0.796

aColumns 2–4 correspond to the weights of the three spin-polarization configurations
and C2

0 being the weight of the reference.
bη is the ratio of the sum of the weight of spin-polarization configurations over the
weight of the reference: η = 1

C2
0
∑C2

1h−1p .
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FIG. 2. Diagrammatic representation of
the contributions to spin-flipped com-
ponents of the 1h–1p configuration.
(a) First-order and (b) second-order
contribution from intra-bond correlation,
(c) second-order propagation between
bonds, (d) second-order contribution
from inter-bond correlation, (e) second-
order contribution from double spin-flip,
(f) third-order contribution with double (or
multiple) spin-flips and return, and (g)
multiple spin-flips. Labels on propagation
lines have been simplified in the last two
diagrams.

in the wave function. Let us recall that the physics of the 1h–1p
CI does not depend on the localized or delocalized character of
the MOs.

If the first-order perturbation were sufficient to fix their ampli-
tudes, the results of the 1h–1p CI would be close to the final result.

In fact, as soon as one goes to the 2h–2p CI, one introduces large
coefficients on double excitations (σ→ σ∗)2. As this brings the non-
dynamical correlation energy, one should expect that the weights
of the 1h–1p configurations decrease with respect to their values
in the 1h–1p CI wave function due to the introduction of these

J. Chem. Phys. 153, 044118 (2020); doi: 10.1063/5.0011582 153, 044118-4
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additional determinants. Indeed, the weight of the reference
decreases from 0.993 for the 1h–1p to 0.967 in the FCI, as reported
in Table II. This decrease is mainly due to the double excitations,
since the value for the 2h–2p is 0.969, as shown in Table II, which
further illustrates how the coefficients of the leading 1h–1p config-
urations increase when new degrees of excitations are added. For
symmetry reasons, three 1h–1p configurations contribute to the spin
polarization. The weight of the 1 → 7 excitation between the fully
symmetrical MOs goes from 0.0049 at the 1h–1p level to 0.0053 at
the FCI level. The ratio of the weight of 1h–1p determinants over
that of the reference increases regularly with the addition of multiple
excitations.

C. Theoretical interpretation
This phenomenon is unexpected. It cannot be due to a nor-

malization defect of the 1h–1p CI wave function. The 2h–2p
CI already introduces the products of 1h–1p excitations but is
largely dominated by double excitations, and the relative weight of
1h–1p determinants still increases. The reason for this increase is
to be searched in the interactions between 1h–1p determinants and
2h–2p excited determinants, which are obtained directly either by
a double excitation on the reference determinant or by a second
single excitation on the top of the first one. Hereafter, we shall
focus on the spin-flip components of the 1h–1p configurations, since
they have the major coefficient and since their diagrammatic rep-
resentation [Fig. 2(a)] is simpler than for the strictly singly excited
components.

1. Interplay between intra-bond correlation and spin
polarization

The first mechanism is the interaction between correlation and
spin polarization. One may illustrate it in the case of CH3. Both
non-dynamical correlation and spin polarization take place among
valence MOs, and it is worth considering localized valence bonding
MOs, one per CH bond, with their localized antibonding counter-
parts. One should note that in this molecule, in a minimal basis set,
there is no virtual orbital of a symmetry and no double excitation
involving the a orbital in the wave function. The correlation effects
essentially concern intra-bond double excitation. Let us consider a
(σ → σ∗)2 intra-bond double excitation from the localized MO i to
its antibonding counterpart i∗, leading to

Φīi→i∗i∗ = ∣a i
∗i∗Πk≠ikk∣.

The coefficient of this doubly excited determinant is necessarily
negative,

cii→i∗i∗ =
Kii∗

2(Fii − Fi∗i∗)
< 0.

By convention, we shall give a positive coefficient of the σ∗ MOs
on carbon hybrids. The interaction between this doubly excited
determinant and the spin-flipped 1h–1p one is

⟨Φii→i∗i∗ ∣H∣Φii∗ ,sf ⟩ = ⟨i
∗
∣−Ka∣ i⟩.

Therefore, the second-order contribution to the coefficient of
∣Φii∗ ,sf ⟩, resulting from its interaction with the doubly excited deter-
minant, is,

c(2)
ii∗ ,sf
= cii→i∗i∗

⟨i∗∣ − Ka∣i⟩
(Fii − Fi∗i∗)

,

of the same sign as the first-order contribution. To the second order
of perturbation,

c(1+2)
ii∗ ,sf

= c(1)ii∗ ,sf (1 − cii→i∗i∗),

since c(1)
ai→i∗a

= cii∗ ,sf = ⟨i∣Ka∣i∗⟩/(Fii − Fi∗i∗).
As illustrated in Fig. 2(b), the intra-bond double excitation

enhances the coefficient of the spin-polarizing single determinants.
There is definitely an interference between spin polarization and
electronic correlation.

2. Propagation of spin polarization and effect of inter-
bond double excitations

Then, one may wonder whether spin polarization propagates
from one bond to the other. The interaction between the 1h–1p
determinant relative to bond j, Φjj∗ ,sf = ∣iijaj∗Πk≠i,jkk∣ with Φii∗ ,sf ,
relative to bond i, happens to be −(ij, i∗j∗) so that

c(2)jj∗ ,sf =
−(ij, i∗j∗)
(Fjj − Fj∗j∗)

(cii∗ ,sf ).

The bi-electronic integral −(ij, i∗j∗) essentially involves the
on-site exchange integral between carbon hybrid orbitals of two
CH bonds, and it is positive under our convention of sign in the
antibonding MOs. Therefore, this propagative contribution is of
the same sign as the first-order contribution. This process, which
remains in the space of the 1h–1p configurations, is illustrated in
Fig. 2(c).

It possesses a counterpart passing through an inter-bond dou-
ble excitation on bonds i and j, illustrated in Fig. 2(d). The process
involves the determinant

Φij→j∗i∗ = ∣a j
∗iji∗Πk≠i,jkk∣,

the coefficient of which is

c(1)
ij→j∗i∗

=
(ij∗, ji∗)

(Fii + Fjj − Fi∗i∗ − Fj∗j∗)
.

Its interaction with Φii∗ ,sf is equal to ⟨ j∗∣Ka∣ j⟩ so that the
second-order contribution to the i→ i∗ spin-flipped determinant is

c(2)i→i∗ ,sf = −
⟨ j∗∣Ka∣ j⟩(ij∗, ji∗)

(Fii − Fi∗i∗)(Fii + Fjj − Fi∗i∗ − Fj∗j∗)
.

This process, illustrated in Fig. 2(d), gives a contribution to the
spin polarization passing through a preliminary double excitation
and may contribute to the enhancement of the spin-polarizing singly
excited determinants when going from the 1h–1p CI to the 2h–2p
level. It confirms the positive interference between spin polarization
and correlation.
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3. Multiple single excitations
The last mechanism may be sketched as “reference → sin-

gle excitation (1h–1p determinant) → second single excitation (2h
–2p determinant)→ single de-excitation (1h–1p determinant).” One
may consider two 1h–1p excitations, namely, i → i∗ and j → j∗. If
one has performed first the spin-flipped excitation relative to bond
i, a+

aa
+
i∗aaai, leading to Φia→ai∗ = ∣a i

∗iΠk≠ikk∣, bond i is in ms = 1
triplet state. One may then apply a new spin-flip excitation relative
to bond j, and through the operator a+

aa+
j∗aaaj, one reaches the same

2h–2p determinant Φij→j∗i∗ = ∣a j
∗iji∗Πk≠i,jkk∣ in which bonds i and

j are in ms = 1 and ms = −1 triplet states, respectively. The interac-
tion between the singly excited and the doubly excited determinants
again implies the Ka operator,

⟨Φia→ai∗ ∣H∣Φij→j∗i∗⟩ = ⟨j∣Ka∣j∗⟩.

From the doubly excited determinant, one may return to the 1h–1p
i→ i∗ spin-flip determinant through the same interaction so that its
coefficient is increased by the action of the spin-polarization on the
other bonds,

c(1+3)
i→i∗ ,sf

= ci→i∗ ,sf (1 +∑
j≠i

⟨j∣Ka∣j∗⟩
2

(Fii − Fi∗i∗)(Fii + Fjj − Fi∗i∗ − Fj∗j∗)
).

The action of the spin-polarizing operator acting on bonds j ampli-
fies the coefficient of the spin-polarized configuration on bond i. The
process, illustrated in Fig. 2(e), follows the sequences

Φ0 → Φii∗ ,sf → Φ(ij→j∗i∗) → Φii∗ ,sf .

In terms of configurations, this may be seen as belonging to the
process

Φ0 → Ψ(1)ii∗ → (ij→ i∗j∗)doubly−excited → Ψ(1)ii∗ ,

which necessarily enhances the coefficients of the 1h–1p configu-
ration. One should remark that the same back-and-forth spin-flip
concerning the j–j∗ spin-flip excitations on top of the previous spin-
flip excitation of bond i may be repeated, introducing higher-order
terms,

c(1+3)
i→i∗,sf

= ci→i∗,sf
⎛

⎝
1 +∑

j≠i

⟨j∣Ka∣j∗⟩
2

(Fii − Fi∗i∗)(Fii + Fjj − Fi∗i∗ − Fj∗j∗)

+
⎛
⎜
⎝
∑
j≠i

⟨j∣Ka∣j∗⟩
2′

(Fii − Fi∗i∗)(Fii + Fjj − Fi∗i∗ − Fj∗j∗)

⎞
⎟
⎠

2

+⋯
⎞
⎟
⎠

.

These corrections may be expressed as a change of the excitation
energy to the i→ i∗ spin-flip configuration,

c(1+3)
i→i∗ ,sf

≅
⟨i∣Ka∣i∗⟩

Fii − Fi∗i∗ −∑
j≠i

⟨j∣Ka ∣j∗⟩2

(Fii+Fjj−Fi∗ i∗−Fj∗ j∗ )
.

The summation of these excitations results in a reduction in the
effective excitation energy from the reference to the spin-polarizing
1h–1p configuration.

Moreover, one might also introduce a k → k∗ spin-flip excita-
tion on top of the doubly excited determinant Φ(ij→j∗i∗), which leads
to a triply excited determinant, lowering the effective energy of this
determinant. The mechanism is illustrated in Fig. 2(f). It represents
some kind of entangled cascade of spin polarizations. The denomi-
nators relative to the multiple excitations increase, but the number of
combinations of the successive events also increases. If one remains
in the CH3 problem, the number of one-spin-flip processes, in which
a becomes spin down, is 3. The number of two-spin-flips, in which
a returns to spin up, is 6. If one calls μ the integrals ⟨i|Ka|i∗⟩, and Δ
the excitation energy on a bond, the second-order energy correction
is y = 3 μ2/Δ. The fourth-order corrections coming from the dou-
ble spin-flips is 6 μ4/2Δ3 = 3μ4/Δ3. One may calculate the effect of
the three-spin-flip configurations (which belong to the 3h–3p sub-
space). Their number is 3, and their coefficient is μ3/3Δ3. Their effect
on the energy is μ5/Δ4, and their effect on the coefficients of the 1h–
1p configurations is μ4/3Δ4. This analysis may explain the observed
increase in the 1h–1p configuration when passing from the 2h–2p
CI to the 3h–3p CI.

It is important to note that the second spin-flip opera-
tor a+

aa+
j∗aaaj does not act on the reference single determinant.

Figure 2(f) illustrates entirely connected processes. This connectivity
is in contrast with the typical single-reference correlation problem
where the leading contributions to the quadruply excited determi-
nant are products of disjoint double excitation coefficients. Here,
the leading term to the double-spin-flip determinants is intrinsi-
cally connected and requires the action of an excitation that does
not act on the reference. As will be discussed later, this questions the
possibility to treat the spin-polarization phenomenon from a single
reference coupled cluster expansion.

4. Broken-symmetry transcription
In order to understand why double excitation results in an

enhancement of the coefficients of singly excited ones, it is worth
using localized bonding and antibonding MOs on the three CH
bonds, and consider the excitation on bond j after a preliminary
spin polarization of bond i. We shall first follow the physics involved
in BS treatments. The single excitation on bond i may be seen as a
spin-dependent revision of the MOs leading to the BS determinant,

ΦBS(i) = ∣a jji′i′′∣,

where i′ has a larger amplitude on the carbon atom than i due to the
exchange attraction by the spin on atomic orbital a, while the trend
change is opposite for i′′. The orbital rotation essentially involves the
antibonding orbital of the same bond,

i′ = i + λii∗,

with

λi =
⟨i∣ − Ka/2∣i∗⟩
Fii − Fi∗i∗

.

If one gives a positive coefficient on the carbon hybrid AO in
i∗, this coefficient is positive and scales as

λi = −
Kda/4

Fii − Fi∗i∗
,
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where Kda is the intra-atomic exchange integral between 2pz orbital
a and the sp2 hybrid orbital on carbon involved in bond i. On the
contrary,

i′ = i − λii∗.

This MO has a smaller amplitude on the carbon hybrid AO.
Polarizing now the MOs of bond j through j→ j∗ excitation of

α spin, one gets

⟨aj∗ji′i′∣H∣ajji′i′⟩ = ⟨ j∗ ∣−Ka/2 + Ji′ + Ji′ − 2Ji − Ki′ + Ki∣ j⟩.

One may show that

⟨ j∗∣Ji′ + Ji′ − 2Ji∣ j⟩ = 0,

and hence,

⟨aj∗ji′i′∣H∣ajji′i′⟩ = ⟨ j∗ ∣−Ka/2 − Ki′ + Ki∣ j⟩.

One may develop the quantity ⟨ j∗∣Ki′ − Ki∣ j⟩ in terms of the
coefficients of the orbitals on the unique non-negligible atomic inte-
gral, namely, the exchange integral kpi pj between the carbon hybrids
pi and pj involved in bonds i and j, respectively,

⟨ j∗∣Ki′ − Ki∣ j⟩ ≅ kpi,pjcj∗pjcjpj(c
2
i′ ,pi − c

2
i,pi).

Due to the larger amplitude of i′ on the carbon atom,

⟨ j∗ ∣−Ki′ + Ki∣ j⟩ < 0,

⟨ j∗∣Ki′ −Ki∣ j⟩ has the same sign as ⟨ j∗∣−Ka/2∣ j⟩. Therefore, the
amplitude of the interaction responsible for the spin polarization of
bond j has been increased by the preliminary spin polarization of
bond i,

∣⟨aj∗ji′i′′∣H∣ajji′ii′′⟩∣ > ∣⟨aj∗jii∣H∣ajjii⟩∣.

One has the same inequality for the j→ j∗ excitation of β spin.
Once the α spin electron of the first CH bond has been pushed closer
to the α spin unpaired electron, it reinforces the exchange field acting
on the α spin electron of the second CH bond.

One should remember that the dominant valence bond deter-
minant of CH3 is ∣a.p1p2p3h1h2h3∣, which satisfies the neutrality of
the atoms and Hund’s rule and corresponds to the correct dissoci-
ation limit into atoms in their ground states. The spin polarization
mechanism increases the weight of this VB component.

5. Conclusive remark
The above-discussed mechanisms contribute to the coopera-

tive effect observed in the numerical calculations. It is difficult to
assess the respective roles of the various mechanisms evoked in this
discussion, namely, the interference between correlation and spin
polarization, and the cooperative character of the spin polarization.
Nevertheless, looking at the increase in the coefficients of spin-
polarization singly excited determinants when going from the 2h–2p
CI to the 3h–3p CI, the cooperative mechanisms seem more likely.
As will be shown in Sec. III, the same phenomenon takes place in
diradicals.

III. A DRAMATIC SPIN POLARIZATION
IN A SINGLET DIRADICAL

Spin-polarization is also of major importance in diradicals,
as qualitatively illustrated by the singlet character of the ground
state of the 90○ twisted ethylene5 and quantitatively crucial in CI
calculations of magnetic couplings.16–18

A. Choice of paradigmatic problem
Diradicals, in principle, exhibit two singly occupied orbitals.

This picture is not problematic for ferromagnetic systems, the
ground state of which is of triplet character. When the ground state
is a singlet, there is no absolute difference between diradicals and
closed shell systems, and a lot of criteria have been proposed to iden-
tify diradicals or measure the diradical character.19,20 For an experi-
mentalist, the key property is the magnetic susceptibility, hence the
amplitude of the singlet–triplet gap, but actually one may identify
several leading contributions to this energy difference.16–18 These are
essentially a direct exchange (always ferromagnetic, i.e. in favor of
the triplet), the so-called antiferromagnetic kinetic exchange, which
reflects the stabilizing effect of the ionic VB component of the singlet
state, and a spin-polarization mechanism, the sign of which depends
on the molecular architecture. To study the latter contribution, one
may select diradicals in which kinetic exchange is zero for sym-
metry reasons, the magnetic preference being essentially governed
by the spin-polarization mechanism. Such is the case of conjugated
molecules where a double bond has been twisted by 90○, the sim-
plest one being twisted ethylene.5,6 We illustrate the occurrence of a
spin-polarization collective effect in a singlet diradical, the square
carbomer derivative of cyclobutadiene, C12H4 scheme (1).21 The
relative energies of D2h rectangular closed-shell singlet and of D4h
square open-shell geometry represent another topic, which will be
discussed elsewhere.

The spin-polarization mechanism is here particularly dramatic
as it is the only physical effect stabilizing the singlet below the triplet
in the D4h geometry. The system has 12 π electrons in 12 π valence
orbitals. In its square geometry, the molecule presents two non-
bonding MOs, which are of zero energy in Hückel or Hubbard mod-
els. The molecule is “alternant” (or “bipartite” in the language of
physicists) in that one of two colors may be attributed to each site
in such a manner that a “red” atom is linked to two “blue” atoms
and vice versa (Fig. 3, left). The two non-bonding orbitals, labeled
a and b, can be localized on red and blue color sites, respectively.
Putting ten π electrons in five π doubly occupied orbitals defines a
two-open shell singlet configuration ΦS = ∣(ab + ba)Πkkk∣/

√
2. The

two orbitals a and b, appearing in Fig. 3 (right), may be localized on
red and blue atoms, respectively, under a π/4 rotation of the orbitals
a′ and b′ of Fig. 4, and may be written as

∣a⟩ = ∑
p=0,5
∣2p + 1⟩(−1)p/

√
6,

∣b⟩ = ∑
p=1,6
∣2p⟩(−1)p/

√
6.

According to the “mirror theorem,”22,23 each doubly occupied π
orbital k is associated with a π∗ virtual orbital k∗ such that the coef-
ficients of the red color (say, the odd-numbered) carbon atoms are
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SCHEME 1. Interconversion pathway between equivalent D2h geometries of carbo-cyclobutadiene

the same in k and k∗ orbitals, while the coefficients of the other color
change their signs,

C(k, 2p + 1) = C(k∗, 2p + 1),

C(k, 2p) = −C(k∗, 2p).

The CASSCF orbitals are presented in Fig. 4 and follow the mirror
rule.

Regarding the interaction between the doubly occupied and
empty MOs, the Fock operator associated with the reference con-
figuration is

F = h + Ja − Ka/2 + Jb − Kb/2 +∑
k

2Jk − Kk.

In one of the two single determinants involved in ΦS, the α spin
unpaired electron is on red atoms, the β spin unpaired electron being
on blue atoms, the repartition of the spins being opposite in the other
component of the reference. The two unpaired electrons induce a
fluctuating exchange field on the “core” electrons. To the first order,

the spin-polarization process goes through 1h–1p excited configura-
tions, singly excited either with respect to one of the components of
ΦS, such as

Φk→r,ab = ∣Πi≠kii kr ab∣ and Φk→r,ab = ∣Πi≠kii rk ab∣,

or with their spin-flipped counterparts,

ΦSF
k→r, = ∣Πi≠kii kr ab∣ and ΦSF

k→r, = ∣Πi≠kii kr ab∣.

To the second order of perturbation, the resulting energy of these
interactions is given by

1E(2)SP =∑
k,r

3/2⟨k∣Ka − Kb∣r⟩
2

Fkk − Frr
.

It is interesting to use a Hubbard approximate Hamiltonian,

H =∑
p,q

tpqa+
paq +∑

p
Ua+

pa
+
papap,

FIG. 3. Carbo-cyclobutadiene C12H4. (Left) Sketching the alternant character. (Right) The two most-localized singly occupied orbitals a and b.
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FIG. 4. Molecular orbitals of carbo-cyclobutadiene C12H4 (drawn with gv, orbital visualization software,39,40 isosurface value 0.04).

to identify the major contributions to this sum,

⟨k∣Ka − Kb∣r⟩ = U∑
p
CpkCpr(C2

pa − C
2
pb).

In this problem, for symmetry reasons, C2
pa = 1/6 if p is odd and C2

pa
= 0 if p is even, with the reverse relation for the b orbital, so that

⟨k∣Ka − Kb∣r⟩ = U(∑
p,odd

CpkCpr/6 − ∑
p,even

CpkCpr/6).

If r = i∗, ≠k∗,
⟨k∣Ka − Kb∣r⟩ = U⟨k∣ i

∗
⟩/6 = 0,

the contribution of this excitation to the spin polarization energy is
zero. Spin polarization reduces to paired k→ k∗ excitations between
mirror orbitals and is a simple sum of contributions running on
excitations between mirror orbitals,

1E(2)SP =∑
k

3/2⟨k∣Ka − Kb∣k∗⟩
2

Fkk − Fk∗k∗
.

This is the perturbative expression of the effect of the 1h–1p excita-
tions. The coefficients of the corresponding singly excited determi-
nants are, for instance,

C(1)(k→k∗)ab =∑
k,r

1/2⟨k∣Ka − Kb∣k∗⟩
2

Fkk − Fk∗k∗
.

B. Numerical study
The computation is performed in a non-minimal basis set of

atomic orbitals.15 A preliminary full valence π CASSCF(12, 12) is
performed, which defines optimal five bonding, two non-bonding,
and five antibonding MOs. These orbitals are used in the following
truncated CI calculations, the starting description is the CAS(2, 2)
function, and one adds progressively 1h–1p, 2h–2p, . . ., up to 5h–5p,
compared to full valence π CAS.

The surprising result is that the largest coefficients, beyond
those of the two reference determinants, belong to the 1h–1p class,
whatever the CI level. Table III reports the weights of the reference
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TABLE III. Weight of the leading configurations in the C12H4 diradical at different CI levels.

CI level 1h1p 2h2p 3h3p 4h4p 5h5p Full CAS

Weights and ratios to reference (%)

Reference 0.8675 0.7936 0.7443 0.7259 0.7215 0.7207
1→ 12 0.0106(1.2%) 0.0082(1.0%) 0.0096(1.3%) 0.0094(1.3%) 0.0094(1.3%) 0.0094(1.3%)
2→ 11 0.0145(1.7%) 0.0115(1.4%) 0.0134(1.8%) 0.0132(1.8%) 0.0132(1.8%) 0.0132(1.8%)
3→ 10 0.0145(1.7%) 0.0115(1.4%) 0.0134(1.8%) 0.0132(1.8%) 0.0132(1.8%) 0.0132(1.8%)
4→ 9 0.0274(3.2%) 0.0242(3.0%) 0.0286(3.8%) 0.0283(3.9%) 0.0284(3.9%) 0.0284(3.9%)
5→ 8 0.0627(7.2%) 0.0602(7.6%) 0.0715(9.6%) 0.0714(9.8%) 0.0717(9.9%) 0.0716(9.9%)
Largest 2h–2p . . . 0.0056 0.0067 0.0077 0.0077 0.0078

configuration and those of the most important 1h–1p determinants.
This prevalence of single excitations never happens in closed-shell
problems, where doubly excited configurations dominate the extra-
reference part of the wave function. Calling HDOMO the highest
doubly occupied MO and LDUMO the virtual MO of lowest energy,
the largest coefficients concern the HDOMO → LDUMO (5 → 8)
spin-polarization configuration.

As expected from analytical derivation, the other 1h–1p con-
figurations are k → k∗, with decreasing weight when k and k∗ go
further from the Fermi level, reflecting the increasing excitation
energy appearing in denominators. An intriguing and counterin-
tuitive outcome is the increase in the ratio of the weight of 1h–1p
configurations to that of the reference function when multiple exci-
tations are introduced in the CI. The only exceptions concern the 1
→ 12, 2 → 11, and 3 → 10 excitations when going from the 1h–1p
to the 2h–2p level. This step introduces large contributions from the
correlation double excitations, which result in a 0.07 decrease in the
weight of the reference. Beyond this step, the increase in the weight
of the 1h–1p configurations is regular. The effect is far from being
negligible; for instance, for the HDOMO–LDUMO excited configu-
ration, this ratio goes from 0.063 for the 1h–1p step to 0.072 for the
full CI, representing a 14% increase.

These numbers confirm the collective and cooperative charac-
ter of the spin polarization phenomenon. It is possible to perform
a rationalization similar to the one proposed in Sec. II C, show-
ing that the interaction relative to excitation i → i∗ is larger when
k → k∗ has already been performed. The demonstration is ana-
lytic, assuming a Hubbard Hamiltonian and taking benefit of the
“mirror theorem.”22,23 Starting from Φab = ∣(ab)Πkkk∣, where the
α-spin unpaired electron is on odd numbered atoms and the β-spin
unpaired electron is on even ones, the polarization on MO i, lead-
ing to i′, increases the coefficients on the odd-numbered sites and
decreases them on the even ones. It is the opposite effect for the β
spin electron of MO i, polarized into i′′. The already increased con-
centration of the α spin electron on the odd-numbered sites and of
the β spin electrons on the even ones reinforces the strength of spin
polarization of the electrons of MO k.

Notice that in alternant systems, the single determinants of
major coefficients in the wave function are the so-called Néel func-
tions, i.e., VB distributions where electrons are distributed one
per site, with spin alternation on atoms of both colors. This is
partly due to anti-symmetrization itself24 and partly due to electron

repulsion.25 It can be demonstrated whatever the delocaliza-
tion/repulsion ratio, and it is at the root of Ovchinnikov’s rule.26

Symmetry breaking of the Hartree–Fock single determinant pushes
the wave function in the direction of the (or a) Néel determinant,
and the collective character of spin polarization reflects this impact
of a global and cooperative spin-ordering effect. In full generality,
one may demonstrate that the valence bond determinants of major
coefficients in the correlated wave function are those which have
parallel spins on the atomic orbitals of the same atom and present
spin alternation between neighbor atoms. This is true for conjugated
or saturated hydrocarbons, for organic or inorganic molecules.27,28

It is possible to translate the theoretical interpretation proposed
from the radicals to the diradicals, changing the spin-polarizing
operator from Ka to Ka + Kb for the triplet state and Ka − Kb for
the singlet. One may trace as well the interference between correla-
tion and spin polarization and the existence of cooperative effects
increasing the coefficients of the 1h–1p spin polarizing contribu-
tions. For the triplet state, one may use a single reference expansion
from the ms = 1 component, and a coupled cluster expansion faces
the fact that a second spin-flip excitation implies some operators that
do not act on the reference. Although the singlet-state treatment
requires an expansion from two reference determinants, and thus
two wave operators, the same problem appears for each of them.

IV. DISCUSSION: A METHODOLOGICAL CHALLENGE
We have reported the observed and unexpected increase in

coefficients of spin-polarizing 1h–1p determinants when pushing
the CI expansion to full valence CI. We have tried to understand
the origin of the phenomenon, concerning apparently both mono-
radicals and di-radicals. Two mechanisms certainly enter in this
behavior, namely, a positive interference between spin polarization
and correlation and a cooperative aspect of the spin polarization.

Cooperative effects are fundamental in phase transitions of
materials, which involve molecular reorganizations under pressure,
temperature, or external field. In the present problem, the cooper-
ativity concerns a purely electronic phenomenon. It is a positive
cooperativity, as the spin polarization of a closed shell is enhanced
by the spin polarization of the other electron pairs.

This may be formulated this way: starting from a closed-shell
description of the core, the probability to get two local polarizations
is larger than the product of the probabilities to get independent
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polarization excitations. This phenomenon questions the relevance
of the standard tool for the description of electronic systems, namely,
the coupled-cluster representation of the wave function, when treat-
ing spin-polarization phenomena. In this formalism, based on per-
turbation theory and diagrammatic representations, the amplitude
of a quadruply excited determinant is obtained from the product
of the amplitudes of complementary pairs of double excitations
leading to this quadruply excited determinant from the reference
function.29–32 This formalism is based on many-body perturbation
theory33 and is valid under two conditions, namely,

(i) when ∣Φα⟩ = T+
i T

+
j ∣Φ0⟩ is a second-generation determinant,

the interactions between it and the first generation determi-
nants are equal to the interactions between the reference and
the first generation determinants, namely,

⟨T+
i Φ0∣H∣Φα⟩ = ⟨Φ0∣H∣T+

j Φ0⟩

and
⟨T+

j Φ0∣H∣Φα⟩ = ⟨Φ0∣H∣T+
i Φ0⟩,

i.e., if the interactions relative to two determinants related
by an excitation operator only depend on the excitation
operator, and

(ii) if

⟨Φα∣H∣Φα⟩ − ⟨Φ0∣H∣Φ0⟩ = ⟨T+
i Φ0∣H∣T+

i Φ0⟩ − ⟨Φ0∣H∣Φ0⟩

+ ⟨T+
j Φ0∣H∣T+

j Φ0⟩ − ⟨Φ0∣H∣Φ0⟩,

i.e., if excitation energies are additive.

Under these two conditions, the coefficient of |Φα⟩ contains the
product of the coefficients of ∣T+

j Φ0⟩ and ∣T+
i Φ0⟩. If one of these

conditions is not satisfied, one must introduce specific many-body
operators T+

α ∣Φα⟩ = T+
α ∣Φ0⟩ in the wave operator, with their spe-

cific amplitudes, to get the exact coefficients of the multiply excited
determinants. There are two ways of breaking these conditions.

The first one concerns the additivity of excitation energies,
which is, in general, only approximate, but which may be strongly
violated in some specific problems. Consider, for instance, a one-
dimensional antiferromagnetic chain of spins with its associated
Néel reference determinant. Performing spin exchange between two
adjacent sites, say, k and l, induces two spin frustrations and costs 2J,
with J being the inter-site magnetic coupling. Let us call c the ampli-
tude of this operation. As excitation energies are additive, perform-
ing a second spin exchange on a remote bond costs 4J, and indeed,
the coefficient of the corresponding determinant may be approxi-
mated by c2. If a second spin exchange now concerns atoms m and n,
close to l, the excitation energy is only 2J, it is no longer additive, and
the coupled-cluster approximation fails, or must be corrected.34,35

In this problem, spin exchange on a given bond facilitates that on
neighbor bonds—this can be considered as a “denominator driven”
cooperative effect.

A second deviation concerns transferability of the interactions.
This transferability is satisfied when the operators are double excita-
tions, which are the fundamental processes in the electronic correla-
tion problem. It is no longer the case for single excitations since the
interactions they generate depend on the determinant on which they
act. In the correlation problem, Brillouin’s theorem ensures that the

corresponding amplitudes are small and the defect of introducing
products of t(1) amplitudes is not problematic. However, one sees in
our problem that the spin-polarization effects, which, in principle,
concern various electron pairs, are not additive, due to a positive
interference effect, which increases the intensity of the interactions
of the same 1h–1p operators, when going to multiple excitations.
One may consider this cooperative effect as “interaction-driven.”
The numerical examples demonstrate that it should be necessary to
consider multiple spin-polarization operators to correctly treat their
elementary amplitudes.

The problem of a correct treatment of spin polarization is not
a purely academic challenge: most of the chemical rearrangements
proceed through barriers where the molecules take a diradical char-
acter and which are accordingly subject to collective spin polariza-
tion effects. Treating them from a single reference approach, or even
from a two-configuration approach, may miss this effect and over-
estimate the barrier height of the reaction. Intensive CI calculations
able to treat cooperative effects correctly are not possible in large
systems, especially remembering that, in conjugated hydrocarbons,
spin polarization also concerns the σ frame and that cooperativ-
ity is certainly present between spin polarizations of σ cores and π
electrons. The unrestricted self-consistent formalisms might appear
as an alternative, since they actually introduce multiplicative effects
due to their iterative character, but they also miss spin-flip contribu-
tions and destroy spin-symmetry requirements. An interesting treat-
ment may start from a spin-unrestricted treatment and proceed to
an appropriate symmetry-restoring projection, as done by Jiménez-
Hoyos et al.,36–38 but it is likely that the resulting wave function will
anyway expand on multiply excited configurations, increasing the
cost of the final calculation of energy.

SUPPLEMENTARY MATERIAL

See the supplementary material for (I) optimized geometries
of CH3 and C12H4, and (II) CI calculations: computational details,
input files, and configurations for the two systems.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article (and its supplementary material).
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